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Abstract. We study Deraux’s non-arithmetic orbifold ball quotient surfaces obtained as
birational transformations of a quotient X of a particular Abelian surface A. Using the fact
that A is the Jacobian of the Bolza genus 2 curve, we identify X as the weighted projective
plane P(1, 3, 8). We compute the equation of the mirror M of the orbifold ball quotient
(X,M) and by taking the quotient by an involution, we obtain an orbifold ball quotient
surface with mirror birational to an interesting configuration of plane curves of degrees 1, 2
and 3. We also exhibit an arrangement of four conics in the plane which provides the above-
mentioned ball quotient orbifold surfaces.
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1. Introduction.

Chern numbers of smooth complex surfaces of general type X satisfy the Bogomolov-
Miyaoka-Yau inequality c21(X) ≤ 3c2(X). Surfaces for which the equality is reached are ball
quotient surfaces: there exists a cocompact torsion-free lattice Γ in the automorphism group
PU(2, 1) of the ball B2 such that X = B2/Γ. This description of ball quotient surfaces by
uniformisation is of transcendental nature, and in fact among ball-quotient surfaces, very few
are constructed geometrically (e.g. by taking cyclic covers of known surfaces or by explicit
equations of an embedding in a projective space).

Among lattices in PU(2, 1), only 22 commensurability classes are known to be non-arithmetic.
The first examples of such lattices were given by Mostow and Deligne-Mostow (see [22] and
[10]), and recently Deraux, Parker and Paupert [12, 13] constructed some more, sometimes
related to an earlier work of Couwenberg, Heckman and Looijenga [9].

Being rare and difficult to produce, these examples are particularly interesting and one
would like a geometric description of them. To do so, Deraux [14] studies the quotient of the
Abelian surface A = E × E, where E is the elliptic curve E = C/Z[i

√
2], by an order 48

automorphism group isomorphic to GL2(F3) that we will denote by G48. The ramification
locus of the quotient map A → A/G48 is the union of 12 elliptic curves and two orbits of
isolated fixed points. The images of these two orbits are singularities of type A2 and 1

8(1, 3),
respectively.

Then Deraux proves that (on some birational transforms) the 1-dimensional branch lo-
cus M48 of the quotient map A → A/G48 and the two singularities are the support of four
ball-quotient orbifold structures, three of these corresponding to non-arithmetic lattices in
PU(2, 1). Knowing the branch locus M48 is therefore important for these ball-quotient orb-
ifolds, since it gives an explicit geometric description of the uniformisation maps from the ball
to the surface.

Deraux also remarks in [14] that the invariants of A/G48 and its singularities are the same
as for the weighted projective plane P(1, 3, 8) and, in analogy with cases in [11] and [15] where
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weighted projective planes appear in the context of ball-quotient surfaces, he asks whether the
two surfaces are isomorphic.

In fact, the quotient A/G48 can also be seen as a quotient C2/G where G is an affine
crystallographic complex reflection group. The Chevalley Theorem assert that if G′ is a finite
reflection group acting on a space V then the quotient V/G′ is a weighted projective space.
Using theta functions, Bernstein and Schwarzman [2] observed that for many examples of
affine crystallographic complex reflection groups G acting on a space V , the quotient V/G is
a also weighted projective space. Kaneko, Tokunaga and Yoshida [20] worked out some other
cases, and it is believed that this analog of the Chevalley Theorem always happens (see [2],
[16, p. 17]), although no general method is known (see also the presentation of the problem
given by Deraux in [14], where more details can be found).

In this paper we prove that indeed:

Theorem A. The surface A/G48 is isomorphic to P(1, 3, 8).

We obtain this result by exploiting the fact that A is the Jacobian of a smooth genus 2
curve θ, a curve which was first studied by Bolza [5]. The automorphism group of the curve
θ induces the action of G48 on the Jacobian A. The main idea to obtain Theorem A is to
understand the image of the curve θ in A by the quotient map A→ A/G48 and to prove that
its strict transform in the minimal resolution is a (−1)-curve.

We then construct birational transformations of P(1, 3, 8) to P1 × P1, P2 and obtain the
equations of the images MP1×P1 , MP2 of the branch curve M48 in these surfaces (and also
M48 ⊂ P(1, 3, 8)). In particular:

Theorem B. In the projective plane, the mirror MP2 is the quartic curve

(x2 + xy + y2 − xz − yz)2 − 8xy(x+ y − z)2 = 0.

This curve has two smooth flex points and singular set a1 + 2a2 (where an ak singularity has
local equation y2 − xk+1 = 0). The line L0 through the two residual points of the flex lines
F1, F2 contains the node (by flex line we mean the tangent line to a flex point).

The curve MP2 with the two flex lines F1, F2 gives rise to the four orbifold ball-quotient
surfaces (previously described by Deraux [14]) on suitable birational transformations of the
plane. We prove that the configuration of curves described in Theorem B is unique up to
projective equivalence.

In [18], Hirzebruch constructed ball quotient surfaces using arrangements of lines and per-
forming Kummer coverings. It is a well-known question whether one can construct other ball
quotient surfaces using higher degree curves, the next case being arrangements of conics.

Let ϕ be the Cremona transformation of the plane centered at the three singularities of
MP2 . The image by ϕ of the curves MP2 , F1, F2, L0 described in Theorem B is a special
arrangement of four plane conics. We remark that by performing birational transforms of
P2 and by taking the images of the 4 conics, one can obtain the orbifold ball-quotients of
[14]. To our knowledge that gives the first example of orbifold ball quotients obtained from
a configuration of conics (ball quotient orbifolds obtained from a configuration of a conic and
three tangent lines are studied in [19] and [28]). However we do not know whether one can
obtain ball quotient surfaces by performing Kummer coverings branched at these conics.

When preparing this paper, we observed that the mirror MP1×P1 and one related orbifold
ball quotient surface among the four might be invariant by an order 2 automorphism. Using
the equation we have obtained for MP2 , we prove that this is actually the case: there is an
involution σ on P1×P1 with fixed point set a (1, 1)-curve Di such that the quotient surface is
P2, moreover the image of Di is a conic Co and the image of MP2 is the unique cuspidal cubic
curve Cu. In the last section we obtain and describe the following result:
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Theorem C. There is an orbifold ball-quotient structure on a surface W birational to P2 such
that the strict transforms on W of Co, Cu have weights 2,∞ respectively.

The paper is structured as follows:
In section 2, we recall some results of Deraux on the quotient surface A/G48 and introduce

some notation. In section 3, we study properties of the surface P(1, 3, 8). In section 4, we
introduce the Bolza curve θ and prove that A/G48 is isomorphic to P(1, 3, 8). Section 5 is
devoted to the equation of the mirrorMP2 . Moreover we describe the four conics configuration.
Section 6 deals with Theorem C.

Some of the proofs in sections 5 and 6 use the computational algebra system Magma,
version V2.24-5. A text file containing only the Magma code that appear below is available
as an auxiliary file on arXiv and at [25].

