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Abstract In this article, we study various concrete algebraic and differential geometric
properties of the Cartwright-Steger surface, the unique smooth surface of Euler number 3
which is neither a projective plane nor a fake projective plane. In particular, we determine
the genus of a generic fiber of the Albanese fibration, and deduce that the singular fibers are
not totally geodesic, answering an open problem about fibrations of a complex ball quotient
over a Riemann surface.

0. Introduction

The Cartwright-Steger surface was found during work on the classification of fake projec-
tive planes completed in [PY] and [CS1]. A fake projective plane is a smooth surface with
the same Betti numbers as the projective plane but not biholomorphic to it. It is known
that a fake projective plane is a complex two ball quotient Π\B2

C with Euler number 3,
where Π is an arithmetic lattice in PU(2, 1), cf. [PY]. In the scheme of classification of
fake projective planes carried out in [PY], the lattices Π are torsion-free subgroups having
finite abelianization and of a certain index N in certain maximal arithmetic subgroups Γ̄ of
PU(2, 1) associated with a pair of number fields coming from a short finite list. The calcu-
lations reported in [CS1] found all torsion-free subgroups Π of index N (up to conjugacy)
in each of these situations. All had finite abelianizations, and so gave a fake projective
plane, with one exception, a subgroup Π of index 864 in a group Γ̄ associated with the
pair C11 = (Q(

√
3),Q(eπi/6)) on that list. The smooth projective surface X = Π\B2

C is the
subject of study in this article.

From an algebraic geometric point of view, the fake projective planes and the Cartwright-
Steger surfaces are interesting since they have the smallest possible Euler number, namely 3,
among smooth surfaces of general type, and constitute all such surfaces (cf. §2.1 of [Y2]).
From a differential geometric point of view, they are interesting since they constitute smooth
complex hyperbolic space forms, or complex ball quotients, of smallest volume in complex
dimension two. We refer the reader to [R], [Y1], and [Y2] for some general discussions related
to the above facts. Unlike fake projective planes, whose lattices arise from division algebras
of non-trivial degree as classified, the Cartwright-Steger surface is defined by Hermitian
forms over the number fields mentioned above. It is realized among experts that such a
surface is commensurable to a Deligne-Mostow surface, the type of surfaces which have
been studied by Picard, Le Vavasseur, Mostow, Deligne-Mostow, Terada and many others,
cf. [DM1].

Even though the lattice involved is described in [CS2], it is surprising that the algebraic
geometric structures of the surface are far from being understood. A typical problem is
to find out the genus of a generic fiber of the associated Albanese fibration. Conventional
algebraic geometric techniques do not seem to be readily applicable to such a problem. The
goal of this article is to develop tools and techniques which allow us to understand concrete
surfaces such as the Cartwright-Steger surface. In particular, we recover algebraic geometric

Key words: Special complex surface, Albanese fibration, Complex ball quotients
AMS 2010 Mathematics subject classification: Primary 14D06, 14J29, 32J15
The third author was partially supported by a grant from the National Science Foundation.

1



2 DONALD I. CARTWRIGHT, VINCENT KOZIARZ, SAI-KEE YEUNG

properties from a description of the fundamental group of the surface, using a combina-
tion of various algebraic geometric, differential geometric, group theoretical techniques and
computer implementations.

Here are the results obtained in this paper.

Main Theorem Let X be the Cartwright-Steger surface and α : X → T the Albanese map.

(a) The numerical invariants of X are

c21 = 9, c2 = 3, χ(OX) = 1, q = h1,0 = 1, pg = h2,0 = 1, h1,1 = 3.

Moreover, H2(X,Z) is torsion free.
(b) The genus of a generic fiber of α is 19.
(c) All fibers of α are reduced.
(d) The Albanese torus T is C/(Z + ωZ), where ω is a cube root of unity.
(e) The Picard number of X is 3, equal to h1,1(X), so that all the Hodge (1, 1) classes

are algebraic. The Néron-Severi group is generated over Q by three immersed totally
geodesic curves we explicitly give.

(f) The automorphism group Σ of X, isomorphic to Z3, has 9 fixed points, and induces
a nontrivial action on T which has 3 fixed points. Three fixed points of Σ lie over
each fixed point in T . Over one fixed point on T , the three fixed points of Σ are of
type 1

3 (1, 1). The other 6 fixed points of Σ are of type 1
3 (1, 2).

The Main Theorem follows from Lemma 3 for (a), Theorem 3 for (b), Corollary 2 for
(c), Lemma 11 for (d), Corollary 1 and Lemma 8 for (e), and Proposition 11 for (f). As an
immediate consequence, see Theorem 4, we have answered an open problem communicated
to us by Ngaiming Mok on properties of fibrations on complex ball quotients.

Corollary There exists a fibration of a smooth complex two ball quotient over a smooth
Riemann surface with non-totally geodesic singular fibers.

Here are a few words about the presentation of the article. To streamline our arguments
and to make the results more understandable, we state and prove the geometric results of
the article sequentially in the sections 3 to 5. Many of the results rely on computations
in the groups Π and Γ̄, often obtained with assistance of the algebra package Magma, and
we present these exclusively in the first two sections of the paper (except for the proof of
Proposition 11) with a geometric perspective each time it is possible. More details appear
in a longer version of this paper and on the webpages of the first and second named authors.
The Magma files are also available on the HAL archive. See the reference [CKY] for the
links.
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1. Basic facts

1.1. Let F be a Hermitian form on C3 with signature (2, 1). We denote by U(F ) = {g ∈
GL(3,C) | g∗Fg = F} the subgroup of GL(3,C) preserving the form F , by SU(F ) the sub-
group of U(F ) of elements with determinant 1, and by PU(F ) their image in PGL(3,C).
The group PU(F ) is naturally identified with the group of biholomorphisms of the two-ball
B2

C(F ) := {[z] ∈ P2
C = P(C3) |F (z) < 0}.

Our aim is to study a special complex hyperbolic surface X = Π\B2
C(F ) where Π is

a cocompact torsion-free lattice in some PU(F ). The group Π appears as a finite index
subgroup of an arithmetic lattice Γ̄ which can be easily described as follows.

Let ζ = ζ12 be a primitive 12-th root of unity. Then r = ζ + ζ−1 is a square root of 3.
Let ` = Q(ζ) and k = Q(r) ⊂ `. For real and complex calculations below, we take ζ = eπi/6,
and then r is the positive square root of 3. We could define Γ̄ to be the group of 3 × 3
matrices g′ with entries in Z[ζ] such that g′

∗
F ′g′ = F ′, where

F ′ =

r + 1 −1 0
−1 r − 1 0
0 0 −1


and g′

∗
is the conjugate transpose of g′, modulo Z = {ζjI : j = 0, . . . , 11}.

However, it is convenient to work with a diagonal form instead of F ′. Notice that F ′ =
(r − 1)−1γ∗0Fγ0 for

F =

1 0 0
0 1 0
0 0 1− r

 , and γ0 =

1 0 0
1 1− r 0
0 0 1

 .

So we instead define Γ̄ to be the group of matrices g, modulo Z, with entries in `, which are
unitary with respect to F for which g′ = γ−10 gγ0 has entries in Z[ζ]. Such g’s have entries
in 1

r−1Z[ζ] ⊂ 1
2Z[ζ].

Since F is diagonal, it is easy to make the group PU(F ) act on the standard unit two-ball,
which we will just denote by B2

C: if gZ ∈ Γ̄, the action of gZ on B2
C is given by

(gZ).(z, w) = (z′, w′) if DgD−1

zw
1

 = λ

z′w′
1

 ,

for some λ ∈ C, where D is the diagonal matrix with diagonal entries 1, 1 and
√
r − 1. We

will ignore the distinction between matrices g and elements gZ of Γ̄.
Now Γ̄ contains a subgroup K of order 288 generated by the two matrices u = γ0u

′γ−10

and v = γ0v
′γ−10 where

u′ =

ζ3 + ζ2 − ζ 1− ζ 0
ζ3 + ζ2 − 1 ζ − ζ3 0

0 0 1

 and v′ =

 ζ3 0 0
ζ3 + ζ2 − ζ − 1 1 0

0 0 1

 .

A presentation for K is given by the relations u3 = v4 = 1 and (uv)2 = (vu)2. The elements
of K are most neatly expressed if we use not only the generators u and v, but also j = (uv)2,
which is the diagonal matrix with diagonal entries ζ, ζ and 1, and generates the center of K.

There is one further generator needed for Γ̄, namely b = γ0b
′γ−10 for

b′ =

 1 0 0
−2ζ3 − ζ2 + 2ζ + 2 ζ3 + ζ2 − ζ − 1 −ζ3 − ζ2

ζ2 + ζ −ζ3 − 1 −ζ3 + ζ + 1

 .

The matrices u′, v′ and b′ have entries in Z[ζ] and are unitary with respect to F ′. We shall
always work below with their respective conjugates u, v and b (unitary with respect to F ).
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Figure 1. Q̄ = P2
C and R = P2

C/Σ3

Theorem 1 ([CS2]). A presentation of Γ̄ is given by the generators u, v and b and the
relations

u3 = v4 = b3 = 1, (uv)2 = (vu)2, vb = bv, (buv)3 = (buvu)2v = 1.

1.2. As communicated to us by John Parker, Γ̄ is isomorphic to a group generated by
complex reflections first discovered by Mostow, denoted by Γ3, 13

in [Mo1] and by Γ3,4 in [Pa].

See [CS2] for an explicit isomorphism.
It is also convenient to see Γ̄ as a (Deligne-)Mostow group: it corresponds to item 8 in

the paper of Mostow [Mo2, p. 102] whose associated weights (2, 2, 2, 7, 11)/12 satisfy the
condition (ΣINT) in the notation of [Mo2]. We refer to [Mo2] and [DM2] for details on the
description below.

The orbifold quotient R := Γ̄\B2
C is a compactification of the moduli space of 5-tuples

of distinct points (x0, x1, x2, x3, x4) ∈ (P1
C)5 modulo the diagonal action of PGL(2,C) and

the action of the symmetric group on three letters Σ3 on the three first points. The com-
pactification can be described as follows. First, it can be easily seen that the moduli space
Q of 5-tuples of distinct points (x0, x1, x2, x3, x4) ∈ (P1

C)5 modulo the diagonal action of
PGL(2,C) can be realized as P2

C with a configuration of six lines removed. In homogeneous
coordinates [X0 : X1 : X2] on P2

C, these six lines correspond to the three lines of “type A”
with equation Xi = Xj (1 6 i < j 6 2) and the three lines of “type B” with equation
Xi = 0 (i = 0, 1, 2). In fact, the compactification Q̄ = P2

C of Q is determined by the fact
that we allow two or three of the points x0, x1 and x2 to coincide (x0 = x1 corresponds to
X0 = X1, x0 = x2 to X0 = X2 and x1 = x2 to X1 = X2) and we also allow one or two of
the points x0, x1 and x2 to coincide with x3 (x0 = x3 corresponds to X0 = 0, x1 = x3 to
X1 = 0 and x2 = x3 to X2 = 0).

