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Universidade Estadual de Campinas

13083-859 Campinas - SP, Brasil

garibaldi@ime.unicamp.br

Philippe Thieullen†

Institut de Mathématiques
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Abstract

We consider a generalization of the Frenkel-Kontorova model in higher
dimension. We give a wider applicability to Aubry’s theory by studying models
with vector-valued states over a one dimensional chain. This theory has a lot
of similarities with Mather’s twist approach over a multidimensional torus.
Weakening the standard hypotheses used in one dimensional, we investigate
properties (like boundness of jumps and definability of a rotation vector) of a
special class of strong ground states: the calibrated configurations.

The main mathematical tool is to cast the study the minimizing configura-
tions into the framework of discrete Lagrangian theory. We introduce forward
and backward Lax-Oleinik problems and interpret their solutions as discrete
viscosity solutions in the same spirit of Hamilton-Jacobi methods. With re-
duced hypotheses, we reproduce in this discrete setting some classical results
of the Lagrangian Aubry-Mather theory. In particular, we obtain a graph
property for the Aubry set, representation formulas for calibrated sub-actions
and the existence of separating sub-actions.
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1 Introduction

One dimensional crystals. Via a local interaction energy map L : R
2 → R,

the original Frenkel-Kontorova model describes a one dimensional chain of classical
particles coupled to their neighbors and subjected to a periodic on-site potential.
If xk ∈ R denotes the position of the particle labeled by k ∈ Z, the total energy of
a chain {xk} ∈ R

Z is given by

Ltot({xk}) =
∑

k∈Z

L(xk, xk+1),

which may a priori diverge. As an example of local interaction energy map, it is
standard to study

L(xk, xk+1) =
κ

2
(xk+1 − xk − υ)2 + (1 − cos 2πxk),

when considering interactions of atoms via harmonic springs with elastic coupling
constant κ and mean interatomic distance υ, in the presence of an external periodic
potential V(x) = 1 − cos 2πx.

The main interest is to understand the set of minimizing configurations, or
ground states in statistical physics, that is, the set of configurations {xk}k∈Z ∈ R

Z

satisfying

L(xm, xm+1, . . . , xn) :=

n−1
∑

k=m

L(xk, xk+1) ≤ L(ym, ym+1, . . . , yn)

for every m < n and every configuration {yk}k∈Z ∈ R
Z with ym = xm and yn = xn.

Notice that, when L is supposed to be C1, a minimizing configuration {xk} is
critical in the sense that

∂L

∂y
(xk−1, xk) +

∂L

∂x
(xk, xk+1) = 0, ∀ k ∈ Z.

Central references, ramifications and further developments. S. Aubry
and P. Y. Le Daeron [2] studied a large class of Frenkel-Kontorova models. Mainly
assuming L to be C2, periodic under the Z action and uniformly strictly convex,
they proved that minimizing configurations do exist and have a well defined rotation
number

ω := lim
n→+∞

xn − x0

n
= lim

n→+∞
x0 − x−n

n
.

Moreover, they proved that any possible rotation number ω is achieved by a mini-
mizing configuration {xk} which satisfies in addition supk∈Z |xk − x0 − kω| < +∞.

This work of Aubry and Le Daeron in solid-state physics and in an independent
study of J. N. Mather [24] on twist homeomorphisms of the annulus gave rise the
so called Aubry-Mather theory, which was later developed for Lagrangian systems
(see [25]). An introduction to such theory is provided by the notes of G. Forni and
J. N. Mather [13]. Furthermore, textbooks pertinent to the subject are [6, 11].
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It is well known that area-preserving maps of the annulus occur as Poincaré
section mappings of Hamiltonian systems with two degrees of freedom. Since such
annulus maps play a role in the stability theory, it is quite natural to interpret cer-
tain aspects of the Aubry-Mather theory into the scene of the KAM theory, specially
into the episode of the disintegration of invariant tori. Conversely, it is interesting
to have in mind, as noticed by M. Herman in [20], the existence of connections
between configurations with minimun energy and Lagrangian tori invariant under
symplectic diffeormorphisms of the cotangent bundle of the d-dimensional torus.

The main objective of this paper is to extend the Frenkel-Kontorova model to
the case where the state xk of the atom at each site k ∈ Z of the lattice possesses
d degrees of freedom, that is, to the case where xk ∈ R

d. First, we would like
to clarify the natural mathematical setting where a such theory gives non trivial
results, for instance by allowing the local interaction energy map L to have the
lowest possible regularity and by avoinding the so called “twist condition”. Our
second purpose here is to study in detail a special class of minimizing configurations
that we call calibrated and are strongly related to Fathi’s theory of weak KAM or
viscosity solutions. Another aim is an attempt to understand rotational theory in
this general context.

Generalizations of Frenkel-Kontorova model have been pursued in several works.
One can consider, for example, a multidimensional topology of interactions. The
state of the system is still one-dimensional as in Aubry’s theory, but the topology
of the interactions is given by a lattice of higher dimension, by Z

d for instance.
In this framework, xk ∈ R is a real quantity representing the state of a particle
at the site k ∈ Z

d. By introducing a family of local interaction energies, the
notions of minimizing configurations and rotation vectors can be defined similarly.
In the context of these multidimensional models of Frenkel-Kontorova type, one still
obtains a minimizing configuration having a given rotation vector when respecting
an analogous bounded distance property. For precise definitions and statements,
we refer the reader to the work of R. de la Llave and E. Valdinoci [22]. One should
also consult the paper of H. Koch, R. de la Llave and C. Radin [21] for situations
where the variables range over a more complicated lattice. In another direction,
the potential could be assumed quasiperiodic instead of periodic as it is done in the
work of J. M. Gambaudo, P. Guiraud and S. Petite [14].

Our hypotheses. From now on, we assume our local interaction energy map

L = L(x, y) : R
d × R

d → R

to be C0 and invariant with respect to the diagonal action of Z
d,

L(x, y) = L(x+ s, y + s), ∀ s ∈ Z
d.

The local interaction energy map is usually supposed to be C2, superlinear and
uniformly strictly convex. We will see that most of the theory can be done assuming
only C0 regularity and coerciveness. This later condition implies in particular
compactness on any band ‖x− y‖ ≤ R. We say that L(x, y) is coercive if

lim
R→+∞

inf
‖x−y‖≥R

L(x, y) = +∞.
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In the last section, will be interested in discussing rotational properties of minimiz-
ing configurations. We will then require L(x, y) to be superlinear, that is,

lim
R→+∞

inf
‖y−x‖≥R

L(x, y)

‖x− y‖ = +∞.

Of course superlinearity implies coerciveness.

We will also prove a graph theorem as in Mather’s theory. Only in that part of
the article, we will need L(x, y) to be ferromagnetic. A C1 local interaction energy
map L(x, y) is said to be ferromagnetic if, for every pair (x̄, ȳ) ∈ R

d × R
d,

x ∈ R
d 7→ ∂L

∂y
(x, ȳ) ∈ R

d and y ∈ R
d 7→ ∂L

∂x
(x̄, y) ∈ R

d

are homeomorphisms. This property is weaker than the twist property. It is implied
for instance by C2 regularity and uniform strict convexity in y−x. In section 2, we
will show that the ferromagnetic condition allows us to introduce a discrete-time
Lagrangian dynamics Φτ : T

d × R
d → T

d × R
d (see definition 2.5).

Main results. Among the set of all minimizing configurations, calibrated config-
urations play a central role. We first introduce a notion of minimal mean energy
per site, that we call minimizing holonomic value1 L̄, in the following way

L̄ = inf
{

lim inf
n→+∞

1

n
L(x0, x1, . . . , xn) : {xk}k∈Z any configuration

}

.

We call thus sub-action any continuous Z
d-periodic function u : R

d → R satisfying

u(y) − u(x) ≤ L(x, y) − L̄, ∀ x, y ∈ R
d.

We call calibrated configuration (or more precisely u-calibrated if needed) a config-
uration {xk}k∈Z such that, for some sub-action u,

u(xk+1) − u(xk) = L(xk, xk+1) − L̄, ∀ k ∈ Z.

It is then obvious that a calibrated configuration is a minimizing configuration.

In section 5, we show that calibrated configurations do exist, they have bounded
jumps, supk ‖xk+1−xk‖ < +∞, and may be obtained using a notion of forward (or
backward) calibrated sub-actions (see lemma 5.5). These specific sub-actions are
similar to Fathi’s weak KAM solutions or viscosity solutions of a discrete Hamilton-
Jacobi equation. A sub-action is said to be forward calibrated if

∀ x ∈ R
d, ∃ y ∈ R

d s.t. u(y) − u(x) = L(x, y) − L̄.

1Such nomenclature is due to the class of holonomic probabilities which we will study in sec-
tion 3. As showed by D. A. Gomes in [17], even when no Lagrangian dynamics is clearly present
and the notion of invariant measure has a priori no meaning, such set of probabilities is suitable
for the minimization of the average action. As we will see, L̄ can be also characterized in terms of
minimizing holonomic probabilities.
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In particular, given x0 and a forward calibrated sub-action u, there exists a forward
configuration {xk}k≥0 of points of R

d such that L(xk, xk+1) = u(xk+1)−u(xk)+ L̄,
∀ k ≥ 0.

Calibrated sub-actions can be obtained as solutions of a suitable Lax-Oleinik
problem. In section 4, the forward Lax-Oleinik operator is defined by

T+u(x) := sup
y∈Rd

[u(y) − L(x, y)], ∀ x ∈ R
d, ∀ u ∈ C0(Rd) Z

d-periodic.

So u is a forward calibrated sub-action if, and only if, T+u = u+c for some constant
c ∈ R which necessarily equals L̄. We not only guarantee that calibrated sub-actions
do exist, but we also discuss how the regularity of the local interaction energy map
affects the regularity of a calibrated sub-action. We show (see proposition 4.7)
that, if L is locally Lipschitz or C2, then any forward (resp. backward) calibrated
sub-action is Lipschitz or semiconvex (resp. semiconcave).

If L(x, y) is in addition C1, a similar graph property as in Aubry-Mather theory
can be formulated. A triple (x−1, x0, x1) is said critical if

∂L

∂y
(x−1, x0) +

∂L

∂x
(x0, x1) = 0.

Notice ferromagnetism implies that, for x0 fixed, the map x−1 7→ x1 is a homeo-
morphism. Given a sub-action u, a triple (x−1, x0, x1) is said u-calibrated if

L(x−1, x0) − u(x0) + u(x−1) = L(x0, x1) − u(x1) + u(x0) = L̄.

A calibrated triple is in particular critical. In section 6, we show that, for C1 local
interaction energy map L, any sub-action u is differentiable at any mid point x0 of
some u-calibrated triple (see lemma 6.8) and that

Du(x0) =
∂L

∂y
(x−1, x0) = −∂L

∂x
(x0, x1).

One concludes that, in the ferromagnetic case, there exists at most one u-calibrated
triple going througth any x0 ∈ R

d. This suggests to introduce the following set,
called the Aubry set,

A(L) =
{

x = {xk}k∈Z ∈ (Rd)Z : x is calibrated for any sub-action
}

and its projection pr0(A(L)) ⊂ R
d called the projected Aubry set, where the map

pr0 : (Rd)Z → R
d denotes the zero coordinate projection. The Aubry set is not

empty for a general C0 coercive local interaction energy map L. We give several
properties in sections 6 and 7.

In the ferromagnetic case, the projected Aubry set satisfies in addition the
graph property in the sense that, for any x0 ∈ pr0(A(L)), there exists an unique
configuration x = {xk}k∈Z going throught x0, calibrated for any sub-action. In
other words, pr0 : A(L) → pr0(A(L)) is one-to-one. Besides, we are able to show
that Du : pr0(A(L)) → R

d is a continuous function for any sub-action u.
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If one only assumes L to be C0 and coercive, the projected Aubry set admits an
equivalent characterization similar to the non-wandering set in dynamical systems,

pr0(A(L)) =
{

x0 ∈ R
d : ∀ ǫ > 0, ∃ n ≥ 1, ∃ xǫ0, . . . , xǫn ∈ R

d, ∃ sǫn ∈ Z
d s.t.

|L(xǫ0, x
ǫ
1, . . . , x

ǫ
n) − nL̄| < ǫ, xǫ0 = x0 and xǫn = x0 + sǫn

}

.

It is relatively easy to prove that a point x0, satisfying the second definition of the
projected Aubry set, is the projection of a configuration {xk}k∈Z, calibrated for
any sub-action, which is made of limit points when ǫ tends to 0 of the sequences
(xǫ1, x

ǫ
2, . . . ) and (xǫn − sǫn, x

ǫ
n−1 − sǫn, . . . ).

The converse is more difficult to prove and uses the notion of separating sub-
action. A sub-action u is called separating when, for any pair of points (x, y)
verifying u(y) − u(x) = L(x, y) − L̄, there necessarily exists {xk}k∈Z ∈ A(L) with
x0 = x and x1 = y. We establish in section 10 the existence of these sub-actions
and their generic condition. The existence result is a discrete and topological ver-
sion of the critical subsolutions of the Hamilton-Jacobi equation determined by
A. Fathi and A. Siconolfi in [12]. We actually obtain a stronger statement: for
every {xk}k∈Z ∈ A(L), for any integer m ≥ 1, for all ǫ > 0, there are n ≥ m,
xǫm, . . . , x

ǫ
n ∈ R

d and sǫn ∈ Z
d, with xǫn = x0 + sǫn, such that

|L(x0, . . . , xm−1, x
ǫ
m, . . . , x

ǫ
n) − nL̄| < ǫ.

The second definition of the projected Aubry set suggests to introduce the
Peierls barrier,

h(x, y) = lim inf
n→+∞

inf
{

L(x0, . . . , xn) − nL̄ : xk ∈ R
d, x0 = x, xn − y ∈ Z

d
}

.

In section 8, assuming C0 regularity and coerciveness, we show that h(x, y) is well
defined on R

d×R
d, continuous, Z

d×Z
d-periodic and satisfies u(y)−u(x) ≤ h(x, y),

for all x, y ∈ R
d and any sub-action u. We also prove that, for any x ∈ R

d, h(x, ·)
is backward calibrated and that, for any y ∈ R

d, −h(·, y) is forward calibrated (see
theorem 8.10). The projected Aubry set admits then a third characterization,

pr0(A(L)) = {x0 ∈ R
d : h(x0, x0) = 0}.

The set of forward (resp. backward) calibrated sub-actions is completely de-
termined by the projected Aubry set. In section 9, we show that any calibrated
sub-action is characterized by its values on the projection of the Aubry set and the
values of the Peierls barrier. We show (see theorem 9.3) that u is forward calibrated
if, and only if,

u(x) = sup
y∈pr0(A(L))

[ψ(y) − h(x, y)], ∀ x ∈ R
d,

for some C0 and Z
d-periodic function ψ : R

d → R satisfying ψ(y) − ψ(x) ≤ h(x, y)
for all x, y ∈ pr0(A(L)). Moreover u(x) = ψ(x) for all x ∈ pr0(A(L)). Such result
shall be understood as the analogous of the one obtained by G. Contreras for weak
KAM solutions (see [5]).
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As in Fathi’s weak KAM theory, we say that a forward u+ and a backward u−
calibrated sub-actions are conjugated, and we write u+ ∼ u−, if they coincide on
the projected Aubry set. We then show in proposition 9.6 that the Peierls barrier
can be defined by

h(x, y) = sup
u+∼u−

[u−(y) − u+(x)], ∀ x, y ∈ R
d.

In particular, we obtain a forth characterization of the projected Aubry set: a point
x0 is outside pr0(A(L)) if, and only if, there exist conjugated calibrated sub-actions,
u+ and u−, such that u+(x0) 6= u−(x0).

In section 11, we introduce the notion of rotation vector ω of a configuration
{xk}k∈Z

ω = lim
n−m→+∞

xn − xm
n−m

,

when the limit exists. We show in particular that there exists minimizing configu-
ration with rotation vector of arbitrarily large norm.

We have chosen to translate the Frenkel-Kontorova model into the framework
of Aubry-Mather theory mainly to be able in a subsequent article to reach Fathi’s
approach of weak KAM solutions (or the problem viscosity solutions of Hamilton-
Jacobi equations) using a more dynamical discretization scheme. Let T

d denote
the d dimensional torus R

d/Zd. The main object we are interested in is thus a
Lagrangian L(x, v) defined on T

d × R
d and a family of local interaction energies

parametrized by τ > 0,

Lτ (x, y) = τL
(

x (mod Z
d),

y − x

τ

)

, ∀ x, y ∈ R
d.

Notice that Lτ is invariant under the diagonal action of Z
d,

Lτ (x+ s, y + s) = Lτ (x, y), ∀ s ∈ Z
d.

The two approches are complementary. While the Lagrangian formulation will be
more adapted in the description of the support of minimizing measures, the Frenkel-
Kontorova setting will be used in the construction of sub-actions (or discrete weak
KAM solutions or discrete viscosity solutions), as well as in the definition of two
major notions of action potential between two points: the Mañé potential and the
Peierls barrier. We intend later to beter understand the limit when the step τ tends
to zero and the thermodynamic formalism approach when the temperature goes to
zero.

2 A discrete-time Lagrangian dynamics

We fix from now on a C0 coercive Lagrangian L(x, v) : R
d × R

d → R, Z
d-periodic

in x, and its associated local interaction energy map

Lτ (x, y) = τL
(

x,
y − x

τ

)
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defined on R
d×R

d and invariant by the diagonal action of Z
d. We begin by recalling

some well known notions of divergence type at infinity. Coerciveness is our basic
assumption, superlinerarity will be used when homology will play a role.

Definition 2.1. Let L(x, v) : T
d × R

d → R be a C0-Lagrangian.

i. L(x, v) is said to be coercive if lim
R→+∞

inf
‖v‖≥R

inf
x∈Td

L(x, v) = +∞.

ii. L(x, v) is said to be superlinear if lim
R→+∞

inf
‖v‖≥R

inf
x∈Td

L(x, v)

‖v‖ = +∞.

We call configuration any sequence {xk}k∈Z of points in R
d. Let Σ = (Rd)Z

be the set of configurations. We also consider the set of configurations modulo
the diagonal action of Z

d, that is, the quotient of Σ by the equivalence relation:
{xk}k∈Z ∼ {yk}k∈Z if, and only if, there exists s ∈ Z

d such that yk = xk + s for all
k ∈ Z. So

Σ = (Rd)Z and Σ/∼ = (Rd)Z/∼.

Let us notice that, for any fundamental domain D of the action of Z
d on R

d, the
set (Rd)Z

∗
− × D × (Rd)Z

∗
+ is a fundamental domain for the diagonal action of Z

d

on Σ. Let σ : Σ → Σ be the left shift given by σ({xk}) = {yk} where yk = xk+1.
Notice that σ commutes with the diagonal action.

Definition 2.2. We call minimizing configuration any sequence {xk}k∈Z which
minimizes the local interaction energy, namely,

Lτ (xn, xn+1, . . . , xn+m) :=
n+m
∑

k=n

Lτ (xk, xk+1) ≤ Lτ (yn, yn+1, . . . , yn+m),

for any finite configuration {yk}n+m
k=n with identical boundary conditions xn = yn

and xn+m = yn+m.

Although one of our aim is to extend as much as we can the discrete Aubry-
Mather theory to just C0 coercive Lagrangian and to describe precisely the set of
minimizing configurations in this general setting, we show in this section that, under
a stronger hypothesis on the Lagrangian (C2-smoothness and twist condition), we
can recover the original theory, where the set of minimizing configurations can be
understood through the help of a dynamical system similar to the usual standard
map. Let us first recall the notion of critical configuration.

Definition 2.3. Let L(x, v) : T
d × R

d → R be a C1-Lagrangian. We call critical
triple a configuration (x−1, x0, x1) of three points in R

d satisfying

∂Lτ

∂y
(x−1, x0) +

∂Lτ

∂x
(x0, x1) = 0.

We call critical configuration any configuration {xk}k∈Z of points in R
d consisting

of critical triples (xk−1, xk, xk+1):

∂Lτ

∂y
(xk−1, xk) +

∂Lτ

∂x
(xk, xk+1) = 0, ∀ k ∈ Z.
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Let Γτ (L) ⊂ Σ be the set of critical configurations. We notice that Γτ (L) is invariant
by both the diagonal action of Z

d and the shift σ. Let Γτ (L)/∼ be the quotient of
Γτ (L) by the diagonal action of Z

d.

The equations defining Γτ (L) may be seen as a discrete version of the Euler-
Lagrange equation. These equations show that, under some stronger hypothesis of
twist condition, the knowledge of (x0, x1) implies the existence of an unique critical
configuration with such initial conditions. More precisely, prefering the use of the
ferromagnetic terminology instead of the twist condition as it is done in statistical
mechanics, we introduce the following notion.

