Tropical methods for ergodic control and zero-sum games

Minilecture, Part III

Stephane.Gaubert@inria.fr

INRIA and CMAP, École Polytechnique
Dynamical Optimization in PDE and Geometry
Applications to Hamilton-Jacobi
Ergodic Optimization, Weak KAM
Université Bordeaux 1, December 12-21 2011

Today

Spectral theory

Algorithmic aspects

The max-plus spectral problem

Given $A=\left(A_{i j}\right) \in(\mathbb{R} \cup\{-\infty\})^{n \times n}$, find
$v \in \mathbb{R} \cup\{-\infty\}^{n}, v \not \equiv-\infty, \lambda \in \mathbb{R}$, such that

$$
\max _{j} A_{i j}+v_{j}=\lambda+v_{i}
$$

$$
" A v=\lambda v "
$$

Among the oldest max-plus results.
Goes back to Cuninghame-Green 61, Vorobyev, Romanovski, Gondran and Minoux 77, Cohen, Dubois, Quadrat 83, ...Some references in Akian, SG, Bapat: Handbook of linear algebra (finite dim) and Max-plus Martin boundary / discrete spectral theory (infinite dim).

Interpretation: dynamic programming, one player

Set of nodes $[d]:=\{1, \ldots, d\}$, arc (i, j) with weight $A_{i j}$

$$
A_{i j}^{k}=\sum_{m_{1}, \ldots, m_{k-1} \in[d]} A_{i m_{1}} A_{m_{1} m_{2}} \cdots A_{m_{k-1} j}
$$

Interpretation: dynamic programming, one player

Set of nodes $[d]:=\{1, \ldots, d\}$, arc (i, j) with weight $A_{i j}$

$$
A_{i j}^{k}=\max _{m_{1}, \ldots, m_{k-1} \in[d]} A_{i m_{1}}+A_{m_{1} m_{2}}+\cdots+A_{m_{k-1} j}
$$

Interpretation: dynamic programming, one player

Set of nodes $[d]:=\{1, \ldots, d\}$, arc (i, j) with weight $A_{i j}$

$$
\begin{aligned}
A_{i j}^{k} & =\max _{m_{1}, \ldots, m_{k-1} \in[d]} A_{i m_{1}}+A_{m_{1} m_{2}}+\cdots+A_{m_{k-1} j} \\
& =\text { max weight path } i \rightarrow j \text { length } k
\end{aligned}
$$

Crop rotation

$A_{i j}=$ reward of the year if crop j follows crop i $\mathrm{F}=$ fallow (no crop), $\mathrm{W}=$ wheat, $\mathrm{O}=$ oat,

$$
\left(A^{k} v\right)_{i}=\sum_{j \in[d]} A_{i j}^{k} v_{j}
$$

Crop rotation

$A_{i j}=$ reward of the year if crop j follows crop i $\mathrm{F}=$ fallow (no crop), $\mathrm{W}=$ wheat, $\mathrm{O}=$ oat,

$$
\left(A^{k} v\right)_{i}=\max _{j \in[d]} A_{i j}^{k}+v_{j}
$$

Crop rotation

$A_{i j}=$ reward of the year if crop j follows crop i
$\mathrm{F}=$ fallow (no crop), $\mathrm{W}=$ wheat, $\mathrm{O}=$ oat,

$$
\left(A^{k} v\right)_{i}=\max _{j \in[d]} A_{i j}^{k}+v_{j}
$$

$=$ reward in k years, init. crop $i ; v_{j}$ term. reward

Eigenvector

Find $v \in \mathbb{R}_{\text {max }}^{d}, v \not \equiv 0, \lambda \in \mathbb{R}_{\text {max }}$, such that

$$
A v=\lambda v
$$

$$
A^{k} v=\lambda^{k} v
$$

Eigenvector

Find $v \in \mathbb{R}_{\text {max }}^{d}, v \not \equiv-\infty, \lambda \in \mathbb{R}_{\text {max }}$, such that

$$
\begin{gathered}
\max _{j \in[d]} A_{i j}+v_{j}=\lambda+v_{i} \\
A^{k} v=k \lambda+v
\end{gathered}
$$

Theorem (Max-plus spectral theorem, Cuninghame-Green, 61, Gondran \& Minoux 77, Cohen et al. 83)
Assume $G(A)$ is strongly connected. Then

- the eigenvalue is unique:

$$
\rho_{\max }(A):=\max _{i_{1}, \ldots, i_{k}} \frac{A_{i_{1} i_{2}}+\cdots+A_{i_{k} i_{1}}}{k}
$$

- Assume WLOG $\rho_{\max }(A)=0$, then, $\exists \alpha_{i} \in \mathbb{R} \cup\{-\infty\}$,

$$
u=\max _{j \in \text { maximizing circuits }} \alpha_{j}+A_{\cdot, j}^{*}
$$

$A_{i j}^{*}:=$ max weight path arbitrary length $i \rightarrow j$.