Then, as we mentioned above, the underlying topological space of Γ̄\B2
C is a compactifi-

cation R of Q/Σ3 and actually is the weighted projective plane P(1, 2, 3) ∼= P2
C/Σ3 where the

symmetric group on three letters Σ3 acts by permutation of the homogeneous coordinates
[X0 : X1 : X2] on P2

C. There are two remarkable (irreducible) divisors on P(1, 2, 3): one is
the image DA of the divisors of type A, the other one is the image DB of the divisors of
type B. The divisor DA has a cusp at the image P1 of the point [1 : 1 : 1] and the divisor
DB is smooth. These two divisors meet at two points: once at the image P2 of the points
[1 : 0 : 0], [0 : 1 : 0] or [0 : 0 : 1] where they are tangent, once at the image P3 of the points
[1 : 1 : 0], [1 : 0 : 1] or [0 : 1 : 1] where the intersection is transverse. There are also two
singular points on P(1, 2, 3): one is a singularity of type A1 and is the image P4 ∈ DB of the
points [1 : −1 : 0], [1 : 0 : −1] or [0 : 1 : −1], the other one is a singularity of type A2 and is
the image P5 of the points [1 : ω : ω2] or [1 : ω2 : ω] where ω is a primitive 3rd root of unity.
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Remark 1. In the book [DM2, p. 111], the divisor DA (resp. DB) is denoted by DAA (resp.
DAB) and the points P1, . . . , P5 simply by 1, . . . , 5.

There is a standard method to compute the weight of the orbifold divisors on Γ̄\B2
C as

well as the local groups at the orbifold points, according to the weights (2, 2, 2, 7, 11)/12
mentioned above, in the notation of [Mo2]. The weight of DA is 3 = 2(1 − (2 + 2)/12)−1

and the weight of DB is 4 = (1 − (2 + 7)/12)−1. This means that the preimage of DA

(resp. DB) in B2
C is a union of mirrors of complex reflections of order 3 (resp. 4). We will

denote byMA (resp. MB) the corresponding sets of mirrors and we will refer to these sets
as mirrors of types A (resp. B). Said another way, the isotropy group at a generic point
of some M ∈ MA is isomorphic to Z3 and the isotropy group at a generic point of some
M ∈ MB is isomorphic to Z4, both generated by a complex reflection of the right order.
This has to be compared with the description of Γ̄ as Γ3,4.

The isotropy group at a point above the transverse intersection P3 of DA and DB is
naturally isomorphic to Z3 × Z4. As P5 is a singularity of type A2 but does not belong to
any orbifold divisor, the local group at P5 is isomorphic to Z3. But since P4 ∈ DA is a
singularity of type A1, the local group at P4 has order 8 = 2 · 4 and actually is isomorphic
to Z8 (see the discussion before Lemma 2 below).

It is a little bit more difficult to determine the isotropy group above the points P1 and P2.
It will also be useful to describe the stabilizer in Γ̄ of a mirror. For this, one can use a
method similar to the one in [Der1, Lemma 2.12] and obtain the following lemma which
already appeared in an unpublished manuscript of Deraux and Yeung.

Lemma 1. Let MA (resp. MB) denote the set of mirrors of complex reflections of order 3
(resp. 4) in Γ̄.

Let P ⊂ B2
C denote the set of points above P1 and T ⊂ B2

C denote the set of points
above P2. The following holds.

(a) The group Γ̄ acts transitively on MA, on MB, on P and on T .
(b) For each point ξ ∈ P, the stabilizer of ξ is the one labelled ]4 in the Shephard-Todd

list. It is a central extension of a (2, 3, 3)-triangle group, with center of order 2, and
has order 24. There are precisely 4 mirrors in MA through each such ξ ∈ P.

(c) For each point ξ ∈ T , the stabilizer of ξ is the one labelled ]10 in the Shephard-Todd
list. It is a central extension of a (2, 3, 4)-triangle group, with center of order 12,
and has order 288. Through each such ξ ∈ T , there are 8 elements of MA and 6
elements of MB.

(d) The stabilizer of any element M ∈MA is a central extension of a (2, 4, 12)-triangle
group, with center of order 3.

(e) The stabilizer of any element M ∈MB is a central extension of a (2, 3, 12)-triangle
group, with center of order 4.

Sketch of proof. (a) Follows from the above discussion.
(b) The point P1 corresponds to x0 = x1 = x2 so that the computation 3/2 = (1− (2 +

2)/12)−1 shows that the spherical triangle group associated to the projective action of the
isotropy group at ξ ∈ P is (2, 3, 3). Indeed, we have to consider the triangle with angles
(2π/3, 2π/3, 2π/3) and take the symmetry into account (i.e. dividing the triangle into six
parts), so that we obtain a triangle with angles (π/2, π/3, π/3). The center has order given
by 2 = (1− (2 + 2 + 2)/12)−1. Comparing with [ST, Table 1], we see that the relevant group
is the one labelled ]4 in the Shephard-Todd list and the rest of the assertion follows.

(c) Similarly, the point P2 corresponds for instance to x0 = x1 = x3 and the additional
computation 4 = (1 − (2 + 7)/12)−1 shows that the spherical triangle group associated to
the projective action of the isotropy group at ξ ∈ T is (2, 3, 4). Indeed, we have to consider
the triangle with angles (π/4, π/4, 2π/3) and take the symmetry into account (i.e. dividing
the triangle into two parts), so that we obtain a triangle with angles (π/2, π/3, π/4). The
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center has order given by 12 = (1 − (2 + 2 + 7)/12)−1. Comparing with [ST, Table 2], we
see that the relevant group is the one labelled ]10 in the Shephard-Todd list.

(d) Follows from the interpretation of the stabilizer of M ∈ MA as a central extension
with center of order 3 (corresponding to the order of the reflection with mirror M) of a
Deligne-Mostow group with weights (2, 4, 7, 11)/12 coming for instance from the collapsing
of x1 and x2. The associated triangle group is (2, 4, 12) since 2 = (1 − (2 + 4)/12)−1,
4 = (1− (2 + 7)/12)−1 and 12 = (1− (4 + 7)/12)−1.

(e) Similarly, the stabilizer of M ∈ MB is a central extension with center of order 4
(corresponding to the order of the reflection with mirror M) of a (Deligne-)Mostow group
with weights (2, 2, 9, 11)/12 coming for instance from the collapsing of x2 and x3. We have
moreover to take care of the symmetry coming from the first two weights. The associated
triangle group is (2, 3, 12) since 3/2 = (1 − (2 + 2)/12)−1 and 12 = (1 − (2 + 9)/12)−1 so
that we have to divide into two parts a triangle with angles (2π/3, π/12, π/12). �

1.3. We come back to the description of B2
C and Γ̄ in the more concrete terms of §1.1. The

elements u and v of Γ̄ are complex reflections of order 3 and 4, respectively. For α ∈ C,
define

Mα = {(z, w) ∈ B2
C : z = αw}.

We also letM∞ = {(z, w) ∈ B2
C : w = 0}. Setting c = (r−1)(ζ3−1)/2 = ζ2−ζ, one can check

that u fixes each point of Mc, and v fixes each point of M0. As a consequence of Lemma 1(a),
MA = {g(Mc) : g ∈ Γ̄} and MB = {g(M0) : g ∈ Γ̄}. Of course, g(Mc) and g(M0) are the
sets of points of B2

C fixed by the complex reflection gug−1, and gvg−1, respectively. For
ξ ∈ B2

C, let MA(ξ), respectively MB(ξ) denote the set of distinct mirrors M , of type A
and B, respectively, containing ξ. In the following proposition, recall that j = (uv)2.

Proposition 1. The non-trivial elements of finite order in Γ̄ are all conjugate to one of the
elements in the following table, or the inverse of one of these.

d Representatives of elements of order d

2 v2, j6, (bu−1)2

3 u, j4, uj4, buv

4 v, j3, vj3, v2j3, bu−1

6 j2, v2j2, v2uj, v2uj5, bv2u−1j, bv2

8 uvj, ζ−1bj, (ζ−1bj)3

12 j, j5, uv−1j2, uv−1j3, uv−1j6, uv−1j−1, v2j, uv2, uj, uj3, bv, (bv)−5

24 uv, vuj2

Proof. Elements of Γ̄ which fix points of B2
C must have finite order, because Γ̄ acts discon-

tinuously on B2
C. Conversely (see [CS2, Lemma 3.3]) any element of finite order in Γ̄ fixes at

least one point of B2
C, and is conjugate to an element of K ∪ bK ∪ bu−1bK. One can easily

list the nontrivial elements of finite order in this last set (there are 408 of them, 76 in bK
and 45 in bu−1bK), all having order dividing 24. Routine calculations show that any such
element (and hence each nontrivial element of finite order in Γ̄) has a matrix representative g
conjugate to one of the elements in the above table, or its inverse. �

For α ∈ C ∪ {∞} and for ξ ∈ B2
C, let

Γ̄α = {g ∈ Γ̄ : g(Mα) = Mα} and Γ̄ξ = {g ∈ Γ̄ : g.ξ = ξ}

denote the stabilizer of Mα and ξ, respectively. In §1.2, we described the ξ ∈ B2
C for which

Γ̄ξ 6= {1}. The result can be summed up in the following table, in which Γ̄(ξ) denotes the
image of ξ ∈ B2

C in R = Γ̄\B2
C.
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Γ̄(ξ) |Γ̄ξ| |MA(ξ)| |MB(ξ)|
P1 24 4 0

P2 288 8 6

P3 12 1 1

P4 8 0 1

P5 3 0 0

generic DA 3 1 0

generic DB 4 0 1

where generic DA (resp. DB) means that Γ̄(ξ) ∈ DA (resp. DB) and Γ̄(ξ) 6= P1, P2, P3

(resp. P2, P3, P4). Two points of B2
C are particularly important: the origin O, such that

Γ̄(O) = P2 (i.e. O ∈ T ), and

P =
(c(ζ − 1)√

r − 1
,
ζ − 1√
r − 1

)
, (1)

such that Γ̄(P ) = P1 (i.e. P ∈ P). By [CS2, Lemma 3.1], Γ̄O = K. We can show
that Γ̄P = 〈u, b〉, which has cardinality 24, by first noting that g.P = P implies that

d(g.0, 0) ≤ 2d(P, 0) (where d is the hyperbolic metric on B2
C), which equals cosh−1(

√
3 + 1).

