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Max-plus or tropical algebra

In an exotic country, children are taught that:

“a + b” = max(a, b) “a × b” = a + b

So

“2 + 3” =

“2× 3” =

“5/2” =

“23” =

“
√
−1” =
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The notation a ⊕ b := max(a, b), a � b := a + b,
0 := −∞, 1 := 0 is also used in the tropical/max-plus
litterature
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The sister algebra: min-plus

“a + b” = min(a, b) “a × b” = a + b

“2 + 3” = 2

“2× 3” = 5
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In the late 80’s in France, the term “algèbres exotiques”
was used
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The term “exotic” appeared also in the User’s guide of
viscosity solutions of Crandall, Ishii, Lions (Bull. AMS,
92)
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The term “tropical” is in the honor of Imre Simon,

1943 - 2009

who lived in Sao Paulo (south tropic).
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These algebras were invented by various schools in the
world
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Cuninghame-Green 1960- OR (scheduling, optimization)

Vorobyev ∼65 . . . Zimmerman, Butkovic; Optimization

Maslov ∼ 80’- . . . Kolokoltsov, Litvinov, Samborskii, Shpiz. . . Quasi-classic
analysis, variations calculus

Simon ∼ 78- . . . Hashiguchi, Leung, Pin, Krob, . . . Automata theory

Gondran, Minoux ∼ 77 Operations research

Cohen, Quadrat, Viot ∼ 83- . . . Olsder, Baccelli, S.G., Akian initially
discrete event systems, then optimal control, idempotent probabilities,
combinatorial linear algebra

Nussbaum 86- Nonlinear analysis, dynamical systems, also related work in
linear algebra, Friedland 88, Bapat ˜94

Kim, Roush 84 Incline algebras

Fleming, McEneaney ∼00- max-plus approximation of HJB

Del Moral ∼95 Puhalskii ∼99, idempotent probabilities.

now in tropical geometry, after Viro, Mikhalkin, Passare, Sturmfels and many.
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Menu: connections between. . .

tropical convexity

dynamic programming / zero-sum games

Perron-Frobenius theory

metric geometry
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Tropical convex sets and cones

Definition
A set C of functions X → Rmax is a tropical convex set if
u, v ∈ C , λ, µ ∈ Rmax, max(λ, µ) = 0 implies
sup(λ + u, µ + v) ∈ C .
A tropical convex cone or semimodule is defined similarly,
ommiting the requirement that max(λ, µ) = 0.

Semimodules are analogous both to classical convex
cones and to linear spaces
They can also be defined and studied abstractly
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Korbut 65, Vorobyev 65, Zimmermann 77-, Cuninghame-Green 79-,

Butkovič, Hegedus 84, Helbig 88; idempotent functional
analysis by Litvinov, Maslov, Samborski, Shpiz 92-; max-plus /
abstract convexity Cohen, Gaubert, Quadrat 96-, Briec and

Horvath 04-, Singer 04-, . . .

Tropical point of view in Develin and Sturmfels, 04-.
Since that time, many works by some of the above
authors and others Joswig, Santos, Yu, Ardila, Nitica, Sergeev,

Schneider, Meunier, Werner. . .

� the term tropical linear space is ambiguous, may refer to
elements of the tropical Grassmanian of Speyer and Sturmfels
which are special tropical convex cones.
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Several examples of tropical convex sets
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Motivations from optimal control

v(t, x) = sup
x(0)=x , x(·)

∫ t

0

L(x(s), ẋ(s))ds + φ(x(t))

Lax-Oleinik semigroup: (S t)t≥0, S tφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

S t(sup(φ, ψ)) = sup(S tφ, S tψ)
S t(λ + φ) = λ + S tφ

So S t is max-plus linear.
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L(x(s), ẋ(s))ds + φ(x(t))

Lax-Oleinik semigroup: (S t)t≥0, S tφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

S t(“φ + ψ”) = “S tφ + S tψ”
S t(“λφ”) = “λS tφ”

So S t is max-plus linear.

