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Abstract In this article, we study various concrete algebraic and differential geometric prop-
erties of the Cartwright-Steger surface. In particular, we determine the genus of a generic
fiber of the Albanese fibration, and deduce that the singular fibers are not totally geodesic,
answering an open problem about fibrations of a complex ball quotient over a Riemann sur-
face.

0. Introduction

The Cartwright-Steger surface was found during work on the classification of fake projec-
tive planes completed in [PY] and [CS1]. A fake projective plane is a smooth surface with
the same Betti numbers as the projective plane but not biholomorphic to it. It is known
that a fake projective plane is a complex two ball quotient Π\B2

C with Euler number 3,
where Π is an arithmetic lattice in PU(2, 1), cf. [PY]. In the scheme of classification of fake
projective planes carried out in [PY], it was conjectured but not proved in [PY] that the
lattice Π associated to a fake projective plane cannot be defined over a pair of number fields
C11 = (Q(

√
3),Q(ζ12)), where ζ12 is a 12-th root of unity. Such a Π would be of index 864

in a certain maximal arithmetic subgroup Γ̄ of PU(2, 1). As reported in [CS1], the authors
showed using a lengthy computer search that there is no torsion free lattice Π of index 864
in this Γ̄ with b1(Π) = 0, but surprisingly there is one with b1(Π) = 2. The surface Π\B2

C is
the subject of study in this article.

The Cartwright-Steger surface is unique as a Riemannian manifold with the given Euler
and first Betti numbers, but has two different biholomorphic structures given by complex
conjugation. From an algebraic geometric point of view, the fake projective planes and
the Cartwright-Steger surfaces are interesting since they have the smallest possible Euler
number, namely 3, among smooth surfaces of general type, and constitute all such surfaces.
From a differential geometric point of view, they are interesting since they constitute smooth
complex hyperbolic space forms, or complex ball quotients, of smallest volume in complex
dimension two. We refer the reader to [R], [Y1], and [Y2] for some general discussions related
to the above facts. Unlike fake projective planes, whose lattices arise from division algebras
of non-trivial degree as classified, the Cartwright-Steger surface is defined by Hermitian
forms over the number fields mentioned above. It is realized among experts that such a
surface is commensurable to a Deligne-Mostow surface, the type of surfaces which have
been studied by Picard, Le Vavasseur, Mostow, Deligne-Mostow, Terada and many others,
cf. [DM1].

Even though the lattice involved is described in [CS2], it is surprising that the algebraic
geometric structures of the surface are far from being understood. A typical problem is
to find out the genus of a generic fiber of the associated Albanese fibration. Conventional
algebraic geometric techniques do not seem to be readily applicable to such a problem. The
goal of this article is to develop tools and techniques which allow us to understand concrete
surfaces such as the Cartwright-Steger surface. In particular, we recover algebraic geometric
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properties from a description of the fundamental group of the surface, using a combina-
tion of various algebraic geometric, differential geometric, group theoretical techniques and
computer implementations.

Here are the results obtained in this paper.

Main Theorem Let X be the Cartwright-Steger surface and α : X → T the Albanese map.

(a) The genus of a generic fiber of α is 19.
(b) All fibers of α have multiplicity 1. The singular set of the fibration α consists of

either three nodal singularities or one tacnode singularity.
(c) The Albanese torus T is C/(Z + ωZ), where ω is a cube root of unity.
(d) The Picard number of X is 3, equal to h1,1(X), so that all the Hodge (1, 1) classes are

algebraic. The Néron-Severi group is generated by three immersed totally geodesic
curves we explicitly give.

(e) The automorphism group Σ of X, isomorphic to Z3, has 9 fixed points, and induces
a nontrivial action on T which has 3 fixed points. Three fixed points of Σ lie over
each fixed point in T . Over one fixed point on T , the three fixed points of Σ are of
type 1

3 (1, 1). The other 6 fixed points of Σ are of type 1
3 (1, 2).