This implies (see [CS2, §3]) that g ∈ K ∪KbK ∪Kbu−1bK, so we need only check which g
in this finite set fix P .

Another important point will be the fixed point

Q =
( c1√

r − 1
,

c2√
r − 1

)
(2)

of buv such that Γ̄(Q) = P5 where for λ = e−πi/18,

c1 = ζ3 − ζ2 − ζ + 1 + (ζ2 − ζ + 1)λ+ (−ζ3 + ζ2 − 1)λ2, and c2 = ζ3 − (ζ − 1)λ2.

We similarly check that Γ̄Q = 〈buv〉, so that |Γ̄Q| = 3. The points P3 and P4 in R are,
respectively, the images Γ̄(ξ) of the fixed points

ξ =
(

0,
ζ − 1√
r − 1

)
and ξ =

(
0,

(e−πi/4(ζ − 1)(ζ2 − 1) + 1)ζ3√
r − 1

)
,

of bv and bj. We similarly verify that Γ̄ξ = 〈bv〉 and 〈bj〉, so that |Γ̄ξ| = 12 and 8, respectively.
The following lemma adds further detail to Lemma 1(c) and is easily checked.

Lemma 2. The orbit under the finite group K of Mc consists of the eight mirrors Mα for
α = c±±± = ±(r ± 1)(i ± 1)/2 (so that for example c = c+−−), and MA(O) is the set of
these Mα’s. The 8 elements kα ∈ K in the table below are such that kα(Mc) = Mα.

α c+−− c−−+ c−−− c+−+ c−++ c−+− c+++ c++−

kα 1 v v2 v3 u−1v2u vu−1v2u v2u−1v2u v3u−1v2u

The orbit under K of M0 consists of the 6 mirrors Mα, α ∈ {0, 1,−1, i,−i,∞}, andMB(O)
is the set of these Mα’s. The 6 elements kα ∈ K in the table below satisfy kα(M0) = Mα.

α 0 i −1 −i 1 ∞
kα 1 uj vuj v2uj v3uj u−1v2uj6
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1.4. Cartwright and Steger discovered a very interesting torsion-free subgroup Π of Γ̄ with
finite index. The surface X = Π\B2

C is called the Cartwright-Steger surface in this article.

Theorem 2 ([CS2]). The elements

a1 = vuv−1j4buvj2, a2 = v2ubuv−1uv2j and a3 = u−1v2uj9bv−1uv−1j8

of Γ̄ generate a torsion-free subgroup Π of index 864, with Π/[Π,Π] ∼= Z2.

Proof. Using the given presentation of Γ̄, the Magma Index command shows that Π has
index 864 in Γ̄. We see that Π is torsion-free as follows. The 864 elements bµk, for µ = 0, 1,−1
and k ∈ K, form a set of representatives for the cosets Πg of Π in Γ̄. One can verify this
by a method we shall use repeatedly: for g = bµk and g′ = bµ

′
k′, we check that Πg 6= Πg′

unless µ′ = µ and k′ = k by having Magma calculate the index in Γ̄ of 〈a1, a2, a3, g′g−1〉.
If 1 6= π ∈ Π has finite order, then π = gtg−1 for one of the elements t given in the

table of Proposition 1, or the inverse of one of these. But then (bµk)t(bµk)−1 ∈ Π for some
µ ∈ {0, 1,−1} and k ∈ K, and Magma’s Index command shows that this is not the case.

The Magma AbelianQuotientInvariants command shows that Π/[Π,Π] ∼= Z2. For
any isomorphism f : Π/[Π,Π] → Z2, the image under f of a31a

−2
2 a73 is trivial. We can

choose f so that it maps a1, a2 and a3 to (1, 3), (−2, 1) and (−1,−1), respectively. So
f(a1a

−1
2 a23) = (1, 0) and f(a−11 a2a

−3
3 ) = (0, 1). �

Magma shows that the normalizer of Π in Γ̄ contains Π as a subgroup of index 3, and is
generated by Π and j4. One may verify that

j4a1j
−4 = a3a

−3
2 a33a1,

j4a2j
−4 = a−13 , and

j4a3j
−4 = a−11 a−12 a1a

2
2a
−1
1 a−12 a1a

−1
3 a−11 a2a1.

With the above isomorphism f : Π/[Π,Π]→ Z2,

f(j4πj−4) = f(π)

(
0 −1
1 −1

)
for all π ∈ Π. (3)

1.5. Cartwright and Steger noticed that the group Π can be exhibited as a congruence
subgroup of Γ̄: we have two reductions r2 : Z[ζ] → F4 = F2[ω] and r3 : Z[ζ] → F9 = F3[i]
defined by sending ζ to ω (resp. i) where 1 + ω + ω2 = 0 (resp. i2 = −1). They induce
(surjective) group morphisms ρ2 : Γ̄ → PU(3,F4) and ρ3 : Γ̄ → PU(3,F9) (recall that
PU(3,F4) and PU(3,F9) have respective cardinality 216 and 6048).

Note that for an element of PU(3,F4), the determinant is well defined since ω3 = 1. This
enables us to define a (surjective) morphism det2 = det ◦ ρ2 : Γ̄ → F∗4. Let us denote the
subgroup det−12 (1) of index 3 of Γ̄ by Π2.

Remark also that there exist subgroups of order 21 in PU(3,F9) (they are all conjugate)
and let us denote one of them by G21. Then, define Π3 := ρ−13 (G21): it is a subgroup of Γ̄
of index 288 = 6048/21.

So Π2∩Π3 is a subgroup of Γ̄ of index 864 = 3·288, and one can show that it is isomorphic
to Π. As the natural map X = Π\B2

C → Γ̄\B2
C = R obviously has degree 864, one can prove

Lemma 3. The Cartwright-Steger surface X = Π\B2
C has the following numerical invari-

ants:

c21 = 9, c2 = 3, χ(OX) = 1, q = h1,0 = 1, pg = h2,0 = 1, h1,1 = 3.

Moreover, H2(X,Z) is torsion free.

Proof. The orbifold Γ̄\B2
C has orbifold Euler characteristic 1/288 (see [PY] or [Sa] for in-

stance) so that X has Euler characteristic c2(X) = 3 = 864/288. Then, as it is a two-ball
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quotient, c21(X) = 9 and thus its arithmetic genus is χ(OX) = 1
12 (c21 + c2) = 1. Since

Π/[Π,Π] ∼= Z2, we have b1 = 2q = 2. So, from

1 = χ(OX) = 1− q + pg,

3 = c2(X) = 2b0 − 2b1 + b2,

we deduce that pg = 1, b2 = 5, and finally, h1,1 = 3.
That H2(X,Z) is torsion free follows immediately from the universal coefficient theorem

and the fact that H1(X,Z) ∼= Π/[Π,Π] ∼= Z2 is also torsion free. �

We will see later (Corollary 1) that the Picard number of X is actually 3. It is our purpose
to understand the geometric properties of the surface X, especially using its Albanese map.

2. Configurations of some totally geodesic divisors

Here we describe results about the configuration of totally geodesic divisors on the Cart-
wright-Steger surface X = Π\B2

C.
Let $ : X → R = Γ̄\B2

C be the projection. We use the notation of §1.2. From the
description of the local groups at P1, P2 and P3, we know that $−1(P2) consists of 3 =
864/288 points O1 = Π(O), O2 = Π(b · O), O3 = Π(b−1 · O) on X, $−1(P1) consists of
36 = 864/24 points, and $−1(P3) consists of 72 = 864/12 points. It is easy using Magma
to find ki ∈ K such that $−1(P1) = {Π(ki.P ) : 1 6 i 6 36}.

For the curves DA and DB , their preimages $−1(DA) and $−1(DB) consist of singular
totally geodesic curves on X, denoted to be of types A and B respectively. By the description
of R in Figure 1, the curves can only have crossings at $−1(Pi) for i = 1, 2, 3, and since
these curves are totally geodesic, these crossings are simple. It will be crucial for us to know
the genus of the irreducible components of these totally geodesic curves, as well as their
singularities and the way they meet each other. In this section, we explain how we can
achieve this, using computer calculations.

2.1. Our first step is to describe the groups Γ̄0 and Γ̄c of elements stabilizing M0 and Mc,
respectively.

As we saw in Lemma 1(d), Γ̄0 is a central extension of a (2, 3, 12)-triangle group, with
center of order 4. One may show that a presentation of Γ̄0 is given by the generators
s2 = (jb)−1, s3 = b, s12 = j and z0 = v and the relations

s1212 = s33 = 1, s22 = z30 , z
4
0 = [s12, z0] = [s3, z0] = [s2, z0] = s12s3s2 = 1.

We saw in Lemma 1(e) that Γ̄c is a central extension of a (2, 4, 12)-triangle group, with
center of order 3. One may similarly show that a presentation of Γ̄c is given by the generators
t2 = (bu−1)2, t4 = j−1(bu−1)2, t12 = j and zc = u and the relations

t1212 = 1, t44 = zc, t
2
2 = z3c = [t12, zc] = [t4, zc] = [t2, zc] = t12t4t2 = 1.

The proof of both these facts involves somewhat lengthy calculations with explicit matrices.
We give these calculations in a Magma file, see [CKY].

2.2. Let ϕ : B2
C → X be the natural map. If M is a mirror of type A or B, let Γ̄M denote

the stabilizer of M (so Γ̄α = Γ̄Mα
). The group ΠM = {π ∈ Π : π(M) = M} = Π ∩ Γ̄M acts

on M , and is the fundamental group of the smooth curve ΠM\M . The embedding M ↪→ B2
C

induces an immersion ϕM : ΠM\M → X. We write Πα instead of ΠMα
. We need now to

describe ΠM , and we start by the simpler case of mirrors of type B.
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2.3. The groups ΠM when M is a mirror of type B. First, we consider Π0 = ΠM0
=

{π ∈ Π : π(M0) = M0} = Π ∩ Γ̄0 = Π2 ∩ Π3 ∩ Γ̄0 = det−12 (1) ∩ ρ−13 (G21) ∩ Γ̄0 by §1.5.
Restricting det2 and ρ3 to Γ̄0, Magma finds that Π0 has index 288 in Γ̄0.

Proposition 2. The group Π0 has a presentation

〈u1, . . . , u4, v1, . . . , v4 : [u1, v1][u2, v2][u3, v3][u4, v4] = 1〉, (4)

with generators ui, vi, given below, and so Π0\M0 is a smooth curve of genus 4.