Along this paper we use intersection theory on normal surfaces as defined by Mumford in
[23, Section 2].
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2. Quotient of A by G48 and image of the mirrors

2.1. Properties of A/G48 and image of the mirrors. In this section, we collect some facts
from [14] about the action of the automorphism subgroup G48 on the Abelian surface

A := C2/(Z[i
√

2])2.

There exists a group G48 of order 48 acting on A which is isomorphic to GL2(F3) (see [14,
Section 3.1] for generators). The action of G48 on A has no global fixed points (in particular
some elements have a non-trivial translation part).

The group G48 contains 12 order 2 reflections, i.e. their linear parts acting on the tangent
space TA ' C2 are complex order 2 reflections. The fix point set of a reflection being usually
called a mirror, we similarly call the fixed point set of a reflection τ of G48 a mirror. The
mirror of such a τ is an elliptic curve on A. The group G48 acts transitively on the set of the
12 mirrors whose list can be found in [14, Table 1].

We denote by M the union of the mirrors in A and by M48 the image of M in the quotient
surface A/G48. The curve M48 is also called the mirror of A/G48.

Except the points on M , there are two orbits of points in A with non-trivial isotropy, one
with isotropy group of order 3 at each point, the other with isotropy group of order 8, see [14,
Proposition 4.4]. Correspondingly, the quotient A/G48 has two singular points, which are the
images of the two special orbits.

Proposition 1. The surface A/G48 is rational and its singularities are of type A2 + 1
8(1, 3).

The minimal resolution p : X48 → A/G48 of the surface A/G48 has invariants K2
X48

= 5 and
c2(X48) = 7.

Proof. Let us compute the invariants of X48. Let π : A → A/G48 be the quotient map. One
has

(2.1) OA = KA = π∗KA/G48
+M,



4 VINCENT KOZIARZ, CARLOS RITO, XAVIER ROULLEAU

moreover, according to [14, §4], each mirror Mi, i = 1, ..., 12, satisfies MiM = 24, therefore
M2 = 288 and

(KA/G48
)2 =

1

48
M2 = 6.

We observe that M = π∗
(
1
2M48

)
, thus by (2.1), one gets M48 = −2KA/G48

.
The singularities of the quotient surface A/G48 are computed in [14, Table 2]. Let C1, C2

be the two (−3)-curves above the singularity 1
8(1, 3); they are such that C1C2 = 1. Since the

singularity of type A2 is an ADE singularity, we obtain:

KX48 = p∗KA/G48
− 1

2
(C1 + C2)

and (KX48)2 = 5.
Let τ be a reflection in G48 and let G be the Klein group of order 4 generated by τ and

the involution [−1]A ∈ G48. One can check that the quotient surface A/G is rational. Being
dominated by the rational surface A/G, the surface A/G48 is also rational. Thus the second
Chern number is c2(X48) = 7 by Noether’s formula. �

The mirror M48 (the image of M by the quotient map) does not contain singularities of
A/G48, moreover:

Lemma 2. The pull-back M̃48 of the mirror M48 by the resolution map p : X48 → A/G48 has
self-intersection 24. Its singular set is

2a2 + a3 + a5,

where ak denotes a singularity with local equation y2 − xk+1 = 0.

Proof. The singularities of M̃48 = p∗M48 are the same as the singularities of M48 since M48

is in the smooth locus of A/G48. For the computation of the singularities of M48, we refer to
[14, Table 3], and for the self-intersection of M̃48 (which is the same as the one of M48) to [14,
§6.2].

�

3. The weighted projective space P(1, 3, 8).

Since we aim to prove that the quotient surface A/G48 is isomorphic to P(1, 3, 8), one first
has to study that weighted projective space: this is the goal of this (technical) section. The
reader might at first browse through the main results and notation and proceed to the next
section.

3.1. The surface P(1, 3, 8) and its minimal resolution. The weighted projective space
P(1, 3, 8) is the quotient of P2 by the group Z3 × Z8 generated by

σ =

 1 0 0
0 j 0
0 0 ζ

 ∈ PGL3(C),

where j2 + j + 1 = 0 and ζ is a primitive 8th root of unity. The fixed point set of the order 24
element σ is

p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1).

For i, j ∈ {1, 2, 3} with i 6= j let L′ij be the line through pi and pj . The fixed point set of an
order 3 element (e.g. σ8) is p2 and the line L′13. The fixed point set of an order 8 element
(e.g. σ3) and its non-trivial powers is p3 and the line L′12. Let π : P2 → P(1, 3, 8) be the
quotient map: π is ramified with order 3 over L′13 and with order 8 over L′12. The surface
P(1, 3, 8) has two singularities, images of p2 and p3, which are respectively a cusp A2 and a
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singularity of type 1
8(1, 3). We denote by p : Z → P(1, 3, 8) the minimal desingularization

map. The singularity of type 1
8(1, 3) is resolved by two rational curves C1, C2 with C1C2 = 1,

C2
1 = C2

2 = −3, and the singularity A2 is resolved by two rational curves C3, C4 with C3C4 = 1,
C2
3 = C2

4 = −2, (see e.g. [1, Chapter III]).

Lemma 3. The invariants of the resolution Z are

K2
Z = 5, c2(Z) = 7, pq = q = 0.

Proof. We have:
KP2 ≡ π∗KP(1,3,8) + 2L′13 + 7L′12,

therefore since KP2 ≡ −3L, we obtain π∗KP(1,3,8) ≡ −12L and

(KP(1,3,8))
2 =

(−12L)2

24
= 6.

We have

KZ ≡ p∗KP(1,3,8) −
4∑
i=1

aiCi

where the ai are rational numbers. The divisor KZ must satisfy the adjunction formula i.e.
one must have CiKZ = −2− C2

i for i ∈ {1, 2, 3, 4}. That gives:

KZ = p∗KP(1,3,8) −
1

2
(C1 + C2)

and therefore K2
Z = 5. For the Euler number, one may use the formula in [26, Lemma 3]:

e(P(1, 3, 8)) =
1

24
(3 + 2(2− 2) + 7(2− 2) + 23 · 3) = 3.

Thus e(Z) = e(P(1, 3, 8)) − 2 + 3 + 3 = 7. Since P(1, 3, 8) is dominated by P2, the surface Z
is rational, so that q = pg = 0. �

3.2. The branch curves in P(1, 3, 8) and their pullback in the resolution. Let Lij be
the image of the line L′ij on P(1, 3, 8) and let L̄ij be the strict transform of Lij in Z.

Proposition 4. We have:

L̄2
23 = −1, L̄23C1 = L̄23C3 = 1, L̄23C2 = L̄23C4 = 0,

L̄2
13 = 0, L̄13C2 = 1, L̄13C1 = L̄13C3 = L̄13C4 = 0,

L̄2
12 = 2, L̄12C4 = 1, L̄12C1 = L̄12C2 = L̄12C3 = 0.