- " $A^{N+c}=\rho_{\max }(A)^{c} A^{N ", ~ \exists N, c}$

Theorem (Max-plus spectral theorem, Cuninghame-Green, 61, Gondran \& Minoux 77, Cohen et al. 83)
Assume $G(A)$ is strongly connected. Then

- the eigenvalue is unique:

$$
\rho_{\max }(A):=\max _{i_{1}, \ldots, i_{k}} \frac{A_{i_{1} i_{2}}+\cdots+A_{i_{k} i_{1}}}{k}
$$

- Assume WLOG $\rho_{\max }(A)=0$, then, $\exists \alpha_{i} \in \mathbb{R} \cup\{-\infty\}$,

$$
u=\max _{j \in \text { maximizing circuits }} \alpha_{j}+A_{\cdot, j}^{*}
$$

$A_{i j}^{*}:=\max$ weight path arbitrary length $i \rightarrow j$.

- $A^{N+c}=c \rho_{\max }(A)+A^{N}, \exists N, c$

The dual linear problem of

$$
\min \lambda, A_{i j}+v_{j} \leq \lambda+u_{i} \quad \forall i, j
$$

is
$\rho(A)=\max _{x} \sum_{i j} A_{i j} x_{i j}, x_{i j} \geq 0, \sum_{j} x_{i j}=\sum_{j} x_{j i}, \sum_{i j} x_{i j}=1$
The extreme points of the polytope of circulations are uniform measures supported by elementary circuits.
Complementary slackness shows that v, λ, x optimal iff $x_{i j}\left(\lambda+u_{i}-A_{i j}-v_{j}\right)$
Discrete version of maximizing measures.

$\mathrm{F}=$ fallow (no crop), $\mathrm{W}=$ wheat, $\mathrm{O}=$ oat, $\rho_{\max }(A)=20 / 3$
N. Bacaer, C.R. Acad. d'Agriculture de France, 03

$\mathrm{F}=$ fallow (no crop), $\mathrm{W}=$ wheat, $\mathrm{O}=$ oat, $\rho_{\max }(A)=20 / 3$
N. Bacaer, C.R. Acad. d'Agriculture de France, 03

$\mathrm{F}=$ fallow (no crop), $\mathrm{W}=$ wheat, $\mathrm{O}=$ oat, $\rho_{\max }(A)=20 / 3$
Actually, Bacaer showed that a memory of two years is needed to recover the different historical rotations

The critical graph $G^{c}(A)$ is the union of the maximizing circuits (analogue of Mather and Aubry sets - no difference between them in this discrete case).

Lemma

If i, j are in the same strongly connected component of the critical graph, then $A_{. j}^{*}$ and $A_{. j}^{*}$ are tropically proportional.

$$
\begin{gathered}
" A^{*} A^{*}=A^{* "} \\
\max _{k} A_{i k}^{*}+A_{k j}^{*}=A_{i j}^{*}
\end{gathered}
$$

i, j in the same component means $A_{i j}^{*}+A_{j i}^{*}=0$.

$$
A_{k j}^{*} \geq A_{k i}^{*}+A_{i j}^{*} \geq A_{k j}^{*}+A_{j i}^{*}+A_{i j}^{*}=A_{k j}^{*}
$$

A vector $u \in C$ is extreme if $u=\sup (v, w), v, w \in C$ implies $u=v$ or $u=w$. I.e.,
$u \in[v, w], v, w \in C \Longrightarrow u=v$ or $u=w$.
Theorem (Tropical Minkowski-Carathéodory, SG, Katz LAA07; Butkovič, Sergeev, Schneider LAA07; infinite dim Choquet Poncet thesis 11)
Every element of a closed tropical convex set of $\mathbb{R}_{\max }^{n}$ is the tropical convex combination of at most n extreme points.

Proof.

$$
S_{i}(u)=\left\{x \in C|x \leq u| x_{i}=u_{i}\right\}
$$

$\operatorname{Extr} C=\cup_{i} \operatorname{Min} S_{i}$

Proposition

Every $A_{. j}^{*}, j \in G^{c}(A)$ is extreme in the tropical cone $\{v \mid A v=\lambda v\}$.

Cyclicity

WLOG: $\rho(A)=0$.
The smallest c such that $A^{N+c}=A^{N}$ for some N (cylicity) is

$$
c=\operatorname{lcm}\left(\operatorname{cyc}\left(K_{1}\right), \ldots, \operatorname{cyc}\left(K_{s}\right)\right)
$$

where K_{1}, \ldots, K_{s} are the strongly connected components of the critical graph, and the cyclicity of a strongly connected component is the gcd of the lengths of its circuits.