Proof. As j4 normalizes Π, we can define g1, . . . , g8 ∈ Π by setting g1 = a−33 a−11 a2a1,
g3 = a2a

−2
1 a−33 a−11 , g5 = j4a2a1j

8a−12 a33a
2
1, and g7 = j4a−11 a−12 j4a2a1j

4, and then g2ν =
j4g2ν−1j

−4 for ν = 1, 2, 3, 4. These are in Γ̄0. Magma verifies that G = 〈g1, . . . , g8〉 has
index 288 in Γ̄0, and so G = Π0, and gives a presentation of Π0 which has just one relation:

g1g2g3g4g5g6g7g8g
−1
1 g−13 g−15 g−17 g−12 g−14 g−16 g−18 = 1. (5)

By a method shown to us by Jonathan Hillman, we replace the generators gi by generators
ui and vi, where ui = ε1 · · · εi−1δiε−1i−1 · · · ε

−1
1 and vi = ε1 · · · εi−1εiε−1i−1 · · · ε

−1
1 , where

δ1 = g1g2g3g4g5g6g7,

δ2 = g1g2g3g4,

δ3 = g1,

δ4 = g−13 ,
and

ε1 = g8g
−1
1 g−13 g−15 ,

ε2 = g5g6g
−1
2 ,

ε3 = g2g3g
−1
6 ,

ε4 = g6

and these generators ui and vi satisfy the stated relation. �

We now consider ΠM for the other mirrors M of type B.

Proposition 3. If g ∈ Γ̄ and M = g(M0) is a mirror of type B, then

(a) There is a π ∈ Π such that π(M) = M0, M1 or M∞.
(b) Correspondingly, ΠM is conjugate in Π to either Π0, Π1 or Π∞.
(c) ΠM = gΠ0g

−1.
(d) h(ΠM )h−1 = Πh(M) for any h ∈ Γ̄.
(e) The three possibilities in (a) are mutually exclusive.

In particular, it follows from (c) that for any mirror M of type B, ΠM\M ∼= Π0\M0.

Proof. (a) The elements bµk, µ = 0, 1,−1 and k ∈ K, form a set of coset representatives
of Π in Γ̄. So using Lemma 2, we may assume that M = bµ(Mα) for some µ ∈ {0, 1,−1}
and α ∈ {0,±1,±i,∞}. Then, searching amongst short words in the generators ai of Π,
we quickly find π ∈ Π such that π(M) = Mβ for β ∈ {0, 1,∞}. For example, taking

π = a33a
2
1a
−1
2 , we have π(bM−1) = M1. This proves (a), and (b) follows immediately.

(c) We first show that hΠ0h
−1 ⊂ Π for each h ∈ Γ̄. We may assume that h = bµk

as in (a). For each of the 8 generators gj of Π0 given in the proof of Proposition 2 we
have Magma check that 〈a1, a2, a3, hgjh−1〉 has index 864 in Γ̄ , so that hgjh

−1 ∈ Π. It
follows, in particular, that hΠ0h

−1 = Π0 for each h ∈ Γ̄0. We next prove (c) in the cases
g = kβ , β = 1,∞. Now kβΠ0k

−1
β ⊂ Π and so Π0 ⊂ k−1β Πβkβ ⊂ Γ̄0. Choose a transversal

t1, . . . , t288 of Π0 in Γ̄0, i.e., a set of elements ti such that Γ̄0 is the union of the distinct
cosets Π0ti. Then Magma verifies that the index in Γ̄ of 〈a1, a2, a3, kβtik−1β 〉 is less than 864

if i 6= 1. Thus Π0 = k−1β Πβkβ , and (c) holds for g = kβ , β = 0, 1,∞. By (a), for our

given g, there is a π ∈ Π so that g(M0) = π(Mβ) for one of these β’s. Then h = k−1β π−1g

is in Γ̄0, so that hΠ0h
−1 = Π0. Then (π−1g)Π0(π−1g)−1 = Πβ by (c) for g = kβ . Thus

gΠ0g
−1 = π(ΠMβ

)π−1 = Ππ(Mβ) = ΠM . Part (d) is immediate from (c).
(e) is a consequence of the discussion in §2.5 as well as Proposition 6 below. �

If M is a mirror of type B, then by Proposition 3(a), the image of the immersion ϕM :
ΠM\M → X is equal to the image of ϕM ′ for M ′ = M0, M∞, or M1. We will denote by E1,
E2 and E3 respectively these images (which are distinct by Proposition 3(e)). Notice that
the curves Ei are singular since they self-intersect (see Proposition 6) and that the maps
ϕM are therefore the normalization maps.
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To calculate entries in the table in §2.8, we need explicit generators for Π∞. We start
with the generators g′′i = k∞gik

−1
∞ , where g1, . . . , g8 are as in proof of Proposition 2. The

g′′i satisfy exactly the same relation as do the gi’s, and so standard generators ui and vi can
be found for Π∞ in exactly the same way as was done for Π0. To calculate the f(ui) and
f(vi)’s (with f as in (3)), we need to express the g′′i ’s in terms of the generators of Π. One
may verify that:

g′′1 = j4(a−11 a−23 a−11 )j8a−11 a−12 ,

g′′3 = j8(a3a1a2a
−1
1 a−12 )j4,

g′′5 = j8(a−12 a−13 )j4,

g′′7 = j4(a1a3a
−1
1 a−23 )j8,

and g′′2ν = j4g′′2ν−1j
8 for ν = 1, 2, 3, 4.

2.4. The groups ΠM when M is a mirror of type A. Magma finds that Πc has
index 324 in Γ̄c.

Proposition 4. The group Πc has a presentation

〈u1, . . . , u10, v1, . . . , v10 : [u1, v1][u2, v2] · · · [u9, v9][u10, v10] = 1〉, (6)

and so Πc\Mc is a smooth curve of genus 10.

Proof. The proof is very similar to that of Proposition 2. We define 20 elements g1, . . . , g20
of Π by setting

g1 = j8a−11 a2a1a3a
−1
1 j4a2a1,

g3 = j4a2a1a
−2
2 a−11 a3j

4a33j
4,

g5 = j8a−11 j4a2a1j
4a3a

−1
2 a1a3a

−1
1 j8,

g7 = j8a2a1j
4a−13 j4a2a

−1
1 a−12 a−33 j8,

g9 = j8a−11 a−22 a−11 a−13 j8a−11 a−12 j8,

g12 = a−12 a1a3a
−1
1 a−13 j4a3a1a

2
2a
−1
1 a−12 j8,

g15 = j4a1j
4a2a3a

−1
1 j4,

g17 = j8a−21 a−12 j4a3a1a2a1,

g19 = a−12 a1a3a
−1
1 a−23 j4a1a2j

4a−11 a−12 j4,

and also gν+1 = j4gνj
−4 for ν ∈ {1, 3, 5, 7, 9, 10, 12, 13, 15, 17, 19}. These are in Γ̄c. Magma

verifies that G = 〈g1, . . . , g20〉 has index 324 in Γ̄c, and so G = Πc, and gives a presentation
of Πc which has just one relation:

g4g
−1
14 g

−1
2 g−117 g9g19g20g14g

−1
7 g−110 g

−1
5 g−116 g

−1
3 g−112 g1g2g

−1
18 g10g

−1
19 g12

× g−18 g−111 g
−1
6 g15g16g

−1
4 g−113 g

−1
1 g17g18g11g

−1
20 g13g7g8g

−1
9 g5g6g

−1
15 g3 = 1.

Using the same method as in the proof of Proposition 2, we can replace the generators gi
by generators ui and vi satisfying the given relation. We omit the details. �

We now consider ΠM for the other mirrors M of type A. As well as c = c+−−, the
parameter −c = c−−− is important in the next result.

Proposition 5. If g ∈ Γ̄ and M = g(Mc) is a mirror of type A, then

(a) There is a π ∈ Π such that π(M) = M ′, where M ′ ∈ {Mc,M−c, b(Mc), b
−1(Mc)}.

(b) If M ′ is as in (a), then ΠM is conjugate in Π to ΠM ′ .
(c) ΠM = gΠcg

−1 in the first two cases of (a), and in particular if g = kα for any
α ∈ {c+++, . . . , c−−−}, so that Πα = kαΠck

−1
α for all these α’s.

(d) In the other two cases of (a), gΠcg
−1 has index 3 in ΠM .

(e) The four possibilities in (a) are mutually exclusive.

Proof. The proof is similar to that of Proposition 3. For (a), we may assume that M =
bµ(Mα) for some µ ∈ {0, 1,−1} and α ∈ {c+++, . . . , c−−−}. For each of these M ’s, we find
explicit π ∈ Π such that π(M) = M ′ for an M ′ in the given list. The most complicated π
needed is π = a2a

−2
1 a−13 a1a

−1
3 a−11 a−22 , satisfying π(b−1(Mc−+−)) = b(Mc).

In proving (c) and (d), we first show that hΠch
−1 ⊂ Π for all h ∈ Γ̄ as in Proposition 3,

and therefore that hΠch
−1 = Πc for h ∈ Γ̄c. We are reduced to proving (c) and (d) for g = kc,

k−c, b and b−1. We have Πc ⊂ g−1ΠMg ⊂ Γ̄c, and choose a transversal t1 = 1, . . . , t324 of Πc
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in Γ̄c. Magma verifies that gtig
−1 ∈ Π only for i = 1 in the first two cases as in Proposition 3,

but that gtig
−1 ∈ Π for three i’s in the last two cases.

Finally, (e) is a consequence of the discussion in §2.5 as well as Proposition 7 below. �

In Proposition 5(d), ΠM\M is a smooth curve of genus 4 by the Riemann-Hurwitz for-
mula, and we can find explicit generators ui, vi of ΠM such that [u1, v1][u2, v2][u3, v3][u4, v4] =
1. When M = b(Mc), the following eight elements generate ΠM :

p1 = a32a
−1
1 a−13 j8a−22 a−11 j4,

p2 = a33a1a
2
3a2a1j

4a−13 j8a−23 a−11 a−33 ,

p3 = j8a−11 a−33 a22j
4a−23 a−11 a−33 ,

p4 = j8a2a1a
−2
2 a−11 j4a33a

2
1a
−1
2 ,

p5 = a33a1a
2
3j

4a−11 j8a23a1a
−3
2 ,

p6 = a33a1a2a1a3a
−3
2 ,

p7 = a33a1j
8a1a

−2
2 a−11 a23j

4,

p8 = j4a−23 j8a2a1a2a1a
−2
2 ,

and satisfy the single relation

p−15 p−12 p5p1p3p
−1
8 p4p

−1
1 p−17 p−16 p7p2p

−1
3 p8p

−1
4 p6 = 1.

Following the same procedure as in the proof of Proposition 2, we obtain a presentation (4)
for ΠM , with ui = ε1 · · · εi−1δiε−1i−1 · · · ε

−1
1 and vi = ε1 · · · εi−1εiε−1i−1 · · · ε

−1
1 for

δ1 = p−15 p−12 p5p1p3p
−1
8 p4p

−1
1 p−17 ,

δ2 = p−15 p−12 p5p1p3p
−1
8 ,

δ3 = p−15 p−12 p5p1,

δ4 = p−15 ,
and

ε1 = p−16 ,

ε2 = p4p
−1
1 p2p

−1
3 ,

ε3 = p3,

ε4 = p−12 .