Stephane Gaubert (INRIA and CMAP) Tropical methods for control and games, I Bordeaux 14 / 60



The function v is solution of the Hamilton-Jacobi
equation

∂v

∂t
= H(x ,

∂v

∂x
) v(0, ·) = φ

Max-plus linearity ⇔ Hamiltonian convex in p

H(x , p) = sup
u

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) = sup
y∈Rn

tL(
x − y

t
) + φ(y) .
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Vλ := {φ | S tφ = λt + φ,∀t > 0}
is a max-plus or tropical cone in infinite dimension. The
functions φ are the weak-KAM solutions of Fathi.

S t is an instance of Moreau conjugacy:

S tφ(x) = sup
y

a(x , y) + φ(y) .
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Metric geometry

(X , d) metric space.
1-Lip:= {u | u(x)− u(y) ≤ d(x , y)} is a tropical convex
cone.
TFAE

u is 1− Lip

u(y) = max
x∈X
−d(x , y) + u(x)

u(y) = max
x∈X
−d(x , y) + v(x), ∃v

u ∈ Span{−d(x , ·) | x ∈ X} make picture!
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Question. What are the tropical extreme rays ?

We shall see they are precisely the maps −d(x , ·), x ∈ X ,
together with the horofunctions associated with
Busemann points (limits of infinite geodesics).

Gromov’s horoboundary compactification of X .
Analogous to the probabilistic Martin boundary.
Related to results of Fathi and Maderna, Contreras, Ishii and

Mitake for optimal control problems with noncompact
state space.
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Spaces of semiconvex functions

Fleming, McEneaney

Cα := {u : Rn → R | u + α‖x‖2/2 is convex}
is a tropical convex cone.
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Shapley operators

X = C (K ), even X = Rn; Shapley operator T ,

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
1≤j≤n

Pab
ij xj
)
, i ∈ [n]

[n] := {1, . . . , n} set of states

a action of Player I, b action of Player II

r abi payment of Player II to Player I

Pab
ij transition probability i → j
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Shapley operators

X = C (K ), even X = Rn; Shapley operator T ,

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
1≤j≤n

Pab
ij xj
)
, i ∈ [n]

Conversely, any order preserving additively homogeneous
operator is a Shapley operator (Kolokoltsov), even with
degenerate transition probabilities (deterministic)
Gunawardena, Sparrow; Singer, Rubinov,

Ti(x) = sup
y∈R

(
Ti(y) + min

1≤i≤n
(xi − yi)

)
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Variant. T is additively subhomogeneous if

T (α + x) ≤ α + T (x), ∀α ∈ R+

This corresponds to 1−
∑

j P
ab
ij = death probability > 0.

Order-preserving + additively (sub)homogeneous =⇒
sup-norm nonexpansive

‖T (x)− T (y)‖∞ ≤ ‖x − y‖∞ .
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If T is order preserving and additively homogeneous, then
the set of subsolutions

C = {u | T (u) ≥ u}

(showing the game is superfair) is a tropical (max-plus)
convex cone.
Similarly, if S t is the semigroup of the Isaacs equation

vt − H(x ,Dv ,D2v) = 0, H(x , p, ·) order preserving

S t is order preserving and additively homogeneous

C = {u | S tu ≥ u, ∀t ≥ 0}
is a tropical convex cone.
Supersolutions constitute a min-plus convex cone.
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Discounted case = tropical convex sets

If T is only order preserving and additively
subhomogeneous

C = {u | T (u) ≥ u}

is a tropical (max-plus) convex set.
Proof. If u, v ∈ C , β ∈ R+

T (sup(u,−β + v)) ≥ sup(T (u),T (−β + v))

≥ sup(T (u),−β + T (v))

≥ sup(u,−β + v)
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Population dynamics = games with exponential

glasses

K closed convex pointed cone in a Banach space, say
K = Rn

+.

x ≤ y =⇒ F (x) ≤ F (y)

F (λx) = λF (x), λ > 0

If K = Rn
+, or C(X ), then:

T (x) = log ◦F ◦ exp

is a Shapley operator.
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Example: Perron-Frobenius ⊂ stochastic control

F (X ) = MX , Mij ≥ 0

x = logX

T (x) = sup
P

(
Px − S(P ;M)

)
where the sup is taken over the set of stochastic matrices,
and S is the relative entropy

Si(P ;M) =
∑
j

Pij log(Pij/Mij)
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The Perron eigenvector

F (U) = µU , U ∈ intRn
+

corresponds to the additive eigenvector u = logU ,

T (u) = λ + u, λ = log µ

= sup
P

(
Pu − S(P ;M)

)
.