Proof. On P(1, 3, 8) one has L2
23 = 1

24L
′2
23 = 1

24 . Recall that the resolution map is p : Z →
P(1, 3, 8). Let a1, . . . , a4 ∈ Q such that

L̄23 = p∗L23 −
4∑
i=1

aiCi,

then Cip∗L23 = 0 for i ∈ {1, 2, 3, 4}. Let ui ∈ N such that CiL̄23 = ui. One gets that(
a1
a2

)
=

1

8

(
3 1
1 3

)(
u1
u2

) (
a3
a4

)
=

1

3

(
2 1
1 2

)(
u3
u4

)
.

We have π∗KP(1,3,8) = −12L′23, thus

KP(1,3,8)L23 =
1

24
(−12L′23 · L′23) = −1

2
.
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Figure 3.1. Image of the lines L′ij in the desingularisation of P(1, 3, 8)

Since KZ = p∗KP(1,3,8) − 1
2(C1 + C2), we get

KZL̄23 =
(
p∗KP(1,3,8) − 1

2(C1 + C2)
) (
p∗L−

∑4
i=1 aiCi

)
= −1

2 − a1 − a2 = −1
2(1 + u1 + u2),

which is in Z, with u1, u2 ∈ N. One computes that

L̄2
23 =

1

24
− 1

8
(3u21 + 3u22 + 2u1u2)−

2

3
(u23 + u3u4 + u24) ∈ Z≤0.

Since KZL̄23 + L̄2
23 = −2, the only possibility is

{u1, u2} = {0, 1}, {u3, u4} = {0, 1},

which gives the intersection numbers with L̄23.
For the curve L13, one has L13KP(1,3,8) = −3

2 and L2
13 = 3

8 . Let u := L̄13C1 ∈ N, v :=

L̄13C2 ∈ N. Then one similarly computes that

L̄13KZ = −1

2
(3 + u+ v) ≤ −3

2

and

L̄2
13 =

1

8
(3− 3u2 − 3v2 − 2uv) ≤ 3

8
.

Therefore L̄2
13+KZL̄13 ≤ −9

8 and since L̄2
13+KZL̄13 ≥ −2, the only solution is {u, v} = {0, 1},

thus L̄2
13 = 0 and L̄13KZ = −2.

For the curve L12, which does not go through the 1
8(1, 3) singularity, one has

L̄12KZ = L12KP(1,3,8) = −4

and L2
12 = 8

3 . Let w := L̄12C3, t := L̄12C4. Then

L̄2
12 =

1

3
(8− 2w2 − 2t2 − 2wt) ≤ 8

3
.

Therefore L̄2
12 +KZL̄12 ≤ −4

3 and the only solution is {w, t} = {0, 1}, thus L̄2
12 = 2. �
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3.3. From P(1, 3, 8) to the Hirzebruch surface F3 and back. By contracting the (−1)-
curve C0 := L̄23 and then the other (−1)-curves appearing from the configuration C1, . . . , C4, L̄,
one gets a rational surface with

K2 = 2c2 = 8

containing (depending on the choice of the (−1)-curves we contract) a curve which either
is a (−2)-curve or a (−3)-curve. Thus that surface is one of the Hirzebruch surfaces F2 or
F3. Conversely one can reverse the process and obtain the surface P(1, 3, 8) by performing
a sequence of blow-ups and blow-downs. This process is unique: this follows from the fact
that the automorphism group of a Hirzebruch surface Fn, n ≥ 1 has two orbits, which are the
unique (−n)-curve and its open complement (see e.g. [4]). In the sequel, only the connection
between P(1, 3, 8) and F3 will be used.

4. The Bolza genus 2 curve in A and its image by the quotient map

In this section we prove that A/G48 is isomorphic to P(1, 3, 8).
Let us consider the genus 2 curve θ whose affine model is

(4.1) y2 = x5 − x.
It was proved by Bolza [5] that the automorphism group of θ is GL2(F3) ' G48 and θ is the
unique genus 2 curve with such an automorphism group.

The automorphisms of θ are generated by the hyperelliptic involution λ and the lift of the
automorphism group G of P1 that preserves the set of 6 branch points 0, ∞, ±1, ±i of the
canonical map θ → P1 (i.e. the set of points which are fixed by λ). Note that actually, any
map of degree 2 from θ to P1 is the composition of this map with an automorphism of P1.
This is a consequence of the two following facts: on the one hand the 6 ramification points (by
the Riemann-Hurwitz formula) of such a map are Weierstrass points, and on the other hand
the genus 2 curve θ has exactly 6 Weierstrass points.

By the universal property of the Abel-Jacobi map, the group GL2(F3) acts naturally on the
Jacobian variety J(θ) of θ, the action on θ and J(θ) being equivariant.

There is only one Abelian surface with an action of GL2(F3), which is A = E × E, where
E = C/Z[i

√
2] as above (see Fujiki [17] or [3]). We identify J(θ) with A. There are up to

conjugation only two possible actions of GL2(F3) on A (see [24]):
a) The action of G48 ' GL2(F3) which is described in sub-section 2.1; it has no global fixed
points;
b) The one obtained by forgetting the translation part of that action. That second action
globally fixes the 0 point in A.

Let α : θ ↪→ J(θ) = A be the embedding of θ sending the point at infinity of the affine
model (4.1) to 0; we identify θ with its image.

Note that the morphism θ × θ → A, (x, y) 7→ [y] − [x] ∈ Div0(θ) ' A is onto since θ × θ
and A are both two-dimensional. Actually, this map has generic degree 2 and contracts the
diagonal. Indeed, assume that [y] − [x] = [y′] − [x′] i.e. [y] + [x′] − [x] − [y′] = 0 ∈ Div0(θ).
If y′ = y then x′ = x (and conversely) because there is no degree 1 map from θ to P1. In the
same way, y = x iff y′ = x′. In the remaining cases, there exists a function of degree 2 from θ
to P1 whose zeroes are y and x′ and poles are x and y′. But by the remark above, we must
have x′ = λ(y) and y′ = λ(x). Conversely, by the same argument, it is clear that for all x and
y in θ, [λ(y)]− [λ(x)] = [x]− [y].

This also implies that the points of the type [y]− [x] with x and y being distinct Weierstrass
points are exactly the 2-torsion points of A. Indeed, since there are 6 Weierstrass points on θ,
we have 15 points of that type in A satisfying [y] − [x] = [λ(x)] − [λ(y)] = [x] − [y] i.e. they
are 2-torsion points.
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The induced linear action b) is given by g([y]− [x]) = [g(y)]− [g(x)] for which 0 ∈ Div0(θ)
is a fixed point.

If we fix the base point ∞ ∈ θ then for each y ∈ θ, α(x) = [x]− [∞]. The induced action of
g ∈ Aut(θ) on A is then given by g([y]− [x]) = [g(y)]− [g(x)] + [g(∞)]− [∞]. This is indeed
the only action of Aut(θ) on A commuting with α.