If M is a mirror of type A, then by Proposition 5(a), the image of the immersion ϕM :
ΠM\M → X is equal to the image of ϕM ′ for M ′ = b(Mc), b

−1(Mc), Mc, or M−c. We will
denote by C1, C2, C3 and C4 respectively these images. They are distinct by Proposition 5(e),
singular, and the maps ϕM are the normalization maps.

2.5. In §2.3 and §2.4, we have identified 7 distinct irreducible totally geodesic curves in X,
4 of type A, and 3 of type B. Just the knowledge of the indices of the groups ΠM in Γ̄M
together with Lemma 1(d) and (e) enables us to determine the genus of the curves ΠM\M .

For instance, since ΠM has index 288 in Γ̄M when M is of type B, and since the center of

Γ̄M (which acts trivially onM) has order 4, the normalization Êi of the curve Ei is an orbifold
covering of degree 72 = 288/4 of the orbifold DB

∼= P1
C endowed with three orbifold points

(P4, P3, P2) of respective multiplicities (2, 3, 12) hence by the Riemann-Hurwitz formula, its
genus is indeed

g(Êi) =
72

2

(
−2 +

2− 1

2
+

3− 1

3
+

12− 1

12

)
+ 1 = 4.

Note that 864 = 4 · 3 · 72, where 4 is the order of the reflections of type B and 3 the number
of curves of type B, which proves Proposition 3(e).

In the same way, the normalizations of C1 and C2 (resp. C3 and C4) are orbifold coverings
of degree 36 (resp. 108) of the orbifold DA whose normalization is P1

C, endowed with three

orbifold points (P1, P3, P2) of respective multiplicities (2, 4, 12) so that g(Ĉ1) = g(Ĉ2) = 4

and g(Ĉ3) = g(Ĉ4) = 10. Here again, 864 = 3(2 · 36 + 2 · 108) where 3 is the order of the
reflections of type A, which proves Proposition 5(e).

However, we will need to know explicit generators of the various groups ΠM (see below).

2.6. Now, we want to find out the singularities of the curves Ci and Ei. The next result is
a straightforward consequence of the discussion at the beginning of §2.

Lemma 4. Suppose that x ∈ X is the image under ϕM of two or more distinct elements
of ΠM\M . If M is of type B, then x must be one of the three points Π(O), Π(b.O)
and Π(b−1.O). If M is of type A, then x is either one of these three points or one of
the 36 points Π(ki.P ), where the ki are as above. If ξ ∈ M , then ϕM (ΠMξ) is one of the
three points Π(bµ.O), µ = 0, 1,−1, if and only if ξ is in the Γ̄-orbit of O, and it is one of
the 36 points Π(ki.P ) if and only if ξ is in the Γ̄-orbit of P .
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Lemma 5. (i) For each mirror M of type B, there are exactly six distinct ΠMξ ∈
ΠM\M such that ξ ∈M is in the Γ̄-orbit of O.

(ii) Suppose that M is a mirror of type A, and that there is a π ∈ Π such that π(M) = Mc

or M−c, respectively such that π(M) = b(Mc) or b−1(Mc). There are exactly 9
(respectively 3) distinct ΠMξ ∈ ΠM\M such that ξ ∈ M is in the Γ̄-orbit of O.
There are exactly 54 (respectively 18) distinct ΠMξ ∈ ΠM\M such that ξ ∈M is in
the Γ̄-orbit of P .

Proof. (i) This follows from the description given in §2.5. Indeed, the orbifold point P2 on

DB has weight 12 so that it has 6 = 72/12 preimages in Êi.
(ii) In the same way, the orbifold point P2 on DA has weight 12 so that it has 9 = 108/12

preimages in Ĉ3 and Ĉ4 (resp. 3 = 36/12 preimages in Ĉ1 and Ĉ2). Also, the orbifold

point P1 has weight 2 so that it has 54 = 108/2 preimages in Ĉ3 and Ĉ4 (resp. 18 = 36/2

preimages in Ĉ1 and Ĉ2). �

For any mirror M , and any µ ∈ {0, 1,−1}, let

nµ(M) = ]{ΠMξ ∈ ΠM\M : ϕM (ΠMξ) = Π(bµ.O)}.
By Lemma 5(i), n0(M) + n1(M) + n−1(M) = 6 if M is of type B.

Proposition 6. If M is a mirror of type B, then according to the three possibilities in
Proposition 3(a), (n0(M), n1(M), n−1(M)) is (3, 1, 2), (1, 4, 1) and (2, 1, 3), respectively.

Proof. Now f : ΠMg(K ∩ Γ̄M ) 7→ ΠM (g(0)) maps ΠM\Γ̄M/(K ∩ Γ̄M ) injectively into the
subset of six elements of ΠM\M of Lemma 5(i). By Proposition 3, we may suppose that
M = M0, M1 or M∞. When M = M0, Magma verifies that the following six g’s,

1, j9bj7, j10bj7, j11bj7, bj7 and j9bj2b−1j,

are in Γ̄M and belong to different double cosets. So f is a bijection, and nµ(M0) is the
number of these g’s such that g ∈ ΠbµK. We use Magma’s Index routine to check when
g(bµk)−1 ∈ Π for some k ∈ K. For M = Mα, α = 1 and ∞, we replace these g’s by kαgk

−1
α ,

for kα as in Lemma 2. �

That n0(M0), n0(M1), n0(M∞) are distinct gives another proof that the images of ϕM0
,

ϕM1
and ϕM∞ are distinct, which is equivalent to Proposition 3(e).

We now calculate nν(M), ν = 0, 1,−1, for mirrors M of type A, as well as the numbers

mi(M) = ]{ΠMξ ∈ ΠM\M : ϕM (ΠMξ) = Π(ki.P )}
for i = 1, . . . , 36 (recall that the ki’s were defined at the beginning of §2). If π ∈ Π and
M ′ = π(M), then nν(M ′) = nν(M) and mi(M

′) = mi(M) for each ν and i, and so by
Proposition 5(a), we need only do the calculation for Mc, M−c, b(Mc) and b−1(Mc).

Proposition 7. For mirrors M of type A, (n0(M), n1(M), n−1(M)) is (4, 3, 2) for the first
two cases in Proposition 5(a), and (0, 1, 2) for the other two.

For a suitable ordering of the ki, the numbers mi = mi(M) are as follows:

M m1 . . . ,m12 m13, . . . ,m18 m19, . . . ,m24 m25, . . . ,m36

Mc 2 0 3 1

M−c 2 3 0 1

b(Mc) 0 0 1 1

b−1(Mc) 0 1 0 1

Proof. As in Proposition 6, to get the numbers nν(M), we choose representatives γ ∈ Γ̄M of
the 9 (resp. 3) distinct double cosets ΠMγ(Γ̄M ∩K) (respectively, ΠMγ(Γ̄M ∩ bjKb−j)) for
M = Mc and M−c (respectively, M = bj(Mc), j = 1,−1) and then compute their images
ΠγK (respectively, ΠγbjK) in Π\Γ̄/K.
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To compute the numbers mi(M) for M = Mα, α = c,−c, (respectively, M = bj(Mc),
j = 1,−1), we choose representatives γ ∈ Γ̄M of the 54 (respectively, 18) distinct double
cosets ΠMγ(Γ̄M ∩kαΓ̄P k

−1
α ), (respectively, ΠMγ(Γ̄M ∩ bjΓ̄P b−j)) and compute their images

ΠγkαΓ̄P (respectively, ΠγbjΓ̄P ) in Π\Γ̄/Γ̄P . �

That mi(Mc), mi(M−c), mi(b(Mc)), mi(b
−1(Mc)) are distinct gives another proof that

the images of ϕMc
, ϕM−c , ϕb(Mc) and ϕb−1(Mc) are distinct, which is equivalent to Proposi-

tion 5(e).

2.7. The knowledge of the numbers nν(M) and mi(M) determines the singularities of our
seven totally geodesic curves. In order to determine how two distinct such curves intersect,
we also need to know which of the 72 points of $−1(P3) each of them contains. Using
exactly the same method as in Propositions 6 and 7, we obtain

Proposition 8. There are exactly 72 distinct points in $−1(P3). The set of these points
may be partitioned into three subsets of size 24, consisting of the points in the images of M0,
M1 and M∞, respectively. For α = 0, 1,∞, the set of 24 points belonging to the image
of Mα is partitioned into sets of n1, n2, n3 and n4 points in the images of Mc, M−c, b(Mc)
and b−1(Mc), respectively, where (n1, n2, n3, n4) = (6, 6, 6, 6) for α = 0, (n1, n2, n3, n4) =
(9, 9, 3, 3) for α = 1, and (n1, n2, n3, n4) = (12, 12, 0, 0) for α =∞.

2.8. We have seen (cf. §1.4) that H1(X,Z) = Ze1 +Ze2 ∼= Z2 in terms of a basis e1 and e2.
For each of the genus 4 curves D = Ei, i = 1, 2, 3, and D = Cj , j = 1, 2, a presentation (4)

can be given for π1(D̂). Abusing notation, we denote by f : H1(D̂,Z)→ H1(X,Z) ∼= Z2 the
homomorphism induced by the normalization of the immersed image of D in X. For E1, E2

and C1 (which is all we need for later computations, especially in the proof of Lemma 10)

we have given generators ui, vi, i = 1, . . . , 4, of π1(D̂) explicitly as words in the generators
a1, a2 and a3 of Π. So it is routine to compute their images f(ui), f(uj) in H1(X,Z) in
terms of e1, e2. We obtain:

D f(u1) f(v1) f(u2) f(v2) f(u3) f(v3) f(u4) f(v4)

E1 (−5,−2) (−2, 7) (−2, 1) (0, 0) (1, 4) (3,−6) (2, 5) (−1,−4)

E2 (−1, 2) (2,−1) (−2, 1) (0, 0) (−3, 0) (−1, 2) (−2, 1) (3, 0)

C1 (0,−2) (−2, 0) (−4, 0) (0, 2) (−4, 2) (4, 0) (2, 0) (0,−2)

Of course, we can also compute the image under f of the generators of the fundamental

group of the genus 10 curves Ĉ3 and Ĉ4.

3. Picard number

Lemma 6. Suppose D is a reduced (not necessarily irreducible) totally geodesic curve on
a smooth complex two-ball quotient X with ordinary singularities only at k distinct points
of respective multiplicities (b1, · · · , bk) and let us denote by Di (i = 1, . . . , n) its irreducible

components, D̂i their normalization. Let ν : D̂ = ∪iD̂i → D be the normalization of D.
Then

KX ·D = 3

n∑
i=1

(g(D̂i)− 1) and D ·D =
1

2
e(D̂) + δ̃, where δ̃ =

k∑
i=1

bi(bi − 1)

and e(D̂) is the Euler characteristic of D̂.