Cohen, Dubois, Quadrat, Viot 83, Nussbaum 88
Give example at the blackboard.

- If T is a nonexpansive mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to a polyhedral norm, and if T has bounded orbits, then, any orbit converges to a periodic orbit of length bounded by a function of n and of the number of facets of the ball. Weller, Sine, Nussbaum, Verdyun-Lunel, Scheutzow, Lemmens,
- If T is a Shapley operator (order preserving, additively homogeneous) and convex ($=1$ player), possible orbits lengths are the orders of permutations Akian, SG 03.
- If T is a Shapley operator (2-player), the optimal bound on the length is $\binom{n}{\lfloor n / 2\rfloor}$, the size of a maximal antichain in $\{0,1\}^{n}$: Lemmens and Scheutzow, Ergodic Th. and Dyn. Sys.
- If T is sup-norm nonexpansive, Nussbaum conjectured the optimal length to be 2^{n}.

Spectral projector

WLOG $\rho(A)=1, c=1$.

$$
\begin{gathered}
A^{N}=A^{N+1}=\cdots=P, \quad P=P^{2}, \quad A P=P A \\
P_{i j}=\sup _{k} A_{i k}^{*}+A_{k j}^{*}
\end{gathered}
$$

$=$ Turnpike theorem (every long path goes through a maximizing circuit).

Let K denote the set of critical nodes, $E=\{u \mid A u=u\}$. The restriction $u \mapsto\left(u_{i}\right)_{i \in K}$ (trace on the projected Aubry set) is an isomorphism, with image

$$
\left\{v \in \mathbb{R}^{K} \mid v_{i}-v_{j} \geq A_{i j}^{*}, \quad \forall i, j \in K\right\}
$$

$=$ Space of Lipschitz functions for the metric $-A^{*}$

Note all the tropical convex sets are images of linear projectors. The images of linear projectors arise precisely in this way.

For a Shapley operator (2 player), the tropical convex set $\{u \mid u \leq T(u)\}$ is a polyhedral complex Develin, Sturmfels Doc. Math. 04. Every cell of this complex corresponds to a strategy, and is the image of a linear projector.

The representation of the eigenspace carries over to the infinite dimensional setting.

- Generalizations to kernels appeared in works of Nussbaum and Mallet-Parret, under quasi-compactness conditions (essential spectral radius)
(2) the existence of a continuous eigenvector is in general a difficult problem.
- Lax-Oleinik semigroups treated in book by Maslov and Kolokoltsov, Kluwer 97 (typically when the projected Aubry set is finite). Spectral projector written in this context. WKB asymptotics.

Here: abstract boundary theory

Martin boundary, discrete case (Dynkin)

Given $P_{x y}$ Markov kernel, over a discrete infinite set E, find all nonnegative harmonic functions: $u=P u$.

1) Define the Green kernel: $G=P^{0}+P+P^{2}+\cdots$
2) The Martin kernel is:

$$
K_{x y}=\frac{G_{x y}}{G_{b y}}
$$

where $b \in E$ is a basepoint.
3) Let $\mathcal{K}:=\left\{K_{\cdot y} \mid y \in E\right\}$
4) The Martin space \mathcal{M} is the closure of \mathcal{K} in the product topology.
5) The Martin boundary is $\mathcal{B}:=\mathcal{M} \backslash \mathcal{K}$.

Theorem (classical Martin representation)

Every harmonic function u can be written as a positive linear combination of functions from the boundary:

$$
u=\int_{\mathcal{B}} w \mu(d w)
$$

μ can be choosen to be supported by a subset of \mathcal{B}, the minimal Martin boundary. (We recognise Choquet's theorem!).
Computing the probabilistic Martin boundary is difficult, eg. Ney and Spitzer 65 , boundary of random walk in \mathbb{Z}^{2} is the circle, computing the tropical analogue is much easier!

The max-plus Martin boundary

Akian, SG, Walsh, CDC06, Doc. Math. 09 (Semigroup version), Ishii, Mitake 07 (PDE version).
Consider the eigenproblem over an arbitrary state space S

$$
u_{x}=\sup _{y \in S} A_{x y}+u_{y}, \quad \forall x \in S
$$

The Martin kernel reads: $K_{x y}=A_{x y}^{*}-A_{b y}^{*}$. The Martin space \mathcal{M} is the closure of $\mathcal{K}:=\left\{K_{\cdot, y} \mid y \in S\right\}$ in the product topology (compact, Tychonoff). Martin boundary (set of horofunctions) is $\mathcal{B}=\mathcal{M} \backslash \mathcal{K}$.
When $A_{x, y}^{*}=-d(x, y)$ is the opposite of a metric, recover the construction of the horoboundary by Gromov.