The Main Theorem follows from Theorem 3, Lemma 9, Corollary 1, Lemma 5 and
Lemma 32.

As an immediate consequence, see Theorem 4, we have answered an open problem com-
municated to us by Ngaiming Mok on properties of fibrations on complex ball quotients.

Corollary There exists a fibration of a smooth complex two ball quotient over a smooth
Riemann surface with non-totally geodesic singular fibers.

Apart from the results above, we have given a detailed analysis of the Albanese map
in §5. Moreover, results on the surface parallel to an original construction of Livné [Li] on
fibrations of a complex hyperbolic surface over a Riemann surface are explained in Section 6.
As another application, we have used the surface to derive some interesting properties related
to a question of Nori [N] on Lefschetz properties for singular ample curves on a projective
algebraic surface in §7.

Here are a few words about the presentation of the article. To streamline our arguments
and to make the results more understandable, we state and prove the geometric results
of the article sequentially in the main parts of the article. Many of these results rely on
computations in the groups Π and Γ̄, often obtained with assistance of the algebra package
Magma, and we present these in an appendix. More details can be found on the webpage
of the first author at http://www.maths.usyd.edu.au/u/donaldc/cs-surface/.
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1. Basic facts

1.1. Let F be a Hermitian form on C3 with signature (2, 1). We denote by U(F ) = {g ∈
GL(3,C) | g∗Fg = F} the subgroup of GL(3,C) preserving the form F , by SU(F ) the sub-
group of U(F ) of elements with determinant 1, and by PU(F ) their image in PGL(3,C).
The group PU(F ) is naturally identified with the group of biholomorphisms of the two-ball
B2

C(F ) := {[z] ∈ P2
C = P(C3) |F (z) < 0}.

Our aim is to study a special complex hyperbolic surface X = Π\B2
C(F ) where Π is

a cocompact torsion-free lattice in some PU(F ). The group Π appears as a finite index
subgroup of an arithmetic lattice Γ̄ which can be easily described as follows.

Let ζ = ζ12 be a primitive 12-th root of unity. Then r = ζ + ζ−1 is a square root of 3.
Let ` = Q(ζ) and k = Q(r) ⊂ `. For real and complex calculations below, we take ζ = eπi/6,
and then r is the positive square root of 3. We could define Γ̄ to be the group of 3 × 3
matrices g′ with entries in ` such that g′

∗
F ′g′ = F ′, where

F ′ =

r + 1 −1 0
−1 r − 1 0
0 0 −1

 ,

such that g′ has entries in Z[ζ], modulo Z = {ζjI : j = 0, . . . , 11}.
However, it is convenient to work with a diagonal form instead of F ′. Notice that F ′ =

(r − 1)−1γ∗0Fγ0 for

F =

1 0 0
0 1 0
0 0 1− r

 , and γ0 =

1 0 0
1 1− r 0
0 0 1

 .

So we instead define Γ̄ to be the group of matrices g, modulo Z, with entries in `, which are
unitary with respect to F for which g′ = γ−1

0 gγ0 has entries in Z[ζ]. Such g’s have entries
in 1

r−1Z[ζ] ⊂ 1
2Z[ζ].

Since F is diagonal, it is easy to make the group PU(F ) act on the standard unit two-ball,
which we will just denote by B2

C: if gZ ∈ Γ̄, the action of gZ on B2
C is given by

(gZ).(z, w) = (z′, w′) if DgD−1

zw
1

 = λ

z′w′
1

 ,

for some λ ∈ C, where D is the diagonal matrix with diagonal entries 1, 1 and
√
r − 1.

We often ignore the distinction between matrices g and elements gZ of Γ̄, though we
sometimes need to carefully distinguish these two objects.

Now Γ̄ contains a subgroup K of order 288 generated by the two matrices u = γ0u
′γ−1

0

and v = γ0v
′γ−1

0 where

u′ =

ζ3 + ζ2 − ζ 1− ζ 0
ζ3 + ζ2 − 1 ζ − ζ3 0

0 0 1

 and v′ =

 ζ3 0 0
ζ3 + ζ2 − ζ − 1 1 0

0 0 1

 .