Proof. Note that we are in the case of a (non necessarily connected) immersed smooth curve
in a surface, with singularities given by intersections of transversal local branches. Moreover,
it is well known that for a totally geodesic curve D in a two-ball quotient, c1(KD̂) =
2
3ν
∗c1(KX) (this is a simple and classical computation involving the curvature form on B2

C.
For instance, it follows from [CM, §1] that if M is a smooth compact m-ball quotient for
some m and ωM is the Kähler form of the metric on M with constant holomorphic sectional
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curvature −2 then c1(KM ) = (m+1)ωM . Now, if ν : N →M is a totally geodesic immersion
of a smooth ball quotient N in M , then ν∗ωM is the Kähler form of the metric on N with
constant holomorphic sectional curvature −2 hence the result). As a consequence, by the
adjunction formula,

KX ·D =

∫
D

c1(KX) =
3

2

∑
i

∫
D̂i

c1(KD̂i
) = 3

n∑
i=1

(g(D̂i)− 1).

Recall moreover from [BHPV, §II.11] that

g(D) = g(D̂)+δan(D), where g(D̂) = 1+
∑
i

(g(D̂i)−1) and δan(D) =
∑
x∈D

dimC(ν∗OD̂/OD)

(here, the genus of a singular curve is its arithmetic genus). From the adjunction formula
for embedded curves, 2(g(D)− 1) = KX ·D +D ·D and therefore,

D ·D = 2(g(D)−1)−KX ·D = 2(g(D̂) + δan(D)−1)−3(g(D̂)−1) = (1− g(D̂)) + 2δan(D).

Finally, observe that in the case at hand, δan(D) = 1
2

∑k
i=1 bi(bi − 1) = 1

2 δ̃. �

Lemma 7. With C either C1 or C2, we have the following intersection matrix for the curves
E1, E2, E3 and C: 

5 13 9 11
13 5 9 7
9 9 9 9
11 7 9 −1

 . (7)

Moreover KX · Ei = 9 = KX · C for i = 1, 2, 3.

Proof. This follows immediately from Lemma 6 (here, all the involved curves are irreducible)

and the results in §2.6 and §2.7. For example for E3, e(Ê3) = −6 and (b1, b2, b3) = (1, 4, 1),
from which Lemma 6 implies that E3 · E3 = 9.

As the normalization of each of the four curves is of genus 4, its intersection with KX

is 9 by Lemma 6. We leave the other computations to the reader and just observe that:
– a curve Ei can only intersect a curve Ej at $−1(P2),
– two local branches of a curve C can only intersect at $−1(P2),
– a curve C can only intersect a curve Ei at $−1(P2) and $−1(P3). �

From now on, for any two divisors D and D′ on X, D ≡ D′ will mean that D and D′ are
numerically equivalent.

Lemma 8. E1, E2 and C represent numerically linearly independent elements in the Néron-
Severi group, where C = C1 or C2.

Proof. Assume that E1, E2 and C satisfy numerically an identity aE1 +bE2 +cC ≡ 0. Since
the minor ∆ of the above intersection matrix obtained by deleting the third row and column
has determinant 1296 6= 0, we must have a = b = c = 0. �

Corollary 1. The Picard number of X is 3.

Proof. It follows from the previous lemma that the Picard number is at least 3, given by
the classes of E1, E2 and C. On the other hand, h1,1(X) = 3 by Lemma 3. Since the Picard
number is bounded from above by h1,1, we conclude that the Picard number is 3. �

Proposition 9. The canonical line bundle KX and E3 give rise to the same class in the
Néron-Severi group. Moreover, KX ≡ E3 ≡ 1

2E1 + 1
2E2.
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Proof. From the discussions in the previous section, we know that E1, E2 and C = C1 form
a basis over Q of the Néron-Severi group (which is torsion free, see Lemma 3).

Hence we may write KX ≡ aE1 + bE2 + cC for some rational numbers a, b and c. By
pairing with E1, E2 and C respectively, we arrive at the system of equations

9 = 5a+ 13b+ 11c, 9 = 13a+ 5b+ 7c and 9 = 11a+ 7b− c,

so that (a, b, c)t = ∆−1(9, 9, 9)t = ( 1
2 ,

1
2 , 0)t, where ∆ is the minor used in the proof of

Lemma 8. Thus KX ≡ 1
2E1 + 1

2E2. The same computation leads to E3 ≡ 1
2 (E1 +E2) since

E3 · Ei = KX · Ei for i = 1, 2 and E3 · C = KX · C. �

We show in Remark 6 below that in fact E3 is linearly equivalent to KX and E1 +E2 is
linearly equivalent to 2KX .

Remark 2. By the previous proposition, we also have KX ≡ 2
3 ( 1

2E1 + 1
2E2) + 1

3E3 =
1
3 (E1 +E2 +E3). This fact can be recovered directly from the description of X as an orbifold

covering of R = Γ̄\B2
C as in §2.

We use the notation of §1.2. Let q : Q̄ = P2
C → R = P2

C/Σ3 be the projection. First,
we compute the canonical divisor KR of R. We have KR = aDA = 2aDB for some a ∈ Q
(see [DM2, §11.4 and Proposition 11.5] for a description of Pic(R)). If we denote by L =
O(1) the positive generator of Pic(P2

C), we have −3L = KP2
C

= q∗KR + 3L = 6aL + 3L

as q branches at order 2 along DA, and DA has three lines as a preimage in P2
C. Hence

KR = −DA = −2DB.
Now, the orbifold canonical divisor of Γ̄\B2

C is KR+ 3−1
3 DA+ 4−1

4 DB = (−1+ 2
3 + 3

8 )DA =
1
24DA = 1

12DB. In particular, as $∗DB = 4(E1 + E2 + E3), we get the result.

Remark 3. Proceeding as above, one can also find the following relations

4E3 ≡ C1 + C3, 4E3 ≡ C2 + C4 and 3E3 ≡ E1 + C1 + C2.

4. Geometry of a generic fiber of the Albanese map

Let α : X → T be the Albanese map of X. From Π/[Π,Π] ∼= Z2, we know that T is an
elliptic curve, and in particular, α is onto. Moreover, note that since the image of α is a
curve, the fibers of α are connected (see [U, Proposition 9.19]). Let D be a curve on X. The
mapping α induces a mapping α|D : D → T . Suppose F is the generic fiber of α. Then the
degree of α|D is given by D · F .

Lemma 9. Let m,n, p be the degrees of E1, E2, and C = C1, respectively, over the Albanese
torus T of X. The generic fiber F of the Albanese fibration of X satisfies

F ≡ 1

72

(
(−3m+ 5n+ 2p)E1 + (5m− 7n+ 6p)E2 + 2(m+ 3n− 4p)C

)
.

Proof. As in the proof of Proposition 9, we can write F ≡ aE1 + bE2 + cC for some rational
numbers a, b, c, and using the same minor ∆ used in the proof of Lemma 8, we get (a, b, c)t =
∆−1(m,n, p)t. �

Lemma 10. The degrees of E1, E2, C = C1 over the Albanese torus T of X are given by

m = 60, n = 12, p = 24.

Proof. Let D represent one of the curves E1, E2, C, ν : D̂ → D the normalization of D and
α̂ = α ◦ ν. Let ω be a positive (1, 1) form on T . Then the degree of D over T is given by

deg(D) =
∫
D
α∗ω∫
T
ω

. The key is to find the degree from the information of the explicit curves

that we have. For this purpose, we use an analogue of the Riemann bilinear relations. Let
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η be a holomorphic 1-form on the smooth Riemann surface D̂. Let {ui, vi} be a basis of

π1(D̂) as studied in §2.8. Then the Riemann bilinear relation (cf. [GH, p. 231]) states that∫
D̂

√
−1η ∧ η =

√
−1

4∑
i=1

[∫
ui

η

∫
vi

η −
∫
vi

η

∫
ui

η

]
where we use the same notation for an element of π1(D̂) and its image in H1(D̂,Z). Let us
write T = C/(Z + Zτ) where Im τ > 0. Let ωT =

√
−1dz ∧ dz be the standard (1, 1) form

on C and hence T . The above formula gives∫
T

ωT =
√
−1(τ − τ). (8)

Pulling back to D, the above formula gives∫
D

α∗ωT =

∫
D̂

α̂∗ωT =

∫
D̂

√
−1α̂∗dz ∧ α̂∗dz

=
√
−1

4∑
i=1

[∫
ui

α̂∗dz

∫
vi

α̂∗dz −
∫
vi

α̂∗dz

∫
ui

α̂∗dz

]

=
√
−1

4∑
i=1

[∫
α̂∗(ui)

dz

∫
α̂∗(vi)

dz −
∫
α̂∗vi

dz

∫
α̂∗ui

dz

]
.

(9)

In the above, α̂∗ : H1(D̂,Z) → H1(T,Z) ∼= H1(X,Z) ∼= Z2 refers to the map on 1-cycles
induced by α̂. Hence the right-hand side of the above expression in terms of the notation in
§2.8 is (up to sign)

√
−1

4∑
i=1

[∫
f(ui)

dz

∫
f(vi)

dz−
∫
f(vi)

dz

∫
f(ui)

dz

]
=

[
4∑
i=1

det(f(ui), f(vi))

]
√
−1(τ − τ), (10)

where det(f(ui), f(vi)) stands for the determinant of the two by two matrix formed by the
two vectors f(ui) and f(vi) from the table in §2.8. Notice that the resulting number will

be positive if and only if the orientation on D̂ coming from the choice of (u1, v1, . . . , u4, v4)

as a symplectic basis of H1(D̂,Z), and the orientation on T induced by the choice of the
basis (e1, e2) of H1(T,Z) are compatible (i.e. both are the same, or the opposite, as the one
induced by the respective complex structures).

Substituting into (9) and (10) the values of f(ui) and f(vi) from the table in §2.8, we

conclude the values of −60,−12,−24 for the values of
∑4
i=1 det(f(ui), f(vi)) in the case

of E1, E2 and C respectively. We conclude from (8), (9) and (10) that the degrees m,n, p

are given by 60, 12 and 24 respectively (and that the orientation on D̂ and T are not
compatible). �

Theorem 3. A fiber of the Albanese map α : X → T represents the same numerical class
as −E1 + 5E2, and the genus of a generic fiber F is 19.