The detour metric

$$
\begin{gathered}
A^{*}=" I+A^{+"}, \quad A^{+}=" A+A^{2}+A^{3}+\ldots " \\
A_{x y}^{+}=\sup \left(A_{x y}, A_{x y}^{2}, A_{x y}^{3}, \ldots\right) \\
H_{x y}^{b}=A_{b x}^{+}+A_{x y}^{+}-A_{b y}^{+} \quad \text { detour penalty }
\end{gathered}
$$

Extend H^{b} to the whole Martin space

$$
H^{b}(u, v)=\limsup _{x_{d} \rightarrow u} \liminf _{y_{e} \rightarrow v} H_{x_{d}, y_{e}}^{b}
$$

where the limsup,inf are taken along nets x_{d} and y_{e} converging to u and v in the topology of the Martin space.

The Minimal Martin space is
$\mathcal{M}^{m}:=\left\{w \in \mathcal{M} \mid H^{b}(w, w)=0\right\}$.
Theorem (Max-plus Martin representation Akian, SG, Walsh, CDC06, Doc. Math. 09)
\mathcal{M}^{m} is the set of extreme elements of $\{u \mid A u=u\}$. Any such u can be written as

$$
\begin{gathered}
u=\sup _{w \in \mathcal{M}_{m}} w+\mu(w), \quad \mu: \mathcal{M}_{m} \rightarrow \mathbb{R} \cup\{-\infty\} \quad \text { scs } \\
\mu_{u}(w):=\limsup _{x_{d} \rightarrow w} A_{b x_{d}}^{*}+u\left(x_{d}\right)
\end{gathered}
$$

Analogous to max-plus integral representations by Fathi, Siconolfi, Contreras, Ishii, Mitake, in different settings.

If the Martin space is metrisable, then \mathcal{M}_{m} is precisely the set of Busemann points $=$ limits of quasi-geodesics, i.e. of sequences x_{1}, x_{2}, \ldots such that there exists $\alpha \in \mathbb{R}$

$$
A_{b x_{k}}^{*} \leq A_{b x_{1}}^{*}+A_{x_{1} x_{2}}+\cdots+A_{x_{k-1} x_{k}}+\alpha, \quad \forall k
$$

Quasi geodesics correspond to almost-sure trajectories of the renormalized H-process of Dynkin.

Lax-Oleinik (continuous time) version in CDC06.

Linear quadratic control - nonquadratic solutions

Hamilton-Jacobi equation

$$
\lambda=-|\mathbf{x}|^{2}+\frac{1}{4}|\nabla w|^{2}
$$

Maximise reward:

$$
-\int_{0}^{T}\left(|\gamma(t)|^{2}+|\dot{\gamma}(t)|^{2}+\lambda\right) d t
$$

If $\lambda>0$, solutions are

$$
w(\mathbf{x})=\sup _{\mathbf{n}}\left(\nu(\mathbf{n})+h_{\mathbf{n}}(\mathbf{x})\right),
$$

where ν is an upper semi-continuous map from the unit vectors to $\mathbb{R} \cup\{-\infty\}$.

When $\lambda=0$, there is a horofunction for each direction \mathbf{n} :

$$
h_{\mathbf{n}}(\mathbf{x})= \begin{cases}-|\mathbf{x}|^{2}+2(\mathbf{x} \cdot \mathbf{n})^{2}, & \text { if } \mathbf{x} \cdot \mathbf{n}>0 \\ -|\mathbf{x}|^{2}, & \text { otherwise }\end{cases}
$$

The function $-|\mathbf{x}|^{2}$ is also a horofunction.

Horospheres of h_{n} with $n=(0,1)$.

When $\lambda>0$: for each direction \mathbf{n},

$$
h_{\mathbf{n}}(\mathbf{x})=-\lambda \frac{|\mathbf{x}|^{2}}{R^{2}}+\mathbf{x} \cdot \mathbf{n} \frac{\lambda+2|\mathbf{x}|^{2}}{R}-\lambda \log \frac{R}{\sqrt{\lambda}}
$$

where $R:=\sqrt{(\mathbf{x} \cdot \mathbf{n})^{2}+\lambda}-\mathbf{x} \cdot \mathbf{n}$.

Back to finite dimension.