Definition 2.4. A C1-Lagrangian L(x, v) is said to be ferromagnetic if, for any
sufficiently small τ > 0, the two maps in (I) or equivalently in (II), where

(I)



















R
d → R

d

x 7→ ∂Lτ

∂y
(x, y)

y 7→ ∂Lτ

∂x
(x, y)

and (II)



















R
d → R

d

v 7→ ∂L

∂v
(y − τv, v)

v 7→ τ
∂L

∂x
(x, v) − ∂L

∂v
(x, v)

,

are homeomorphisms for all (x, y).

Similarly a discrete version of the Euler-Lagrange flow may be introduced.

Definition 2.5. Let L(x, v) be a C1 ferromagnetic Lagrangian. For sufficiently
small τ > 0, we call discrete Euler-Lagrange map (or standard map), the map

Φτ =

{

T
d × R

d → T
d × R

d

(x, v) 7→ (y, w)

where y = x+τv and w is the unique solution of one of the two equivalent equations

∂Lτ

∂y
(x, y) +

∂Lτ

∂x
(y, y + τw) = 0 or

∂L

∂v
(x, v) + τ

∂L

∂x
(y, w) − ∂L

∂v
(y, w) = 0.

Notice that Φτ is a homeomorphism on T
d×R

d. In most part of the article, the
dynamical sytem (Td × R

d,Φτ ) will not be used, except, for instance, in section 6,
where we prove that minimizing measures are supported on a graph. The main
advantage of the standard map approach is that the space of critical configurations
modulo the diagonal action is conjugate to a 2d degrees of freedom dynamical
system.

Remark 2.6. Let Πτ : R
d × R

d → T
d × R

d be the projection given by

Πτ (x0, x1) =
(

x0 mod Z
d, (x1 − x0)/τ

)

.

We extend Πτ to Σ by writing Πτ ({xk}k∈Z) = Πτ (x0, x1) and notice that the pro-
jection Πτ : Σ/∼ → T

d × R
d is also well defined. If L(x, v) is ferromagnetic, then

(Γτ (L)/∼, σ) is conjugated to (Td×R
d,Φτ ), that is, the following diagram commutes

Γτ (L)/∼
Πτ−−−−→ T

d × R
d





y

σ





y
Φτ

Γτ (L)/∼
Πτ−−−−→ T

d × R
d

.
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A critical configuration is thus completely determined by the 2d data (x, v) and
a general configuration plays the role of a virtual deformation as in Mechanics. In
order to check that a Lagrangian satisfies the ferromagnetic condition, an easier
but stronger asumption may be used instead.

Notation 2.7. Let L(x, v) : T
d × R

d → R be a C2-Lagrangian. We say that L is

strictly convex (with respect to v) if ∂2L
∂v2

is uniformly positive definite, that is, if
there exists α > 0 such that

〈∂2L

∂v2
(x, v) · w,w

〉

≥ α‖w‖2, ∀ x ∈ T
d, ∀ v, w ∈ R

d.

The following proposition shows that a strictly convex Lagrangian with bounded
second derivative is ferromagnetic.

Proposition 2.8. Let L(x, v) : T
d × R

d → R be a C2 strictly convex Lagrangian.
Then L(x, v) is superlinear. If L(x, v) satisfies in addition the uniform condition
∥

∥

∂2L
∂x∂v

∥

∥

Td×Rd ≤ β for some β > 0, then L(x, v) is ferromagnetic. Moreover, for any

x, y ∈ T
d, for any sufficiently small τ > 0, the two maps

v ∈ R
d 7→ τ

∂L

∂x
(x, v) − ∂L

∂v
(x, v) ∈ R

d and v ∈ R
d 7→ ∂L

∂v
(y − τv, v) ∈ R

d,

or equivalently the two maps

y ∈ R
d 7→ ∂Lτ

∂x
(x, y) ∈ R

d and x ∈ R
d 7→ ∂Lτ

∂y
(x, y) ∈ R

d,

are C1-diffeomorphisms. In particular, the discrete Euler-Lagrange map Φτ is a
C1-diffeomorphism.

Proof. Taylor’s formula applied to L(x, v) as a function of v yields

L(x, v) = L(x, 0) +
∂L

∂v
(x, 0) · v +

∫ 1

0
(1 − s)

〈∂2L

∂v2
(x, sv) · v, v

〉

ds,

L(x, v) ≥ −‖L(·, 0)‖Td −
∥

∥

∂L

∂v
(·, 0)

∥

∥

Td‖v‖ +
α

2
‖v‖2,

which implies that L(x, v) is superlinear. Let φ(v) = τ ∂L∂x (x, v)− ∂L
∂v (x, v), for a fixed

point x ∈ T
d. We want to prove that, under the uniform upper bound ‖ ∂2L

∂x∂v‖ ≤ β,
the map φ : R

d → R
d is a C1-diffeomorphism. The same proof would show that

the map ψ(v) = ∂L
∂v (y− τv, v) is also a C1-diffeomorphism. For every v, w ∈ R

d, we
have

∂L

∂v
(x,w) − ∂L

∂v
(x, v) =

∫ 1

0

∂2L

∂v2
(x, v + s(w − v)) · (w − v) ds.

By taking the inner product with w − v, we obtain

〈∂L

∂v
(x,w) − ∂L

∂v
(x, v), w − v

〉

≥ α‖w − v‖2.
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The Cauchy-Schwartz inequality yields then

∥

∥

∂L

∂v
(x,w) − ∂L

∂v
(x, v)

∥

∥ ≥ α‖w − v‖.

Moreover, ∂L
∂x is uniformly Lipschitz in v and therefore satisfies

∥

∥

∂L

∂x
(x,w) − ∂L

∂x
(x, v)

∥

∥ ≤ β‖w − v‖.

Combining these two inequalities, we obtain ‖φ(w) − φ(v)‖ ≥ (α− τβ)‖w− v‖. So
φ is one-to-one as soon as τ < αβ−1. Similar calculations would guarantee that Dφ
is invertible. We just have proved that φ is an open and injective map. In order to
show that φ is surjective, we remark φ is proper and hence closed. Indeed, if BR
denotes the closed ball of center 0 and radius R > 0, clearly φ(Rd−BR′)∩BR = ∅,
or more geometrically φ−1(BR) ⊂ BR′ , whenever R′ > (‖φ(0)‖ +R)/(α− τβ).

Remark 2.9.

- The ferromagnetic condition can be proved under weaker hypotheses. Assume
d = 1. Let f : R → R be an increasing homemorphism with f(0) = 0
and g : T

1 → R be a C1-function. Then L(x, v) = g(x) +
∫ v
0 f(w) dw is a

superlinear ferromagnetic C1-Lagrangian.

- We also notice that ∂L
∂x is a coboundary under the dynamics (Td × R

d,Φτ ):

τ
∂L

∂x
(y, w) =

∂L

∂v
(y, w) − ∂L

∂v
◦ Φ−1

τ (y, w).

3 Minimizing holonomic probabilities

We begin by recalling briefly Mather’s approach of minimizing orbits theory. The
Lagrangian L(x, v) is usually assumed to be C2, periodic in x (namely, x ∈ T

d),
strictly convex in v ∈ R

d and, for the purposes of this article, time independent.
In Mather’s approach, we are interested in finding minimizing absolutely con-

tinuous trajectories, that is, trajectories t ∈ R 7→ x(t) such that, for any t0 < t1
and any other trajectory t ∈ [t0, t1] 7→ y(t) satisfying the boundary conditions
x(t0) = y(t0) and x(t1) = y(t1), the local action of x(t) on [t0, t1] is bounded from
above by the local action of y(t),

∫ t1

t0

L(x(t), ẋ(t))dt ≤
∫ t1

t0

L(y(t), ẏ(t))dt.

Actually we are interested in finding mimimizing trajectories having a prescribed
rotation vector ω ∈ R

d,

lim
t→+∞

x(t)

t
= lim

t→+∞
1

t

∫ t

0
ẋ(t)dt = ω.

Notice that a minimizing trajectory must satisfy the Euler-Lagrange equation

d

dt

(∂L

∂v
(x, ẋ)

)

=
∂L

∂x
(x, ẋ)
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and is therefore governed by the Euler-Lagrange flow Φτ (x0, ẋ0) = (xt, ẋt). Suppose
in addition that (xt, ẋt) is recurrent or more precisely is regular in the sense of
Birkhoff’s ergodic theorem for some Φτ -invariant ergodic probability measure µ on
T
d × R

d, then
∫∫

Td×Rd

L(x, v)dµ(x, v) ≤
∫∫

Td×Rd

L(x, v)dν(x, v)

for any other invariant probability measure ν on T
d × R

d.
It is therefore natural to look for minimizing trajectories as regular orbits of

the Euler-Lagrange flow located in the support of minimizing measures. Mather’s
approach can thus be translated into a linear optimization problem























µ = argmin

∫∫

Td×Rd

L(x, v)dµ(x, v)

µ is a Φτ -invariant probability measure
∫∫

Td×Rd

v dµ(x, v) = ω.

Following R. Mañé [23] and D. A. Gomes [17], one can weaken this optimization
problem by asking µ to be only holonomic, that is, satisfying

∫

Td

φ ◦ Φτ (x, v) dµ(x, v) =

∫

Td

φ(x) dµ(x, v)

for any bounded Borel (periodic) function φ : T
d → R. Notice that the holonomic

condition implies, for any C1-function φ : T
d → R,

∫

Td

φ(x+ τv)dµ(x, v) =

∫

Td

φ(x)dµ(x, v) + o(τ),

where o(τ) is some function negligable with respect to τ .
We come back to our discrete Aubry-Mather theory and, as in the weak Mather’s

approach, we try to look for minimizing configurations located in the support of
minimizing invariant measures or more precisely in the support of minimizing holo-
nomic measures since the discrete Euler-Lagrange map may not exist. We denote
by P(Td×R

d) the convex set of probability measures over the Borel sets of T
d×R

d.

Definition 3.1. We call holonomic probability measure (or τ -holonomic if needed),
a probability measure µ ∈ P(Td × R

d) satisfying

∫

Td×Rd

φ(x+ τv)dµ(x, v) =

∫

Td×Rd

φ(x)dµ(x, v)

for any bounded Borel function φ : T
d → R. The set of holonomic probability

measures is denoted by Pτ (T
d × R

d).

Notice that, in the ferromagnetic case, Φτ -invariant probability measures are
holonomic. Nevertheless, the holonomic class is larger. For example, any finite
configuration (x0, x1, . . . , xn−1) gives a holonomic probability µ = 1

n

∑n−1
i=0 δ(xi,vi),
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where vi = xi+1−xi

τ and xn = x0. Notice also that the set of holonomic probability
measures is closed under the narrow topology.

We want to show that, although the notion of holonomic probability measures
seems to be unrelated to a dynamical system, the set of these measures is never-
theless in one-to-one correspondence with the set of normalized invariant Markov
chain of (Σ, σ).

Definition 3.2. We call normalized invariant Markov chain on (Σ, σ) a sigma-
finite Markov chain (ν(dx), p(x, dy)), with initial distribution ν(dx) (a sigma-finite
measure defined on the Borel sets of R

d) and transition kernel p(x, dy) (a measur-
able family of probability measures defined on the Borel sets of R

d), satisfying the
following properties:

i. ν(dx) is invariant under the action of Z
d and has mass one on any funda-

mental domain,

ii. p(x, dy) is invariant under the action of Z
d in the following sense

∫

Rd

ψ(y + s)p(x, dy) =

∫

Rd

ψ(y)p(x+ s, dy),

for any bounded Borel function ψ, for any s ∈ Z
d,

iii. ν(dx) is Markov-stationary in the following sense

∫∫

Rd×Rd

ψ(y)p(x, dy)ν(dx) =

∫

Rd

ψ(y)ν(dy)

for any bounded Borel function ψ.

The sigma-finite Markov chain µ̂ on Σ is given as usual as

∫

Σ
ψ(x)dµ̂(x) =

∫

Rd

· · ·
∫

Rd

ψ(x0, x1, . . . , xn)ν(dx0)p(x0, dx1) · · · p(xn−1dxn),

for any bounded Borel function ψ(x) = ψ(x0, x1, . . . , xn), for any n ≥ 0. Then µ̂ is
both invariant with respect to the Z

d and the shift σ action.

The announced correspondence will be explained through the notion of nor-
malized invariant transshipment measure as it is suggested by L. Evans and D. A.
Gomes in [8].

Definition 3.3. We call normalized invariant transshipment measure π a sigma-
finite measure defined on the Borel sets of R

d×R
d verifying the following properties:

i. π is invariant under the diagonal action of Z
d and has mass one on any

fundamental domain,

ii. if pr1 : R
d × R

d → R
d and pr2 : R

d × R
d → R

d denote the two canonical
projections, then pr1∗(π) = pr2∗(π).
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We can now prove the equivalence between the set of holonomic probability
measures, the set of normalized invariant transshipment measures and the set of
normalized invariant Markov chains.

Proposition 3.4. The three sets of measures, holonomic probability measures µ,
normalized invariant transshipment measures π and normalized invariant Markov
chains (ν(dx), p(x, dy)) are in one-to-one correspondence. The correspondence is
given by:

∫∫

Rd×Rd

ψ(x, y)π(dx, dy) :=

∫∫

Rd×Rd

ψ(x, x+ τv)µ(dx, dv),

∫

Rd

φ(x)

(
∫

Rd

ψ(x, y)p(x, dy)

)

ν(dx) :=

∫∫

Rd×Rd

φ(x)ψ(x, y)π(dx, dy),

∫∫

Rd×Rd

φ(x, v)µ(dx, dv) :=

∫∫

Rd×Rd

φ

(

x,
y − x

τ

)

p(x, dy)ν(dx),

where µ(dx, dv) has been extended to R
d×R

d by invariance under the action of Z
d

on the first factor.

Proof. Given a holonomic probability measure µ(dx, dv) and the corresponding
measure π(dx, dy) defined above, the property pr1∗(π) = pr2∗(π) is easily obtained:

∫∫

Rd×Rd

φ(y)π(dx, dy) =

∫∫

Rd×Rd

φ(x+ τv)µ(dx, dv) =

=

∫∫

Rd×Rd

φ(x)µ(dx, dv) =

∫∫

Rd×Rd

φ(x)π(dx, dy).

Given a normalized invariant transshipment measure π(dx, dy) and the asso-
ciated Markov chain (ν(dx), p(x, dy)) defined in the statement, we first recognize
that ν = pr1∗(π) and that {p(x, dy)}x∈Rd is a desintegration of π(dx, dy) over the
fibers of pr1. So we prove the invariance of ν(dx) and p(x, dy) as follows

∫∫

Rd×Rd

φ(x)ψ(y + s)p(x, dy)ν(dy) =

=

∫∫

Rd×Rd

φ(x)ψ(y + s)π(dx, dy) =

∫∫

Rd×Rd

φ(x− s)ψ(y)π(dx, dy) =

=

∫∫

Rd×Rd

φ(x− s)ψ(y)p(x, dy)ν(dy) =

∫∫

Rd×Rd

φ(x)ψ(y)p(x+ s, dy)ν(dy).

Besides, the stationarity of ν(dx) can be shown as follows

∫∫

Rd×Rd

φ(y)p(x, dy)ν(dx) =

∫∫

Rd×Rd

φ(y)π(dx, dy) =

=

∫∫

Rd×Rd

φ(x)π(dx, dy) =

∫

Rd

φ(x)ν(dx).
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Given a normalized invariant Markov chain (ν(dx), p(x, dy)) and the correspond-
ing probability µ(dx, dv) as defined by the third identity, since pr1∗(µ) = ν, the
holonomic property follows from

∫∫

Rd×Rd

φ(x+ τv)µ(dx, dv) =

∫∫

Rd×Rd

φ(y)p(x, dy)ν(dx) =

=

∫

Rd

φ(x)ν(dx) =

∫∫

Rd×Rd

φ(x)µ(dx, dv).

As in the weak Mather’s approach, we are interested in finding particular min-
imizing configurations which are located in the support of minimizing holonomic
probability measures. We thus introduce a similar concept equivalent to Mañé’s
definition of critical value.

Definition 3.5. Let L(x, v) : T
d × R

d → R be a continuous coercive Lagrangian.
We call minimizing holonomic value of L the quantity

L̄(τ) := inf
µ

∫∫

Td×Rd

L(x, v)µ(dx, dv),

where the infimum is taken over the set of holonomic probability measures. A mea-
sure µ attaining the infimum is called a minimizing holonomic probability measure.

Remark 3.6. The three equivalent definitions given in proposition 3.4 show that
any holonomic probability measure µ seen on T

d×R
d can be lifted to a shift-invariant

probability measure µ̂ on Σ/∼ obtained from the normalized invariant Markov chain
(ν(dx), p(x, dy)). Conversely, the projection µ = (Πτ )∗(µ̂) of any shift-invariant
probability measure µ̂ on Σ/∼ is holonomic:

∫∫

Td×Rd

φ(x+ τv)µ(dx, dv) =

∫

Σ/∼

φ(x1)µ̂(dx) =

=

∫

Σ/∼

φ(x0)µ̂(dx) =

∫∫

Td×Rd

φ(x)µ(dx, dv).

From proposition 3.4, the minimizing holonomic value of L may be computed using
two different ways

L̄(τ) = inf
π

∫∫

Rd×Rd/∼

L
(

x,
y − x

τ

)

π(dx, dy) = inf
µ̂

∫

Σ/∼

L
(

x0,
x1 − x0

τ

)

µ̂(dx),

where the infimums are taken, respectively, over the set of normalized invariant
transshipment measures π and over the set of shift-invariant probability measures
on Σ/∼.

Since T
d × R

d is not compact, the existence of a minimizing holonomic prob-
ability measure is not guarantee at first sight. Nevertheless, periodicity in x and
coerciveness in y − x implies the existence of such minimizing measures.
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Proposition 3.7. Let L(x, v) : T
d ×R

d → R be a continuous coercive Lagrangian.
Then there exists a minimizing holonomic probability measure having a compact
support.

Before going into the proof of this result, we will make use of a special piecewise
continuous map Fτ : T

d × R
d → T

d × R
d which enables us to replace R

d by a
compact ball. Let ‖v‖∞ = maxi |vi| be the maximum norm.

Definition 3.8. Suppose L(x, v) is a coercive Lagrangian, then there exists a real
number Rτ > 1/τ such that

inf
‖v‖∞≥Rτ

inf
x∈Td

L(x, v) > sup
‖v‖∞≤1/τ

sup
x∈Td

L(x, v).

Let ⌊v⌋ ∈ Z
d denotes the vector whose coordinates are the greatest integers less

or equal than the respective coordinates of v ∈ R
d.

Lemma 3.9. Let L(x, v) be a C0 coercive Lagrangian and Fτ : T
d×R

d → T
d×R

d

defined by

Fτ (x, v) =

{ (

x, v − 1
τ ⌊τv⌋

)

if ‖v‖∞ ≥ Rτ
(x, v) if ‖v‖∞ < Rτ

.

Then Fτ satisfies

i. the image Fτ (T
d × R

d) is a bounded set;

ii. L(x, v) ≥ L ◦ Fτ (x, v) ∀ (x, v) ∈ T
d × R

d;

iii. µ ∈ Pτ (T
d × R

d) ⇒ (Fτ )∗µ ∈ Pτ (T
d × R

d).

Proof. The first item is obviously verified. The second one is just a consequence of
the choice of Rτ . Finally, since ψ(x+ τv−⌊τv⌋) = ψ(x+ τv) for every ψ ∈ C0(Td),
the third item follows without difficulty.

We can now prove the existence of minimizing holonomic probability measures
for C0 coercive Lagrangians.

Proof of proposition 3.7. Consider a sequence {µn} ⊂ Pτ (T
d × R

d) of holonomic
probabilities satisfying limn

∫

L(x, v) dµn(x, v) = L̄(τ). Items ii and iii of lemma
3.9 assure that the sequence {νn = (Fτ )∗µn} verifies the same properties. Further-
more, by item i of the same lemma, all probability measures νn are supported on a
common compact set. Therefore, any accumulation point ν ∈ Pτ (T

d × R
d) of {νn}

for the narrow topology satisfies
∫

L(x, v) dν(x, v) = L̄(τ).

4 Lax-Oleinik operators

The Lax-Oleinik semigroup is well known in partial differential equations and in
calculus of variations. It was used by A. Fathi (see [9]) for obtaining the so-called
weak KAM theorem in the framework of continuous-time, autonomous, strictly
convex and superlinear C3-Lagrangians on a compact manifold.

In our context, we are interested in studying operators with similar properties
to the Lax-Oleinik semigroup. We recall that Lτ (x, y) = τL(x, y−xτ ).
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Definition 4.1. Given a C0 coercive Lagrangian L = L(x, v) : T
d × R

d → R and
a constant τ > 0, we call forward and backward Lax-Oleinik operators, respectively,
the maps T+ and T− defined by

T+u(x) = sup
v∈Rd

[u(x+ τv) − τL(x, v)] = sup
y∈Rd

[u(y) − Lτ (x, y)],

T−u(y) = inf
v∈Rd

[u(y − τv) + τL(y − τv, v)] = inf
x∈Rd

[u(y) + Lτ (x, y)],

for every Z
d-periodic function u ∈ C0(Rd) that we identify with u ∈ C0(Td).

