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The max-plus spectral problem

Given A = (Aij) ∈ (R ∪ {−∞})n×n, find
v ∈ R ∪ {−∞}n, v 6≡ −∞, λ ∈ R, such that

max
j

Aij + vj = λ + vi

“Av = λv”

Among the oldest max-plus results.
Goes back to Cuninghame-Green 61, Vorobyev, Romanovski, Gondran

and Minoux 77, Cohen, Dubois, Quadrat 83, . . . Some references

in Akian, SG, Bapat: Handbook of linear algebra (finite dim) and

Max-plus Martin boundary / discrete spectral theory (infinite dim).
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Interpretation: dynamic programming, one player

Set of nodes [d ] := {1, . . . , d}, arc (i , j) with weight Aij

Ak
ij =

∑
m1,...,mk−1∈[d ]

Aim1
Am1m2

· · ·Amk−1j
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Interpretation: dynamic programming, one player

Set of nodes [d ] := {1, . . . , d}, arc (i , j) with weight Aij

Ak
ij = max

m1,...,mk−1∈[d ]
Aim1

+ Am1m2
+ · · ·+ Amk−1j

= max weight path i → j length k
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Crop rotation
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Aij = reward of the year if crop j follows crop i
F=fallow (no crop), W=wheat, O=oat,

(Akv)i =
∑
j∈[d ]

Ak
ijvj
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Aij = reward of the year if crop j follows crop i
F=fallow (no crop), W=wheat, O=oat,

(Akv)i = max
j∈[d ]

Ak
ij + vj

= reward in k years, init. crop i ; vj term. reward
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Eigenvector

Find v ∈ Rd
max, v 6≡ 0, λ ∈ Rmax, such that

Av = λv

Akv = λkv
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Eigenvector

Find v ∈ Rd
max, v 6≡ −∞, λ ∈ Rmax, such that

max
j∈[d ]

Aij + vj = λ + vi

Akv = kλ + v
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Theorem (Max-plus spectral theorem, Cuninghame-Green, 61,

Gondran & Minoux 77, Cohen et al. 83)

Assume G (A) is strongly connected. Then

the eigenvalue is unique:

ρmax(A) := max
i1,...,ik

Ai1i2 + · · ·+ Aik i1

k

Assume WLOG ρmax(A) = 0, then, ∃αi ∈ R ∪ {−∞},

u = max
j∈maximizing circuits

αj + A∗·,j

A∗ij := max weight path arbitrary length i → j .

“AN+c = ρmax(A)cAN”, ∃N , c

Arc i → j in G (A) if Aij 6= −∞.Stephane Gaubert (INRIA and CMAP) Tropical methods for control and games III Bordeaux 7 / 61
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j∈maximizing circuits

αj + A∗·,j
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The dual linear problem of

minλ, Aij + vj ≤ λ + ui ∀i , j

is

ρ(A) = max
x

∑
ij

Aijxij , xij ≥ 0,
∑
j

xij =
∑
j

xji ,
∑
ij

xij = 1

The extreme points of the polytope of circulations are
uniform measures supported by elementary circuits.

Complementary slackness shows that v , λ, x optimal iff
xij(λ + ui − Aij − vj)

Discrete version of maximizing measures.
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F=fallow (no crop), W=wheat, O=oat, ρmax(A) = 20/3

N. Bacaer, C.R. Acad. d’Agriculture de France, 03
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F=fallow (no crop), W=wheat, O=oat, ρmax(A) = 20/3

Actually, Bacaer showed that a memory of two years is
needed to recover the different historical rotations
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The critical graph G c(A) is the union of the maximizing
circuits (analogue of Mather and Aubry sets - no
difference between them in this discrete case).

Lemma
If i , j are in the same strongly connected component of
the critical graph, then A∗·i and A∗·j are tropically
proportional.

“A∗A∗ = A∗”

max
k

A∗ik + A∗kj = A∗ij

i , j in the same component means A∗ij + A∗ji = 0.