The max-plus spectral problem as a limit of the Perron-Frobenius problem

Deformation of the Perron root

Chain of spins (Ising)

$$
\begin{aligned}
& Z=\sum_{\sigma_{1}, \ldots, \sigma_{n} \in \Sigma^{N}} \exp \left(-\sum_{i=1}^{N} E\left(\sigma_{i}, \sigma_{i+1}\right) / T\right), \quad \sigma_{N+1}:=\sigma_{1} \\
& -E\left(\sigma, \sigma^{\prime}\right)=H \sigma+J \sigma \sigma^{\prime}, \sigma, \sigma^{\prime} \in\{ \pm 1\} \text { (Ising) } \\
& \quad Z_{N}=\operatorname{tr} M_{T}^{N}, \quad\left(M_{T}\right)_{\sigma \sigma^{\prime}}=\exp \left(-E\left(\sigma, \sigma^{\prime}\right) / T\right)
\end{aligned}
$$

$F_{N}=N^{-1} T \log Z_{N} \sim T \log \rho\left(M_{T}\right) \quad$ free energy per site, $T \rightarrow 0$, ground state

$$
\epsilon:=\exp (-1 / T), \quad\left(M_{T}\right)_{\sigma, \sigma^{\prime}}=\epsilon^{E\left(\sigma, \sigma^{\prime}\right)}
$$

Similar to perturbation problems, but now, the "Puiseux series" have real exponents (Dirichlet series).

Kingman 61:

$$
\log \circ \rho \circ \exp \quad \text { convex [entrywise exp] }
$$

Let $A, B \geq 0$, and $C=A^{(s)} \circ B^{(t)}$, with
$s+t=1, s, t \geq 0$ [entrywise product and exponent] then

$$
\rho(C) \leq \rho(A)^{s} \rho(B)^{t}
$$

Indeed, $\log \rho(C)=\lim _{m} \log \left\|C^{m}\right\| / m$ is a pointwise limit of convex functions of $\left(\log C_{i j}\right)$, for any monotone norm.

So

$$
\begin{gathered}
\rho(A \circ B) \leq \rho\left(A^{(p)}\right)^{1 / p} \rho\left(B^{(q)}\right)^{1 / q} \quad 1 / p+1 / q=1 \\
\rho\left(B^{(q)}\right)^{1 / q} \rightarrow \max _{i_{1}, \ldots, i_{m}}\left(B_{i_{1} i_{2}} \cdots B_{i_{m-1} i_{m}}\right)^{1 / m}=: \rho_{\infty}(B)
\end{gathered}
$$

Theorem (Friedland 86)
For all $A \in \mathbb{C}^{n \times n}$,

$$
\rho(A) \leq \rho(\operatorname{pattern}(A)) \rho_{\infty}(|A|) \leq n \rho_{\infty}(|A|)
$$

and

$$
\rho(A) \geq \rho_{\infty}(A) \quad \text { if } A_{i j} \geq 0
$$

Explanation: approximation of an amoeba by its skeletton $V \subset\left(\mathbb{C}^{*}\right)^{n}, A(V)=\left\{\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right) \mid x \in V\right\}$.
$y=x+1$

Cf. Gelfand, Kapranov, Zelevinsky; Passare, Rüllgaard; Purbhoo; Yger.

Limit of the Perron eigenvector. Consider $A^{(p)}=\left(A_{i j}^{p}\right)$, and let $U(p)$ denote the normalized Perron eigenvector of $A^{(p)}$.
Taking $p^{-1} \log /$ passing in the limit in

$$
\lambda(p) U_{i}^{p}(p)=\sum_{j} A_{i j}^{p} U_{j}^{p}
$$

we get that

$$
\lambda+u_{i}=\max _{j} \log A_{i j}+u_{j}
$$

where λ and u_{j} are accumulation points of $p^{-1} \log \lambda(p)$, $\log U_{j}(p)$, resp.
Which tropical eigenvector is selected?

WLOG $\lambda=\log \rho_{\infty}(A)=0$.
Theorem (Akian, Bapat, SG CRAS 1998)
If there is only one SCC of the critical graph with maximal Perron root, then $u_{i}=(\log A)_{i j}^{*}$, for any j in this class.

Related work by Lopes, Mohr, Souza, Thieullen. Give example at the blackboard.

Proof idea. Make diagonal scaling

$$
B(p)=\operatorname{diag}(\exp (-p u)) A^{p} \operatorname{diag}(\exp (p u))
$$

The matrix $B(p)$ has a limit in $[0,1]^{n \times n}$ as $p \rightarrow \infty$. We want $B(\infty)$ to have a positive eigenvector. A nonnegative matrix has a positive eigenvector iff the basic classes are exactly the final classes.
For the choice of eigenvector $u=(\log A)_{\cdot j}^{*}$, this is the case, because the saturation graph

$$
\left\{(k, I) \mid \log A_{k l}+u_{l}=u_{k}\right\}
$$

is a river network with sea $\operatorname{SCC}(j)$. Make drawing.