Because of the choice of Rτ in definition 3.8 and the fact that the minimization
of L can be made on the ball ‖v‖∞ ≤ Rτ as explained in lemma 3.9, T± are well
defined and have the following more restricted definition

T+u(x) = max
‖v‖∞≤Rτ

[u(x+ τv) − τL(x, v)] = max
‖y−x‖∞≤τRτ

[u(y) − Lτ (x, y)],

T−u(y) = min
‖v‖∞≤Rτ

[u(y − τv) + τL(y − τv, v)] = min
‖y−x‖∞≤τRτ

[u(y) + Lτ (x, y)].

Such identities are immediate consequences of the explicit construction of the ap-
plication Fτ : T

d × R
d → T

d × R
d whose properties are described in lemma 3.9.

Indeed, writing

φ+(x, v) = u(x+ τv) − τL(x, v) and φ−(x, v) = u(x− τv) + τL(x− τv, v),

we constate φ+ ◦ Fτ ≥ φ+ and φ− ◦ Fτ ≤ φ−. So we have

max
v∈Rd

φ+(x, v) = max
v∈Rd

φ+ ◦ Fτ (x, v) = max
‖v‖∞≤Rτ

φ+(x, v),

and similar equalities for φ− as well.
Let osc(f,D) denote the oscillation of a function f on a subset D of its domain.

Lemma 4.2. Let L(x, v) be a C0 coercive Lagrangian. Then the Lax-Oleinik oper-
ators verify the following properties.

i. For all u ∈ C0(Td), for all x, y ∈ T
d,

|T+u(x) − T+u(y)| ≤ max
v∗,w∗

τ
∣

∣L(x, v∗) − L(y, w∗)
∣

∣ and

|T−u(x) − T−u(y)| ≤ max
v∗,w∗

τ
∣

∣L(x− τv∗, v∗) − L(y − τw∗, w∗)
∣

∣,

where the maxima are taken over

‖v∗‖∞, ‖w∗‖∞ ≤ 2Rτ and ‖v∗ − w∗‖∞ ≤ ‖x− y‖∞
τ

.

ii. The two operators T+ and T− map C0(Td) into itself.

iii. The two sets T+(C0(Td)) and T−(C0(Td)) are equicontinuous.
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In particular, osc(T+u,T
d) and osc(T−u,Td) are bounded by the oscillation of τL

on T
d ×B2Rτ

, where B2Rτ
denotes the closed ball of center 0 and radius 2Rτ .

Proof. On the one hand, for any point x in R
d, there exists z∗ ∈ R

d, such that
‖x − z∗‖∞ ≤ τRτ and T+u(x) = u(z∗) − Lτ (x, z

∗). On the other hand, for any
y ∈ R

d, T+u(y) ≥ u(z∗) − Lτ (y, z
∗). Combining these two estimates, we obtain

T+u(y) − T+u(x) ≥ Lτ (x, z
∗) − Lτ (y, z

∗) = τ
[

L(x, v∗) − L(y, w∗)
]

where w∗ = v∗ + x−y
τ and z∗ = x+ τv∗. A similar estimate holds by permuting x

and y which proves the first property for T+. An analogous argument can be used
to demonstrate the inequality concerning the backward Lax-Oleinik operator T−.
Since L(x, v) is uniformly continuous on T

d × B2Rτ
, the two sets T±(C0(Td)) are

equicontinuous and the lemma is proved.

We recall that the minimizing holonomic value L̄(τ) has been introduced in
definition 3.5. So the main theorem of this section can be stated as follows.

Theorem 4.3. If L(x, v) is a C0 coercive Lagrangian, then there exist continuous
periodic solutions of the Lax-Oleinik equation, u+, u− ∈ C0(Td), satisfying

T+u+ = u+ − τL̄(τ) and T−u− = u− + τL̄(τ).

Moreover u± satisfies the a priori estimate: ‖u+‖0, ‖u−‖0 ≤ osc(τL,Td ×B2Rτ
).

Proof. If we equip C0(Td) with the topology of the uniform convergence, it is easy
to show that T+ : C0(Td) → C0(Td) is 1-Lipschitz. So the Lipschitz regularity is
also respected by the application T̂+ : C0(Td) → C0(Td) defined by

T̂+u = T+u− max(T+u).

Obviously T̂+u ≤ 0 everywhere on C0(Td). Conversely, it follows from lemma 4.2
that

T̂+u ≥ −osc(τL,Td ×B2Rτ
), ∀ u ∈ C0(Td).

Let B ⊂ C0(Td) denote the closed convex hull of the closure of T̂+(C0(Td)). Since
the image T̂+(C0(Td)) is bounded, B is a compact convex set. As T̂+(B) ⊂ B, by
the Schauder-Tychonoff fixed point theorem, there exists a function u+ ∈ C0(Td)
such that

T+u+ = u+ + max(T+u+).

Obviously, ‖u+‖0 = ‖T̂+(u+)‖0 ≤ osc(τL,Td × B2Rτ
). It remains to show that

max(T+u+) = −τL̄(τ). On the one hand

τL(x, v) + u+(x) − u+(x+ τv) ≥ −max(T+u+)

everywhere on T
d × R

d. For any holonomic probability measure µ ∈ Pτ (T
d × R

d),
by integrating the previous inequality, we obtain

τ

∫

L(x, v) dµ =

∫

[

τL(x, v) + u+(x) − u+(x+ τv)
]

dµ ≥ −max(T+u+)
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and therefore max(T+u+) ≥ −τL̄(τ).
On the other hand, given x0 ∈ T

d, there exists a vector v0 ∈ R
d such that

‖v0‖∞ ≤ Rτ and τL(x0, v0) + u+(x0) − u+(x0 + τv0) = −max(T+u+). For every
k ≥ 1, if xk = xk−1 + τvk−1 ∈ T

d, we consider inductively vk ∈ R
d such that

‖vk‖ ≤ Rτ and τL(xk, vk) + u+(xk) − u+(xk + τvk) = −max(T+u+). Let {µn} be
the probability measure defined by

µn =
1

n

n−1
∑

k=0

δ(xk,vk).

Since their supports are contained in the compact set T
d × BRτ

, such sequence is
relatively compact for the narrow topology. Let µ ∈ Pτ (T

d×R
d) be some convergent

subsequence limit. Note that the equality
∫

[τL(x, v) + u+(x) − u+(x+ τv)] dµn(x, v) = −maxT+u+,

goes througth the limit µ. Hence, we obtain maxT+u+ ≤ −τL̄(τ) if we prove that
µ is a holonomic probability measure. Indeed, for any function ψ ∈ C0(Td),

∣

∣

∣

∣

∫

[ψ(x+ τv) − ψ(x)] dµn(x, v)

∣

∣

∣

∣

=
1

n

∣

∣

∣

∣

∣

n−1
∑

k=0

[ψ(xk + τvk) − ψ(xk)]

∣

∣

∣

∣

∣

=
1

n
|ψ(xn) − ψ(x0)| ≤

2

n
‖ψ‖0.

Letting n go to infinity, we immediately obtain that µ ∈ Pτ (T
d×R

d). The existence
of a function u− ∈ C0(Td) is obtained in an analogous way.

The following result is an immediate consequence of the previous proof.

Corollary 4.4. Let L(x, v) be a C0 coercive Lagrangian. If u ∈ C0(Td) satisfies
either T+u = u− c or T−u = u+ c for some constant c ∈ R, then c = τL̄(τ).

The previous theorem 4.3 may be seen as an important theorical tool: it gives
a way to renormalize the initial Lagrangian by a coboundary

Lnorm(x, v) = L(x, v) − L̄(τ) − 1

τ

[

u(x+ τv) − u(x)
]

≥ 0, ∀ (x, v) ∈ T
d × R

d.

The existence of a solution of the Lax-Oleinik operator also gives other character-
izations of the minimizing holonomic value, either as a max-min optimal value or
as an ergodic average asymptotic value.

Proposition 4.5. Let L(x, v) be a C0 coercive Lagrangian. Then we have

τL̄(τ) = sup
ψ∈C0(Td)

inf
(x,v)∈Td×Rd

[

τL(x, v) + ψ(x) − ψ(x+ τv)
]

or

τL̄(τ) = inf
{xk}∈(Rd)Z+

lim inf
n→∞

1

n

n−1
∑

k=0

Lτ (xk, xk+1).
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Proof. Let µ ∈ Pτ (T
d × R

d) be any minimizing holonomic probability measure.
Then

τL̄(τ) =

∫

τL(x, v) dµ(x, v)

=

∫

[τL(x, v) + ψ(x) − ψ(x+ τv)] dµ(x, v)

≥ inf
(x,v)∈Td×Rd

[τL(x, v) + ψ(x) − ψ(x+ τv)]

for every ψ ∈ C0(Td). By taking the supremum over all ψ ∈ C0(Td), one obtain
a lower bound of τL̄(τ). Conversely, theorem 4.3 establishes there is u+ ∈ C0(Td)
such that

τL̄(τ) = inf
(x,v)∈Td×Rd

[τL(x, v) + u+(x) − u+(x+ τv)] .

The first identity is proved. Consider now an arbitrary sequence {xk} ∈
(

R
d
)Z+ .

Then for any n > 0

nL̄(τ) ≤
n−1
∑

k=0

Lτ (xk, xk+1) + u+(x0) − u+(xn) ≤
n−1
∑

k=0

Lτ (xk, xk+1) + 2‖u+‖0.

Dividing by n and letting n go to infinity, we obtain the above upper bound for
τL̄(τ). Conversely, choose any optimal sequence {x∗k}k≥0 in R

d such that

τL̄(τ) = Lτ (x
∗
k, x

∗
k+1) + u+(x∗k) − u+(x∗k+1), ∀ k ≥ 0.

Dividing again by n and letting n go to infinity, we then obtain the above lower
bound for τL̄(τ) and the second identity is proved.

Thanks to theorem 4.3, we know that the solutions u± of the Lax-Oleinik op-
erator are continuous. If in addition L is locally α-Hölder continuous, the same
estimate of part i in lemma 4.2 shows that u± is also α-Hölder continuous. In fact,
these solutions possess a stronger regularity if L is supposed to be semiconcave.

Definition 4.6. A function F : T
d × R

d → R is called semiconcave if, for every
R > 0, there exists a nondecreasing upper semicontinuous function θR : R+ → R+

satisfying limρ→0+ θR(ρ) = 0 and

tF (ξ) + (1 − t)F (η) − F (tξ + (1 − t)η) ≤ t(1 − t)‖ξ − η‖θR(‖ξ − η‖)

for all ξ = (x, v), η = (y, w) in R
d × R

d with ‖v‖, ‖w‖ ≤ R and for any t ∈ [0, 1].
We call {θR}R>0 a family of local modulus of semiconcavity for F . A function
G : T

d × R
d → R is called semiconvex if −G is semiconcave.

Notice that in the case the function F (x) depends only in x ∈ T
d, semicon-

cavity is defined using an unique modulus θ instead of a family {θR}R>0. Any
C2-Lagrangian L(x, v) is an example of a semiconcave function. Indeed, for every
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R > 0, for any ξ, η ∈ R
d × R

d and t ∈ [0, 1], taking ζt := tξ + (1 − t)η, Taylor’s
integral formula allows us to write

tL(ξ) + (1 − t)L(η) − L(tξ + (1 − t)η) =

= t(L(ξ) − L(ζt)) + (1 − t)(L(η) − L(ζt))

= t

∫ 1

0
(1 − s)D2L(sξ + (1 − s)ζt) · (ξ − ζt)

2 ds +

+ (1 − t)

∫ 1

0
(1 − s)D2L(sη + (1 − s)ζt) · (η − ζt)

2 ds

= t(1 − t)

∫ 1

0
(1 − s)H(s) · (ξ − η)2 ds,

where H(s) = (1 − t) Hess(L)(sξ + (1 − s)ζt) + t Hess(L)(sη + (1 − s)ζt). Let

CR :=
1

2
max
x∈Td

max
‖v‖≤R

‖ Hess(L)(x, v)‖∞.

Then θR(ρ) = CRρ is a modulus of semiconcavity for L.
For more details on semiconcave functions, we refer the reader to the book of P.

Cannarsa and C. Sinestrari (see [4]). Let us examine how the forward Lax-Oleinik
operator T+ deals with semiconcavity.

Proposition 4.7. Let L(x, v) be a semiconcave C0 coercive Lagrangian. Then any
solution u ∈ C0(Td) of the forward Lax-Oleinik equation, T+u = u − τL̄(τ), is
semiconvex.

Proof. Given x, y ∈ R
d and t ∈ [0, 1], set z = tx + (1 − t)y. Then there exists an

optimal z∗ ∈ R
d such that

u(z) = u(z∗) − Lτ (z, z
∗) + τL̄(τ)

with ‖z − z∗‖∞ ≤ τRτ . Moreover

u(x) ≤ u(z∗) − Lτ (x, z
∗) + τL̄(τ) and u(y) ≤ u(z∗) − Lτ (y, z

∗) + τL̄(τ).

Combining these two inequalities and the previous identity, we obtain

tu(x) + (1 − t)u(y) − u(z) ≥ −
[

tLτ (x, z
∗) + (1 − t)Lτ (y, z

∗) − Lτ (z, z
∗)

]

.

Let v∗ and w∗ be defined by z∗ = x+ τv∗ and z∗ = y + τw∗. Then

z∗ = z + τ(tv∗ + (1 − t)w∗) and ‖v∗‖∞, ‖w∗‖∞ ≤ Rτ +
∥

∥

x− y

τ

∥

∥

∞ ≤ 2Rτ .

Then

tu(x) + (1 − t)u(y) − u(z) ≥
≥ −τ

[

tL(x, v∗) + (1 − t)L(y, w∗) − L(z, tv∗ + (1 − t)w∗)
]

≥

≥ −τt(1 − t)
2

τ
‖x− y‖∞θ2Rτ

(2

τ
‖x− y‖∞

)

using the fact that ‖v∗−w∗‖∞ = 1
τ ‖x−y‖∞. We have shown that 1

τ u is semiconvex
with a modulus of convexity θ(ρ) = − 2

τ θ2Rτ

(

2
τ ρ

)

.

Similarly, any solution u of the backward Lax-Oleinik equation T−u = u+τL̄(τ)
is semiconcave as soon as L(x, v) is a semiconcave C0 coercive Lagrangian.



22 Eduardo Garibaldi and Philippe Thieullen

5 Calibrated and minimizing configurations

For conciseness, for any given configuration {xk}k∈Z of points in R
d, for any m < n,

we call normalized interaction energy of a finite configuration the quantity

L̄τ (xm, xm+1, . . . , xn) :=

n−1
∑

k=m

[

Lτ (xk, xk+1) − τL̄(τ)
]

.

Let us recall from the introduction the fundamental definition of mimimizing
configurations.

Definition 5.1. Consider a bounded below C0-Lagrangian L(x, v). We say that a
configuration {xk}k∈Z of points of R

d is a minimizing configuration if, for every
pair m < n,

L̄τ (xm, xm+1, . . . , xn) ≤ L̄τ (ym, ym+1, . . . , yn)

whenever {yk}k∈Z satisfies ym = xm and yn = xn. A configuration {xk}k∈Z is
called strongly minimizing configuration if, for any two pair m < n, m′ < n′ and
any configuration {yk}k∈Z satisfying ym′ = xm and yn′ = xn (mod Z

d), we have

L̄τ (xm, xm+1, . . . , xn) ≤ L̄τ (ym′ , ym′+1, . . . , yn′).

For a coercive Lagrangian, notice that definition 3.8 implies consecutive jumps
xk+1 − xk are uniformly bounded for strongly minimizing configurations {xk}k∈Z,
namely,

sup
k∈Z

‖xk+1 − xk‖∞ < τRτ .

The necessity of constructing minimizing configurations motivates the consid-
eration of the following notions.

Definition 5.2. Let L(x, v) be a C0 coercive Lagrangian. A function u : R
d → R is

a called sub-action2 with respect to L if u(x) is Z
d-periodic, continuous and satisfies

τL̄(τ) ≤ τL(x, v) + u(x) − u(x+ τv), ∀ (x, v) ∈ T
d × R

d.

More restrictively, u is called forward calibrated sub-action if

τL̄(τ) = inf
v∈Rd

[

τL(x, v) + u(x) − u(x+ τv)
]

, ∀ x ∈ T
d,

and similarly u is called backward calibrated sub-action if

τL̄(τ) = inf
v∈Rd

[

τL(x− τv, v) + u(x− τv) − u(x)
]

, ∀ x ∈ T
d.

Notice that C0 periodic functions u+, u− are forward or backward calibrated
sub-actions if, and only if, they are solutions of the forward or backward Lax-
Oleinik equations given in theorem 4.3. The existence of sub-actions has been
proved under the sole hypothesis of coerciveness.

2Perhaps one should insist on the presence of a time step τ > 0 by employing an expression like
τ -sub-action. However, in order to avoid some unnecessary accuracy and since no misunderstanding
is possible, we prefer to let such dependence be implicit.
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Proposition 5.3. Let L(x, v) be a C0 coercive Lagrangian. If L is locally α-Hölder
continuous, then any forward or backward calibrated sub-action u ∈ C0(Td) is α-
Hölder continuous too. Besides, if L is semiconcave, then all forward calibrated
sub-actions are semiconvex and all backward calibrated sub-actions are semiconcave.

Proof. The Hölder case is an immediate consequence of part i of lemma 4.2. The
semiconvex property is just a reinterpretation of proposition 4.7 as well as its ana-
logue for backward calibrated sub-actions mentioned after its demonstration.

Observe that, in terms of the associated local interaction enegy Lτ (x, y), a sub-
action u satisfies Lτ (x, y) ≥ u(y) − u(x) + τL̄(τ) everywhere on R

d × R
d.

Definition 5.4. Consider a C0(Td) sub-action u for a C0 coercive Lagrangian
L(x, v). A configuration {xk}k∈Z in R

d is called u-calibrated if, for every k ∈ Z, we
have Lτ (xk, xk+1) = u(xk+1) − u(xk) + τL̄(τ).

It is easy to see that calibrated configurations are minimizing and even strongly
minimizing. We show in the following lemma that the coerciveness assumption
implies the existence of calibrated configurations and therefore the existence of
minimizing configurations.

Lemma 5.5. Suppose L(x, v) is a C0 coercive Lagrangian. If u ∈ C0(Td) is either
a forward or a backward calibrated sub-action, then there exists an u-calibrated
configuration {xk}k∈Z in R

d passing through some point x0 ∈ [0, 1)d and satisfying
‖xk+1 − xk‖∞ ≤ τRτ , where Rτ >

1
τ has been defined in 3.8.

Lemma 5.6. Let L(x, v) be a C0 coercive Lagrangian. If u ∈ C0(Td) is an ar-
bitrary sub-action, then any u-calibrated configuration {xk}k∈Z in R

d is a strongly
minimizing configuration satisfying ‖xk+1 − xk‖∞ ≤ τRτ for every k ∈ Z.

Proof of lemma 5.5. Let u ∈ C0(Td) be a forward calibrated sub-action. Thanks
to coerciveness, u verifies τL̄(τ) = min‖v‖∞≤Rτ

[τL(x, v) + u(x) − u(x+ τv)] or

τL̄(τ) = min
y : ‖y−x‖∞≤τRτ

[Lτ (x, y) + u(x) − u(y)] , ∀ x ∈ R
d.

Hence, for every positive integer n, consider a configuration {xnk}k≥−n in R
d such

that ‖xnk − xnk+1‖∞ ≤ τRτ and τL̄(τ) = Lτ (x
n
k , x

n
k+1) + u(xnk) − u(xnk+1) for all

k ≥ −n. Since Lτ (x + s, y + s) = Lτ (x, y) for s ∈ Z
d, we may assume that

xn0 ∈ [0, 1)d for every n > 0. In particular, we get that ‖xnk‖∞ ≤ τRτ |k| + 1 for all
k ≥ −n. By a diagonal procedure, we extract a configuration {xk}k∈Z satisfying
τL̄(τ) = Lτ (xk, xk+1) + u(xk)− u(xk+1) for any integer k. A similar reasoning can
be developed for C0(Td) backward calibrated sub-actions.