A∗kj ≥ A∗ki + A∗ij ≥ A∗kj + A∗ji + A∗ij = A∗kj

A∗·k = A∗k · + A∗ij .
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A vector u ∈ C is extreme if u = sup(v ,w), v ,w ∈ C
implies u = v or u = w . I.e.,
u ∈ [v ,w ], v ,w ∈ C =⇒ u = v or u = w .

Theorem (Tropical Minkowski-Carathéodory, SG, Katz

LAA07; Butkovič, Sergeev, Schneider LAA07; infinite dim Choquet

Poncet thesis 11)

Every element of a closed tropical convex set of Rn
max is

the tropical convex combination of at most n extreme
points.
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e1 e2

p1

p4

p3

p2

e3

p5

Proof.
Si(u) = {x ∈ C | x ≤ u | xi = ui}

Extr C = ∪i Min Si
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Proposition

Every A∗·j , j ∈ G c(A) is extreme in the tropical cone
{v | Av = λv}.
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Cyclicity

WLOG: ρ(A) = 0.
The smallest c such that AN+c = AN for some N
(cylicity) is

c = lcm(cyc(K1), . . . , cyc(Ks))

where K1, . . . ,Ks are the strongly connected components
of the critical graph, and the cyclicity of a strongly
connected component is the gcd of the lengths of its
circuits.
Cohen, Dubois, Quadrat, Viot 83, Nussbaum 88

Give example at the blackboard.
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If T is a nonexpansive mapping Rn → Rn with respect to a
polyhedral norm, and if T has bounded orbits, then, any orbit
converges to a periodic orbit of length bounded by a function of
n and of the number of facets of the ball.
Weller, Sine, Nussbaum, Verdyun-Lunel, Scheutzow, Lemmens,
. . .

If T is a Shapley operator (order preserving, additively
homogeneous) and convex (=1 player), possible orbits lengths
are the orders of permutations Akian, SG 03.

If T is a Shapley operator (2-player), the optimal bound on the
length is

(
n
bn/2c

)
, the size of a maximal antichain in {0, 1}n:

Lemmens and Scheutzow, Ergodic Th. and Dyn. Sys.

If T is sup-norm nonexpansive, Nussbaum conjectured the
optimal length to be 2n.
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Spectral projector

WLOG ρ(A) = 1, c = 1.

AN = AN+1 = · · · = P , P = P2, AP = PA

Pij = sup
k

A∗ik + A∗kj

= Turnpike theorem (every long path goes through a
maximizing circuit).
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Let K denote the set of critical nodes, E = {u | Au = u}.
The restriction u 7→ (ui)i∈K (trace on the projected Aubry
set) is an isomorphism, with image

{v ∈ RK | vi − vj ≥ A∗ij , ∀i , j ∈ K}

= Space of Lipschitz functions for the metric −A∗

Note all the tropical convex sets are images of linear
projectors. The images of linear projectors arise precisely
in this way.
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For a Shapley operator (2 player), the tropical convex set
{u | u ≤ T (u)} is a polyhedral complex Develin, Sturmfels

Doc. Math. 04. Every cell of this complex corresponds to a
strategy, and is the image of a linear projector.
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The representation of the eigenspace carries over to the
infinite dimensional setting.
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Generalizations to kernels appeared in works
of Nussbaum and Mallet-Parret, under quasi-compactness
conditions (essential spectral radius)

� the existence of a continuous eigenvector is in general
a difficult problem.

Lax-Oleinik semigroups treated in book by Maslov and

Kolokoltsov, Kluwer 97 (typically when the projected
Aubry set is finite). Spectral projector written in this
context. WKB asymptotics.