An application: perturbation of eigenvalues

Exercise.

$$
\mathcal{A}_{\varepsilon}=\left[\begin{array}{ccc}
\varepsilon & 1 & \varepsilon^{4} \\
0 & \varepsilon & \varepsilon^{-2} \\
\varepsilon & \varepsilon^{2} & 0
\end{array}\right]
$$

An application: perturbation of eigenvalues

Exercise.

$$
\mathcal{A}_{\varepsilon}=\left[\begin{array}{ccc}
\varepsilon & 1 & \varepsilon^{4} \\
0 & \varepsilon & \varepsilon^{-2} \\
\varepsilon & \varepsilon^{2} & 0
\end{array}\right]
$$

Show without computation that the eigenvalues have the following asymptotics as $\epsilon \rightarrow 0$

$$
\mathcal{L}_{\varepsilon}^{1} \sim \varepsilon^{-1 / 3}, \mathcal{L}_{\varepsilon}^{2} \sim j \varepsilon^{-1 / 3}, \mathcal{L}_{\varepsilon}^{3} \sim j^{2} \varepsilon^{-1 / 3}
$$

$$
\mathcal{A}_{\varepsilon}=\left[\begin{array}{ccc}
\varepsilon & 1 & \varepsilon^{4} \\
0 & \varepsilon & \varepsilon^{-2} \\
\varepsilon & \varepsilon^{2} & 0
\end{array}\right], \quad A=\left[\begin{array}{ccc}
1 & 0 & 4 \\
\infty & 1 & -2 \\
1 & 2 & \infty
\end{array}\right]
$$

We have $\gamma_{1}=-1 / 3$, corresponding to the critical circuit:

Eigenvalues:

$$
\mathcal{L}_{\varepsilon}^{1} \sim \varepsilon^{-1 / 3}, \mathcal{L}_{\varepsilon}^{2} \sim j \varepsilon^{-1 / 3}, \mathcal{L}_{\varepsilon}^{3} \sim j^{2} \varepsilon^{-1 / 3}
$$

Assume that the entries of $\mathcal{A}_{\varepsilon}$ have Puiseux series expansions in ϵ, or even that $\mathcal{A}_{\varepsilon}=a+\epsilon b, a, b \in \mathbb{C}^{n \times n}$.
$\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ eigenvalues of $\mathcal{A}_{\varepsilon}$.
$v(s)$: opposite of the smallest exponent of a Puiseux series s.
$\gamma_{1} \geq \cdots \geq \gamma_{n}$: tropical eigenvalues of $v\left(A_{\epsilon}\right)$.
Theorem (Akian, Bapat, SG CRAS04, arXiv:0402090)

$$
v\left(\mathcal{L}_{1}\right)+\cdots+v\left(\mathcal{L}_{n}\right) \leq \gamma_{1}+\cdots+\gamma_{n}
$$

and equality holds under generic (Lidski-type) conditions.

The maximal tropical eigenvalue γ_{1} coincides with the ergodic constant of the one-player game

$$
\lambda+u_{i}=\max _{1 \leq j \leq n}\left(\operatorname{val}\left(A_{\epsilon}\right)_{i j}+u_{j}\right), \forall i
$$

λ is the maximal circuit mean.

In general, tropical eigenvalues are non-differentiability points of a parametric optimal assignment problem $=$ Legendre transform a the generic Newton polygon

The (algebraic) tropical eigenvalues of a matrix $A \in \mathbb{R}_{\max }^{n \times n}$ are the roots of

$$
" \operatorname{per}(A+x I) "
$$

where

$$
" \operatorname{per}(M) ":=" \sum_{\sigma \in S_{n}} \prod_{i \in[n]} M_{i \sigma(i)} "
$$

(2) All geom. eigenvalues λ (" $A u=\lambda u$ ") are algebraic eigenvalues, but the converse does not hold. $\rho_{\mid \max }(A)$ is the max algebraic eigenvalue.

The (algebraic) tropical eigenvalues of a matrix $A \in \mathbb{R}_{\max }^{n \times n}$ are the roots of

$$
" \operatorname{per}(A+x I) "
$$

where

$$
" \operatorname{per}(M) ":=\max _{\sigma \in S_{n}} \sum_{i \in[n]} M_{i \sigma(i)}
$$

(2) All geom. eigenvalues λ (" $A u=\lambda u$ ") are algebraic eigenvalues, but the converse does not hold. $\rho_{\mid \max }(A)$ is the max algebraic eigenvalue.

- Trop. eigs. can be computed in $O(n)$ calls to an optimal assignment solver (Butkovič and Burkard) (not known whether the formal characteristic polynomial can be computed in polynomial time).

Theorem (Kapranov)
If $f(z)=\sum_{k} f_{k} z^{k} \in \mathbb{C}\{\{\epsilon\}\}\left[z_{1}, \ldots, z_{n}\right]$, the closure of the image of $f=0$ by v is the set of points $x \in \mathbb{R}^{n}$ at which the maximum

$$
\max _{k} v\left(f_{k}\right)+\langle k, x\rangle
$$

is attained at least twice.
Follows from Puiseux theorem when $n=1$. Inclusion \subset obvious. Converse: reduction to Puiseux.