Proof of lemma 5.6. Let {xk}k∈Z be an u-calibrated configuration. Thanks to def-
inition 3.8, if ‖xk+1 − xk‖∞ > τRτ , then

u(xk+1) − u(xk) + τL̄(τ) = Lτ (xk, xk+1) >

> Lτ (xk, xk+1 − ⌊xk+1 − xk⌋) ≥ u(xk+1 − ⌊xk+1 − xk⌋) − u(xk) + τL̄(τ).
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The periodicity of u implies that the strict inequality cannot happen. Therefore,
‖xk+1 − xk‖∞ ≤ τRτ for all k ∈ Z. Moreover, for any m < n, for any configuration
{yk}k∈Z in R

d satisfying ym′ = xm and yn′ = xn (mod Z
d), since

L̄τ (xm, xm+1, . . . , xn) = u(xn)−u(xm) = u(yn′)−u(ym′) ≤ L̄τ (ym′ , ym′+1, . . . , yn′),

we obtain that {xk}k∈Z is a strongly minimizing configuration.

Notice that the existence of an u-calibrated configuration of a sub-action gives
an equivalent definition of the holomic minimizing value L̄(τ) as defined in 3.5

τL̄(τ) = inf
{xk}∈(Rd)Z

lim inf
n−m→∞

1

n−m

n−1
∑

k=m

Lτ (xk, xk+1).

Furthermore, u-calibrated configurations are examples of critical configurations
without assuming any ferromagnetic condition.

Lemma 5.7. Let L(x, v) be a C1 coercive Lagrangian. Any u-calibrated configura-
tion of some C0 periodic sub-action u is critical.

Proof. Let {xk}k∈Z be an u-calibrated configuration. Lemma 5.6 implies that
{xk}k∈Z is minimizing and in particular satisfies

Lτ (xk−1, xk, xk+1) ≤ Lτ (xk−1, x, xk+1), ∀ x ∈ R
d.

Therefore ∂Lτ

∂y (xk−1, xk)+
∂Lτ

∂x (xk, xk+1) = 0 for all k ∈ Z and {xk}k∈Z ∈ Γτ (L).

We have seen in remark 3.6 that any holonomic probability measure can be
lifted to a shift-invariant probability measure in Σ/∼ and that

τL̄(τ) = min
µ̂ σ−invariant

∫

Σ/∼

Lτ (x0, x1) dµ̂(x).

We show in the following proposition how to lift some minimizing holonomic prob-
ability measures to (Γτ (L), σ) or equivalently to (Td × R

d,Φτ ).

Proposition 5.8. Let L(x, v) be a C1 ferromagnetic coercive Lagrangian, then the
minimizing holonomic value of L is given by

L̄(τ) = min
{

∫

L(x, v) dµ(x, v) : µ ∈ Pτ (T
d × R

d), µ Φτ -invariant
}

.

Proof. We already remarked that any Φτ -invariant probability is holonomic, then

L̄(τ) ≤ min
{

∫

L(x, v) dµ(x, v) : µ ∈ Pτ (T
d × R

d), µ Φτ -invariant
}

.

If {xk}k∈Z is an u-calibrated configuration for some C0 periodic sub-action u, then
{xk}k∈Z ∈ Γτ (L) by lemma 5.7. Therefore, thanks to the conjugation between
(Γτ (L), σ) and (Td × R

d,Φτ ), if vk :=
xk+1−xk

τ , then (xk, vk) = Φk
τ (x0, v0) for all
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k ∈ Z and vk is uniformly bounded by lemma 5.6. Let µ ∈ Pτ (T
d × R

d) be a weak
limit of some convergent subsequence

µnl
=

1

nl

nl−1
∑

k=0

δΦk
τ (x0,v0).

Then µ is Φτ -invariant and we have

∫

L(x, v) dµ(x, v) = lim
l→∞

1

nl

nl−1
∑

k=0

L ◦ Φk
τ (x0, v0)

= lim
l→∞

1

nl

[

u(xnl
) − u(x0)

τ
+ nlL̄(τ)

]

= L̄(τ).

We will see in the next section that, for ferromagnetic Lagrangians, all mini-
mizing holonomic probabilities are actually Φτ -invariant.

6 Graph property and Mather set

In the setting of continuous-time, periodic, strictly convex, superlinear and com-
plete C2-Lagrangians on a compact, connected C∞ manifold, J. N. Mather showed
(see [25]) that measures invariant under the Euler-Lagrange flow which are action
minimizing can be seen as Lipschitz sections of the tangent bundle. Our main goal
in this section (see theorem 6.10) is to obtain a similar graph property.

Definition 6.1. Let L(x, v) be a C0 coercive Lagrangian. We call Mather set the
set

Mτ (L) = closure
(

⋃

{

supp(µ) : µ ∈ Pτ (T
d × R

d) and µ is minimizing
}

)

,

where supp(µ) denotes the support of the probability µ.

Proposition 3.7 implies that minimizing holonomic probability measures do ex-
ist, which shows that the Mather set is nonempty.

Definition 6.2. Let L(x, v) be a C0 coercive Lagrangian and u be a C0 periodic
sub-action for L. We call nil locus of u the set

Nτ (L, u) =
{

(x, v) ∈ T
d × R

d : τL(x, v) = u(x+ τv) − u(x) + τL̄(τ)
}

.

We observe that coerciveness guarantees all nil loci are nonempty. The following
proposition shows that Nτ (L, u) actually contains the support of any minimizing
holonomic probability measure.

Proposition 6.3. Let L(x, v) be a C0 coercive Lagrangian. Then, for any sub-
action u ∈ C0(Td) with respect to L, we have Mτ (L) ⊂ Nτ (L, u).
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Proof. Consider a minimizing holonomic probability measure µ ∈ Pτ (T
d × R

d).
Since one has both τL(x, v) + u(x) − u(x+ τv) − τL̄(τ) ≥ 0 and

∫

[

τL(x, v) + u(x) − u(x+ τv) − τL̄(τ)
]

dµ(x, v) = 0,

τL(x, v) = u(x+ τv) − u(x) + τL̄(τ) holds everywhere on the support of µ.

As in the proof of lemma 5.6, the coerciveness assumption of L implies that any
nil locus is compact. More precisely, we have

Corollary 6.4. Let L(x, v) be a C0 coercive Lagrangian and u ∈ C0(Td) be a sub-
action with respect to L. If (x, v) ∈ Nτ (L, u), then ‖v‖∞ ≤ Rτ . In particular, the
support of any minimizing holonomic probability measure is compact.

Proof. If ‖v‖∞ > Rτ , then L(x, v) > L(x, v − 1
τ ⌊τv⌋). Assume (x, v) ∈ Nτ (L, u),

then

u(x+ τv) − u(x) = τL(x, v) − τL̄(τ)

> τL
(

x, v − 1

τ
⌊τv⌋

)

− τL̄(τ)

≥ u
(

x+ τ
(

v − 1

τ
⌊τv⌋

))

− u(x) = u(x+ τv) − u(x).

We obtain a contradiction, therefore ‖v‖∞ ≤ Rτ .

We assume from now on in this section that L is C1 and coercive. We prove
that any sub-action is continuously differentiable on the projected Mather set
pr1(Mτ (L)), where pr1 : T

d × R
d → T

d denotes the first canonical projection.
When L is in addition ferromagnetic, we prove that Mτ (L) is a graph over its
projection into T

d. Let us recall that Πτ has been introduced in definition 2.6.

Lemma 6.5. Let µ be a holonomic probability measure with compact support, then
for any x ∈ pr1(supp(µ)), there exists a configuration x := {xk}k∈Z in R

d such that
x0 = x and Πτ ◦ σk(x) =

(

xk,
xk+1−xk

τ

)

∈ supp(µ) for all k ∈ Z.

Proof. From proposition 3.4, we naturally associate to µ a normalized invariant
transshipment π in R

d × R
d. Let pr1,2 : R

d × R
d → R

d be the two canonical
projections. Since µ has compact support, the support of π has compact horizontal
and vertical slices. Then S1,2 := pr1,2(supp(π)) are closed sets. We always have
S1,2 ⊆ supp(pr1,2(π)). Since S1,2 are closed, necessarily S1,2 = supp(pr1,2∗ (π)).
Since π is a transshipment, pr1∗(π) = pr2∗(π) and S1 = S2. Let x0 ∈ S1, then
there exists x1 such that (x0, x1) ∈ supp(π). Since x1 ∈ S2 = S1, there exists x2

such that (x1, x2) ∈ supp(π), and so on. We thus obtain a forward and backward
orbit {xk}k∈Z of points (xk, xk+1) in the support of π or equivalently an orbit
{(xk, vk = (xk+1 − xk)/τ)}k∈Z of points in the support of µ.

In order to prove the differentiability of any sub-action on the projected Mather
set, we introduce two intermediate notions of calibration.
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Definition 6.6. Let u ∈ C0(Rd) be a Z
d-periodic sub-action for L. A couple

(x0, x1) ∈ R
d × R

d is called u-calibrated if Lτ (x0, x1) = u(x1) − u(x0) + τL̄(τ).
A triple (x−1, x0, x1) is called u-calibrated if both (x−1, x0) and (x0, x1) are u-
calibrated.

Lemma 6.7. Let L(x, v) be a C1 coercive Lagrangian and u ∈ C0(Td) be a sub-
action. Then, for any u-calibrated couple (x0, x1) ∈ R

d × R
d, we have

lim sup
‖h‖∞→0

1

‖h‖∞

[

u(x1 + h) − u(x1) −
〈∂Lτ

∂y
(x0, x1), h

〉

]

≤ 0 and

lim inf
‖h‖∞→0

1

‖h‖∞

[

u(x0 + h) − u(x0) −
〈

− ∂Lτ

∂x
(x0, x1), h

〉

]

≥ 0.

Proof. Indeed, since u is a sub-action, we have on the one hand

u(x1 + h) ≤ u(x0) + Lτ (x0, x1 + h) − τL̄(τ) and

u(x1) ≤ u(x0 + h) + Lτ (x0 + h, x1) − τL̄(τ), ∀ h ∈ R
d.

On the other hand, u(x1) = u(x0) + Lτ (x0, x1) − τL̄(τ), which implies

u(x1 + h) − u(x1) ≤
[

Lτ (x0, x1 + h) − Lτ (x0, x1)
]

and

u(x0 + h) − u(x0) ≥
[

Lτ (x0, x1) − Lτ (x0 + h, x1)
]

.

The lemma follows from the differentiability of L.

Although we could use the theory of subdifferentiability and superdifferentia-
bility of L to derive the next lemma, we prefer to give a direct proof to be the most
complete possible.

Lemma 6.8. Let L(x, v) be a C1 coercive Lagrangian and u ∈ C0(Td) be a sub-
action. Let Kτ (L, u) denote the set of mid-points x0 of all u-calibrated triples
(x−1, x0, x1).

i. If (x−1, x0, x1) is u-calibrated, then u is differentiable at x0 and

Du(x0) =
∂Lτ

∂y
(x−1, x0) = −∂Lτ

∂x
(x0, x1)

=
∂L

∂v

(

x−1,
x0 − x−1

τ

)

=
∂L

∂v

(

x0,
x1 − x0

τ

)

− τ
∂L

∂x

(

x0,
x1 − x0

τ

)

.

ii. The map Du : Kτ (L, u) → R
d is uniformly continuous independently of u.

iii. If L is in addition ferromagnetic, then there exists at most one u-calibrated
configuration passing througth any x0 ∈ R

d.

Proof. Item i . On the one hand, an u-calibrated triple is critical as in definition 2.3.
Let ∇ be the common derivative

∇ :=
∂Lτ

∂y
(x−1, x0) = −∂Lτ

∂x
(x0, x1).
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On the other hand, lemma 6.7 implies that

lim sup
‖h‖∞→0

u(x0 + h) − u(x0) −
〈

∇, h
〉

‖h‖∞
≤ 0 ≤ lim inf

‖h‖∞→0

u(x0 + h) − u(x0) −
〈

∇, h
〉

‖h‖∞
,

which shows that Du(x0) = ∇.

Item ii . We begin by showing that there exists a positive function Cτ (h) defined
for all h ∈ R

d, depending only on τ and L, such that Cτ (h) → 0 when h→ 0 and

|u(x0 + h) − u(x0) − 〈Du(x0), h〉| ≤ Cτ (h)‖h‖∞,

for all h ∈ R
d, all x0 ∈ Kτ (L, u) and all sub-action u. Let (x−1, x0, x1) be a

u-calibrated triple. On the one hand,

u(x1) − u(x0) − Lτ (x0, x1) = τL̄(τ) ≥ u(x1) − u(x0 + h) − Lτ (x0 + h, x1),

and by eliminating u(x1) one obtain

u(x0 +h)−u(x0)−〈Du(x0), h〉 ≥ −
[

Lτ (x0 +h, x1)−Lτ (x0, x1)−〈∂Lτ

∂x
(x0, x1).h〉

]

.

On the other hand,

u(x0) − u(x−1) − Lτ (x−1, x0) = −τL̄(τ) ≥ u(x0 + h) − u(x−1) − Lτ (x−1, x0 + h),

and by eliminating u(x−1) one obtain

u(x0+h)−u(x0)−〈Du(x0), h〉 ≤ Lτ (x−1, x0+h)−Lτ (x−1, x0)−〈∂Lτ

∂y
(x−1, x0), h〉.

Notice that ‖x0 − x−1‖∞, ‖x1 − x0‖∞ ≤ τR(τ) whenever (x−1, x0, x1) ∈ Kτ (L, u)
and that Lτ (x, y) is invariant by the diagonal Z

d-translation. Define

C ′
τ (h) := max

‖x1−x0‖∞≤τR(τ)
max
s∈[0,1]

∥

∥

∂Lτ

∂x
(x0 + sh, x1) −

∂Lτ

∂x
(x0, x1)

∥

∥

∞

C ′′
τ (h) := max

‖x0−x−1‖∞≤τR(τ)
max
s∈[0,1]

∥

∥

∂Lτ

∂y
(x−1, x0 + sh) − ∂Lτ

∂y
(x−1, x0)

∥

∥

∞.

Then Cτ (h) = max(C ′
τ (h), C

′′
τ (h)) is the desired function.

We now show that Du(x0) is uniformly continuous on Kτ (L, u). Notice that

|u(x0) − u(x0 − h) − 〈Du(x0), h〉| ≤ Cτ (−h)‖h‖∞, ∀ h ∈ R
d.

Let x0 and x′0 be two distinct mid-points of Kτ (L, u). Then, for any h,

|u(x0 + h) − u(x0) − 〈Du(x0), h〉| ≤ Cτ (h)‖h‖∞,
|u(x′0) − u(x0 + h) − 〈Du(x′0), x′0 − x0 − h〉| ≤ Cτ (x0 + h− x′0)‖x0 + h− x′0‖∞,

|u(x0) − u(x′0) − 〈Du(x′0), x0 − x′0〉| ≤ Cτ (x0 − x′0)‖x0 − x′0‖∞.
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By adding the three inequalities and by taking any ‖h‖∞ = ‖x0 − x′0‖∞, we obtain

|〈Du(x′0) −Du(x0), h〉| ≤ Cτ (x0, x
′
0)‖h‖∞,

where

Cτ (x0, x
′
0) := sup

‖h‖∞=‖x0−x′0‖∞
[Cτ (h) + 2Cτ (x0 + h− x′0) + Cτ (x0 − x′0)].

Therefore ‖Du(x0)−Du(x′0)‖∞ ≤ Cτ (x0, x
′
0) and Du(x0) is uniformly continuous.

Item iii . If {xk}k∈Z is an u-calibrated configuration, thenDu(xk) exists for all k and
the two equations Du(xk) = ∂Lτ

∂y (xk−1, xk) and Du(xk) = −∂Lτ

∂x (xk, xk+1) shows
that xk−1 and xk+1 are known as soon as xk is known and L is ferromagnetic.

The following proposition is now a direct consequence of proposition 6.3 and
lemmas 6.5 and 6.8.

Proposition 6.9. Let L(x, v) be a C1 coercive Lagrangian. Then any sub-action
u ∈ C0(Td) with respect to L is continuously differentiable on the projected Mather
set pr1(Mτ (L)), where pr1 : T

d × R
d → T

d denotes the first canonical projection.
If L is in addition C1,1, then Du : pr1(Mτ (L)) → R is Lipschitz uniformly in u.

Proof. Recall from lemma 6.8 that Kτ (L, u) denotes the set of mid-points of u-
calibrated triples. From lemmas 6.5 and proposition 6.3, we deduce that

pr1(Mτ (L)) ⊆ Kτ (L, u).

From 6.8, we obtain that Du : T
d → R

d is continuous.

Mather graph property is then an easy consequence of the previous study in the
case of ferromagnetic Lagrangians.

Theorem 6.10. Let L(x, v) be a C1 ferromagnetic coercive Lagrangian. Then there
exists a continuous map

Vτ : pr1(Mτ (L)) → R
d, ‖Vτ‖∞ ≤ Rτ ,

such that Mτ (L) is a graph over its projection, that is,

Mτ (L) = graph(Vτ ) = {(x, Vτ (x)) |x ∈ pr1(Mτ (L)}.

Moreover, Mτ (L) is compact and Φτ -invariant, any minimizing holonomic proba-
bility measure µ is Φτ -invariant and, for any sub-action u ∈ C0(Td), one has

Du(x) =
∂L

∂v
(x, Vτ (x)) − τ

∂L

∂x
(x, Vτ (x)), ∀ x ∈ pr1(Mτ (L)).



30 Eduardo Garibaldi and Philippe Thieullen

Proof. Let u ∈ C0(Td) be any sub-action. From lemma 6.8, we know that Du(x)
exists and is continuous for all x ∈ Kτ (L, u). Since L is ferromagnetic, we define
uniquely Vτ (x) by the following implicit equation

Du(x) =
∂L

∂v
(x, Vτ (x)) − τ

∂L

∂x
(x, Vτ (x)), ∀ x ∈ Kτ (L, u).

Then Vτ becomes continuous on Kτ (L, u).

Assume now that x ∈ pr1(Mτ (L)). Consider a point x−1 ∈ T
d with (x−1, x)

u-calibrated. Take v ∈ R
d such that (x, v) ∈ Mτ (L) and define x1 = x+ τv. Then

(x−1, x, x1) is u-calibrated and, thanks to lemma 6.8, we have

Du(x) =
∂L

∂v
(x, v) − τ

∂L

∂x
(x, v).

Necessarily v = Vτ (x), ‖Vτ (x)‖∞ ≤ Rτ and Vτ (x) is independent of the choice of
u. From lemma 6.5, we know there exist u-calibrated triples passing through x
consisting of points of pr1(Mτ (L)). From the ferromagnetic property, we deduce
that this triple is unique. Thus x1 ∈ pr1(Mτ (L)) ⊆ Kτ (L, u) and

Du(x1) =
∂L

∂v
(x, Vτ (x)) =

∂L

∂v
(x1, Vτ (x1)) − τ

∂L

∂x
(x1, Vτ (x1)).

From the definition of Φτ (see definition 2.5), we obtain

Φτ (x, v) = (x+ τv, Vτ (x+ τv)) , ∀ (x, v) ∈ Mτ (L).

In particular, Φτ preserves the Mather set (the reverse inclusion is proved similarly)

Φτ (Mτ (L)) = Mτ (L).

Let µ ∈ Pτ (T
d × R

d) be a minimizing holonomic probability measure. For any
bounded Borel function ϕ : T

d × R
d → R, from the previous identity, we have

∫

ϕ ◦ Φτ (x, v) dµ(x, v) =

∫

Mτ (L)
ϕ (x+ τv, Vτ (x+ τv)) dµ(x, v)

=

∫

Mτ (L)
ϕ (x, Vτ (x)) dµ(x, v)

=

∫

ϕ (x, v) dµ(x, v),

which means the Φτ -invariance of the measure µ.

The last statement of theorem 6.10 is similar to a known result in the case of
Lagrangian theory. For a continuous-time, periodic, strictly convex, superlinear
and complete C∞-Lagrangian on a closed Riemannian manifold, R. Mañé showed
(see proposition 1.3 of [23]) that any minimizing holonomic measure is invariant
under the Euler-Lagrange equations.
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7 The Aubry set

In Aubry-Mather theory for continuous-time Lagrangian dynamics, there are gen-
erally two strategies for introducing the Aubry set: A. Fathi’s formulation (see
[11]) using the notion of conjugate weak KAM solutions and G. Contreras and R.
Iturriaga construction (see [6]) using the notion of static curves. Both approaches
request intrinsically a differentiable Lagrangian.

We have chosen a different approach, closer to the usual definition in ergodic
optimization theory, which has the main advantage of requiring only C0 smoothness.
Aubry set will use the following notion of periodic configuration.

Definition 7.1. We call periodic configuration of type (q, p) a finite configuration
(x0, x1, · · · , xq) of points of R

d such that xq = x0 + p, q ≥ 1 and p ∈ Z
d. Such a fi-

nite configuration determines uniquely a bi-infinite configuration {xk}k∈Z satisfying
xq+k = xk + p for all k ∈ Z.

The notion of Aubry point below is similar to the one of non-wandering point
with respect a potential used in ergodic optimization (see, for instance, [7, 15, 16]).
A similar projected Aubry set in [18] has also been used in the discrete Aubry-
Mather problem. Recall that L̄τ (x0, x1, · · · , xq) =

∑q−1
k=0[Lτ (xk, xk+1) − τL̄(τ)].