Lemma 5. The action of GL2(F3) on A inducing the action of Aut(θ) on the curve θ ↪→ A
has no global fixed points.

Proof. The fixed points on A for the action of the hyperelliptic involution λ are its points of
2-torsion (and 0). Indeed, λ([y] − [x]) = [λ(y)] − [λ(x)] ∈ Div0(θ) since ∞ ∈ θ is fixed by λ
and, as a consequence of the discussion above, if [y] − [x] = [λ(y)] − [λ(x)] then either y = x
or y = λ(x) i.e. [y]− [x] = [x]− [y] and we saw that this implies that x and y are Weierstrass
points.

But for any pair (x, y) of distinct Weierstrass points, it is easy to find g ∈ Aut(θ) (lifting
an automorphism of P1) such that g(∞) =∞ but [g(y)]− [g(x)] 6= [y]− [x]. �

For t ∈ A, let θt be the curve θt = t+ θ. The previous result does not depend on the choice
of the embedding θ ↪→ A: indeed the group of automorphisms acting on A and preserving θt
is conjugated by the translation x 7→ x + t to the group of automorphisms acting on A and
preserving θ.

We denote by H48 the order 48 group acting on A and inducing the automorphism group
of the curve θ ↪→ A by restriction. As a consequence of Lemma 5, we get:

Corollary 6. There exists an isomorphism between H48 and G48. That isomorphism is induced
by an automorphism g of the surface A such that H48 = gG48g

−1.

By [6, Theorem (0.3)], the embedding α : θ ↪→ A is such that the torsion points of A
contained in θ are 16 torsion points of order 6, 5 torsion points of order 2 and the origin,
moreover the x-coordinates of the 22 torsion points on θ satisfy

x4 − 4ix2 − 1 = 0, x4 + 4ix2 − 1 = 0
x5 − x = 0, x =∞.

Proposition 7. (a) These 22 torsion points of θ are not in the mirror of any of the 12 complex
reflections of H48;
(b) Each of these 22 points has a non-trivial stabilizer.

Proof. Let us prove part (a).
The hyperelliptic involution is given by (x, y)→ (x,−y). By [7], the rational map

v : (x, y) 7→
(
− x+ i

ix+ 1
,
√

2
i− 1

(ix+ 1)3
y
)

defines a non-hyperelliptic involution v on θ. The x-coordinates of the fixed point set of v
are x± = i(1±

√
2). These coordinates x± are not among the x-coordinates of the 22 torsion

points in θ. Let v be the automorphism of A induced by v. The fixed point set of v is a smooth
genus 1 curve Ev (a mirror) and we have just proved that Ev contains no torsion points of θ.
By transitivity of the group H48 on its set of 12 non-hyperelliptic involutions, one gets that
no mirror contains any of the 22 torsion points.

Let us prove part (b).
The six 2-torsion points are the Weierstrass points of the curve θ, they are fixed by the

hyperelliptic involution (whose action on A has only 16 fixed points).



THE BOLZA CURVE AND SOME ORBIFOLD BALL QUOTIENT SURFACES 9

The transformation

w : (x, y) 7→
((1 + i)x− (1 + i)

(1− i)x+ (1− i)
, − 1

((1− i)x+ (1− i))3
y
)

defines an order 3 automorphism of θ, which acts symplectically on A and one computes that
it fixes a torsion point p0 = (x0, y0) on θ with x0 such that x40 + 4ix20 − 1 = 0, i.e. it is an
order 6 torsion point. This torsion point is an isolated fixed point for each non-trivial element
of its stabilizer (since by part (a), it is not on a mirror).

Recall that by [14, Table 2], there are exactly two orbits of points of respective orders 6
and 16 with non-trivial stabilizer under G48 which are isolated fixed points of the non-trivial
elements of their stabilizer (by a direct computation one can check that these two orbits are 16
points of order 6 and 6 points of order 2). Since H48 is conjugate to G48, the 15 other 6-torsion
points on θ are also isolated fixed points for each non-trivial element of their stabilizer. �

Since one can change the embedding θ ↪→ A by composing with the automorphism g such
that H48 = gG48g

−1, let us identify H48 with G48.
By sub-section 2.1 (or [14]), the images of the 22 torsion points of θ on the quotient surface

A/G48 give the singularities A2 and 1
8(1, 3).

Let m be the mirror of one of the 12 complex reflections in G48.

Lemma 8. One has θ ·m = 2.

Proof. The intersection number θ ·m is the number of fixed points of the involution ιm with
mirror m restricted to θ. Since ιm fixes exactly one holomorphic form, the quotient of θ by
ιm is an elliptic curve, thus by the Hurwitz formula θ ·m = 2. �

Let θ48 be the image of θ in A/G48. One has:

Proposition 9. The strict transform C0 of θ48 by the resolution X48 → A/G48 is a (−1)-curve
and we have M̃48C0 = 1.

Proof. One has

θ248 =
1

48
θ2 =

1

24
.

Let π : A→ A/G48 be the quotient map; it is ramified with order 2 on the union M of the 12
mirrors. One has π∗(KA/G48

+ 1
2M48) = KA = 0, thus

KA/G48
θ48 = − 1

48
(Mθ) = − 1

48
12 · 2 = −1

2
.

The curve θ48 contains the singularities 1
8(1, 3) and A2 (image respectively of the 2-torsion

points and the 6-torsion points of θ). We are then left with the same combinatorial situation
as in the computation of L̄2

23 in Proposition 4, thus we conclude that C2
0 = −1.

The two intersection points of m and θ in Lemma 8 are permuted by the hyperelliptic
involution of θ thus M48θ48 = 1, which implies M̃48C0 = 1. �

We obtain:

Theorem 10. The surface A/G48 is isomorphic to P(1, 3, 8).

Proof. Let us denote the resolution map by p : X48 → A/G48. Let C1, C2 be the resolution
curves of the singularity 1

8(1, 3), and C3, C4 be the resolution of A2. Let a ∈ A be an isolated
fixed point of an automorphism τ of order 3 or 8. The tangent space Tθ,a ⊂ TA,a is stable by
the action of τ . Since the local setup is the same, we can reason as in Proposition 4 and we
obtain that the curve C0 is such that

C0C1 = C0C3 = 1, C0C2 = C0C4 = 0.
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Contracting the curves C0, C1, C2, one gets a rational surface with a (−3)-curve and with
invariants K2 = 2c2 = 8. This is therefore the Hirzebruch surface F3. From section 3, we
know that reversing the contraction process one gets the weighted projective plane P(1, 3, 8)
(contracting the curves C0, C1, C3, one would have obtained the Hirzebruch surface F2). �

Remark 11. Now we identify P(1, 3, 8) with A/G48 and we use the notation in section 3. In
particular Z = X48 is the minimal resolution of P(1, 3, 8), the curves C1, . . . , C4 are exceptional
divisors of the resolution map Z → P(1, 3, 8) and C0 = L̄23 is a (−1)-curve in Z.