So, the log of the Perron root µ is

log ρ(M) = sup
P,m
−m · S(P ;M)

where the sup is over all invariant measures m of P .
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Some elementary tropical geometry

A tropical line in the plane is the set of (x , y) such that
the max in

“ax + by + c”

is attained at least twice.

max(x , y , 0)
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Two generic tropical lines meet at a unique point
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By two generic points passes a unique tropical line
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non generic case
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non generic case resolved by perturbation
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Tropical segments:

f

g

[f , g ] := {“λf + µg” | λ, µ ∈ R∪ {−∞}, “λ+ µ = 1”}.

(The condition “λ, µ ≥ 0” is automatic.)
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Tropical segments:

f

g

[f , g ] := { sup(λ + f , µ + g) | λ, µ ∈
R ∪ {−∞}, max(λ, µ) = 0}.

(The condition λ, µ ≥ −∞ is automatic.)
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Exercise: draw a convex set.
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Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C
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Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C

Tropical convex cone: ommit “λ + µ = 1”, i.e., replace
[f , g ] by {sup(λ + f , µ + g) | λ, µ ∈ R ∪ {−∞}}
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Homogeneization

A convex set C in Rn
max corresponds to a convex cone Ĉ

in Rn+1
max ,

Ĉ := {(u, λ + u) | u ∈ C , λ ∈ Rmax}
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A max-plus “tetrahedron”?
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The previous drawing was generated by Polymake of
Gawrilow and Joswig, in which an extension allows one to
handle easily tropical polyhedra. They were drawn with
javaview. See Joswig arXiv:0809.4694 for more information.
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Why?
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .

y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)
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attained twice

max(log |x |, log |y |, 0)

|y | ≤ |x |+ 1, |x | ≤ |y |+ 1, 1 ≤ |x |+ |y |
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .

y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

X := log |x |, Y := log |y |
Y ≤ log(eX + 1), X ≤ log(eY + 1), 1 ≤ eX + eY
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real tropical lines

y = x + 1
Y = max(X , 0)

X = log(eX + 1)

Stephane Gaubert (INRIA and CMAP) Tropical methods for control and games, I Bordeaux 36 / 60



real tropical lines

x + y = 1

log(eX + eY ) = 1

max(X ,Y ) = 0
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real tropical lines

x = y + 1

X = log(eX + 1)

X = max(Y , 0)
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Viro’s log-glasses, related to Maslov’s dequantization

a +h b := h log(ea/h + eb/h), h→ 0+

With h-log glasses, the amoeba of the line retracts to the
tropical line as h→ 0+

y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

max(a, b) ≤ a +h b ≤ h log 2 + max(a, b)
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Similar to convergence of p-norm to sup-norm

[a, b] := {λa +p µb | λ, µ ≥ 0, λ +p µ = 1}

a +p b = (ap + bp)1/p

The convex hull in the +h / +p sense converges to the
tropical convex hull as h→ 0 / p →∞ (Briec and Horvath).
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See Passare & Rullgard, Duke Math. 04 for more information
on amoebas

Introduction to amoebas: lecture notes by Yger.
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All the results of classical convexity have tropical
analogues, sometimes more degenerate. . .

generation by extreme points Helbig; SG, Katz 07;

Butkovič, Sergeev, Schneider 07; Choquet Akian, SG,

Walsh 09, Poncet 11 infinite dim.
projection / best-approximation : Cohen, SG,

Quadrat 01,04; Singer

Hahn-Banach analytic Litvinov, Maslov, Shpiz 00; Cohen,

SG, Quadrat 04; geometric Zimmermann 77, Cohen, SG,

Quadrat 01,05; Develin, Sturmfels 04, Joswig 05

cyclic projections Butkovic, Cuninghame-Green TCS03; SG,

Sergeev 06

Radon, Helly, Carathéodory, Colorful Carathéodory,
Tverberg: SG, Meunier DCG09
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This lecture