Definition 7.2. Let L(x, v) : T
d × R

d → R be a C0 coercive Lagrangian. A point
(x, v) ∈ T

d×R
d is said to be an Aubry point if, for any ǫ > 0, there exists a periodic

configuration of type (q, p), (x0, x1, · · · , xq), such that

‖x− x0‖∞ < ǫ, ‖x+ τv − x1‖∞ < ǫ and |L̄τ (x0, x1, · · · , xq)| ≤ ǫ.

The Aubry set Aτ (L) is by definiton the set of all Aubry points.

Notice that the Aubry set depends on L modulo any coboundary, that is, for
all function ψ ∈ C0(Td) and any constant c ∈ R, Aτ (L) = Aτ (L − ∆τψ − c),
where ∆τψ(x, v) := ψ(x + τv) − ψ(x). Notice also that L̄τ (x0, x1, · · · , xq) ≥ 0 for
any periodic configuration of type (q, p), since L̄τ (x0, x1, · · · , xq) is unchanged if,
instead of L, we use L− 1

τ∆τu− L̄(τ) ≥ 0 for some sub-action u.

It is easy to see that the Aubry set is a closed subset of T
d ×R

d. The fact that
it is a non empty set is proved in the following proposition.

Proposition 7.3. Let L(x, v) be a C0 coercive Lagrangian and u ∈ C0(Td) be a
sub-action with respect to L. Then Mτ (L) ⊂ Aτ (L) ⊂ Nτ (L, u).

Proof. We begin by proving the second inclusion. Define the associated normalized
Lagrangian E(x, v) := L(x, v) − 1

τ [u(x+ τv) − u(x)] − L̄(τ) and the corresponding
interaction energy Eτ (x, y). Then E(x, v) ≥ 0 for all (x, v) ∈ T

d×R
d and Ē(τ) = 0.

For any ǫ > 0, there exists a periodic configuration (x0, x1, · · · , xq) such that

0 ≤ Ēτ (x0, x1) ≤ Ēτ (x0, x1, · · · , xq) = L̄τ (x0, x1, · · · , xq) ≤ ǫ.

Letting ǫ go to 0, we obtain Eτ (x, x+ τv) = 0 or (x, v) ∈ Nτ (L, u).



32 Eduardo Garibaldi and Philippe Thieullen

We now prove the first inclusion. The proof of this part is non trivial and
requires the use of Atkinson’s theorem which we recall in 7.4. Let µ be a minimiz-
ing holonomic probability measure and (x, v) ∈ supp(µ). By proposition 3.4, the
measure µ can be lifted to a normalized shift-invariant Markov chain µ̂ on Σ/∼.
Remark 3.6 tells us that µ̂ is a minimizing shift-invariant probability in following
sense

τL̄(τ) =

∫

Σ/∼

Lτ (x0, x1) dµ̂(x) = inf
ν̂ σ-invariant

∫

Σ/∼

Lτ (x0, x1) dν̂(x).

Take ǫ > 0. Let Bǫ denote an open ball of radius η(ǫ) ∈ (0, ǫ) around the point
(x, v) such that the oscilation of Lτ (x0, x1) on B̂ǫ := Π−1

τ (Bǫ) is less than ǫ. Then
µ̂(B̂ǫ) = µ(Bǫ) > 0 and, by the ergodic decomposition theorem (see, for instance,
chapter 7 of [19]), there exists an ergodic minimizing shift-invariant probability ν̂
which satisfies

ν̂(B̂ǫ) > 0 and τL̄(τ) =

∫

Σ/∼

Lτ (x0, x1) dν̂(x).

Atkinson’s theorem implies that there exist a point x = {xk}k∈Z ∈ B̂ǫ and in-
finitely many positive integers q such that σq(x) ∈ B̂ǫ and |L̄τ (x0, x1, · · · , xq)| < ǫ.
By definition of B̂ǫ, we may assume x0 and x1 close to x and x + τv within η(ǫ).
Moreover, xq is close to x0 +p within η(ǫ) for some p ∈ Z

d. We have obtained a pe-
riodic configuration (xq−p, x1, · · · , xq) beginning close to (x, x+τv) and satisfying
|L̄τ (xq − p, x1, · · · , xq)| < 2ǫ. We have shown that (x, v) ∈ Aτ (L).

Atkinson’s theorem is well known. We have nevertheless included a short proof.

Theorem 7.4. (Atkinson’s theorem [1]) Let (Z,C, λ) be a probability space,
T : Z → Z an ergodic measure preserving map, f : Z → R an integrable function,
f ∈ L1(λ), and D ∈ C a measurable set of positive measure, λ(D) > 0. Denote

Ξ(f,D) :=
{

z ∈ D : ∀ ǫ > 0, ∃ n ≥ 1 with

Tn(z) ∈ D and
∣

∣

n−1
∑

k=0

f ◦ T k(z) − n

∫

Z
f dλ

∣

∣ < ǫ
}

.

Then λ (Ξ(f,D)) = λ(D).

Proof. Without loss of generality, we may assume
∫

Z f dλ = 0. Let ǫ > 0 and

Ξǫ(f,D) :=
{

z ∈ D : ∃ n ≥ 1 with Tn(z) ∈ D and
∣

∣

n−1
∑

k=0

f ◦ T k(z)
∣

∣ < ǫ
}

.

Since Ξ(f,D) = ∩k≥1Ξ1/k(f,D), it is enough to show that λ (Ξǫ(f,D)) = λ(D).

Let f(n, z) =
∑n−1

k=0 f ◦ T k(z) and notice the cocycle property

f(0, z) = 0, f(m+ n, z) = f(m, z) + f(n, Tm(z)), ∀ m,n ≥ 0, ∀ z ∈ Z.



Minimizing orbits in the discrete Aubry-Mather model 33

Suppose on the contrary C := D−Ξǫ(f,D) has positive measure. Let ρ : C → N∗ be
the first return time to C, TC : C → C the first return map to C, TC(z) = T ρ(z)(z),
and

fC(z) =

ρ(z)−1
∑

k=0

f ◦ T k(z), fC(n, z) =
n−1
∑

k=0

fC ◦ T kC(z), ∀ z ∈ C, ∀ n ≥ 0,

the induced cocycle on C. By the definition of C

|fC(n, z) − fC(m, z)| = |fC(n−m,TmC (z))| ≥ ǫ, ∀ n > m ≥ 0.

Let N ≥ 1. Then each subinterval [−N ǫ
2 + iǫ,−N ǫ

2 + (i+ 1)ǫ), i = 0, 1, . . . , N − 1,
of the partition of IN := [−N ǫ

2 , N
ǫ
2) into N intervals of length ǫ contains at most

one point of the form fC(n, z). There exists therefore k(N, z) ∈ {0, 1, . . . , N} such
that fC(k(N, z), z) do not belong to IN or

|fC(k(N, z), z)| ≥ N
ǫ

2
≥ k(N, z)

ǫ

2
, ∀ N ≥ 1.

Since {k(N, z)}N≥1 is not bounded (for {fC(k(N, z), z)}N≥1 is not bounded because
of |fC(k(N, z), z)| ≥ N ǫ

2), we obtain

lim sup
n→+∞

|fC(n, z)|
n

≥ ǫ

2

and by the ergodic Birkhoff’s theorem,

lim
n→+∞

fC(n, z)

n
= lim

n→+∞

∑ρn−1
k=0 f ◦ T k(z)

∑ρn−1
k=0 1C ◦ T k(z)

=

∫

Z f dλ

λ(C)

where ρn denotes the nth return time to C, ρn(z) :=
∑n−1

k=0 ρ ◦T kC(z). We just have
obtained the contradiction |

∫

Z f dλ| ≥ ǫ
2λ(C) > 0.

We want now to prove that any sub-action is continuously differentiable on
the Aubry set. We first show that a finite configuration with bounded interaction
energy has bounded jumps independently of the length of the configuration.

Lemma 7.5. Let L(x, v) be a C0 coercive Lagrangian. Then for any E > 0 there
exists RE > 0 such that, for any n ≥ 1 and any finite configuration (x0, x1, · · · , xn)
of length n with interaction energy bounded from above by E,

L̄τ (x0, x1, · · · , xn) ≤ E =⇒ ‖xk − xk−1‖∞ ≤ RE , ∀ k = 1, · · · , n.

Proof. Let u be a fixed C0(Td) sub-action. By coerciveness of L, for every E > 0
there exists RE > 0 such that |L̄τ (x, y)| ≤ E + 4‖u‖0 ⇒ ‖y − x‖∞ < RE . Then

0 ≤ L̄τ (xk−1, xk) + u(xk−1) − u(xk) ≤
≤ L̄τ (x0, x1, · · · , xn) + u(x0) − u(xn) ≤ E + 2‖u‖0,

|L̄τ (xk−1, xk)| ≤ E + 4‖u‖0 and ‖xk − xk−1‖ < RE .
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We can now extend the conclusion of proposition 6.9.

Proposition 7.6. Let u ∈ C0(Td) be a sub-action with respect to a C1 coercive
Lagrangian L(x, v). Then u is continuously differentiable on the projected Aubry
set pr1(Aτ (L)). If L is in addition C1,1 then Du : pr1(Aτ (L)) → R is Lipschitz
uniformly in u.

Proof. As in the proof of proposition 6.9, we just need to prove that

pr1(Aτ (L) ⊆ Kτ (L, u).

We normalize again by defining

Ēτ (x0, · · · , xn) = L̄τ (x0, · · · , xn) + u(x0) − u(xn) ≥ 0.

Let (x, v) ∈ Aτ (L), x0 = x and x1 = x+τv. Then there exist a sequence of periodic
configurations (xl0, x

l
1, · · · , xlq(l)) and a sequence of integers pl ∈ Z

d such that

xl0 → x0, xl1 → x1, xlq(l) = xl0 + pl and Ēτ (x
l
0, x

l
1, · · · , xlq(l)) → 0.

From lemma 7.5 we obtain that {xlq(l) − xlq(l)−1}l is uniformly bounded. One can

extract a converging subsequence of {xlq(l)−1 − pl}l to some x−1 ∈ R
d. Since

0 ≤ Ēτ (x
l
q(l)−1 − pl, xlq(l) − pl) ≤ Ēτ (x

l
0, x

l
1, · · · , xlq(l)),

Ēτ (x−1, x0) = 0 and (x−1, x0, x1) is an u-calibrated triple: x ∈ Kτ (L, u).

We can now improve theorem 6.10 in the ferromagnetic case. As introduced in
definition 2.5, recall that (Td × R

d,Φτ ) denotes the discrete Euler Lagrange map.

Theorem 7.7. Let L(x, v) be a C1 ferromagnetic coercive Lagrangian. Then
Aτ (L) is compact, Φτ -invariant and equal to the graph of some continuous map
Vτ : pr1(Aτ (L)) → R

d.

Proof. The proof is similar to the proof of theorem 6.10 thanks to the fact that
pr1(Aτ (L)) ⊆ Kτ (L, u) for any continuous and periodic sub-action u and to the
fact that any x ∈ pr1(Aτ (L)) is the projection of a configuration x = {xk}k∈Z

satisfying Πτ (σ
k(x)) ∈ Aτ (L) for all k ∈ Z. This is similar to lemma 6.5. The proof

of this fact is given in the following lemma 7.8.

Lemma 7.8. Let L(x, v) be a C0 coercive Lagrangian. For any (x, v) ∈ Aτ (L) there
exists a configuration x = {xk}k∈Z of points of R

d such that Πτ (x0, x1) = (x, v) and
Πτ (σ

k(x)) ∈ Aτ (L) for all k ∈ Z.

Proof. We begin by normalizing L by assuming L(x, v) ≥ 0 and L̄ = 0. Let
(x, v) ∈ Aτ (L), x0 = x and x1 = x0 + τv. Then there exists a sequence of periodic
configurations xl = (xl0, x

l
1, · · · , xlq(l)), xlq(l) = xl0 + pl for some pl ∈ Z

d such that

xl0 → x0, xl1 → x1 and 0 ≤ L̄τ (x
l
0, x

l
1, · · · , xlq(l)) → 0.



Minimizing orbits in the discrete Aubry-Mather model 35

From lemma 7.5 we know there exists R > 0 such that all jumps are bounded
uniformly, ‖xlk − xlk+1‖∞ < R for all k ∈ Z. By a diagonal procedure of extraction,

there exists a subsequence of {xl}l, that we call again {xl}l, such that, for all
k ≥ 0, when l → ∞ one has xlk → xk and xlq(l)−k−pl → x−k for some configuration

{xk}k∈Z. By definition of the Aubry set, each Πτ (xk, xk+1) belongs to Aτ (L). A
special care should be given in the previous argument when the length l remains
bounded.

8 Mañé potential and Peierls barrier

We introduce in this section two new definition: the Mañé potential and the Peierls
barrier. We prove that these notions give an equivalent characterization of the
Aubry set and that they give a different way to construct calibrated sub-actions.
They will play a fundamental role in the next section to classify all calibrated
sub-actions.

Definition 8.1. Let L(x, v) : T
d × R

d → R be a C0 coercive Lagrangian. We call
Mañé potential the function Sτ : R

d × R
d → R defined by

Sτ (x, y) = inf
n≥1

inf
p∈Zd

inf
x0=x

xn=y+p

L̄τ (x0, . . . , xn) = inf
n≥1

inf
p∈Zd

inf
x0=x+p
xn=y

L̄τ (x0, . . . , xn).

Notice that Sτ (x, y) is periodic in both variables x and y.

We first give obvious properties of the Mañé potential.

Remark 8.2. For any x, y, z in R
d, we have

i. Sτ (x, y) ≤ infp∈Zd

[

Lτ (x, y + p) − τL̄(τ)
]

≤ Lτ (x, y) − τL̄(τ) = L̄τ (x, y),

ii. u(y) − u(x) ≤ Sτ (x, y), for any sub-action u ∈ C0(Td),

iii. Sτ (x, y) ≤ Sτ (x, z) + Sτ (z, y),

iv. Sτ (x, x) ≥ 0.

We just have seen that coerciveness implies the Mañé potential is a finite func-
tion. We show in the next propostion that Sτ (x, y) is continuous with respect to
both x and y.

Proposition 8.3. Let L(x, v) be a C0 coercive Lagrangian. Then

i. Sτ (x, y) : R
d × R

d → R is continuous and periodic in x and y,

ii. For every x, y ∈ R
d, Sτ (x, ·) and −Sτ (·, y) are C0(Td) sub-actions.

Proof. We prove the first assertion. Fix ǫ > 0. Take arbitrary points (x, y), (x′, y′)
in R

d × R
d. Then there exist two configurations (x0, . . . , xm), (y0, . . . , yn) and two

vectors with integer coordinates r, s ∈ Z
d such that

L̄τ (x0, . . . , xm−1, xm + r) ≤ Sτ (x, y
′) + ǫ/2, x0 = x, xm = y′,

L̄τ (y0 + s, y1, . . . , yn) ≤ Sτ (x, y) + ǫ/2, y0 = x, yn = y.
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Then Sτ (x
′, y′)−Sτ (x, y) = Sτ (x

′, y′)−Sτ (x, y′)+Sτ (x, y′)−Sτ (x, y) can be bounded
from above using the estimates

Sτ (x
′, y′) − Sτ (x, y

′) ≤
≤ L̄τ (x

′, x1, . . . , xm−1, y
′ + r) − L̄τ (x, x1, . . . , xm−1, y

′ + r) + ǫ/2

≤ L̄τ (x
′, x1) − L̄τ (x, x1) + ǫ/2,

Sτ (x, y
′) − Sτ (x, y) ≤
≤ L̄τ (x+ s, y1, . . . , yn−1, y

′) − L̄τ (x+ s, y1, . . . , yn−1, y) + ǫ/2

≤ L̄τ (yn−1, y
′) − L̄τ (yn−1, y) + ǫ/2.

Since Sτ (x, y) is uniformly bounded from above by periodicity and item ii of re-
mark 8.2, lemma 7.5 guarantees that the points x1 and yn−1 which depend on ǫ
and x, y, x′ and y′ are uniformly bounded. So the estimation above shows Sτ is a
continuous map.

The second assertion is an immediate corollary of item iii of remark 8.2

Sτ (x, z) − Sτ (x, y) ≤ Sτ (y, z) ≤ Lτ (y, z) − τL̄, ∀ y, z ∈ R
d,

or in terms of the Lagranigan L

Sτ (x, y + τv) − Sτ (x, y) ≤ τL(x, v) − τL̄, ∀ (y, v) ∈ T
d × R

d.

We just have proved that Sτ (x, ·) is a sub-action. Similarly −Sτ (·, y) is a sub-
action.

For a C0 coercive Lagrangian, we clearly deduce Sτ (x, x) ≥ 0 from item ii of
remark 8.2. We show in the following proposition that Sτ (x, x) = 0 characterizes
the Aubry set.

Proposition 8.4. Suppose L(x, v) is a C0 coercive Lagrangian. Then Sτ (x, x) = 0
if, and only if, x (mod Z

d) ∈ pr1(Aτ (L)).

Proof. Let us first show that (x, v) ∈ Aτ (L) implies Sτ (x, x) = 0. One can find a
sequence of periodic configurations (xl0, x

l
1, . . . , x

l
q(l)), x

l
q(l) = xl0 + pl, such that

xl0 → x, xl1 → x+ τv and L̄τ (x
l
0, x

l
1, . . . , x

l
q(l)) → 0.

Since Sτ (x
l
0, x

l
0) = Sτ (x

l
0, x

l
q(l)) ≤ L̄τ (x

l
0, x

l
1, . . . , x

l
q(l)), thanks to the continuity of

Sτ and item iv of remark 8.2, we obtain Sτ (x, x) = 0.
Conversely, assume Sτ (x, x) = 0. Then there exists a sequence of periodic con-

figurations (xl0, . . . , x
l
q(l)) such that xl0 = x = xlq(l)−pl and L̄τ (x

l
0, x

l
1, . . . , x

l
q(l)) → 0.

Thanks to lemma 7.5, xl1 − xl0 remains uniformly bounded. So one can find a sub-
sequence of l’s such that {(xl1 − xl0)/τ}l converges to some v ∈ R

d. By definition of
the Aubry set, (x, v) ∈ Aτ (L).

Mañé potential enable us to construct continuous sub-actions without using a
Lax-Oleinik method. These sub-actions may not be calibrated. We introduce in the
following definition a barrier which is similar to Mañé potential, being continuous,
periodic with respect to both variables and in addition defining calibrated sub-
actions (see theorem 8.10).
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Definition 8.5. Let L(x, v) : T
d × R

d → R be a C0 coercive Lagrangian. We call
Peierls barrier the function hτ : R

d × R
d → R ∪ {+∞} defined by

hτ (x, y) = lim inf
n→+∞

inf
p∈Zd

inf
x0=x

xn=y+p

L̄τ (x0, . . . , xn) = lim inf
n→+∞

inf
p∈Zd

inf
x0=x+p
xn=y

L̄τ (x0, . . . , xn).

Again notice that hτ (x, y) is periodic with respect to both variables x and y.

We first gather simple properties of the Peierls barrier.

Remark 8.6. For any x, y, z in R
d

i. Sτ (x, y) ≤ hτ (x, y),

ii. hτ (x, y) ≤ Sτ (x, z) + hτ (z, y),

iii. hτ (x, y) ≤ hτ (x, z) + Sτ (z, y).

We will prove in a moment that hτ (x, y) satisfies additional properties: hτ (x, y)
takes finite values (proposition 8.7), hτ (x, ·) and −hτ (·, y) are continuous, periodic
calibrated sub-actions for all x, y ∈ R

d (theorem 8.10).

We first prove that Sτ and hτ coincide on the projected Aubry set.

Proposition 8.7. Let L(x, v) be a C0 coercive Lagrangian. Then for any points
x, y (mod Z

d) ∈ pr1(Aτ (L)), Sτ (x, ·) = hτ (x, ·) and Sτ (·, y) = hτ (·, y). In particu-
lar hτ (x, y) is finite for all x, y ∈ R

d.

Proof. We only prove the first identity. Let x (mod Z
d) ∈ pr1(Aτ (L)) and y ∈ R

d.
For every ǫ > 0, there exists a configuration (x, y1, . . . , ym−1, y + s) in R

d, with
m ≥ 1 and s ∈ Z

d, such that

L̄τ (x, y1, . . . , ym−1, y + s) < Sτ (x, y) + ǫ.

As Sτ (x, x) = 0, for every positive integer l, one can also find a finite configuration
(x, x1, . . . , xn−1, x+ r), with n ≥ 1 and r ∈ Z

d, such that

L̄τ (x, x1, . . . , xn−1, x+ r) < ǫ/l.