A presentation for K is given by the relations

u3 = v4 = 1, and (uv)2 = (vu)2.

The elements of K are most neatly expressed if we use not only the generators u and v, but
also j = (uv)2, which is the diagonal matrix with diagonal entries ζ, ζ and 1, and which
generates the center of K.

There is one further generator needed for Γ̄, namely b = γ0b
′γ−1

0 for

b′ =

 1 0 0
−2ζ3 − ζ2 + 2ζ + 2 ζ3 + ζ2 − ζ − 1 −ζ3 − ζ2

ζ2 + ζ −ζ3 − 1 −ζ3 + ζ + 1

 .



4 DONALD I. CARTWRIGHT, VINCENT KOZIARZ, SAI-KEE YEUNG

Theorem 1 ([CS2]). A presentation of Γ̄ is given by the generators u, v and b and the
relations

u3 = v4 = b3 = 1, (uv)2 = (vu)2, vb = bv, (buv)3 = (buvu)2v = 1.

1.2. Let us record here the connection with a group which was first discovered by Mostow:
the group Γ̄ is isomorphic to a group generated by complex reflections, denoted by Γ3, 13

in

the paper [Mo1] and by Γ3,4 in [Pa], and whose presentation (see Parker [Pa]) is

Γ3,4 = 〈J,R1, A1 : J3 = R3
1 = A4

1 = 1, A1 = (JR−1
1 J)2, A1R1 = R1A1〉.

Defining R2 = JR1J
−1, it was shown in [Pa, Proposition 4.6] that the subgroup 〈A1, R2〉

of Γ3,4 is finite, with order 288 (actually, it is isomorphic to K above). It has the simple
presentation

〈A1, R2 : A4
1 = R3

2 = 1, A1R2A1R2 = R2A1R2A1〉.
The following result was communicated to us by John Parker.

Proposition 1. There is an isomorphism ψ : Γ̄→ Γ3,4 such that

ψ(u) = R2, ψ(v) = A1, and ψ(b) = R1.

It satisfies ψ(K) = 〈A1, R2〉, and its inverse satisfies

ψ−1(R1) = b, ψ−1(A1) = v, ψ−1(J) = buv, and ψ−1(R2) = u.

1.3. It is also convenient to see Γ̄ as a (Deligne-)Mostow group: it corresponds to item 8
in the paper of Mostow [Mo2, p. 102] whose associated weights (2, 2, 2, 7, 11)/12 satisfy the
condition (ΣINT) in the notation of [Mo2]. We refer to [Mo2] and [DM2] for details on the
description below.

The orbifold quotient Γ̄\B2
C is a compactification of the moduli space of 5-tuples of distinct

points (x0, x1, x2, x3, x4) ∈ (P1
C)5 modulo the diagonal action of PGL(2,C) and the action

of the symmetric group on three letters Σ3 on the three first points. The compactification
can be described as follows. First, it can be easily seen that the moduli space Q of 5-tuples
of distinct points (x0, x1, x2, x3, x4) ∈ (P1

C)5 modulo the diagonal action of PGL(2,C) can
be realized as P2

C with a configuration of six lines removed. In homogeneous coordinates
[X0 : X1 : X2] on P2

C, these six lines correspond to the three lines of “type A” with equation
Xi = Xj (1 6 i < j 6 2) and the three lines of “type B” with equation Xi = 0 (i = 0, 1, 2).
In fact, the compactification Q̄ = P2

C of Q is determined by the fact that we allow two or
three of the points x0, x1 and x2 to coincide (x0 = x1 corresponds to X0 = X1, x0 = x2 to
X0 = X2 and x1 = x2 to X1 = X2) and we also allow one or two of the points x0, x1 and x2

to coincide with x3 (x0 = x3 corresponds to X0 = 0, x1 = x3 to X1 = 0 and x2 = x3 to
X2 = 0).