Proof. Substituting the values ofm,n, p from the previous lemma into Lemma 9, we conclude
that F represents the same class as −E1 + 5E2 in the Néron-Severi group. Hence F ·KX =
−E1 ·KX + 5E2 ·KX = 36, so that g = 19 follows from the adjunction formula 2(g − 1) =
(KX + F ) · F = KX · F . �

5. Geometry of the Albanese fibration

5.1. Let Xs be the fiber of the Albanese fibration α at s ∈ T . It is connected (see §4).
Now g(Xs) > 2, because X has negative holomorphic sectional curvature. Although we will
not need this in the sequel, we observe that the fibration cannot be locally holomorphically
trivial. Otherwise there is a smooth non-trivial family of holomorphic mappings from Xs

(where s ∈ T is generic) to X. However, a holomorphic map is harmonic with respect to
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any Kähler metric on Xs and the Poincaré metric on X. As the Poincaré metric on X is
strictly negative, it follows from uniqueness of harmonic maps to a negatively curved Kähler
manifold in its homotopy class that the family is actually a singleton, a contradiction.

5.2. The result below is a refinement of Lemma VI.5 in [Be]. As usual, if D is a (not
necessarily reduced) curve, we denote by g(D) its arithmetic genus (see [BHPV, §II.11]).

Proposition 10. Let X (resp. C) be a smooth complex surface (resp. curve) and π :

X → C a surjective morphism with connected fibers. Let D =
∑k
i=1miDi, (mi > 1)

be a singular fiber of π and let Dred =
∑k
i=1Di be the reduced divisor associated to D.

Let ν : D̂red → Dred be the normalization. For any x in the support of Dred, we define
δtopx := dimC(ν∗CD̂red/CDred) = ]ν−1(x)− 1 the number of (local) irreducible components of

Dred at x minus 1 and δanx := dimC(ν∗OD̂red/ODred) so that µx := 2δanx − δtopx is the Milnor

number of Dredat x. We also set µ =
∑
x∈Dred µx. Then, we have

e(Dred)− e(Xs) = µ+

k∑
i=1

(mi − 1)KX ·Di −
(
Dred

)2
(11)

where s is a generic point of C.

Proof. From the proof of Lemma VI.5 in [Be], we immediately get

e(Dred) = µ+ 2χ(ODred) = µ+ e(Xs) + 2(χ(ODred)− χ(OD)),

where we used the fact that the arithmetic genus of the fibers of a morphism from a surface
onto a curve is constant and e(Xs) = −(KX +D) ·D = 2χ(OD). Now, since D2 = 0,

2(χ(ODred)− χ(OD)) = (KX +D) ·D − (KX +Dred) ·Dred

= KX · (D −Dred)−
(
Dred

)2
=

k∑
i=1

(mi − 1)KX ·Di −
(
Dred

)2
.

That 2δanx − δtopx is the Milnor number of Dred at x is proved in [BG, Proposition 1.2.1]. �

Remark 4. Recall that Milnor numbers are nonnegative. In the notation of Proposition 10,
µx = 0 if and only if Dred is smooth at x and if µx = 1 it is easily seen that the singularity
of Dred at x is nodal (see Lemmas 1.2.1 and 1.2.4 in [BG] for instance).

Corollary 2. Let I ⊂ T be the set of singular values of the Albanese fibration α. Then

(a)
∑
so∈I

(
e(Xso)− e(Xs)

)
= 3 where Xs is a generic fiber,

(b) the cardinality of I is at most 3,
(c) the fibers of α are reduced, and therefore Xs0 is singular for at least one s0 ∈ I,
(d) the total number of singular points in the fibers is at most 3 and if equality holds,

the three singularities are nodal and the fibration is stable. More precisely,∑
so∈I

( ∑
x∈Xs0

µx

)
= 3. (12)

Proof. Note first that there are no rational or elliptic curves in X since the holomorphic
sectional curvature of a ball quotient is negative.

(a) From the standard formula for the Euler number of a holomorphic fibration (see [Be,
Lemma VI.4] or [BHPV, Proposition III.11.4]), we have

3 = e(X) = e(T ) · e(Xs) +
∑
so∈I

nso =
∑
so∈I

nso ,

where nso = e(Xso) − e(Xs) for s ∈ To := T − I. Here we used the fact that the Euler
characteric of T vanishes.
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(b) It is well known (see [BHPV, Remark III.11.5]), and it can be easily recovered from
Proposition 10, that nso > 0 with equality if and only if Xso is a multiple fiber with (Xso)

red

smooth elliptic. But as we noticed above, this is impossible in our case thus nso > 0 for any
so ∈ I. Since

∑
so∈I nso = 3, we conclude in particular that |I| 6 3 (and each nso 6 3).

(c) Let D =
∑k
i=1miDi be a fiber of α, where the Di’s are the irreducible components

of D, i.e. mi > 1 for all i and assume that m1 > 2. If we denote by D̂i the normalization
of Di, then

KX ·Di > (KX +Di) ·Di = 2(g(Di)− 1) > 2(g(D̂i)− 1) > 2

where the last inequality holds because X contains no curve of geometric genus 0 or 1. Recall
that by Zariski’s lemma (see [BHPV, Lemma III.8.2]) the self-intersection of any effective
cycle supported on Dred must be nonpositive, and it is equal to zero if and only if it is
proportional to D. Then, by (a) and formula (11),

3 > e(Dred)− e(Xs) > µ+

k∑
i=1

(mi − 1)KX ·Di −
(
Dred

)2
which is only possible if m1 = 2, g(D1) = 2 and mi = 1 for i > 2.

If k > 2 then µ > 1 and (Dred
)2
< 0 by Zariski’s lemma so that we get a contradiction.

If k = 1 then by Theorem 3, 18 = g(D) − 1 = 2(g(D1) − 1) = 2, which also leads to a
contradiction.

(d) is a consequence of the previous points, equation (11) and Remark 4. �

5.3. Recall from §1.4 that the normalizer N of Π in Γ̄ is generated by the element j4 of
order 3 and Π, and the automorphism group Σ of X is given by the group N/Π, which has
order 3. Denote by σ the automorphisms of B2

C and of X induced by j4. If ξ = (z1, z2) ∈ B2
C,

then σ(ξ) = (ωz1, ωz2) where ω = ζ4 is a non trivial cube root of unity.
The Albanese map α : X → T = C/Λ can be lifted to a holomorphic map α0 : B2

C → C
so that α0(O) = 0 (choosing ΠO ∈ X as base point when defining α):

C

B2
C X T

α

α0

If π ∈ Π, then α0(πξ)−α0(ξ) ∈ Λ is independent of ξ ∈ B2
C, and so there is a map θ0 : Π→ Λ

such that α0(πξ) = α0(ξ) + θ0(π) for all ξ ∈ B2
C and π ∈ Π. Since θ0 is a homomorphism, it

factors through our abelianization map f : Π → Z2, see §1.4. So there is a homomorphism
θ : Z2 → Λ such that

α0(πξ) = α0(ξ) + θ(f(π)) for all ξ ∈ B2
C and π ∈ Π. (13)

By the universal property of the Albanese map, there is an automorphism σT : T → T
such that the following diagram commutes:

X T

X T

α

α

σ σT (14)

If the automorphism is trivial, then α0(σ(ξ))−α0(ξ) ∈ Λ for all ξ ∈ B2
C, and so is constant.

Since σ(O) = O, α0(j4ξ) = α0(ξ) for all ξ, and this implies that θ(f(j4πj−4)) = θ(f(π))

for all π ∈ Π. But then (3) implies that θ = 0, because I −
(

0 −1
1 −1

)
is non-singular hence

Πξ 7→ α0(ξ) is a holomorphic function X → C, and so is constant because X is compact,
contradicting surjectivity of α.
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As a consequence, Σ acts non trivially on T and since σ(O) = O, the action of Σ fixes the
point α(ΠO) = 0 + Λ. From this and |Σ| = 3, it follows immediately that the elliptic curve
has to be T = C/(Z+ωZ), and the vertical map σT on the right in (14) is z+ Λ 7→ ωtz+ Λ
with t = 1 or 2. Indeed, the automorphism σT which fixes 0 + Λ is induced by a nontrivial
C-linear automorphism of C preserving Λ (see [Be, Proposition V.12] for instance). Since it
has order 3, it must be multiplication by ωt, where t = 1 or 2. Hence Λ contains 1 and ω
(after renormalization of the lattice).

It follows that there are precisely 3 fixed points of Σ on T : a fundamental domain of
T consists of two equilateral triangles and the fixed points are given by a vertex and the
centroid of each of the two triangles i.e. are the points pj = j(2 + ω)/3 + Λ, j = 0, 1,−1
(notice that (1− ω)−1 = (2 + ω)/3). In particular, we have proved

Lemma 11. The action of Σ descends to a non-trivial action of T . There are three fixed
points in the action of Σ on T . The elliptic curve T is isomorphic to C/(Z + ωZ).

5.4. Our purpose now is to determine the fixed points of Aut(X). Let pj = j(2 +ω)/3 + Λ,
j = 0, 1,−1, be the fixed points of Σ on T , as given by Lemma 11.

Proposition 11. (a) There are altogether nine fixed points of Aut(X) on X.
(b) The points O1, O2 and O3 mentioned in §2 are fixed points of Σ, all lie in the same

fiber α−1(p0).
(c) The other fixed points are 6 of the 288 points lying in $−1(P5) (see §2 ).
(d) Each of the fibers α−1(pj) for j = 1, 0,−1 contains exactly three of the nine fixed

points of Aut(X).
(e) The fixed points Oi, i = 1, 2, 3 are of type 1

3 (1, 1), and the other six fixed points are

of type 1
3 (1, 2).

Proof. (a) and (c): If Πξ is fixed by σ, then Πj4ξ = Πξ, and so πj4ξ = ξ for some π ∈ Π.
This implies that πj4 has finite order. It cannot be trivial, since Π is torsion free. So there
is an element t, in the list of representative nontrivial elements of finite order in Γ̄ given
in Proposition 1, or the inverse of one of these, such that πj4 = gtg−1 for some g ∈ Γ̄.
Thus gtg−1j−4 ∈ Π. Since the elements bµk, µ = 0, 1,−1 and k ∈ K, form a set of coset
representatives for Π in Γ̄, and since j4 normalizes Π, we can assume that g = bµk for some
µ and k.

So we search through the finite set of elements bµktk−1b−µj−4, checking which are in Π.
We find that bµktk−1b−µj−4 ∈ Π only happens for t = j4 and t = buv. When t = j4, we
have bµktk−1b−µj−4 = bµj4b−µj−4, independent of k. We find that these three elements
are in Π, i.e., bµj4b−µj−4 = πµ for some πµ ∈ Π. Explicitly,

bµj4b−µj−4 = πµ ∈ Π, for π0 = 1, π1 = a2a
−2
1 a−33 a−11 and π−1 = a22a1a3a

−1
1 . (15)

Thus πµj
4(bµO) = bµ(j4(O)) = bµO, so that the three points Π(bµ.O) are fixed by σ.