Notice that

(x, x1, . . . , xn−1, x+ r, x1 + r, . . . , xn−1 + r, x+ 2r, x1 + 2r, . . . , xn−1 + 2r, . . .

x+ (l − 1)r, . . . , xn−1 + (l − 1)r, x+ rl, y1 + lr, . . . , ym−1 + lr, y + lr + s)

is a configuration of the form (z0, z1, . . . , znl+m) satisfying z0 = x, znl+m = y+lr+s
and

L̄τ (z0, z1, . . . , znl+m) ≤ lL̄τ (x, x1, . . . , xn−1, x) + L̄τ (y, y1, . . . , ym−1, y)

≤ Sτ (x, y) + 2ǫ.

Since l can be chosen arbitrarily large, we deduce that hτ (x, y) ≤ Sτ (x, y) + 2ǫ,
which immediately yields hτ (x, y) ≤ Sτ (x, y).

The fact that hτ (x, y) is finite comes from the inequality

hτ (x, y) ≤ Sτ (x, z) + hτ (z, y) = Sτ (x, z) + Sτ (z, y),

where z ∈ pr1(Aτ (L)) is arbitrarily chosen.
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Thanks to proposition 8.3, we conclude that hτ (x, ·) and −hτ (·, y) are contin-
uous, Z

d-periodic sub-actions with respect to L as soon as x, y ∈ pr1(Aτ (L)). As
a matter of fact, they are also calibrated sub-actions on the projected Aubry set
(which is a first step in the proof of theorem 8.10).

Proposition 8.8. Let L(x, v) be a C0 coercive Lagrangian.

i. For any x (mod Z
d) ∈ pr1(Aτ (L)), Sτ (x, ·) is backward calibrated.

ii. For any y (mod Z
d) ∈ pr1(Aτ (L)), −Sτ (·, y) is forward calibrated.

Proof. We need to show that, for every y′ ∈ R
d, there exists y ∈ R

d satisfying

hτ (x, y
′) = hτ (x, y) + L̄τ (y, y

′).

Since hτ (x, ·) is a sub-action, we already know that hτ (x, y
′) ≤ hτ (x, y)+ L̄τ (y, y

′).
Conversely, one can find a sequence of configurations in R

d, (xk0, x
k
1, . . . , x

k
n(k)), such

that xk0 = x+ pk for some pk ∈ Z
d, xkn(k) = y′,

n(k) → +∞ and L̄τ (x
k
0, x

k
1, . . . , x

k
n(k)) → hτ (x, y

′).

Thanks to lemma 7.5, a subsequence of {xkn(k)−1}k converges to some y ∈ R
d.

Then

hτ (x, x
k
n(k)−1) + L̄τ (x

k
n(k)−1, y

′) ≤ Sτ (x, x
k
n(k)−1) + L̄τ (x

k
n(k)−1, y

′)

≤ L̄τ (x
k
0, x

k
1, . . . , x

k
n(k)).

Letting k go to +∞, we obtain hτ (x, y) + L̄τ (y, y
′) ≤ hτ (x, y

′). In an analogous
way, we can prove that −hτ (·, x) = −Sτ (·, x) is a forward calibrated sub-action.

We have seen that Sτ (x, ·) and −Sτ (·, y) are continuous, periodic sub-actions
for any x, y ∈ R

d. The following proposition shows that the Peierls barrier can be
defined using Mañé potential. (That fact will be used in the proof of theorem 8.10.)

Proposition 8.9. Assume L(x, v) is a C0 coercive Lagrangian. Then

hτ (x, y) = min
z∈pr1(Aτ (L))

[

Sτ (x, z) + Sτ (z, y)
]

, ∀ x, y ∈ T
d.

Proof. Propositions 8.7 tells us hτ (·, y) = Sτ (·, y) and hτ (x, ·) = Sτ (x, ·) whenever
x, y ∈ pr1(Aτ (L)). Hence, from item ii of remark 8.6, we immediately get

hτ (x, y) ≤ min
z∈pr1(Aτ (L))

[

Sτ (x, z) + Sτ (z, y)
]

.

So it suffices to find z ∈ pr1(Aτ (L)) satisfying Sτ (x, z) + Sτ (z, y) ≤ hτ (x, y). Let
u be a C0(Td) sub-action. By taking L(x, v)− 1

τ [u(x+ τv)− u(x)]− L̄(τ), we may
assume L ≥ 0 and L̄(τ) = 0. Let L̄τ (x, y) = τL(x, 1

τ (y − x)) for x, y ∈ R
d.

By definition of hτ (x, y), there exists a sequence of configurations (xk0, . . . , x
k
n(k))

in R
d of length n(k) and a sequence pk ∈ Z

d such that xk0 = x, xkn(k) = y + pk,

n(k) → +∞ and lim
k→∞

L̄τ (x
k
0, . . . , x

k
n(k)) = hτ (x, y).
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Since hτ (x, y) < ∞ and L̄τ ≥ 0, for k large enough, one can find m(k) and m′(k)
in {0, . . . , n(k) − 1} such that

m′(k) −m(k) = ⌊√nk⌋ and 0 ≤ L̄τ (x
k
m(k), . . . , x

k
m′(k)) <

hτ (x, y) + 1

⌊√nk⌋ − 1
.

Otherwise, we would reach a contradiction,

L̄τ (x
k
0, . . . , x

k
nk

) ≥
⌊√nk⌋−2

∑

i=0

L̄τ (x
k
i⌊√nk⌋, . . . , x

k
(i+1)⌊√nk⌋)

≥ (⌊√nk⌋ − 1)
hτ (x, y) + 1

⌊√nk⌋ − 1
= hτ (x, y) + 1

for arbitrarily large k.

Thanks to the invariance of Lτ by the diagonal action of Z
d, Lτ (x+ s, y+ s) =

Lτ (x, y) for all s ∈ Z
d, we may assume xkm(k) ∈ [0, 1)d. Using a diagonal procedure,

lemma 7.5 allows us to find a subsequence {kj} of integers and a forward infinite
configuration {zl}l≥0 of R

d such that

lim
j→∞

x
kj

m(kj)
= z0 ∈ [0, 1)d and lim

j→∞
x
kj

m(kj)+l
= zl ∈ R

d, ∀ l ≥ 1.

From the construction of the sequence {mk}, it follows that Lτ (zl, zl+1) = 0
for any nonnegative integer l, which clearly yields Sτ (zl, zl+1) = 0. From item iii
of remark 8.2, we get Sτ (zl, zl′) = 0 whenever l′ > l ≥ 0. Therefore, if z∞ ∈ T

d

is an arbitrary accumulation point of {zl (mod Z
d)}l≥0, then Sτ (z∞, z∞) = 0 or

z∞ ∈ pr1(Aτ (L)). Observe that, for any l ≥ 0,

L̄τ (x
kj

0 , . . . , x
kj

n(kj)
) = L̄τ (x

kj

0 , . . . , x
kj

m(kj)+l
) + L̄τ (x

kj

m(kj)+l
, . . . , x

kj

n(kj)
)

≥ Sτ (x, x
kj

m(kj)+l
) + Sτ (x

kj

m(kj)+l
, y).

Passing to the limit when j → ∞, we obtain hτ (x, y) ≥ Sτ (x, zl)+Sτ (zl, y). Taking
then a suitable subsequence of {zl}, we get hτ (x, y) ≥ Sτ (x, z∞) + Sτ (z∞, y).

Theorem 8.10. Let L(x, v) be a C0 coercive Lagrangian. Then the Peierls barrier
hτ : R

d × R
d → R is continuous, Z

d × Z
d periodic. Moreover, hτ (x, ·) : R

d → R

is a forward calibrated sub-action and −hτ (·, y) : R
d → R is a backward calibrated

sub-action for any x, y ∈ R
d.

Proof. Consider arbitrary points (x, y), (x′, y′) ∈ T
d × T

d. Thanks to proposi-
tion 8.9, there exists zx,y ∈ pr1(Aτ (L)) satisfying hτ (x, y) = Sτ (x, zx,y)+Sτ (zx,y, y).
Then

hτ (x
′, y′) − hτ (x, y) ≤

[

Sτ (x
′, zx,y) − Sτ (x, zx,y)

]

+
[

Sτ (zx,y, y
′) − Sτ (zx,y, y)

]

.

Since Sτ is uniformly continuous on T
d ×T

d, the estimation above assures that hτ
is a continuous map.
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We already know that hτ (x, ·) and −hτ (·, x) are T
d periodic and continuous.

Take (y, y′) ∈ R
d×R

d. Thanks to proposition 8.9, there exists z ∈ pr1(Aτ (L)) such
that hτ (x, y) = Sτ (x, z)+Sτ (z, y). Then, using the fact that Sτ (z, ·) is a sub-action

hτ (x, y
′) − hτ (x, y) ≤ Sτ (z, y

′) − Sτ (z, y) ≤ L̄(y, y′).

We have proved that hτ (x, ·) is a sub-action. Since Sτ (z, ·) is also backward cali-
brated, one can find y′′ ∈ R

d such that Sτ (z, y) = Sτ (z, y
′′) + L̄(y′′, y). Then

hτ (x, y) = Sτ (x, z) + Sτ (z, y
′′) + L̄(y′′, y) ≥ hτ (x, y

′′) + L̄(y′′, y).

We have proved that hτ (x, ·) is calibrated. Analogously, one can show that −hτ (·, y)
is a calibrated sub-action too.

9 Representation formulas for calibrated sub-actions

For a continuous-time, autonomous, strictly convex, superlinear and smooth La-
grangian on a compact Riemannian manifold, G. Contreras characterized in [5] the
weak KAM solutions of the Hamilton-Jacobi equation in terms of their values at
each static class and the values of the corresponding Mañé potential. Since the
weak KAM solutions have similarities with our calibrated sub-actions and the set
of static classes can be seen as a concept analogous to the projection of the Aubry
set, the next theorem is comparable to the one presented by Contreras. This kind
of analogy has been explored with success, for instance, in a completely abstract
setting: a holonomic model of ergodic optimization for symbolic dynamics (see
[15]).

Theorem 9.1. Let L(x, v) be a C0 coercive Lagrangian. If u+ ∈ C0(Td) is a
forward calibrated sub-action or u− ∈ C0(Td) is a backward calibrated sub-action,
then, for every x, y ∈ R

d,

u+(x) = max
y∈pr1(Aτ (L))

[u+(y) − Sτ (x, y)] = max
y∈pr1(Aτ (L))

[u+(y) − hτ (x, y)],

u−(y) = min
x∈pr1(Aτ (L))

[u−(x) + Sτ (x, y)] = min
x∈pr1(Aτ (L))

[u−(x) + hτ (x, y)].

Proof. Thanks to proposition 8.7, we just need to prove the two first equalities.
From item ii of remark 8.2, we verify without difficulty that

u+(x) ≥ max
y∈pr1(Aτ (L))

[u+(y) − Sτ (x, y)].

As u+ is a forward calibrated sub-action, one can find a forward configuration
{xk}k≥0 of R

d such that x0 = x and u+(xk) = u+(xk+1)−L̄τ (xk, xk+1) for every k ≥
0. From u+(xl)−u+(xk) ≤ Sτ (xk, xl) ≤ L̄τ (xk, . . . , xl) = u+(xl)−u+(xk) whenever
l > k ≥ 0, we conclude that Sτ (xk, xl) = u+(xl) − u+(xk). Therefore, if y ∈ T

d

is an arbitrary accumulation point of {xk (mod Z
d)}, it follows that Sτ (y, y) = 0,

namely, y ∈ pr1(Aτ (L)). Furthermore, by taking a suitable subsequence, u+(x) =
u+(xk) − Sτ (x, xk) tends to u+(x) = u+(y) − Sτ (x, y).

Analogously, one can demonstrate the existence of a point x ∈ pr1(Aτ (L))
achieving u−(y) = u−(x) + Sτ (x, y).
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Corollary 9.2. Suppose u, u′ ∈ C0(Td) are both either forward or backward cali-
brated sub-actions with respect to a C0 coercive Lagrangian L(x, v).

i. If u|pr1(Aτ (L)) ≤ u′|pr1(Aτ (L)), then u ≤ u′ everywhere on R
d.

ii. If u|pr1(Aτ (L)) = u′|pr1(Aτ (L)), then u = u′ everywhere on R
d.

Theorem 9.1 admits a reciprocal.

Theorem 9.3. Let L(x, v) be a C0 coercive Lagrangian and ψ : pr1(Aτ (L)) → R

be any function.

i. If ψ is bounded above, then

u(x) := sup
y∈pr1(Aτ (L))

[ψ(y) − Sτ (x, y)] = sup
y∈pr1(Aτ (L))

[ψ(y) − hτ (x, y)]

defines a C0(Td) forward calibrated sub-action.

ii. If ψ : pr1(Aτ (L)) → R is bounded below, then

u(y) := inf
x∈pr1(Aτ (L))

[ψ(x) + Sτ (x, y)] = inf
x∈pr1(Aτ (L))

[ψ(x) + hτ (x, y)]

defines a C0(Zd) backward calibrated sub-action.

iii. If ψ(y) − ψ(x) ≤ Sτ (x, y) for all x, y ∈ pr1(Aτ (L)), then u|pr1(Aτ ) = ψ.

Proof. In any case, u : R
d → R is clearly a well defined periodic function. Since

both constructions are similar, we will discuss just the second one. So let us show
that u ∈ C0(Td). Fix ǫ > 0 and consider y, y′ ∈ R

d. Take x (mod Z
d) ∈ pr1(Aτ (L))

such that ψ(x) + Sτ (x, y) < u(y) + ǫ. Thus u(y′) − u(y) ≤ Sτ (x, y
′) − Sτ (x, y) + ǫ.

Since Sτ is uniformly continuous on R
d × R

d and ǫ > 0 is arbitrary, it is easy to
deduce that

|u(y′) − u(y)| ≤ max
x∈pr1(Aτ (L))

|Sτ (x, y′) − Sτ (x, y)|,

which guarantees the continuity of u.
We now show that u is backward calibrated. Given y ∈ R

d and ǫ > 0, choose
x ∈ pr1(Aτ (L)) satisfying ψ(x) + Sτ (x, y) < u(y) + ǫ. Thanks to proposition 8.3,
Sτ (x, ·) is a sub-action and

u(y + τw) − u(y) − ǫ < Sτ (x, y + τw) − Sτ (x, y) ≤ τL(y, w) − τL̄(τ), ∀ w ∈ R
d.

Letting ǫ go to 0, we obtain that u is a sub-action. To prove that u is a calibrated
sub-action, we use the fact that the sub-actions {Sτ (x, ·)}x∈pr1(Aτ (L)) are calibrated

(see proposition 8.8). Let y ∈ R
d. It suffices to show there exists v ∈ R

d such that
u(y) ≥ u(y−τv)+τL(y−τv, v)−τL̄(τ). By definiton of u(y), there exists a sequence
of points xk ∈ pr1(Aτ (L)) such that ψ(xk) +Sτ (xk, y) < u(y) + 1

k . Moreover, there
exists a sequence of vk ∈ R

d such that

Sτ (xk, y) = Sτ (xk, y − τvk) + τL(y − τvk, vk) − τL̄(τ).
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Remember we can assume ‖vk‖∞ ≤ Rτ (see lemma 5.5) for some constant Rτ >
1
τ

(see definition 3.8). Let v ∈ R
d be an accumulation point of the sequence {vk}k≥0.

Since u(y − τvk) ≤ ψ(xk) + Sτ (xk, y − τvk), we obtain

u(y − τvk) + τL(y − τvk, vk) − τL̄(τ) < u(y) +
1

k
.

Taking a suitable subsequence, we get u(y − τv) + τL(y − τv, v) − τL̄(τ) ≤ u(y).
Suppose ψ(y) − ψ(x) ≤ Sτ (x, y) for all x, y ∈ pr1(Aτ (L)) and u is defined as in

item ii . Let y (mod Z
d) ∈ pr1(Aτ (L)). On the one hand, u(y) ≤ ψ(y) by taking

x = y in the definition of u and noticing that Sτ (y, y) = 0. On the other hand, for
any x ∈ pr1(Aτ (L)), Sτ (x, y) + ψ(x) ≥ ψ(y) by hypothesis on ψ. By taking the
infimum on x we obtain u(y) ≥ ψ(y). We have proved that u|pr1(Aτ (L)) = ψ.

Thanks to item ii of remark 8.2, an immediate but important consequence of
theorem 9.3 is the fact that the restriction of any sub-action to the projected Aubry
set behaves as a forward or backward calibrated sub-action.

Corollary 9.4. Let u ∈ C0(Td) be an arbitrary sub-action for a C0 coercive La-
grangian L(x, v). Then, for every point x ∈ pr1(Aτ (L)), we have

u(x) = max
v∈Rd

[u(x+τv)−τL(x, v)+τL̄(τ)] = min
v∈Rd

[u(x−τv)+τL(x−τv, v)−τL̄(τ)].

Theorem 9.3 motivates the introduction of the following notion.

Definition 9.5. Let L(x, v) be a C0 coercive Lagrangian. Suppose that u+ is a
C0(Td) forward calibrated sub-action and that u− is a C0(Td) backward calibrated
sub-action. We say that u+ and u− are conjugated sub-actions, and we we use the
notation u+ ∼ u−, if u+|pr1(Aτ (L)) = u−|pr1(Aτ (L)).

Notice that coerciveness is a sufficient condition for the existence calibrated sub-
actions. Moreover, corollary 9.2 implies that, given a forward calibrated sub-action
u+, there exists at most one backward calibrated u− conjugated to u+ and vice
versa. Finally, theorem 9.3 shows that such a backward calibrated sub-action do
exist. More precisely, if u− is given, the conjugated u+ takes necessarily the form

u+(x) := max
y∈pr1(Aτ (L))

[

u−(y) − Sτ (x, y)
]

and conversely if u+ is given, the conjugated u− has the form

u−(x) := min
y∈pr1(Aτ (L))

[

u+(y) + Sτ (y, x)
]

.

A. Fathi pointed out (see [10]) that, for a continuous-time, autonomous, strictly
convex, superlinear C3-Lagrangian on a compact C∞ manifold without boundary,
the Peierls barrier admits a characterization in terms of conjugated sub-actions.
We reproduce his result in the following proposition.

Proposition 9.6. Let L(x, v) be a C0 coercive Lagrangian. Then

hτ (x, y) = max
u+∼u−

[

u−(y) − u+(x)
]

, ∀ x, y ∈ R
d.
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Proof. For any z ∈ pr1(Aτ (L)) and a pair of sub-actions u+ and u−, we have

u+(z) − u+(x) ≤ Sτ (x, z) and u−(y) − u−(z) ≤ Sτ (z, y), ∀ x, y ∈ R
d.

If u+ ∼ u− are conjugated then u+(z) = u−(z) and we obtain

u−(y) − u+(x) ≤ Sτ (x, z) + Sτ (z, y), ∀ z ∈ pr1(Aτ (L)).

Thanks to proposition 8.9, we get u−(y)−u+(x) ≤ hτ (x, y), which obviously yields
supu+∼u− [u−(y) − u+(x)] ≤ hτ (x, y).

Fix x, y ∈ R
d. Consider then the forward calibrated sub-action u+ = −hτ (·, y)

and define a backward calibrated sub-action u− ∈ C0(Td) by

u−(x′) := min
z∈pr1(Aτ (L))

[u+(z) + Sτ (z, x
′)] = min

z∈pr1(Aτ (L))
[−Sτ (z, y) + Sτ (z, x

′)].

By construction, u+ and u− are conjugated sub-actions. Furthermore, u−(y) = 0.
Thus u−(y) − u+(x) = hτ (x, y).

Together theorems 9.1 and 9.3 provide an interesting description of the cali-
brated sub-actions. In order to present it, we decided to adopt a slightly different
point of view.

Definition 9.7. Let L(x, v) be a C0 coercive Lagrangian. We call positive-time
Mañé-Peierls transform the application F+ defined on C0(pr1(Aτ (L))) by

F+(ψ)(x) = max
y∈pr1(Aτ (L))

[ψ(y)− Sτ (x, y)] = max
y∈pr1(Aτ (L))

[ψ(y)−hτ (x, y)], ∀ x ∈ R
d.

In the same way, we call negative-time Mañé-Peierls transform the application F−
defined on C0(pr1(Aτ (L))) by

F−(ψ)(y) = min
x∈pr1(Aτ (L))

[ψ(x) +Sτ (x, y)] = min
x∈pr1(Aτ (L))

[ψ(x) + hτ (x, y)], ∀ y ∈ R
d.

We summarize then all the main properties of the Mañé-Peierls transforms.