Tropical convexity is equivalent to dynamic programming
(zero-sum games).

finite dimensional convex sets (cones) ∼ stochastic
games with finite state spaces

leads to: equivalence (computational complexity)
results, algorithms, approximation methods, . . .
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Some results and techniques . . .
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Residuation / Galois correspondences in lattices

Let A ∈ Mdp(Rmax). Then, for x ∈ Rp
max and b ∈ Rd

max,

Ax ≤ b ⇐⇒ x ≤ A]b

where

(A]b)j = min
1≤i≤d

−Aij + bj , 1 ≤ j ≤ p

AA]A = A A]AA] = A]

The row and column spaces of A are anti-isomorphic
semi-lattices, x 7→ (A(−x))T , y 7→ ((−y)A)T , general
residuation result (infinite dim OK, Cohen, SG, Quadrat

01,04), different proof by Develin and Sturmfels, 04.
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The tropical sesquilinear form

x/v := max{λ | “λv” ≤ x}
= min

i
(xi − vi) if x , v ∈ Rn .

δ(x , y) = “(x/y)(y/x)” = min
i

(xi − yi) + min
j

(yj − xi)

d = −δ is the (additive) Hilbert’s projective metric

d(x , y) = ‖x − y‖H , ‖z‖H := max
1≤i≤d

zi − min
1≤i≤d

zi .
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Projection on a tropical cone

If C ⊂ Rd
max is a tropical convex cone stable by sups

(closed in Scott topology -non-Haussdorf-):

PC (x) = max{v ∈ C | v ≤ x}
= max

u∈U
(x/u) + u .

for any generating set U of C .

Compare with
PC (x) =

∑
u∈U

〈x , u〉u

if U is a Hilbert base of a Hilbert space.

When C = Col(A), PC (x) = AA]x .
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Best approximation in Hilbert’s projective metric

Prop.(Cohen, SG, Quadrat, in Bensoussan Festschrift 01)

d(x ,PV(x)) = min
y∈V

d(x , y) .
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Separation

Goes back to Zimmermann 77, simple geometric
construction in Cohen, SG, Quadrat in Ben01, LAA04.
C closed linear cone of Rd

max, or complete semimodule
If y 6∈ C , then, the tropical half-space

H := {v | y/v ≤ PC (y)/v}

contains C and not y .
Compare with the optimality condition for the projection
on a convex cone C : 〈y − PC (y), v〉 ≤ 0,∀v ∈ C
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Separation

Goes back to Zimmermann 77, simple geometric
construction in Cohen, SG, Quadrat in Ben01, LAA04.
C closed linear cone of Rd

max, or complete semimodule
If y 6∈ C , then, the tropical half-space

H := {v | y/v ≤ PC (y)/v}

contains C and not y .
Let ȳ := PC (y) and I := {i | yi = ȳi}. Then,

H = {v | max
i∈I c

vi − ȳi ≤ max
i∈I

vi − ȳi}
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | “ax ≤ bx”}
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

1≤i≤n
ai + xi ≤ max

1≤i≤n
bi + xi}

x2x1

x3

max(x1, x2,−2 + x3)
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

1≤i≤n
ai + xi ≤ max

1≤i≤n
bi + xi}

x2x1

x3

x1 ≤ max(x2 − 2 + x3)
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

1≤i≤n
ai + xi ≤ max

1≤i≤n
bi + xi}

x2x1

x3

max(x2 − 2 + x3) ≤ x1
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A halfspace can always be written as:

max
i∈I

ai + xi ≤ max
j∈J

bj + xj , I ∩ J = ∅ .

Apex: vi := −max(ai , bi).