Here: abstract boundary theory
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Martin boundary, discrete case (Dynkin)

Given Pxy Markov kernel, over a discrete infinite set E ,
find all nonnegative harmonic functions: u = Pu.
1) Define the Green kernel: G = P0 + P + P2 + · · ·
2) The Martin kernel is:

Kxy =
Gxy

Gby

where b ∈ E is a basepoint.
3) Let K := {K·y | y ∈ E}
4) The Martin space M is the closure of K in the
product topology.
5) The Martin boundary is B :=M\K.
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Theorem (classical Martin representation)

Every harmonic function u can be written as a positive
linear combination of functions from the boundary:

u =

∫
B

wµ(dw) .

µ can be choosen to be supported by a subset of B, the
minimal Martin boundary. (We recognise Choquet’s
theorem!).
Computing the probabilistic Martin boundary is difficult, eg. Ney and

Spitzer 65, boundary of random walk in Z2 is the circle, computing the

tropical analogue is much easier!
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The max-plus Martin boundary

Akian, SG, Walsh, CDC06, Doc. Math. 09 (Semigroup version),
Ishii, Mitake 07 (PDE version).
Consider the eigenproblem over an arbitrary state space S

ux = sup
y∈S

Axy + uy , ∀x ∈ S

The Martin kernel reads: Kxy = A∗xy − A∗by .

The Martin spaceM is the closure of K := {K·,y | y ∈ S}
in the product topology (compact, Tychonoff). Martin
boundary (set of horofunctions) is B =M\K.

When A∗x ,y = −d(x , y) is the opposite of a metric, recover the

construction of the horoboundary by Gromov.
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The detour metric

A∗ = “I + A+”, A+ = “A + A2 + A3 + . . . ”

A+
xy = sup(Axy ,A

2
xy ,A

3
xy , . . .)

H [
xy = A+

bx + A+
xy − A+

by detour penalty

Extend H [ to the whole Martin space

H [(u, v) = lim sup
xd→u

lim inf
ye→v

H [
xd ,ye

where the limsup,inf are taken along nets xd and ye converging to u and v

in the topology of the Martin space.

Stephane Gaubert (INRIA and CMAP) Tropical methods for control and games III Bordeaux 24 / 61



The Minimal Martin space is
Mm := {w ∈M | H [(w ,w) = 0}.

Theorem (Max-plus Martin representation Akian, SG, Walsh,

CDC06, Doc. Math. 09)

Mm is the set of extreme elements of {u | Au = u}. Any
such u can be written as

u = sup
w∈Mm

w + µ(w), µ :Mm → R ∪ {−∞} scs

µu(w) := lim sup
xd→w

A∗bxd + u(xd)

Analogous to max-plus integral representations by Fathi,

Siconolfi, Contreras, Ishii, Mitake, in different settings.
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If the Martin space is metrisable, then Mm is precisely
the set of Busemann points = limits of quasi-geodesics,
i.e. of sequences x1, x2, . . . such that there exists α ∈ R

A∗bxk ≤ A∗bx1
+ Ax1x2

+ · · ·+ Axk−1xk + α, ∀k

Quasi geodesics correspond to almost-sure trajectories of
the renormalized H-process of Dynkin.
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Lax-Oleinik (continuous time) version in CDC06.
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Linear quadratic control - nonquadratic solutions

Hamilton–Jacobi equation

λ = −|x|2 +
1

4
|∇w |2

Maximise reward:

−
∫ T

0

(|γ(t)|2 + |γ̇(t)|2 + λ) dt,

If λ > 0, solutions are

w(x) = sup
n

(ν(n) + hn(x)),

where ν is an upper semi–continuous map from the unit
vectors to R ∪ {−∞}.
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When λ = 0, there is a horofunction for each direction n:

hn(x) =

{
−|x|2 + 2(x · n)2, if x · n > 0,

−|x|2, otherwise.

The function −|x|2 is also a horofunction.
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Horospheres of hn with n = (0, 1).

Horospheres of hn with n = (0, 1).
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When λ > 0: for each direction n,

hn(x) = −λ|x|
2

R2
+ x · nλ + 2|x|2

R
− λ log

R√
λ
,

where R :=
√

(x · n)2 + λ− x · n.

Horospheres of hn with n = (0, 1).
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Back to finite dimension.