Theorem 9.8. Let L(x, v) be a C0 coercive Lagrangian. Consider arbitrary func-
tions ψ,ψ′ ∈ C0(pr1(Aτ (L))). Then

i. F−(ψ) ≤ ψ ≤ F+(ψ) everywhere on pr1(Aτ (L));

ii. ψ ≤ ψ′ implies F+(ψ) ≤ F+(ψ′) and F−(ψ) ≤ F−(ψ′);

iii. F+(ψ) is a continuous forward calibrated sub-action;

iv. F−(ψ) is a continuous backward calibrated sub-action;

v. if ψ(y) − ψ(x) ≤ Sτ (x, y) for all x, y ∈ pr1(Aτ (L)), then F+ and F− act as
extension operators, namely

F+(ψ)|pr1(Aτ (L)) = ψ = F−(ψ)|pr1(Aτ (L));



44 Eduardo Garibaldi and Philippe Thieullen

vi. if u ∈ C0(Td) is a forward calibrated sub-action, then

F+(u|pr1(Aτ (L))) = u = F+(F−(u|pr1(Aτ (L)))|pr1(Aτ (L))) everywhere on R
d

and F−(u|π(Aτ (L))) is the unique sub-action conjugated to u;

vii. if u ∈ C0(Td) is a backward calibrated sub-action, then

F−(u|pr1(Aτ (L))) = u = F−(F+(u|pr1(Aτ (L)))|pr1(Aτ (L))) everywhere on R
d

and F+(u|pr1(Aτ (L))) is the unique sub-action conjugated to u;

viii. F+ is a bijective and isometric correspondence between the set of the functions
ψ ∈ C0(pr1(Aτ (L))) satisfying, for x, y ∈ pr1(Aτ (L)), ψ(y)−ψ(x) ≤ Sτ (x, y)
and the set of continuous forward calibrated sub-actions;

ix. F− is a bijective and isometric correspondence between the set of the functions
ψ ∈ C0(π(Aτ (L))) satisfying, for x, y ∈ pr1(Aτ (L)), ψ(y) − ψ(x) ≤ Sτ (x, y)
and the set of continuous backward calibrated sub-actions.

Proof. Items i and ii follow immediately from the respective definitions of the
Mañé-Peierls transforms. In truth, items iii , iv and v can be seen as theorem 9.3
rewritten. Besides, items vi and vii result from theorems 9.1 and 9.3 without
difficulty.

Since items viii and ix are very similar, we will discuss just the first one. As
F+(ψ) = ψ everywhere on pr1(Aτ (L)), F+ is injective. Moreover, when u ∈ C0(Td)
is a forward calibrated sub-action, the identity F+(u|π(Aτ (L))) = u guarantees that

F+ is surjective. In fact, this correspondence is an isometry. Indeed, fixing x ∈ R
d,

there exists a point y ∈ pr1(Aτ (L)) such that F+(ψ)(x) = ψ(y) − Sτ (x, y). Hence,
one has

F+(ψ)(x) − F+(ψ′)(x) ≤ ψ(y) − ψ′(y) ≤ ‖ψ − ψ′‖0.

Since x ∈ R
d is arbitrary and since we can interchange the roles of ψ and ψ′, we

get ‖F+(ψ) − F+(ψ′)‖0 ≤ ‖ψ − ψ′‖0. On the other hand, F+(ψ)|π(Aτ (L)) = ψ and
F+(ψ′)|π(Aτ (L)) = ψ′ imply ‖F+(ψ) − F+(ψ′)‖0 ≥ ‖ψ − ψ′‖0.

10 Separating sub-actions

If u ∈ C0(Td) is a sub-action for a C0 coercive Lagrangian, proposition 7.3 estab-
lishes that Aτ (L) ⊂ Nτ (L, u). So it is natural to ask if there exists a sub-action
whose nill locus is the smallest possible, namely, it is equal to the Aubry set. We
introduce then the following concept.

Definition 10.1. Let L(x, v) be a C0 coercive Lagrangian. We say that a sub-
action u ∈ C0(Td) is separating if Nτ (L, u) = Aτ (L).

In weak KAM theory, global critical subsolutions of the Hamilton-Jacobi equa-
tion are analogous notions to separating sub-actions. Working with continuous-
time, autonomous, strictly convex and superlinear C2-Lagrangians on a smooth
manifold without boundary, A. Fathi and A. Siconolfi (see [12]) proved the exis-
tence of C1 critical subsolutions. Keeping the hypotheses on the Lagrangians but
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focusing on compact manifolds, P. Bernard showed in [3] not only the existence of
C1,1 critical subsolutions but also their density in the set of C0 subsolutions for the
uniform topology.

In a surprisingly similar way, even in our discrete and topological Lagrangian
context, as states theorem 10.2, separating sub-actions are quite typical. During the
preparation of this paper, we become aware of a related study by M. Zavidovique
[26] on separating sub-actions (or strict sub-solutions) in a general discrete setting
given by cost functions defined on certain length spaces. We mention yet that the
genericness of separating sub-actions was recently established also in the conceptual
scheme of holonomic models of ergodic optimization for symbolic dynamics (see
[16]).

Theorem 10.2. Let L(x, v) be a C0 coercive Lagrangian. Then, in the uniform
topology, the subset of the continuous separating sub-actions is generic among all
continuous sub-actions.

We will need some preliminary results.

Lemma 10.3. Let L(x, v) be a C0 coercive Lagrangian. Then

pr1
(

⋂

u is a sub-action
Nτ (L, u)

)

=
⋂

u is a sub-action
pr1

(

Nτ (L, u)
)

.

In other words, if x ∈ R
d and for any sub-action u there exists y ∈ R

d such that
(x, y) is u-calibrated, then there exists y ∈ R

d such that (x, y) is u-calibrated for
any sub-action u.

Proof. The inclusion pr1(∩uNτ (L, u)) ⊂ ∩upr1(Nτ (L, u)) is obvious. Consider then
x /∈ pr1(∩uNτ (L, u)). We want to show there exists a sub-action u ∈ C0(Td) such
that x /∈ pr1(Nτ (L, u)). Let u0 ∈ C0(Td) be a fixed sub-action. We know from
corollary 6.4 that one can choose a constant Rτ > 0 such that (x, v) /∈ Nτ (L, u0)
whenever ‖v‖∞ > Rτ . By hypothesis, for any ‖v‖∞ ≤ Rτ , there exist a sub-
action uv ∈ C0(Td) and a constant ηv > 0 satisfying (x,w) /∈ Nτ (L, uv) whenever
‖v − w‖ < ηv. By extracting a finite subcover, one can find a finite collection of
sub-actions {u1, . . . , un} ⊂ C0(Td), with uk = uvk

for some ‖vk‖∞ ≤ Rτ , such that
(x, v) /∈ ⋂n

k=1 Nτ (L, uk) for any ‖v‖∞ ≤ Rτ .
Define thus u := 1

n+1

∑n
k=0 uk ∈ C0(Td). Since the set of sub-actions is convex,

u turns out to be a sub-action. Besides, from Nτ (L, u) =
⋂n
k=0 Nτ (L, uk), we

immediately obtain x /∈ pr1(Nτ (L, u)).

Lemma 10.4. Let L(x, v) be a C0 coercive Lagrangian. If (x, v) ∈ T
d × R

d, then

(x, v) ∈
⋂

u is a sub-action
Nτ (L, u) =⇒ x+ τv ∈ pr1

(

⋂

u is a sub-action
Nτ (L, u)

)

.

In other words, if (x, y) ∈ R
d × R

d is u-calibrated for any sub-action u, then there
exists z ∈ R

d such that (y, z) is u-calibrated for any sub-action u.

Proof. Let us introduce a similar transform as in definition 9.7 by considering

F̃+(u)(x) := max
y∈Rd

[

u(y) − Sτ (x, y)
]

, ∀ x ∈ R
d,
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where u ∈ C0(Td) is any sub-action. It is easy to see that F̃+(u) ∈ C0(Td) is again
a sub-action satisfying F̃+(u) ≤ u, with equality everywhere whenever u behaves
as a forward calibrated sub-action (see corollary 9.4).

We begin by proving

pr1
(

Nτ (L, u)
)

=
{

x ∈ T
d : F̃+(u)(x) = u(x)

}

, ∀ u sub-action.

Indeed, if (x, y) is u-calibrated, then u(y)−u(x) ≤ Sτ (x, y) ≤ L̄τ (x, y) = u(y)−u(x)
which implies F̃+(u)(x) ≥ u(y) − Sτ (x, y) = u(x) and therefore F̃+(u)(x) = u(x).
Conversely if x /∈ pr1(Nτ (L, u)) then, by coerciveness of L and periodicity of u,
there exists η > 0 such that L̄τ (x, y) ≥ u(y) − u(x) + η for any y ∈ R

d. For any
finite configuration (x0, x1, . . . , xn) satisfying x0 = x, one has

L̄τ (x0, x1, . . . , xn) = L̄τ (x0, x1) + L̄τ (x1, . . . , xn)

≥ [u(x1) − u(x0) + η] + [u(xn) − u(x1)] ≥ u(xn) − u(x0) + η.

By definition of Sτ (x, y), one gets Sτ (x, y) ≥ u(y) − u(x) + η for any y ∈ R
d or

equivalently u(x) ≥ F̃+(u)(x) + η.
We now prove the main induction step:

F̃+(u)(x) = u(x) and L̄τ (x, y) = F̃+(u)(y) − F̃+(u)(x) =⇒ F̃+(u)(y) = u(y).

Indeed, u(y) − u(x) ≤ Sτ (x, y) ≤ L̄τ (x, y) = F̃+(u)(y) − F̃+(u)(x), which implies
first u(y) ≤ F̃+(u)(y) and therefore u(y) = F̃+(u)(y).

We conclude the proof. If (x, y) is u-calibrated for any sub-action u, on the one
hand, F̃+(u)(x) = u(x), on the other hand, since (x, y) is also F̃+(u)-calibrated,
F̃+(u)(y) = u(y). We have proved that y ∈ ∩u{F̃+(u) = u} = pr1(∩uNτ (L, u))
thanks to lemma 10.3.

The following proposition gives another equivalent definition of the Aubry set.

Proposition 10.5. Let L(x, v) be a C0 coercive Lagrangian. Then

Aτ (L) =
⋂

u is a sub-action
Nτ (L, u).

Proof. Let (x, v) ∈ ∩uNτ (L, u). Lemma 10.4 shows there exists a configuration
x = {xk}k≥0 such that Πτ (x) = (x, v) and (xk, xk+1) is u-calibrated for any sub-
action u. Let us first show that

lm := L̄τ (x0, . . . , xm) + Sτ (xm, x0) → 0 when m→ +∞.

Since {L̄τ (x0, . . . , xm) + Sτ (xm, x0)}m≥0 is uniformly bounded, one can choose a
converging subsequence of {lm} and assume in addition that {xm (mod Z

d)} con-
verges to a point x∞ ∈ T

d. Define u(x) := Sτ (x∞, x), for all x ∈ R
d. Proposition 8.3

shows that u is a sub-action. By hypothesis of calibration on {xk}, we have

L̄τ (xk, xk+1) = Sτ (xk, xk+1) = u(xk+1) − u(xk), ∀ k ≥ 0.

More generally,

L̄τ (xk, xk+1, . . . , xm) = Sτ (xk, xm) = u(xm) − u(xk), ∀ m > k ≥ 0.
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By taking a subsequence of {xm}, on obtains first Sτ (xk, x∞) = u(x∞)−u(xk), for
all k ≥ 0. By taking a subsequence of {k}, one obtains next

u(x∞) = Sτ (x∞, x∞) = 0 and Sτ (xk, x∞) + Sτ (x∞, xk) = 0, ∀ k ≥ 0.

Notice that x∞ necessarily belongs to pr1(Aτ (L)). Moreover,

lm = L̄τ (x0, . . . , xm) + Sτ (xm, x0) = Sτ (x0, xm) + Sτ (xm, x0), ∀ m ≥ 0.

Letting m→ +∞, one gets lm → 0 along a subsequence. We thus have shown that
any accumulation point of {lm} is necessarily 0.

Let us prove now that (x, v) ∈ Aτ (L). By definition of Sτ , there exist finite
configurations (xǫm, x

ǫ
m+1, . . . , x

ǫ
n(m,ǫ)) such that xǫm = xm, xǫn(m,ǫ) = x0 + pǫm for

some pǫm ∈ Z
d and, for any m fixed,

L̄τ (x
ǫ
m, x

ǫ
m+1, . . . , x

ǫ
n(m,ǫ)) → Sτ (xm, x0) when ǫ→ 0.

We conclude that

L̄τ (x0, . . . , xm−1, x
ǫ
m, x

ǫ
m+1, . . . , x

ǫ
n(m,ǫ)) =

= lm + L̄τ (x
ǫ
m, x

ǫ
m+1, . . . , x

ǫ
n(m,ǫ)) − Sτ (xm, x0)

tends to 0 when m is first chosen large enough and then ǫ is chosen close enough
to 0. Thus (x, v) ∈ Aτ (L).

We now prove that separating sub-actions are generic among sub-actions.

Proof of theorem 10.2. Let {On}n be a countable family of open neighborhoods of
the Aubry set such that ∩nOn = Aτ (L). Let Un be the set of all C0(Td) sub-actions
u such that Nτ (L, u) ⊂ On. Since the subset of C0(Td) separating sub-actions is
equal to ∩nUn, the statement of the theorem will be obtained if we show that, for
the uniform topology, every Un is open and dense in the set of C0(Td) sub-actions.

Suppose on the contrary that Un is not open. So there exists a sequence of
C0(Td) sub-actions {uk}k≥0 converging to some u ∈ Un and a sequence of points
{(xk, vk)}k≥0 such that, for all k ≥ 0, (xk, vk) ∈ Nτ (L, uk)−On. From corollary 6.4,
we know there exists a positive constant Rτ such that ‖vk‖ ≤ Rτ for all k. By
considering a suitable subsequence, we obtain a point (x, v) ∈ Nτ (L, u) − On in
contradiction with Nτ (L, u) ⊂ On.

Let us prove now that Un is dense. We first notice that, if t ∈ (0, 1), u ∈ Un

and u′ ∈ C0(Td) is any arbitrary sub-action, then

Nτ (L, tu+ (1 − t)u′) = Nτ (L, u) ∩ Nτ (L, u
′) ⊂ On

and therefore tu+ (1− t)u′ ∈ Un. In particular, in order to prove that Un is dense,
it suffices to argue that Un is nonempty.

Corollary 6.4 assures that (x, v) /∈ Nτ (L, u) for any ‖v‖ > Rτ and any sub-
action u. Let Bτ denote the closed ball of center 0 ∈ R

d and radius Rτ . Thanks to



48 Eduardo Garibaldi and Philippe Thieullen

proposition 10.5, for every point (x, v) ∈ (Td×Bτ )−On, one can find a sub-action
u(x,v) ∈ C0(Td) and an open set V(x,v) ⊂ T

d × R
d containing (x, v) such that

(y, w) /∈ Nτ (L, u(x,v)), ∀ (y, w) ∈ V(x,v).

Hence, thanks to the compactness of (Td × Bτ ) − On, there exist a finite cover
by open sets {V1, . . . ,Vm} of (Td × Bτ ) −On and a finite collection of sub-actions
{u1, . . . , um} ⊂ C0(Td), where Vk = V(xk,vk) and uk = u(xk,vk) for some (xk, vk),

satisfying
⋂m
k=1 N(L, uk) ⊂ On. Clearly u := 1

m

∑m
k=1 uk ∈ C0(Td) belongs to

Un.

11 Aspects of rotational theory

A minimizing configuration {xn}n∈Z in R
d may be distributed according to a

quasiperiodic pattern
xn ≍ x0 + nτω, ∀ n ∈ Z,

where ω is some fixed vector in R
d called rotation vector. In the context of monotone

twist maps of the annulus, ω is a rotation number that could be interpreted as an
atomic mean distance for one dimensional Frenkel-Kontorova models. Our purpose
in this section is first to exhibit minimizing configurations with different rotation
vectors and second to relate these rotation vectors to the multidimensional Mather’s
alpha and beta functions.

Our analysis of systems with several degrees of freedom requires a precise defi-
nition of the notion of a rotation vector.

Definition 11.1. We call rotation vector of a configuration {xk}k∈Z of points in
R
d the limit (when it exists)

ω({xk}) :=
1

τ
lim

n−m→+∞
xn − xm
n−m

.

We call rotation vector of a holonomic probability measure µ ∈ Pτ (T
d × R

d) with
bounded support the value

ω(µ) :=

∫

Td×Rd

v dµ(x, v).

We also extend in our context the definition of the two Mather functions.

Definition 11.2. Let L(x, v) be a C0 superlinear Lagrangian. We call Mather’s
alpha function the opposite of the minimizing holonomic value of the one-parameter
family of Lagrangians LI(x, v) := L(x, v) − 〈I, v〉, I ∈ R

d, that is,

−αL(τ, I) := L̄(τ, I) = min
{

∫

(

L(x, v) − 〈I, v〉
)

dµ(x, v) : µ ∈ Pτ (T
d × R

d)
}

.

We call Mather’s beta function the application

βL(τ, ω) := inf
{

∫

L(x, v) dµ(x, v) : µ ∈ Pτ (T
d × R

d),

supp(µ) is bounded and

∫

v dµ(x, v) = ω
}

.
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We notice that, because of the superlinearity of L, LI is again coercive (actually
superlinear) and that L̄(τ, I) is indeed a minimum and not an infimum. We also
point out that, in the definition of βL, we prefer to restrict µ to have bounded
support so that

∫

v dµ is well defined. We will show in a moment that the set
where this infimum is taken is not empty and that the infimum is actually attained.
Although αL is a standard notation in the context of Aubry-Mather theory, we
prefer to keep the notation L̄(τ, I) in the rest of this section. Using standard
convex analysis, we obtain the following proposition.

Proposition 11.3. Let L(x, v) be a C0 superlinear Lagrangian. Then the two func-
tions I ∈ R

d 7→ −L̄(τ, I) ∈ R and ω ∈ R
d 7→ βL(τ, ω) ∈ R are convex superlinear

obtained by Legendre transform:

−L̄(τ, I) = sup
ω∈Rd

[

〈I, ω〉 − βL(τ, ω)
]

and βL(τ, ω) = sup
I∈Rd

[

〈I, ω〉 + L̄(τ, I)
]

.

In particular, for every ω ∈ R
d, there exists I ∈ R

d such that

βL(τ, ω) = L̄(τ, I) + 〈I, ω〉.

We first show that Mather’s beta function is well defined.

Lemma 11.4. For every ω ∈ R
d, there exists a holonomic probability measure µ

such that
∫

v dµ(x, v) = ω and supp(µ) ⊂ T
d ×B‖ω‖∞ ,

where B‖ω‖∞ denotes the closed ball of center 0 and radius ‖ω‖∞.

Proof. If ω = p/q, with q ∈ Z
∗
+ and p ∈ Z

d, then clearly

µp/q :=
1

q

q−1
∑

k=0

δ( kp

q
, p

τq

)

is a holonomic probability measure satisfying the statement of the lemma. For a
general ω ∈ R

d, consider a sequence {pn/qn}, with qn ∈ Z
∗
+ and pn ∈ Z

d, such
that limn→∞ pn/qn = ω and ‖pn/qn‖∞ ≤ ‖ω‖∞. Let {µpn/qn} be the correspond-
ing sequence of holonomic probabilities defined as above. Then this sequence is
relatively compact for the narrow topology and any accumulation point µω is holo-
nomic, µω ∈ Pτ (T

d × R
d), and admits ω as a rotation vector.

We recall a standard fact in convex analysis that we prove for completeness.

Lemma 11.5. Let f, g : R
d → R be convex functions with full domain. Suppose

that f is the Legendre transform of g, namely,

f(I) = g∗(I) := sup
{

〈I, ω〉 − g(ω) : ω ∈ R
d
}

, ∀ I ∈ R
d.

Then f and g are superlinear and g is the Legendre transform of f . Moreover, for
every I fixed (respectively ω fixed), the equation f(I)+g(ω) = 〈I, ω〉 admits at least
one solution in ω (respectively in I).
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Proof. We first show that f is superlinear. For every R > 0, for every I ∈ R
d,

f(I) ≥ R‖I‖ − inf
{

g
(

R
I

‖I‖
)

: I ∈ (Rd)∗
}

.

As g is continuous, g is bounded from bellow on the sphere of radius R and

lim inf
‖I‖→+∞

f(I)

‖I‖ ≥ R, ∀ R > 0 ⇒ lim
‖I‖→+∞

f(I)

‖I‖ = +∞.

We show that g is the Legendre transform of f . We always have

g(ω) ≥ 〈I, ω〉 − f(ω), ∀ I, ω ∈ R
d ⇒ g(ω) ≥ f∗(ω), ∀ ω ∈ R

d.

Moreover, g admits a subdifferential Iω at ω in the following sense

g(ω′) ≥ g(ω) + 〈Iω, ω′ − ω〉, ∀ ω′ ∈ R
d.

Then
f(Iω) = sup{〈Iω, ω′〉 − g(ω′) : ω′ ∈ R

d} ≤ 〈Iω, ω〉 − g(ω)

and g(ω) ≤ 〈Iω, ω〉 − f(Iω) ≤ f∗(ω). We just have proved that g = f∗. From
the beginning of the proof, we obtain that g is superlinear. In particular, the
supremum is attained in the definition of g∗ and, for any fixed I, the equation
〈I, ω〉 = f(I) + g(ω) admits at least one solution in ω.