When $n=1$: the set of tropical roots is a zero-dimensional amoeba

Example. $y=x+1, K=\mathbb{C}\{\{\epsilon\}\}$

Algorithms for games

$$
\begin{gathered}
H_{i}: \max _{1 \leq j \leq n} a_{i j}+x_{j} \leq \max _{1 \leq k \leq n} b_{i k}+x_{k} \\
{[T(x)]_{j}=\inf _{i \in I}-a_{i j}+\max _{1 \leq k \leq n} b_{i k}+x_{k} .}
\end{gathered}
$$

Interpretation of the game

- State of MIN: variable $x_{j}, j \in\{1, \ldots, n\}$
- State of MAX: half-space $H_{i}, i \in I$
- In state x_{j}, Player MIN chooses a tropical half-space H_{i} with x_{j} in the LHS
- In state H_{i}, player MAX chooses a variable x_{k} at the RHS of H_{i}
- Payment $-a_{i j}+b_{i k}$.

$$
A=\left(\begin{array}{cc}
2 & -\infty \\
8 & -\infty \\
-\infty & 0
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & -\infty \\
-3 & -12 \\
-9 & 5
\end{array}\right)
$$

Proposition

If T is nonexpansive and piecewise affine $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, the discounted value $v_{\alpha}=T\left(\alpha v_{\alpha}\right)$ has a Laurent series expansion

$$
v_{\alpha}=\frac{a_{-1}}{1-\alpha}+a_{0}+(1-\alpha) a_{1}+\ldots, a_{i} \in \mathbb{R}^{n}
$$

This is the case for a stochastic game with perfect information and finite action spaces.

Then

$$
\chi(T)=\lim _{k} T^{k}(0) / k=a_{-1} .
$$

- Strategy of MAX $\sigma:\left\{H_{1}, \ldots, H_{m}\right\} \rightarrow\left\{x_{1}, \ldots, x_{n}\right\}$, in state H_{i} choose coordinate $x_{\sigma(i)}$

Duality theorem (coro of Kohlberg) If finite action spaces, then

$$
\chi(T)=\max _{\sigma} \chi\left(T^{\sigma}\right)=\min _{\pi} \chi\left(T_{\pi}\right)
$$

- Strategy of MAX $\sigma:\left\{H_{1}, \ldots, H_{m}\right\} \rightarrow\left\{x_{1}, \ldots, x_{n}\right\}$, in state H_{i} choose coordinate $x_{\sigma(i)}$
- Strategy of MIN $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$, in state x_{j} choose hyperplane $H_{\pi(j)}$

Duality theorem (coro of Kohlberg) If finite action spaces, then

$$
\chi(T)=\max _{\sigma} \chi\left(T^{\sigma}\right)=\min _{\pi} \chi\left(T_{\pi}\right)
$$

- Strategy of MAX $\sigma:\left\{H_{1}, \ldots, H_{m}\right\} \rightarrow\left\{x_{1}, \ldots, x_{n}\right\}$, in state H_{i} choose coordinate $x_{\sigma(i)}$
- Strategy of MIN $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$, in state x_{j} choose hyperplane $H_{\pi(j)}$
- One player Shapley operators

$$
\begin{aligned}
& {\left[T^{\sigma}(x)\right]_{j}=\inf _{1 \leq i \leq m}-a_{i j}+b_{i \sigma(i)}+x_{\sigma(i)} .} \\
& {\left[T_{\pi}(x)\right]_{j}=-a_{\pi(j) j}+\max _{1 \leq k \leq n} b_{\pi(j) k}+x_{k} .}
\end{aligned}
$$

Duality theorem (coro of Kohlberg) If finite action spaces, then

$$
\chi(T)=\max _{\sigma} \chi\left(T^{\sigma}\right)=\min _{\pi} \chi\left(T_{\pi}\right)
$$

- Strategy of MAX $\sigma:\left\{H_{1}, \ldots, H_{m}\right\} \rightarrow\left\{x_{1}, \ldots, x_{n}\right\}$, in state H_{i} choose coordinate $x_{\sigma(i)}$
- Strategy of MIN $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$, in state x_{j} choose hyperplane $H_{\pi(j)}$
- One player Shapley operators

$$
\begin{aligned}
& {\left[T^{\sigma}(x)\right]_{j}=\inf _{1 \leq i \leq m}-a_{i j}+b_{i \sigma(i)}+x_{\sigma(i)} .} \\
& {\left[T_{\pi}(x)\right]_{j}=-a_{\pi(j) j}+\max _{1 \leq k \leq n} b_{\pi(j) k}+x_{k} .}
\end{aligned}
$$

Duality theorem (coro of Kohlberg) If finite action spaces, then

$$
\chi(T)=\max _{\sigma} \chi\left(T^{\sigma}\right)=\min _{\pi} \chi\left(T_{\pi}\right) .
$$

Every $\chi\left(T^{\sigma}\right)$ and $\chi\left(T_{\pi}\right)$ can be computed in polynomial time.