Let us observe that the divisor F̃ = C1 + 3C0 + 2C3 + C4 satisfies

F̃C1 = F̃C0 = F̃C3 = F̃C4 = 0,

thus F̃ 2 = 0, moreover F̃C2 = L̄13F̃ = 1, F̃ L̄13 = 0 and L̄2
13 = 0. This implies that the curves

F̃ and L̄13 are fibers of the same fibration onto P1 and C2 is a section of that fibration.
The curves C0, . . . , C4 are exceptional divisors or strict transform of generators of the Néron-

Severi group of a minimal rational surface. Thus the Néron-Severi group of the rational surface
X48 is generated by these curves. Knowing the intersection of curves L̄12, L̄13, M̃48 with these
curves (see Propositions 4 and 9) it is easy to obtain their classes in the Néron-Severi group,
in particular one gets that L̄12M̃48 = 8, L̄13M̃48 = 3.

Figure 4.1. Configuration of curves M̃48 , L̄12, L̄13 etc... in X48 and their
intersection numbers

5. A model of the mirror

5.1. A birational map from P(1, 3, 8) to P1 × P1 ; images of the mirror.
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5.1.1. A rational map P(1, 3, 8) 99K P1 × P1. As above, we identify P(1, 3, 8) with A/G48; we
use the notation of sections 3 and 4.

Take a point p in the Hirzebruch surface Fn that is not in the negative section. By blowing-
up at p, and then by blowing-down the strict transform of the fiber through p, we get the
Hirzebruch surface Fn−1. This process is called an elementary transformation.

Recall from sections 3 and 4 that there is a map ψ : P(1, 3, 8) 99K F3 that contracts the
curves C0, C3, C4 to a smooth point.

Performing any sequence of three elementary transformations as above, we get a map ρ :
F3 99K F0 = P1 × P1. This can be seen as a birational transform that, by blowing-up three
times at a point q not contained in the negative section, takes the fibre Fq through q to a
chain of curves with self intersections (−1), (−2), (−2), (−1), then followed by the contraction
of the (−1), (−2), (−2) chain (which contains the strict transform of Fq). For our purpose, we
choose the three points to blow-up in a specific way, see subsection 5.1.2.

Consider
φ := ρ ◦ ψ : P(1, 3, 8) 99K P1 × P1.

We observe that given any two points t, t′ ∈ P1 × P1 not in a common fiber, the map φ can
be chosen such that the inverse φ−1 is not defined at t, t′ and φ−1(P1 × P1) = P(1, 3, 8).

Figure 5.1. From X48 to P1 × P1 and back

5.1.2. Image of the mirror M48 in P1 × P1. Let us describe how to choose φ such that the
image MP1×P1 of the mirror curve M48 is a (3, 3)-curve with singularities a3 + 2a2 and two
special fibers tangent to it with multiplicity 3.

The map P(1, 3, 8) 99K F3 factors through a morphism ϕ : X48 → F3. Consider the point
t0 := ϕ(C0). SinceM48C0 = 1, then ϕ(M48) is a curve which is smooth at t0 and its intersection
number with the curve ϕ(C1) at t0 is 3. The curve C ′1 := ρ ◦ ϕ(C1) is a fiber of P1 × P1.

Then we choose q to be the a5-singularity of M48. The fiber Fq through q cuts M48 at q
with multiplicity 2 or 3. Suppose that the multiplicity is 3. Then by taking the blow-up at
that point and computing the strict transform of the curves Fq and M48, one can check that
FqM48 ≥ 4. But FqM48 = L̄13M48 = 3 by Remark 11. Therefore the fiber Fq through q cuts
M48 at q with multiplicity 2, and at another point.

Remark 12. An analogous reasoning gives that the fiber through the a3-singularity has the
same property: it is transverse to the tangent of the a3-singularity.

The three successive blow-ups above q are chosen such that they resolve the singularity a5.
The three blow-downs we described create a multiplicity 3 tangent point betweenMP1×P1 (the
image of M48 in P1 × P1) and the curve C ′2 (the image of C2), thus C ′2MP1×P1 = 3. Moreover
C ′22 = 0, C ′1C

′
2 = 1 (see figure 5.1).

The mirror M48 does not cut the curves C1 and C2. The transforms of these curves in
P1 × P1 are fibers C ′1, C ′2 such that C ′i cuts MP1×P1 at one point only, with multiplicity 3.
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In particular, the class of MP1×P1 in the Néron-Severi group of P1 × P1 is 3C ′1 + 3C ′2. The
singularities of MP1×P1 are a3 + 2a2.

5.1.3. From P1 × P1 to P2 and back. Let us recall that the blowup of P1 × P1 at a point,
followed by the blow-down of the strict transform of the two fibers through that point, gives
a birational map P1 × P1 99K P2.

We choose to blow-up the point at the a3-singularity s0, so that the strict transform of
MP1×P1 has a node above s0. The two fibers F1, F2 of P1 × P1 passing through s0 cut MP1×P1

in two other points respectively s1, s2 (see Remark 12; the result is preserved through the
birational process). The fibers F1, F2 are contracted into points in P2 by the rational map
P1 × P1 99K P2, the images of s1, s2 by that map are on the image of the exceptional divisor,
which is a line L0 through the node. This implies that the strict transform of MP1×P1 is a
plane quartic curve MP2 . The process in illustrated in Figure 5.2.

Figure 5.2. From P1 × P1 to P2

The total transform of MP1×P1 in P2 is the union of 2L0 with MP2 . This quartic MP2 has
the following properties which follow from its description and the choice of the transformation
from P1 × P1 to P2:

Proposition 13. The singular set of the quartic curve MP2 is a1 + 2a2, and the nodal point is
contained in the line L0. The curve MP2 contains two flex points such that each corresponding
tangent line meets the quartic at a second point that is contained in the line L0.

5.2. The yoga between the mirrors MP2 and M48. Using the previous description the
reader can follow the transformations between the surfaces P(1, 3, 8) and the plane. The link
between Deraux’s ball quotient orbifolds described in [14, Theorem 5] and the quartic MP2 is
as follows:

The singularities a1 + 2a2 of MP2 correspond respectively to singularities a3 + 2a2 of M48,
so that in order to get the curves F,G,H in [14, Figure 1] one has to blow-up and contract
at these 3 points as it is done in [14]. In order to obtain the curve E in [14, Figure 1], one
has to blow-up the two flexes three times in order to separate MP2 and the flex lines. One
obtain two chains of (−1), (−2), (−2) curves. Contracting one of the two (−2), (−2) chains
one gets an A2-singularity. The curve E is the image by the contraction map of the remaining
(−1)-curve of the chain. The resolution of the singularity A2 on P(1, 3, 8) corresponds to the
two (−2)-curves on the other chain of (−1), (−2), (−2) curves. After taking the blow-up at
the residual intersection of the quartic and the flex lines and after separating the flex lines
and the mirror MP2 , one gets two (−3)-curves intersecting transversally at one point. In that
way the resolution of the singularity 1

8(1, 3) on P(1, 3, 8) by two (−3)-curves corresponds to
the two flex lines.
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5.3. A particular quartic curve in P2. The aim of this sub-section is to prove the following
result:

Theorem 14. Up to projective equivalence, there is a unique quartic curve Q in P2 with
distinct points p1, . . . , p7 such that:

(1) Q has a node at p1 and ordinary cusps at p2, p3;
(2) the points p4, p5 are flex points of Q;
(3) the tangent lines to Q at p4, p5 contain p6, p7, respectively;
(4) the line through p6, p7 contains p1.
We can assume that

p1 = [0 : 0 : 1], p2 = [0 : 1 : 1], p3 = [1 : 0 : 1].