Proof of proposition 11.3. We show that −L̄(x, I) is convex in I ∈ R
d. Indeed, for

any I, J ∈ R
d and t ∈ [0, 1], if µ ∈ Pτ (T

d × R
d) is a minimizing probability for

LtI+(1+t)J , then

L̄(τ, tI + (1 + t)J) =

∫

LtI+(1+t)J(x, v) dµ(x, v)

= t

∫

LI(x, v) dµ(x, v) + (1 + t)

∫

LJ(x, v) dµ(x, v)

≥ tL̄(τ, I) + (1 + t)L̄(τ, J).

We now show that −L̄(τ, ·) is the Legendre transform of βL(τ, ·). Thanks to
corollary 6.4, we have

− L̄(τ, I) = sup
{

∫

[〈I, v〉 − L(x, v)] dµ(x, v) : µ ∈ Pτ (T
d × R

d),

and supp(µ) is bounded
}

.

Therefore, one can write

− L̄(τ, I) = sup
ω∈Rd

sup
{

〈I, ω〉 −
∫

L(x, v) dµ(x, v) : µ ∈ Pτ (T
d × R

d),

supp(µ) is bounded, and

∫

v dµ(x, v) = ω
}

,

namely, −L̄(τ, I) = supω∈Rd [〈I, ω〉 − βL(ω)].
Proposition 11.3 follows then from lemma 11.5.
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We are now able to prove the infimum is attained in the definition of βL(τ, ω).

Proposition 11.6. Let L(x, v) be a C0 superlinear Lagrangian. For every ω ∈ R
d,

there exists a holonomic probability measure µ ∈ Pτ (T
d×R

d) with bounded support
such that

∫

Td×Rd

v dµ(x, v) = ω and βL(τ, ω) =

∫

Td×Rd

L(x, v) dµ(x, v).

Moreover, any holonomic probability measure, with bounded support and rotation
vector ω, realizing the infimum in the definition of βL(τ, ω), minimizes a Lagrangian
LIω for some Iω ∈ R

d.

Proof. We follow Mather’s idea which says that the superlinearity of L implies that,
given a constant C ∈ R, the set of Borel measures

{

‖v‖µ(dx, dv) : µ ∈ Pτ (T
d × R

d), and

∫

L(x, v) dµ(x, v) ≤ C
}

is tight. Let χR(x, v) be a test function taking its values in [0, 1] and satisfying
χ(x, v) = 1 for all ‖v‖ ≤ R− 1 and χR(x, v) = 0 for all ‖v‖ ≥ R. Let {µn}n≥0 be a
sequence of Borel probability measures for which {

∫

L(x, v) dµn(x, v)} is uniformly
bounded. So notice that, for every ǫ > 0 and R sufficiently large, we have the
inequality ‖v‖(1 − χR) ≤ ǫ(L(x, v) − inf L), which clearly yields

lim
R→+∞

lim sup
n→+∞

∫

‖v‖(1 − χR) dµn(x, v) = 0.

Suppose in addition that µn is holonomic,

lim
n→+∞

∫

L(x, v) dµn(x, v) = βL(τ, ω) and

∫

v dµn(x, v) = ω.

We first extract a subsequence, that we again call {µn}n≥0, converging to a Borel
measure µ in the sense that

∫

f dµ = lim
n→+∞

∫

f dµn, ∀ f ∈ C0
compact(T

d × R
d),

∫

f dµ ≤ lim inf
n→+∞

∫

f dµn, ∀ f ∈ C0
bounded(T

d × R
d), f ≥ 0.

The tighness property actually implies
∫

f dµ = lim
n→+∞

∫

f dµn,

∫

fv dµ = lim
n→+∞

∫

fv dµn, ∀ f ∈ C0
bounded(T

d × R
d).

In particular, µ is a holonomic probability measure, it possesses a rotation vector
ω and

∫

L(x, v) dµ(x, v) ≤ βL(τ, ω). However, as βL(τ, ·) is the Legendre transform
of −L̄(τ, ·), there exists Iω ∈ R

d such that βL(τ, ω) = L̄(τ, Iω) + 〈Iω, ω〉. We obtain
∫

(

L(x, v) − 〈Iω, v〉
)

dµ(x, v) =

∫

L(x, v) dµ(x, v) − 〈Iω, ω〉 ≤ L̄(τ, Iω),

which implies that µ is minimizing LIω and therefore has bounded support as it is
shown in corollary 6.4.
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Our next objective is to show the equivalence between the set of subdifferentials
of −L̄(τ, ·) at the point I and the set of rotation vectors of minimizing probability
measures for the Lagrangian LI .

Definition 11.7. Let L(x, v) be a C0 superlinear Lagrangian. Denote

Ω(τ, I) :=
{

∫

v dµ(x, v) : µ ∈ Pτ (T
d × R

d) is minimizing for LI

}

, ∀ I ∈ R
d.

Denote the set of subdifferentials of −L̄(τ, ·) at I by

−∂L̄(τ, I) :=
{

ω ∈ R
d : −L̄(τ, J) ≥ −L̄(τ, I) + 〈ω, J − I〉, ∀ J ∈ R

d
}

.

We notice that Ω(τ, I) is a compact convex subset of R
d and that proposi-

tion 11.6 implies
⋃

I∈Rd

Ω(τ, I) = R
d.

Proposition 11.8. Let L(x, v) be a C0 superlinear Lagrangian. For every I ∈ R
d,

Ω(τ, I) = {ω : βL(τ, ω) = L̄(τ, I) + 〈I, ω〉} = −∂L̄(τ, I).

In particular, Ω(τ, I) is reduced to a point if, and only if, L̄(τ, ·) is differentiable at
I. In such case, for any minimizing probability measure µ for LI ,

∫

v dµ(x, v) = −∂L̄
∂I

(τ, I).

Proof. If ω ∈ Ω(τ, I), there exists µ ∈ Pτ (T
d × R

d) such that
∫

v dµ(x, v) = ω and

∫

[

L(x, v) − 〈I, v〉
]

dµ(x, v) = L̄(τ, I).

Legendre transform implies the a priori estimate −L̄(τ, I ′)+βL(τ, ω′) ≥ 〈I ′, ω′〉 for
any I ′, ω′ ∈ R

d. As µ has bounded support, we obtain βL(τ, ω) ≥ L̄(τ, I)+ 〈I, ω〉 =
∫

L(x, v) dµ(x, v) ≥ βL(τ, ω).
Suppose now ω satisfies βL(τ, ω) = L̄(τ, I) + 〈I, ω〉, then the previous a priori

estimate implies

−L̄(τ, I ′) + L̄(τ, I) ≥ 〈I ′ − I, ω〉, ∀ I ′ ∈ R
d.

We have shown that ω is a subdifferential of −L̄(τ, ·) at I.
Finally, suppose ω ∈ −∂L̄(τ, I). Since R

d = ∪IΩ(τ, I), there exists J such that
ω =

∫

vdµ(x, v) for some µ ∈ Pτ (T
d × R

d) minimizing for LJ . So
∫

L(x, v) dµ(x, v) = βL(τ, ω) = L̄(τ, J) + 〈J, ω〉.

By definition of subdifferentiability,

βL(τ, ω) − 〈J, ω〉 = L̄(τ, J) ≤ L̄(τ, I) − 〈ω, J − I〉,

We then obtain βL(τ, ω) ≤ L̄(τ, I) + 〈I, ω〉, that is, βL(τ, ω) = L̄(τ, I) + 〈I, ω〉,
which guarantees µ minimizes LI and therefore ω ∈ Ω(τ, I).
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Conversely the set ∂βL(τ, ω) of subdifferentials of βL(τ, ·) at ω admits a dual
description.

Proposition 11.9. Let L(x, v) be a C0 superlinear Lagrangian. Then

i. ∂βL(τ, ω) = {I ∈ R
d : ω ∈ Ω(τ, I)};

ii. βL(τ, ·) is affine of slope I on int(Ω(τ, I));

iii. int(Ω(τ, I)) ∩ int(Ω(τ, J)) = ∅ as soon as I 6= J .

Proof. If ω ∈ Ω(τ, I), then there exists µ ∈ Pτ (T
d×R

d) such that
∫

v dµ(x, v) = ω,

∫

[

L(x, v) − 〈I, v〉
]

dµ(x, v) = L̄(τ, I) and βL(τ, ω) =

∫

L(x, v) dµ(x, v).

The previous a priori estimate implies βL(τ, ω′) ≥ L̄(τ, I) + 〈I, ω′〉 for any ω′. We
thus obtain βL(τ, ω′)−βL(τ, ω) ≥ 〈I, ω′−ω〉, namely, I is a subdifferential of βL(τ, ·)
at ω.

If I is a subdifferential of βL(τ, ·) at ω, for every µ′ ∈ Pτ (T
d×R

d), with bounded
support, let ω′ =

∫

v dµ′(x, v), then

∫

[

L(x, v) − 〈I, v〉
]

dµ′(x, v) ≥ βL(τ, ω′) − 〈I, ω′〉 ≥ βL(τ, ω) − 〈I, ω〉.

By taking the infimum on µ′, we obtain L̄(τ, I) = βL(τ, ω) − 〈I, ω〉. Moreover,
there exists µ ∈ Pτ (T

d×R
d), with bounded support, such that ω =

∫

v dµ(x, v) and
βL(τ, ω) =

∫

L(x, v) dµ(x, v). Therefore, µ is minimizing for LI and ω ∈ Ω(τ, I).
If ω, ω′ ∈ int(Ω(τ, I)), then I is a subdifferential of βL(τ, ·) at both ω and ω′.

We thus obtain βL(τ, ω′)−βL(τ, ω) = 〈I, ω′−ω〉 and βL(τ, ·) is affine on int(Ω(τ, I))
with slope I. In particular, int(Ω(τ, I)) ∩ int(Ω(τ, J)) = ∅ if I 6= J .

We are now in a position to construct infinitely many minimizing configurations
with different rotation vectors. By standard convexity argument, the following
directional differentials exist for all I, h ∈ R

d

∂+
h L̄(τ, I) := lim

ρ→0+

L̄(τ, I + ρh) − L̄(τ, I)

ρ
,

∂−h L̄(τ, I) := lim
ρ→0+

L̄(τ, I) − L̄(τ, I − ρh)

ρ
.

The following theorem improves, in the C0 superlinear case, a result due to D. A.
Gomes (see theorem 6.2 of [17]).

Theorem 11.10. Suppose L(x, v) is a C0 superlinear Lagrangian. Let uI ∈ C0(Td)
be an arbitrary sub-action for LI . Then, given h ∈ R

d, any uI-calibrated configu-
ration {xk}k∈Z of points of R

d satisfies

−τ∂−h L̄(τ, I) ≤ lim inf
n−m→∞

〈

h,
xn − xm
n−m

〉

≤ lim sup
n−m→∞

〈

h,
xn − xm
n−m

〉

≤ −τ∂+
h L̄(τ, I).
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In particular, if L̄(τ, ·) is differentiable at I ∈ R
d, then any uI-calibrated configura-

tion {xk}k∈Z has a rotation vector given by

ω({xk}) = −∂L̄
∂I

(τ, I) =

∫

v dµ(x, v), ∀ µ ∈ Mτ (LI).

There exist minimizing configurations for L with rotation vector of arbitrarily large
norm.

We recall that, according to lemma 5.6, uI -calibrated configurations are exam-
ples of minimizing configurations of L (or of any LJ since the whole family {LI}I∈Rd

shares the same minimizing configurations).

Proof of theorem 11.10. Without loss of generality, we can suppose that L̄(τ) = 0.
So by definition, notice that, whenever m < n,

uI(xn) = uI(xm) + L̄τ (xm, . . . , xn) − 〈I, xn − xm〉 − (n−m)τL̄(τ, I).

Take ρ > 0 and h ∈ R
d. Set Ih := I−ρh. If uIh ∈ C0(Td) is an arbitrary sub-action

for LIh , then we obviously have

uIh(xn) ≤ uIh(xm) + L̄τ (xm, . . . , xn) − 〈Ih, xn − xm〉 − (n−m)τL̄(τ, Ih).

Therefore, it is not difficult to obtain the following inequality

τ
L̄(τ, I − ρh) − L̄(τ, I)

ρ
− 2

ρ

‖uI − uIh‖0

n−m
≤

〈

h,
xn − xm
n−m

〉

,

from which we immediately deduce

−τ∂−h L̄(τ, I) = τ lim
ρ→0+

L̄(τ, I − ρh) − L̄(τ, I)

ρ
≤ lim inf

n−m→∞

〈

h,
xn − xm
n−m

〉

.

Replacing h by −h, one thus get

lim sup
n−m→∞

〈

h,
xn − xm
n−m

〉

≤ τ lim
ρ→0+

L̄(τ, I) − L̄(τ, I + ρh)

ρ
= −τ∂+

h L̄(τ, I).

Finally, if L̄(τ, ·) is differentiable at I ∈ R
d, the previous inequalities become

〈

lim
n−m→∞

xn − xm
n−m

+ τ
∂L̄

∂I
(τ, I), h

〉

= 0, ∀ h ∈ R
d.

We just have proved ωI = ω({xk}) = −∂L̄
∂I (τ, I) exists. Notice yet that ωI satisfies

the relation 〈I, ωI〉 = βL(τ, ωI)−L̄(τ, I). So if ‖I‖ → +∞ among the set of points of
differentiability of −L̄(τ, ·), the superlinearity of −L̄(τ, ·) implies ‖ωI‖ → +∞.

One shall have in mind that, even in the context of C∞ superlinear Lagrangians,
a calibrated configuration may not have a well defined rotation vector. Let us
present an example.
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Example 11.11. Assume d = 1 and τ = 1. Let ℓ : R×R → [0, 1] be a C∞ function
such that

ℓ−1(1) = {(0, 0), (0, 1/2), (1/2, 0)} and ℓ−1(0) ⊃ R
2 − (−1/4, 3/4)2.

Define then L1 : R × R → R+ by

L1(x, y) = 1 −
∑

s∈Z

ℓ(x+ s, y + s), ∀ x, y ∈ R.

Clearly, L1 is a C∞ function invariant by the diagonal action of Z,

L1 ≥ 0, L
−1
1 (0) = S :=

⋃

s∈Z

{(s, s), (s, s+ 1/2), (s+ 1/2, s)}

and L1 > 0 everywhere on R
2 −S. If L2(x, y) = |x− y|2|x− y+ 1|2|x− y− 1|2, let

us consider a nonnegative local interaction energy map given by

L(x, y) = L1(x, y)L1(x− 1, y)L1(x, y − 1) + L2(x, y), ∀ x, y ∈ R.

Notice that L is C∞, superlinear, invariant by the diagonal action of Z,

L ≥ 0 and L
−1(0) =

⋃

s∈Z

{(s, s), (s, s+ 1), (s+ 1, s)}.

However, L does not satisfy a twist condition: there are points (x0, y0) ∈ R
2 such

that ∂2L

∂x∂y (x0, y0) = 0. Indeed, since ∂L

∂y (0, 0) = 0 = ∂L

∂y (1, 0), Rolle’s theorem states

that ∂2L

∂x∂y (x0, 0) = 0 for some x0 ∈ (0, 1).
Let then L : T × R → R denote the corresponding C∞ superlinear Lagrangian.

We will exhibit a configuration {xk} u-calibrated for any sub-action u ∈ C0(T) but
without a well defined rotation vector. To that end, notice we have

(x, v) ∈ A1(L) ⇔ L(x, x+ v) = 0 ⇔ x = 0 (mod Z) and v ∈ {−1, 0, 1}.

So consider any sequence of positive integers {ri}i≥1 such that 1
n

∑n
i=1 ri has at

least two distinct accumulation points: 1/ω1 and 1/ω2. We define a configuration
{xk} by

x0 = 0 and xk = n if
n−1
∑

i=1

ri < |k| ≤
n

∑

i=1

ri.

Notice that (xk (mod Z), xk−1 − xk) ∈ {(0,−1), (0, 0), (0, 1)} = A1(L). Therefore,
proposition 7.3 guarantees {xk} is u-calibrated for any sub-action u ∈ C0(T). Nev-
ertheless, the fact that

n
∑n

i=1 ri
≤ xk

k
<

n
∑n−1

i=1 ri
whenever

n−1
∑

i=1

ri < k ≤
n

∑

i=1

ri

and the choice of the sequence {ri} imply that, when k → +∞, xk/k has ω1 and
ω2 as accumulation points, which shows the configuration {xk} does not admit a
rotation vector.
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From now on L(x, v) is supposed to be a C1 superlinear ferromagnetic La-
grangian. Notice that the set of critical configurations Γτ (LI) introduced in sec-
tion 2 for LI(x, v) = L(x, v) − 〈I, v〉 actually does not depend on I ∈ R

d. Hence,
from lemma 5.7, if uI ∈ C0(Td) is an arbitrary sub-action for LI , we have in
particular that

{xk}k∈Z is uI -calibrated ⇒ {xk}k∈Z ∈ Γτ (L).

Ferromagnetism is another property naturally inherited by the family {LI}I∈Rd .
Using definition 2.5, we observe that, when L is ferromagnetic, the discrete-time
Lagrangian dynamics (Td × R

d,Φτ ) is independent of I too.
According to theorem 7.7, Aubry sets are nonempty compact Φτ -invariant sets.

Hence, as a consequence of theorem 11.10, the next result gives a sufficient con-
dition for the existence of disjoint invariant sets with respect to the discrete-time
Lagrangian dynamics.

Proposition 11.12. Let L(x, v) be a C1 ferromagnetic superlinear Lagrangian.

Suppose I, J ∈ R
d are points of differentiability of L̄(τ, ·) satisfying ∂L̄

∂I (τ, I) 6=
∂L̄
∂I (τ, J). Then Aτ (LI) ∩ Aτ (LJ) = ∅.
Proof. Suppose on the contrary (x0, v0) ∈ Aτ (LI) ∩ Aτ (LJ). By the invariance of
Aubry sets, we have

(xk, vk) := Φk
τ (x0, v0) ∈ Aτ (LI) ∩ Aτ (LJ), ∀ k ∈ Z.

Define then y0 = x0 ∈ [0, 1)d and recursively

yk+1 = yk + τvk ∈ R
d for k ≥ 0 and yk−1 = yk − τvk−1 ∈ R

d for k ≤ 0.

Let uI ∈ C0(Td) be a sub-action for LI and let uJ ∈ C0(Td) be a sub-action for
LJ . By proposition 7.3, the configuration {yk}k∈Z is simultaneously uI -calibrated
and uJ -calibrated. Hence, theorem 11.10 forces

−∂L̄
∂I

(τ, I) = ω({yk}) = −∂L̄
∂I

(τ, J),

which is a contradiction. Thus Aτ (LI) and Aτ (LJ) are necessarily disjoint.

We have seen in theorem 11.10 that, if I is a point of differentiability of L̄(τ, ·),
then ω = −∂L̄

∂I (τ, I) is a rotation vector of some configuration. We are now inter-
ested in vectors ω ∈ Ω(τ, I) when Ω(τ, I) is not any more reduced to a point, that
is, when L̄(τ, ·) is not any more differentiable at I. The extremal points of Ω(τ, I)
play an interesting role in the study of rotational properties for ferromagnetic La-
grangians.

Proposition 11.13. Let L(x, v) be a C1 ferromagnetic superlinear Lagrangian.
Given I ∈ R

d, if ω is an extremal point of Ω(τ, I), then there exists a configuration
{xk}k∈Z of points in R

d which is uI-calibrated with respect to any sub-action uI for
LI and has a rotation vector given by

ω({xk}) = ω.
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Proof. Let ω ∈ Ω(τ, I) be an extremal point of Ω(τ, I). By hypothesis, there exists
a holonomic probability measure µ such that

∫

v dµ(x, v) = ω and

∫

[L(x, v) − 〈I, v〉] dµ(x, v) = L̄(τ, I).

Theorem 6.10 guarantees that µ is Φτ -invariant. Furthermore, thanks to the ex-
tremal conditions on ω and on L̄(τ, I), we may assume that µ is Φτ -ergodic.

By the ergodicity of µ, for almost all (x, v) ∈ T
d ×R

d, if x0 is a representant of
x and xn = x0 + τ

∑n−1
k=0 pr

2 ◦ Φτ (x, v), then

1

τ
lim

n−m→+∞
xn − xm
n−m

= lim
n−m→+∞

n−1
∑

k=m

pr2 ◦ Φτ (x, v) =

∫

v dµ(x, v) = ω.

Moreover, {xk}k∈Z is uI -calibrated for any sub-action uI of LI since

(

xk ( mod Z
d),

xk+1 − xk
τ

)

= Φk
τ (x, v) ∈ Mτ (LI) ⊂ Nτ (LI , uI).
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