The max-plus spectral problem as a limit of the
Perron-Frobenius problem
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Deformation of the Perron root

Chain of spins (Ising)

Z =
∑

σ1,...,σn∈ΣN

exp(−
N∑
i=1

E (σi , σi+1)/T ), σN+1 := σ1

−E (σ, σ′) = Hσ + Jσσ′, σ, σ′ ∈ {±1} (Ising)

ZN = tr MN
T , (MT )σσ′ = exp(−E (σ, σ′)/T )

FN = N−1T log ZN ∼ T log ρ(MT ) free energy per site,

T → 0, ground state
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ε := exp(−1/T ), (MT )σ,σ′ = εE (σ,σ′)

Similar to perturbation problems, but now, the “Puiseux
series” have real exponents (Dirichlet series).
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Kingman 61:

log ◦ρ ◦ exp convex [entrywise exp]

Let A,B ≥ 0, and C = A(s) ◦ B (t), with
s + t = 1, s, t ≥ 0 [entrywise product and exponent] then

ρ(C ) ≤ ρ(A)sρ(B)t .

Indeed, log ρ(C ) = limm log ‖Cm‖/m is a pointwise limit
of convex functions of (log Cij), for any monotone
norm.
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So

ρ(A ◦ B) ≤ ρ(A(p))1/pρ(B (q))1/q 1/p + 1/q = 1

ρ(B (q))1/q → max
i1,...,im

(Bi1i2 · · ·Bim−1im)1/m =: ρ∞(B)

Theorem (Friedland 86)

For all A ∈ Cn×n,

ρ(A) ≤ ρ(pattern(A))ρ∞(|A|) ≤ nρ∞(|A|)

and
ρ(A) ≥ ρ∞(A) if Aij ≥ 0 .
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Explanation: approximation of an amoeba by its skeletton
V ⊂ (C∗)n, A(V ) = {(log |z1|, . . . , log |zn|) | x ∈ V }.

y = x + 1

Cf. Gelfand, Kapranov, Zelevinsky; Passare, Rüllgaard; Purbhoo;

Yger.
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Limit of the Perron eigenvector. Consider A(p) = (Ap
ij),

and let U(p) denote the normalized Perron eigenvector of
A(p).
Taking p−1 log / passing in the limit in

λ(p)Up
i (p) =

∑
j

Ap
ijU

p
j

we get that
λ + ui = max

j
log Aij + uj

where λ and uj are accumulation points of p−1 log λ(p),
log Uj(p), resp.
Which tropical eigenvector is selected?
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WLOG λ = log ρ∞(A) = 0.

Theorem (Akian, Bapat, SG CRAS 1998)

If there is only one SCC of the critical graph with maximal
Perron root, then ui = (log A)∗ij , for any j in this class.

Related work by Lopes, Mohr, Souza, Thieullen.
Give example at the blackboard.
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Proof idea. Make diagonal scaling

B(p) = diag(exp(−pu))Ap diag(exp(pu)) .

The matrix B(p) has a limit in [0, 1]n×n as p →∞.
We want B(∞) to have a positive eigenvector. A
nonnegative matrix has a positive eigenvector iff the basic
classes are exactly the final classes.
For the choice of eigenvector u = (log A)∗·j , this is the
case, because the saturation graph

{(k , l) | log Akl + ul = uk}

is a river network with sea SCC(j). Make drawing.
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An application: perturbation of eigenvalues

Exercise.

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,
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An application: perturbation of eigenvalues

Exercise.

Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 ,

Show without computation that the eigenvalues have the
following asymptotics as ε→ 0

L1
ε ∼ ε−1/3,L2

ε ∼ jε−1/3,L3
ε ∼ j2ε−1/3.
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Aε =

 ε 1 ε4

0 ε ε−2

ε ε2 0

 , A =

 1 0 4
∞ 1 −2
1 2 ∞

 .