Then the equation of Q is

(x2 + xy + y2 − xz − yz)2 − 8xy(x+ y − z)2 = 0,

and the points p4, p5 and p6, p7 are, respectively,[
±2
√
−2 + 8 : ∓2

√
−2 + 8 : 25

]
,
[
±2
√
−2 : ∓2

√
−2 : 1

]
.

Corollary 15. The mirror MP2 described on sub-section 5.1.3 satisfies the hypothesis of The-
orem 14, thus MP2 is projectively equivalent to the quartic Q.

Figure 5.3. The quartic Q

In order to prove 14, let us first give a criterion for the existence of roots of multiplicity
at least 3 on homogeneous quartic polynomials on two variables. We use the computational
algebra system Magma; see [25] for a copy-paste ready version of the Magma code.

Lemma 16. The polynomial

P (x, z) = ax4 + bx3z + cx2z2 + dxz3 + ez4

has a root of multiplicity at least 3 if and only if

12ae− 3bd+ c2 = 27ad2 + 27b2e− 27bcd+ 8c3 = 0.

Proof. The computation below is self-explanatory.



14 VINCENT KOZIARZ, CARLOS RITO, XAVIER ROULLEAU

R<u,v,m,n,a,b,c,d,e>:=PolynomialRing(Rationals(),9);
P<x,z>:=PolynomialRing(R,2);
f:=(u*x+v*z)^3*(m*x+n*z);
s:=Coefficients(f);
I:=ideal<R|a-s[5],b-s[4],c-s[3],d-s[2],e-s[1]>;
EliminationIdeal(I,4);

�

Let us now prove Theorem 14:

Proof. We have already chosen 3 points p1, p2, p3 in P2. Instead of choosing a fourth point
for having a projective base, one can fix two infinitely near points over p2 and p3. Indeed the
projective transformations that fix points p1, p2, p3 are of the form

φ : [x : y : z] 7−→ [ax : by : (a− 1)x+ (b− 1)y + z]

and these transformations act transitively on the lines through p2 and p3. Thus up to projective
equivalence, we can fix the tangent cones (which are double lines) of the curve Q at the cusps
p2, p3. Let us choose for these cones the lines with equations y = z and x = z, respectively.

The linear system of quartic curves in P2 is 14 dimensional. The imposition of a node and
two ordinary cusps (with given tangent cones) corresponds to 13 conditions, thus we get a
pencil of curves. We compute that this pencil is generated by the following quartics:

(x2 + xy + y2 − xz − yz)2 = 0, xy(x+ y − z)2 = 0.

Notice that, at the points p2, p3, the first generator is of multiplicity 2 and the second generator
is of multiplicity 3, thus a generic element in the pencil has a cusp singularity at p2, p3.

Let us compute the quartic curves Q satisfying condition (1) to (4) of Theorem 14. The
method is to define a scheme by imposing the vanishing of certain polynomials Pi = 0, and
the non-vanishing of another ones Di 6= 0, which is achieved by using an auxiliary parameter
n and imposing 1 + nDi = 0.

K:=Rationals();
R<a,q1,q2,m,d1,d2,n>:=PolynomialRing(K,7);
P<x,y,z>:=ProjectiveSpace(R,2);

The defining polynomial of Q, depending on one parameter:

F:=(x^2 + x*y + y^2 - x*z - y*z)^2 + a*x*y*(x + y - z)^2;

The points p6, p7 are in a line y = mx, hence they are of the form

p6:=[q1,m*q1,1];
p7:=[q2,m*q2,1];

and we must have the vanishing of

P1:=Evaluate(F,[q1,m*q1,1]);
P2:=Evaluate(F,[q2,m*q2,1]);

The defining polynomials of lines through that points are:

L1:=-y+d1*x+(m*q1-d1*q1)*z;
L2:=-y+d2*x+(m*q2-d2*q2)*z;

We need to impose that these lines are not tangent to Q at p6, p7, thus the following matrices
must be of rank 2.
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M1:=Matrix([JacobianSequence(F),JacobianSequence(L1)]);
M1:=Evaluate(M1,[q1,m*q1,1]);
M2:=Matrix([JacobianSequence(F),JacobianSequence(L2)]);
M2:=Evaluate(M2,[q2,m*q2,1]);

The matrix Mi is of rank 2 if one of its minors is non-zero. Here we make a choice for these
minors, but in order to cover all cases the computations must be repeated for all other choices.

D1:=Minors(M1,2)[1];
D2:=Minors(M2,2)[1];

Now we intersect the quartic Q with the lines L1, L2 :

R1:=Evaluate(F,y,d1*x+(m*q1-d1*q1)*z);
R2:=Evaluate(F,y,d2*x+(m*q2-d2*q2)*z);

and we use Lemma 16 to impose that these lines are tangent to Q at flex points of Q:

c:=Coefficients(R1);
P3:=c[1]*c[5]-1/4*c[2]*c[4]+1/12*c[3]^2;
P4:=c[1]*c[4]^2+c[2]^2*c[5]-c[2]*c[3]*c[4]+8/27*c[3]^3;
c:=Coefficients(R2);
P5:=c[1]*c[5]-1/4*c[2]*c[4]+1/12*c[3]^2;
P6:=c[1]*c[4]^2+c[2]^2*c[5]-c[2]*c[3]*c[4]+8/27*c[3]^3;

We note that the lines L1, L2 cannot contain the points p2, p3 :

D3:=Evaluate(L1,[0,1,1]);
D4:=Evaluate(L1,[1,0,1]);
D5:=Evaluate(L2,[0,1,1]);
D6:=Evaluate(L2,[1,0,1]);

Also the line Li cannot contain the point p1, i = 1, 2 :

D7:=(m-d1)*(m-d2);

And it is clear that the following must be non-zero:

D8:=a*q1*q2*(q1-q2);

Finally we define a scheme with all these conditions.