For t = buv, we find that bµktk−1b−µj−4 ∈ Π for only 18 pairs (µ, k). This means that
σ fixes Π(bµk.Q) for these 18 (µ, k)’s, where Q is the point defined in §1.3, equation (2). If
(µ, k) satisfies bµktk−1b−µj−4 ∈ Π, then so does (µ, kj4), since we can write bµj4 = πµj

4bµ

for some πµ ∈ Π, as we have just seen. Moreover, Π(bµkj4.Q) = Π(bµk.Q), since kj4 = j4k
and so

Π(bµkj4.Q) = Π(πµj
4bµk.Q) = Π(j4bµk.Q) = σ

(
Π(bµk.Q)

)
= Π(bµk.Q).

So we need only consider six of the (µ, k)’s, and correspondingly setting

h1 = b−1vuj3,

h4 = b−1v2uj3,

h2 = u−1vj,

h5 = vj2,

h3 = buv2j2,

h6 = bvu−1v,
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we have hi(buv)h−1i j−4 = π′i ∈ Π for i = 1, . . . , 6; explicitly,

π′1 = a22a1a
3
3,

π′4 = a33a
2
1a

3
3,

π′2 = j8a1j
4,

π′5 = j4a−11 a−12 j8,

π′3 = j8a1a
3
2j

4a2a1a
−2
2 a−11 .

π′6 = a2a
−1
1 .

These six points ΠhiQ are distinct, as we see by checking that (bµ
′
k′)(buv)ε(bµk)−1 is not

in Π for ε = 0, 1, 2 when (µ′, k′) and (µ, k) are distinct pairs in the above list.
Note that (a) corresponds to the case of Proposition 1.2 (2)(b) in Keum [K], the latter

following from Lefschetz fixed point formula and holomorphic Lefschetz fixed point formula.
(b) and (d): It is evident that if x ∈ X is fixed by σ then α(x) ∈ T is fixed by Σ and

so is a pj . Writing α(Πξ) = α0(ξ) + Λ, as before, where α0(O) = 0, we proved in §5.3
that α0(j4ξ) = ωtα0(ξ) for all ξ ∈ B2

C for t = 1 or 2, and so θ(f(j4πj−4)) = ωtθ(f(π)).
We may assume that θ(m,n) = m − nωt, for writing θ(m,n) = (rm + sn) + (r′m + s′n)ω,
the last condition allows us to express r′ and s′ in terms of r and s, and we find that
θ(m,n) = (r + sω)(m − nω) when t = 1, and that θ(m,n) = (−ω)(s + rω)(m − nω2)
when t = 2. We assume that t = 1, since the case t = 2 may be dealt with similarly. As
we saw above, θ 6= 0, and so r + sω 6= 0, and since θ(f(π)) ∈ (r + sω)Λ for all π ∈ Π,
the map α̃ : Πξ 7→ α0(ξ)/(r + sω) + Λ is well-defined X → T . So α̃ = g◦α for some
holomorphic g : T → T . Let g̃ : C→ C be a holomorphic lifting of g. It is easy to see that
g̃(z) = z/(r+sω)+λ0 for a fixed λ0 ∈ Λ. Since g is well-defined, we must have 1/(r+sω) ∈ Λ.
So r + sω = (−ω)j for some j ∈ {0, . . . , 5}, and therefore g is an automorphism of T . We
may therefore replace α by α̃, the θ of which is (m,n) 7→ m− nω.

Now bj4b−1 = π1j
4 for π1 as above, and f(π1) = (−2,−5), so

α0(bj4b−1ξ) = α0(π1j
4ξ) = α0(j4ξ)− 2 + 5ω = ωα0(ξ)− 2 + 5ω.

In particular, taking ξ = bO, we have α0(bO) = ωα0(bO)− 2 + 5ω, so that

α0(bO) =
2 + ω

3
(−2 + 5ω) = ω − 3 ∈ Λ.

Hence α(Πb.O) = α(ΠO) = p0.
Similarly, b−1j4b = π−1j

4 for π−1 as above, and f(π−1) = (−5, 1), so that

α0(b−1j4bξ) = α0(π−1j
4ξ) = α0(j4ξ) + θ(f(π−1)) = ωα0(ξ)− 5− ω.

So taking ξ = b−1O, we have α0(b−1O) = ωα0(b−1O)− 5− ω, so that

α0(b−1O) =
2 + ω

3
(−5− ω) = −3− 2ω ∈ Λ.

Hence α(Πb−1.O) = α(ΠO) = p0 too. So (b) is proved.
Recall now that hi(buv)h−1i j−4 = π′i ∈ Π for i = 1, . . . , 6, and so

α0(hi(buv)h−1i ξ) = α0(π′ij
4ξ) = α0(j4ξ) + θ(f(π′i)) = ωα0(ξ) + θ(f(π′i)).

In particular, taking ξ = hiQ, we get α0(hiQ) = ωα0(hiQ) + θ(f(π′i)), so that

α0(hiQ) =
2 + ω

3
θ(f(π′i)).

Calculating
f(π′1) = (−6, 2),

f(π′4) = (−4, 0),

f(π′2) = (−4, 1),

f(π′5) = (−4, 3),

f(π′3) = (1,−6),

f(π′6) = (−3,−2),

we have

θ(f(π′1)) = −6− 2ω

θ(f(π′2)) = −4− ω
θ(f(π′3)) = 1 + 6ω

≡ 1− (1− ω)

≡ 1 + (1− ω)

≡ 1

and

θ(f(π′4)) = −4

θ(f(π′5)) = −4− 3ω

θ(f(π′6)) = −3 + 2ω

≡ −1

≡ −1

≡ −1 + (1− ω),

where the congruences are modulo 3. Hence α(ΠhiQ) = 2+ω
3 + Λ for i = 1, 2, 3 and

α(ΠhiQ) = − 2+ω
3 + Λ for i = 4, 5, 6. So (d) is proved.
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(e) If γ ∈ Γ̄, then writing γ.(z1, z2) = (w1, w2), a routine calculation shows that(
∂w1

∂z1
∂w2

∂z1
∂w1

∂z2
∂w2

∂z2

)
,

evaluated at ξ = (z1, z2), equals

ζ2/(r − 1)

(γ31κz1 + γ32κz2 + γ33)2

(
κz2γ23 + (r − 1) γ22 −(κz2γ13 + (r − 1) γ12)
−(κz1γ23 + (r − 1) γ21) κz1γ13 + (r − 1) γ11

)
,

where κ =
√
r − 1. Taking γ = hi(buv)h−1i and ξ = Q = (c1/κ, c2/κ) as given in (2), we

find that this matrix has eigenvalues ω±1. If instead we take γ = bµj4b−µ, and ξ = bµO, for
µ = 0, 1,−1, we find that the matrix is ωI.

Note that (e) is also stated as one of the cases in [K, Proposition 1.2], and was observed
by Igor Dolgachev as well. �

Remark 5. We do not know whether the fibration α is semistable. With some more effort,
we can show that the fiber α−1(p0) is smooth at each of the three points Oi and that α is not
semistable if and only if the only singularity of α is a tacnode at one of the six other fixed
points (see [CKY, Proposition 5]).

Remark 6. We can now show that E3 is linearly equivalent to KX and E1 +E2 is linearly
equivalent to 2KX as follows. Consider the singular quotient surface S = X/Σ. It is simply
connected. For recall from §1.4 that the normalizer N of Π in Γ̄ is generated by j4, which
has order 3, and by the elements a1, a2 and a3. In the proof of Proposition 11, we saw that
j4a1j

8 = π′2j
4 and a2a

−1
1 j4 = π′6j

4 are conjugates of buv, and so are torsion elements of N .
Hence a1 and a2 can be written as words in torsion elements of N . Using the expression
of j4a3j

−4 in §1.4, we see that a3 can also be so written. Thus N is generated by elements
having fixed points, and we can apply the main result of [A].

Now, as E3 is globally fixed by Σ, it descends to a Weil divisor D3 on S. If KS denotes
the canonical divisor on S (which is only a Q-Cartier divisor), then the pullback of KS by
the quotient map is KX and it follows from Proposition 9 that D3 and KS are numerically
equivalent on S. However, since S is simply connected, this implies by the Universal Co-
efficient Theorem that D3 and KS are linearly equivalent hence E3 and KX are linearly
equivalent. The same reasoning applies to E1 + E2 and 2KX . Finally, note that S is a
surface of general type, as KS is effective and K2

S = 3.

5.5. Ngaiming Mok has kindly drawn to our attention the following problem which was
open and of interest in the geometric study of complex ball quotients.

Question 1. Does there exists a homomorphism f : X → R from a smooth complex ball
quotient X to a Riemann surface R with a non-totally geodesic singular fiber?

There are very few explicit examples of mappings from a complex ball quotient to a
Riemann surface. The known ones described by Deligne-Mostow, Mostow, Livné, Toledo and
Deraux all have totally geodesic singular fibers, cf. [DM2], [T] or [Der2] and the references
therein. We now show that the surface studied in this note provides such an example.

Theorem 4. No singular fiber of the Albanese fibration α : X → T is totally geodesic.

Proof. Let E be a singular fiber of α and let Ê be the normalization of E. Assume for the
sake of proof by contradiction that E is totally geodesic. According to Lemma 6,

E · E =
1

2
e(Ê) + 2δan(E)

and moreover, g = g(Ê) + δan(E) and E · E = 0 since E is a fiber of the fibration, hence
1−g+3δan(E) = 0. Since we have shown that g = 19 in Theorem 3, this leads to δan(E) = 6.
However, totally geodesic curves have simple crossings and computations of Lemma 6 and
Proposition 10 show that if P1, . . . , Pk are the singular points of E with bi local branches at
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Pi then
∑k
i=1 µPi =

∑k
i=1(2δanPi − δ

top
Pi

) =
∑k
i=1(bi − 1)2 ≤ 3 by Corollary 2, formula (12).

The only possibility is k ≤ 3 and bi = 2 for all i but then δan(E) = 1
2

∑k
i=1 bi(bi − 1) ≤ 3, a

contradiction. �

5.6. In his PhD thesis [Li], R. Livné constructed two-ball quotients by taking branched cov-
erings of some generalized universal elliptic curves with level structure, and by construction,
these surfaces admit a fibration onto a curve. The Albanese fibration of the Cartwright-
Steger surface does not appear in the same fashion, but one can exhibit another (rational)
fibration from X onto P1

C appearing in a quite similar way to Livné’s. Its generic fiber has

genus 109, and
∑4
i=1 Ci, with Ci given in §2.4, is one of the fibers (cf. [CKY, §6]).
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