Proof: Blackwell optimality

For all $x \in \mathbb{R}^{n}$, we have a selection

$$
\exists \sigma, \pi, \quad T(x)=T^{\sigma}(x)=T_{\pi}(x)
$$

So for all $0<\alpha<1$, the discounted value $v_{\alpha}=T\left(\alpha v_{\alpha}\right)$ satsifies

$$
v_{\alpha}(T)=\max _{\sigma} v_{\alpha}\left(T^{\sigma}\right)=\min _{\pi} v_{\alpha}\left(T_{\pi}\right) .
$$

Since χ is the first coefficient of the Laurent series

$$
\chi(T)=\max _{\sigma} \chi\left(T^{\sigma}\right)=\min _{\pi} \chi\left(T_{\pi}\right)
$$

σ, π are Blackwell optimal if optimal for all $\alpha \in(\bar{\alpha}, 1)$ (exist because the zeros of a Laurent series cant accumulate at 1^{-}).

Corollary (Condon 92, Zwick and Paterson, TCS 96) Mean payoff games are in NP \cap co-NP.

- I can convince you that $\chi_{i}(T) \geq 0$ (initial state i is winning) by giving you a strategy σ of MAX such that $\chi_{i}\left(T^{\sigma}\right) \geq 0$. You can check that in polynomial time by solving a one player game.
- I can convince you that the opposite is true by giving you a strategy π of MIN such that $\chi_{i}\left(T_{\pi}\right)<0$. You can also check this in polynomial time.

The class NP \cap co-NP captures the good characterizations of Edmonds. Evidence that the problem is not NP-complete.

- "Ax $\leq B x$ " unfeasible iff $\exists \pi, \bar{\chi}\left(T_{\pi}\right)<0$.
- " $A x \leq B x$ " unfeasible iff $\exists \pi, \bar{\chi}\left(T_{\pi}\right)<0$.
- " $A x \leq B x$ " feasible iff $\exists \sigma, \bar{\chi}\left(T^{\sigma}\right) \geq 0$.
- " $A x \leq B x$ " unfeasible iff $\exists \pi, \bar{\chi}\left(T_{\pi}\right)<0$.
- " $A x \leq B x$ " feasible iff $\exists \sigma, \bar{\chi}\left(T^{\sigma}\right) \geq 0$.
- $\exists x \in \mathbb{R}_{\text {max }}^{n}, A x \leq B x$? is in NP \cap co-NP

Corollary

Feasibiliby in tropical linear programming, i.e.,
$\exists ? u \in(\mathbb{R} \cup\{-\infty\})^{n}, \max _{j} a_{i j}+u_{j} \leq \max _{j} b_{i j}+u_{j}, 1 \leq i \leq p$
is polynomial-time equivalent to mean payoff games.
are in NP \cap coNP: Zwick, Paterson 96.
Tropical convex sets are log-limits of classical convex sets: polynomial time solvability of mean payoff games might follow from a strongly polynomial-time algorithm in linear programming (Schewe).

Several pseudo-polynomial algorithms exist for (deterministic) mean payoff games: Zwick, Paterson TCS96. No pseudo-polynomial algorithm seems to be known for stochastic mean payoff game. However, Policy iteration works (Cochet,SG 06), - based on a tropical idea $=$ spectral projectors - ; alternative algorithm by Boros, Gurvich, Elbassioni, Makino, ...

Policy iteration for games scales well in practice. \sharp iterations $/ \sharp$ nodes

However, Friedmann LICS 10 showed that policy iteration for games can be exponential.

Intersection of 10 affine tropical hyperplanes in dimension 3 , only 24 vertices, but 1215 pseudo-vertices.

Tropical double description Allamigeon, SG, Goubault. Efficient implementation in TPLib/caml by Allamigeon.

Concluding remarks

- Tropical algebra \sim discrete version of Weak KAM
- Tropical convex cones arises when considering spaces of weak KAM solutions (1-player), or sub/super solutions.
- Combinatorial properties in the discrete case (lenghts of periodic orbits)
- Thinking tropical brings "complex" perspective on Lax-Oleinik semigroups (not just one eigenvalue)
- Relation between ergodic problem and optimal assignment appears in the discrete case (the eigenvalues are nondifferentiability points of an optimal assignment problem), is there a PDE analogue (relation with mass transport problem)?
- Tropical algebra is fun!

Thank you