We have γ1 = −1/3, corresponding to the critical circuit:

2 31

−20

1

Eigenvalues:

L1
ε ∼ ε−1/3,L2

ε ∼ jε−1/3,L3
ε ∼ j2ε−1/3.
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Assume that the entries of Aε have Puiseux series
expansions in ε, or even that Aε = a + εb, a, b ∈ Cn×n.

L1, . . . ,Ln eigenvalues of Aε.

v(s): opposite of the smallest exponent of a Puiseux
series s.

γ1 ≥ · · · ≥ γn: tropical eigenvalues of v(Aε).

Theorem (Akian, Bapat, SG CRAS04, arXiv:0402090)

v(L1) + · · ·+ v(Ln) ≤ γ1 + · · ·+ γn

and equality holds under generic (Lidski-type) conditions.
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The maximal tropical eigenvalue γ1 coincides with the
ergodic constant of the one-player game

λ + ui = max
1≤j≤n

(
val(Aε)ij + uj

)
,∀i

λ is the maximal circuit mean.

In general, tropical eigenvalues are non-differentiability
points of a parametric optimal assignment problem =
Legendre transform a the generic Newton polygon
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The (algebraic) tropical eigenvalues of a matrix A ∈ Rn×n
max

are the roots of
“ per(A + xI )”

where
“ per(M)” := “

∑
σ∈Sn

∏
i∈[n]

Miσ(i)”

� All geom. eigenvalues λ (“Au = λu”) are algebraic
eigenvalues, but the converse does not hold. ρ|max(A)
is the max algebraic eigenvalue.

Trop. eigs. can be computed in O(n) calls to an
optimal assignment solver (Butkovič and Burkard)
(not known whether the formal characteristic
polynomial can be computed in polynomial time).
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Theorem (Kapranov)

If f (z) =
∑

k fkzk ∈ C{{ε}}[z1, . . . , zn], the closure of
the image of f = 0 by v is the set of points x ∈ Rn at
which the maximum

max
k

v(fk) + 〈k , x〉

is attained at least twice.

Follows from Puiseux theorem when n = 1. Inclusion ⊂
obvious. Converse: reduction to Puiseux.

When n = 1: the set of tropical roots is a
zero-dimensional amoeba
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Example. y = x + 1, K = C{{ε}}

max(x , y , 0)
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Algorithms for games
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Hi : max
1≤j≤n

aij + xj ≤ max
1≤k≤n

bik + xk

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .

Interpretation of the game

State of MIN: variable xj , j ∈ {1, . . . , n}
State of MAX: half-space Hi , i ∈ I

In state xj , Player MIN chooses a tropical half-space
Hi with xj in the LHS

In state Hi , player MAX chooses a variable xk at the
RHS of Hi

Payment −aij + bik .
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A =

 2 −∞
8 −∞
−∞ 0

 B =

 1 −∞
−3 −12
−9 5


2

1

8
−3

−12

0

53

2

1

1

2

−9

Stephane Gaubert (INRIA and CMAP) Tropical methods for control and games III Bordeaux 50 / 61



2 + x1 ≤ 1 + x1

8 + x1 ≤ max(−3 + x1,−12 + x2)
x2 ≤ max(−9 + x1, 5 + x2)
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−12

0

53
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1

2

−9

χ(T ) = limk v k/k = (−1, 5)
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Proposition

If T is nonexpansive and piecewise affine Rn → Rn, the
discounted value vα = T (αvα) has a Laurent series
expansion

vα =
a−1

1− α
+ a0 + (1− α)a1 + . . . , ai ∈ Rn

This is the case for a stochastic game with perfect
information and finite action spaces.

Then
χ(T ) = lim

k
T k(0)/k = a−1 .
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Strategy of MAX σ : {H1, . . . ,Hm} → {x1, . . . , xn}, in
state Hi choose coordinate xσ(i)

Strategy of MIN π : {1, . . . , n} → {1, . . . ,m}, in
state xj choose hyperplane Hπ(j)

One player Shapley operators

[T σ(x)]j = inf
1≤i≤m

−aij + biσ(i) + xσ(i) .