A:=AffineSpace(R);
S:=Scheme(A,[P1,P2,P3,P4,P5,P6,1+n*D1*D2*D3*D4*D5*D6*D7*D8]);

We compute (that takes a few hours):

PrimeComponents(S);

and get the unique solution a = −8. �

From the equation of the quartic Q = MP2 , one can compute a degree 24 equation for the
mirror M48, which is:
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(31072410*r+44060139)*x^24+(599304420*r-4660302600)*x^21*y+(-106415505000*r+18054913500)*x^18
*y^2+(796474485000*r+3638808225000)*x^15*y^3+(-27123660*r-18697014)*x^16*z+(34521715125000
*r-31210968093750)*x^12*y^4+(107726220*r+2948918400)*x^13*y*z+(-257483985484500*r-
516632817969000)*x^9*y^5+(42798843000*r-32351244300)*x^10*y^2*z+(-1747212737190000*r
+3228789525752500)*x^6*y^6+(-407331396000*r-935091495000)*x^7*y^3*z+(-655139025450000*r+
10855982580975000)*x^3*y^7+(7724970*r-2222037)*x^8*z^2+(-3383703150000*r+9052448883750)
*x^4*y^4*z+(1544666220033750*r+11942493993804375)*y^8+(-102498120*r-465161400)*x^5*y*z^2+
(-319463676000*r+12613760073000)*x*y^5*z+(-2705586000*r+7086771600)*x^2*y^2*z^2+(-712080*r
+1186268)*z^3=0

where r =
√
−2.

5.4. A configuration of four plane conics related to the orbifold ball quotient. In
this subsection we describe the configuration of conics which we announced in the introduction.

Let us consider a conic tangent to two lines of a triangle in P2, and going through two
points of the remaining line. Performing a Cremona transformation at the three vertices of
the triangle one obtains a quartic curve in P2 with singularities a1 + 2a2. Conversely, starting
with such a quartic, its image by the Cremona transform at the three singularities is a conic
with three lines having the above configuration.

Thus we consider the Cremona transform ϕ at the three singularities of the quartic MP2 .
Let D1, . . . , D4 be respectively the images of MP2 , the line L0 through the node and the two
residual points of the flex lines, and the two flex lines. Using Magma, we see that these are 4
conics meeting in 10 points, as follows:

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
D1 1+ 1+ 0 0 0 0 1 1 1 1
D2 1 1 1 1 1 0 0 0 1 1
D3 0 1+ 1 1 1 1 1 0 0 0
D4 1+ 0 1 1 1 1 0 1 0 0

Here two + in the column of qj mean that the two curves meet with multiplicity 3 at point
qi. The other intersections are transverse. We see that the various ball-quotient orbifolds
that Deraux described in [14] may be obtained from a configuration of conics by performing
birational transformations.

6. One further quotient by an involution

6.1. The quotient morphism P1 × P1 → P2, image of the mirror as the cuspidal
cubic. Consider the plane quartic curve Q from Theorem 14. Here we show the existence of
a birational map

ρ : P2 99K P1 × P1 ⊂ P3

and an involution σ on P1×P1 that preserves ρ(Q) and fixes the diagonalD of P1×P1 pointwise.
Moreover, we have

(
P1 × P1

)
/σ = P2, and the images Cu, Co of ρ(Q), D are curves of degrees

3, 2, respectively. The curve Cu has a cusp singularity and intersects Co at three points,
with intersection multiplicities 4, 1, 1. The map ρ is the inverse of the birational transform
P1 × P1 99K P2 described in sub-section 5.1.3, whose indeterminacy is at the singularity a3 of
MP1×P1 .

K:=Rationals();
R<r>:=PolynomialRing(K);
K<r>:=ext<K|r^2+2>;
P2<x,y,z>:=ProjectiveSpace(K,2);
Q:=Curve(P2,(x^2+x*y+y^2-x*z-y*z)^2-8*x*y*(x+y-z)^2);
p6:=P2![2*r,-2*r,1];
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p7:=P2![-2*r,2*r,1];
We compute the linear system of conics through the cuspidal points p2, p3 and take the
corresponding map to P3.

L:=LinearSystem(LinearSystem(P2,2),[p6,p7]);
P3<a,b,c,d>:=ProjectiveSpace(K,3);
rho:=map<P2->P3|Sections(L)>;
The image of P2 is a quadric surface Q2 (∼= P1 × P1).
Q2:=rho(P2);Q2;
C:=rho(Q);C;
There is an involution preserving both Q2 and the curve C := ρ(Q).

sigma:=map<P3->P3|[d,b,c,a]>;
C:=rho(Q);C;
sigma(Q2) eq Q2;
sigma(C) eq C;
We compute the corresponding map to the quotient. The image of C is a cubic curve, and the
image of the diagonal is a conic.
psi:=map<P3->P2|[a+d,b,c]>;
Cu:=psi(C);
Co:=psi(Scheme(rho(P2),[a-d]));
Co:=Curve(P2,DefiningEquations(Co));
The curve Cu has a cusp singularity:
pts:=SingularPoints(Cu);
ResolutionGraph(Cu,pts[1]);
The intersections of Co and Cu :

Degree(ReducedSubscheme(Co meet Cu)) eq 3;
pt:=Points(Co meet Cu)[1];
IntersectionNumber(Co,Cu,pt) eq 4;

Let C ′1, C ′2 be the fibers that intersect MP1×P1 each at a unique point with multiplicity
3.These fibers are exchanged by the involution σ and are sent to a line Fl which cuts the cubic
curve Cu at a unique point: this is a flex line. That line Fl also cuts the conic Co at a unique
point.

Conversely, let us start from the data of a conic Co and a cuspidal cubic Cu intersecting
as above, with the flex line (at the smooth flex point) of the cubic tangent to the conic. One
can take the double cover of the plane branched over Co, which is P1 × P1. The pull-back of
Cu is then a curve satisfying the properties of Theorem 14, thus the configuration (Co, Cu) we
described is unique in P2, up to projective automorphisms.

6.2. An orbifold ball-quotient structure from (P2, (Co, Cu)). Let Cu ↪→ P2 be the unique
plane cuspidal curve and let c1 be its cuspidal point. Let Fl be the flex line through the unique
smooth flex point c2 of Cu. By the previous subsection, one has the following result:

Proposition 17. There exists a unique conic Co ↪→ P2 such that the following holds:
i) Fl is tangent to Co;
ii) Co cuts Cu at points c3, c4, c5 ( 6= c1, c2) with intersection multiplicities 4, 1, 1, respectively.

In this subsection we prove that there is a natural birational transformation W 99K P2

such that together with the strict transform of the curves Co and Cu one gets an orbifold ball
quotient surface. For definitions and results on orbifold theory, we use [8, 11] and [29].
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Let us blow-up over points c1, c2, c3 and then contract some divisors as follows (for a pictural
description see figure 6.1):

We blow up over c1 three times, the first blow-up resolves the cusp of Cu and the exceptional
divisor intersects the strict transform of Cu tangentially, the second blow-up is at that point of
tangency and the third blow-up separates the strict transforms of the first exceptional divisor
and the curve Cu. One obtains in that way a chain of (−3), (−1) and (−2)-curves. We then
contract the (−2) and (−3)-curves obtaining in that way singularities A1 and 1

3(1, 1). The
image of the (−1)-curve by that contraction map is denoted by H. As an orbifold we put
multiplicity 2 on H.