If v ∈ Rn, H is the union of sectors of the tropical
hyperplane with apex v :

max
1≤i≤n

xi − vi attained twice

Halfspaces appeared in: Joswig 04; Cohen, Quadrat SG 00;

Zimmermann 77, . . .
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Corollary (Zimmermann; Samborski, Shpiz; Cohen, SG, Quadrat,

Singer; Develin, Sturmfels; Joswig. . . )

A tropical convex cone closed (in the Euclidean topology)
is the intersection of tropical half-spaces.

Rmax is equipped with the topology of the metric
(x , y) 7→ maxi |exi − eyi | inherited from the Euclidean
topology by log-glasses.

� The apex −PC (y) of the algebraic separating half-space H
above may have some +∞ coordinates, and therefore may not
be closed in the Euclidean topology (always Scott closed). The
proof needs a perturbation argument, this is where the
assumption that C is closed (and not only stable by arbitrary
sups = Scott closed) is needed.
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

x2
x1

V

x3
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x2
x1

V

x3

x2
x1

x3

2 + x1 ≤ max(x2, 3 + x3)
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

V
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The Equivalence between tropical convexity and

games. . .

Based on Akian, SG, Guterman arXiv:0912.2462 to appear in IJAC
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Theorem (Equivalence, part I; Akian, SG, Guterman

arXiv:0912.2462 → IJAC)

TFAE

C is a closed tropical convex cone

C = {u | u ≤ T (u)} for some Shapley operator T .
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Recall C ⊂ (R ∪ {−∞})n is a tropical convex cone if

u, v ∈ C , λ ∈ R∪{−∞} =⇒ sup(u, v) ∈ C , λ+u ∈ C .

The Shapley operator T : Rn → Rn extends continuously
Rn

max → Rn
max,

T (x) = inf
y≥x , y∈Rn

T (y) .

Easy implication: T order preserving and additively
homogeneous =⇒ {u | u ≤ T (u)} is a closed tropical
convex cone
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Recall C ⊂ (R ∪ {−∞})n is a tropical convex cone if

u, v ∈ C , λ ∈ R∪{−∞} =⇒ sup(u, v) ∈ C , λ+u ∈ C .

The Shapley operator T : Rn → Rn extends continuously
Rn

max → Rn
max,

T (x) = inf
y≥x , y∈Rn

T (y) .

Easy implication: T order preserving and additively
homogeneous =⇒ {u | u ≤ T (u)} is a closed tropical
convex cone
Remark: {u | u ≥ T (u)} is a dual tropical (min-plus)
cone.
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Conversely, any closed tropical convex cone can be
written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : “Aix ≤ Bix”
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Conversely, any closed tropical convex cone can be
written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : max
1≤j≤n

aij +xj ≤ max
1≤k≤n

bik +xk , aij , bij ∈ R∪{−∞}

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .
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Conversely, any closed tropical convex cone can be
written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : max
1≤j≤n

aij +xj ≤ max
1≤k≤n

bik +xk , aij , bij ∈ R∪{−∞}

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .

x ≤ T (x) ⇐⇒ max
1≤j≤n

aij + xj ≤ max
1≤k≤n

bik + xk , ∀i ∈ I .
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a

x2
x1

V

x3

c

b

x2
x1

x3

2x1 ≤ x2 ⊕ 3x3

2 + x1 ≤ max(x2, 3 + x3)
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a

x2
x1

V

x3

c

b

V

2 + x1 ≤ max(x2, 3 + x3)
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Hi : max
1≤j≤n

aij + xj ≤ max
1≤k≤n

bik + xk

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .

Interpretation of the game

State of MIN: variable xj , j ∈ {1, . . . , n}
State of MAX: half-space Hi , i ∈ I

In state xj , Player MIN chooses a tropical half-space
Hi with xj in the LHS

In state Hi , player MAX chooses a variable xk at the
RHS of Hi

Payment −aij + bik .
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Menu of the next lectures

The mean payoff problem for repeated games

Generalized Denjoy-Wolff theorem

Deformation of Perron-Frobenius theory

More combinatorics

Extreme points of tropical polyhedra, Max-plus
Martin Boundary

Algorithms

Thank you!
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