[Tπ(x)]j = −aπ(j)j + max
1≤k≤n

bπ(j)k + xk .

Duality theorem (coro of Kohlberg) If finite action spaces,
then

χ(T ) = max
σ
χ(T σ) = min

π
χ(Tπ) .
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Duality theorem (coro of Kohlberg) If finite action spaces,
then

χ(T ) = max
σ
χ(T σ) = min

π
χ(Tπ) .

Every χ(T σ) and χ(Tπ) can be computed in polynomial time.
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Proof: Blackwell optimality

For all x ∈ Rn, we have a selection

∃σ, π, T (x) = T σ(x) = Tπ(x) .

So for all 0 < α < 1, the discounted value vα = T (αvα)
satsifies

vα(T ) = max
σ

vα(T σ) = min
π

vα(Tπ) .

Since χ is the first coefficient of the Laurent series

χ(T ) = max
σ
χ(T σ) = min

π
χ(Tπ) .

σ, π are Blackwell optimal if optimal for all α ∈ (ᾱ, 1)
(exist because the zeros of a Laurent series cant
accumulate at 1−).
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Corollary (Condon 92, Zwick and Paterson, TCS 96)

Mean payoff games are in NP ∩ co-NP.

I can convince you that χi(T ) ≥ 0 (initial state i is
winning) by giving you a strategy σ of MAX such
that χi(T σ) ≥ 0. You can check that in polynomial
time by solving a one player game.

I can convince you that the opposite is true by giving
you a strategy π of MIN such that χi(Tπ) < 0. You
can also check this in polynomial time.

The class NP ∩ co-NP captures the good
characterizations of Edmonds. Evidence that the problem is
not NP-complete.
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“Ax ≤ Bx” unfeasible iff ∃π, χ(Tπ) < 0.

“Ax ≤ Bx” feasible iff ∃σ, χ(T σ) ≥ 0.

∃x ∈ Rn
max, Ax ≤ Bx? is in NP ∩ co-NP
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Corollary

Feasibiliby in tropical linear programming, i.e.,

∃?u ∈ (R∪{−∞})n, max
j

aij+uj ≤ max
j

bij+uj , 1 ≤ i ≤ p

is polynomial-time equivalent to mean payoff games.

are in NP ∩ coNP: Zwick, Paterson 96.

Tropical convex sets are log-limits of classical convex sets:
polynomial time solvability of mean payoff games might
follow from a strongly polynomial-time algorithm in linear
programming (Schewe).
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Several pseudo-polynomial algorithms exist for
(deterministic) mean payoff games: Zwick, Paterson TCS96.
No pseudo-polynomial algorithm seems to be known for
stochastic mean payoff game. However, Policy iteration
works (Cochet,SG 06), - based on a tropical idea = spectral
projectors - ; alternative algorithm by Boros, Gurvich,

Elbassioni, Makino, . . .
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Policy iteration for games scales well in practice. ]
iterations / ] nodes
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However, Friedmann LICS 10 showed that policy iteration for
games can be exponential.
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Intersection of 10 affine tropical hyperplanes in dimension
3, only 24 vertices, but 1215 pseudo-vertices.

Tropical double description Allamigeon, SG, Goubault.
Efficient implementation in TPLib/caml by Allamigeon.
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Concluding remarks

Tropical algebra ∼ discrete version of Weak KAM

Tropical convex cones arises when considering spaces of weak
KAM solutions (1-player), or sub/super solutions.

Combinatorial properties in the discrete case (lenghts of periodic
orbits)

Thinking tropical brings “complex” perspective on Lax-Oleinik
semigroups (not just one eigenvalue)

Relation between ergodic problem and optimal assignment
appears in the discrete case (the eigenvalues are
nondifferentiability points of an optimal assignment problem), is
there a PDE analogue (relation with mass transport problem)?

Tropical algebra is fun!

Thank you
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