We blow up over c2 (the flex point) three times in order that the strict transform of the curves
Fl and Cu get separated over c2. We obtain in that way a chain of (−1), (−2), (−2)-curves.
We then contract the two (−2)-curves and obtain an A2-singularity. The strict transform of
the line Fl is a (−2)-curve, which we also contract, obtaining in that way an A1-singularity.
The contracted curve being tangent to C̃0, the image C̄0 has a cusp a2 at the singularity A1.

We moreover blow up over c3 four times, in order that the strict transform of the curves
Co and Cu get separated over c3. We obtain in that way a chain of (−1), (−2), (−2), (−2)-
curves. We then contract the three (−2)-curves and obtain an A3-singularity. The image of
the (−1)-curve by the contraction map is a curve denoted by Fd, we give the weight 2 to that
curve.

Figure 6.1. The plane, the surfaces Z and W

Let us denote by W the resulting surface. For a curve D on P2, we denote by D̃ its strict
transform on W . LetW be the orbifold with same subjacent topological space, with divisorial
part:

∆ =
(

1− 1

∞

)
C̄u +

(
1− 1

2

) (
C̄o + Fd +H

)
.

The singular points of W are

A1 +A1 +A2 +A3 +
1

3
(1, 1),

and they have an isotropy β of order 16, 4, 3, 8, 6 respectively, for W. The computation of the
isotropy is immediate, except for the first point (that we shall denote by r1), which is also a
cusp on the curve C̄0 (which has weight 2). Let SD16 be the the semidihedral group of order
16, generated by the matrices

g1 =

(
0 −ζ
−ζ3 0

)
, g2 =

(
0 1
1 0

)
,
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where ζ is a primitive 8th root of unity. The order 2 elements g2, g−11 g2g1 generate an order 8
reflection group D4. The quotient of C2 by SD16 has a A1 singularity and one computes that
the image of the 4 mirrors of D4 is a curve with a cusp a2 at the A1 singularity of C2/SD16.
The isotropy group of the point r1 in the orbifold is therefore the semidihedral group SD16 of
order 16. The following proposition is an application of the main result of [21]:

Proposition 18. The Chern numbers of the orbifold W = (W,∆) satisfy

c21(W) = 3c2(W) =
9

16
,

in particular W is an orbifold ball quotient.

Proof. Let us compute the orbifold second Chern number of W. We have (see e.g. [27]):

c2(W) = e(W )−
(
(1− 1

∞)e(C̄u \ S) + (1− 1
2)e(C̄o \ S)+

+(1− 1
2)e(Fd \ S) + (1− 1

2)e(H \ S)
)
−
∑

p∈S

(
1− 1

β(p)

)
,

where S is the union of the singular points of W with the singular points of the round-up
divisor d∆e, and where moreover β(p) is the isotropy order of the point p, so that for example
for p on C̄u, β(p) = ∞ and the unique point p in Fd and C̄o has β(p) = 4. Since we have
blown-up P2 over 10 points and we have contracted 8 rational curves, we get

e(W ) = 3 + 10− 8 = 5.

We obtain

c2(W) = 5−
(

(2− 4) +
1

2
(2− 4) +

1

2
(2− 3) +

1

2
(2− 3)

)
−
(

10− 1

16
− 1

4
− 1

3
− 1

8
− 1

6
− 1

4
− 4 · 1

∞

)
,

thus c2(W) = 3
16 .

Let us compute c21(W). One has

c21(W) = (KW + ∆)2,

so that
c21(W) = K2

W + 2KW C̄u +KW (C̄o + Fd +H) + 1
4(C̄2

o + F 2
d +H2) + C̄2

u

+C̄u(C̄o + Fd +H) + 1
2(C̄oFd + C̄oH + FdH).

Let p : Z → W be the surface above W which resolves W and is a blow-up of P2. Since Z is
obtained by 10 blow-ups of P2 one has K2

Z = 9 − 10 = −1. Moreover, since all singularities
but one are ADE, one has KZ = p∗KW − 1

3D1 where D1 is the (−3)-curve on Z which is
contracted to the 1

3(1, 1) singularity on W . Since p∗KW ·D1 = 0, we obtain

K2
W = −2

3
.

The curve C̄u is a smooth curve of genus 0 on the smooth locus of W . The blow-up at the
a2-singularity of the cuspidal cubic decreases the self-intersection by 4, the remaining blow-ups
decrease the self-intersection by 1. Since one has 4 + 2 + 3 = 9 such blow-ups, one gets

C̄2
u = 32 − 4− 9 = −4,

and therefore KW C̄u = 2. Let D̃ be the strict transform on Z of a curve D on W or P2. We
have

C̃o = p∗C̄o − aFl.
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Since C̃oFl = 2, then a is equal to 1. Since moreover C̃o
2

= 0, we get 0 = (C̃o)
2 = C̄2

o − 2,
thus C̄2

o = 2. We have

KW C̄o = (C̃o + Fl)

(
KW +

1

3
D1

)
= −2.

Let F1, F2, F3 ⊂ Z be the chain of three (−2)-curves above the A3 singularity in W , so that
F̃dF1 = 1. One computes that

F̃d = p∗Fd −
1

4
(3F1 + 2F2 + F3)

(it is easy to check that F̃dF1 = 1, F̃dF2 = F̃dF3 = 0). Then

−1 = F̃ 2
d = F 2

d −
3

4

gives F 2
d = −1

4 . One has

KWFd =

(
KZ +

1

3
D1

)(
F̃d +

1

4
(3F1 + 2F2 + F3)

)
= −1.

Let D1, D2 be respectively the (−3) and (−2) curves intersecting H̃. Since H̃D1 = H̃D2 = 1,
one has

H̃ = p∗H − 1

3
D1 −

1

2
D2,

thus
−1 = H̃2 = H2 − 1

3
− 1

2
and H2 = −1

6 . Moreover

KWH =

(
KZ +

1

3
D1

)(
H̃ +

1

3
D1 +

1

2
D2

)
= −1 +

1

3
+

1

3
− 1

3
= −2

3
.

We compute therefore

c21 (W) = −2

3
+ 2 · 2 +

(
−2− 1− 2

3

)
+

1

4

(
2− 1

4
− 1

6

)
− 4

+ (2 + 1 + 1) +
1

2
(1 + 0 + 0) =

9

16
,

thus c21(W) = 3c2(W) =
9

16
. �

Remark 19. In [14], Deraux obtains 4 different orbifold ball-quotient structures on surfaces
birational to A/G48. Among these, only the fourth one, W ′, is invariant by the involution σ,
the obstruction being the divisor E in [14] which creates an asymetry, unless it has weight 1.
The orbifold W we just described can be seen as the quotient of W ′ by the involution σ.
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