Then, as we mentioned above, the underlying topological space of Γ̄\B2
C is a compactifi-

cation R of Q/Σ3 and actually is the weighted projective plane P(1, 2, 3) ∼= P2
C/Σ3 where the

symmetric group on three letters Σ3 acts by permutation of the homogeneous coordinates
[X0 : X1 : X2] on P2

C. There are two remarkable (irreducible) divisors on P(1, 2, 3): one is
the image DA of the divisors of type A, the other one is the image DB of the divisors of
type B. The divisor DA has a cusp at the image P1 of the point [1 : 1 : 1] and the divisor
DB is smooth. These two divisors meet at two points: once at the image P2 of the points
[1 : 0 : 0], [0 : 1 : 0] or [0 : 0 : 1] where they are tangent, once at the image P3 of the points
[1 : 1 : 0], [1 : 0 : 1] or [0 : 1 : 1] where the intersection is transverse. There are also two
singular points on P(1, 2, 3): one is a singularity of type A1 and is the image P4 ∈ DB of the
points [1 : −1 : 0], [1 : 0 : −1] or [0 : 1 : −1], the other one is a singularity of type A2 and is
the image P5 of the points [1 : ω : ω2] or [1 : ω2 : ω] where ω is a primitive 3rd root of unity.

Remark 1. In the book [DM2, p. 111], the divisor DA (resp. DB) is denoted by DAA (resp.
DAB) and the points P1, . . . , P5 simply by 1, . . . , 5.
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P2
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DA
DB

Figure 1. Q̄ = P2
C and R = P2

C/Σ3

There is a standard method to compute the weight of the orbifold divisors on Γ̄\B2
C as

well as the local groups at the orbifold points, according to the weights (2, 2, 2, 7, 11)/12.
The weight of DA is 3 = 2(1− (2 + 2)/12)−1 and the weight of DB is 4 = (1− (2 + 7)/12)−1.
This means that the preimage of DA (resp. DB) in B2

C is a union of mirrors of complex
reflections of order 3 (resp. 4). We will denote by MA (resp. MB) the corresponding sets
of mirrors. Said another way, the isotropy group at a generic point of some M ∈ MA is
isomorphic to Z3 and the isotropy group at a generic point of some M ∈MB is isomorphic
to Z4, both generated by a complex reflection of the right order. This of course has to be
compared with the description of Γ̄ as Γ3,4.

The isotropy group at a point above the transverse intersection P3 of DA and DB is
naturally isomorphic to Z3 × Z4. As P5 is a singularity of type A2 but does not belong to
any orbifold divisor, the local group at P5 is isomorphic to Z3. But since P4 ∈ DA is a
singularity of type A1, the local group at P4 has order 8 = 2 · 4 and actually is isomorphic
to Z8.

It is a little bit more difficult to determine the isotropy group above the points P1 and P2.
It will also be useful to describe the stabilizer in Γ̄ of a mirror. For this, one can use a
method similar to the one in [Der1, Lemma 2.12] and obtain the following lemma which
already appeared in an unpublished manuscript of Deraux and Yeung.

Lemma 1. Let MA (resp. MB) denote the set of mirrors of complex reflections of order 3
(resp. 4) in Γ̄.

Let P ⊂ B2
C denote the set of points above P1 and T ⊂ B2

C denote the set of points
above P2. The following holds.

(a) The group Γ̄ acts transitively on MA, on MB, on P and on T .
(b) For each point x ∈ P, the stabilizer of x is the one labelled ]4 in the Shephard-Todd

list. It is a central extension of a (2, 3, 3)-triangle group, with center of order 2, and
has order 24. There are precisely 4 mirrors in MA through each such x ∈ P.

(c) For each point y ∈ T , the stabilizer of y is the one labelled ]10 in the Shephard-Todd
list. It is a central extension of a (2, 3, 4)-triangle group, with center of order 12,
and has order 288. Through each such y ∈ T , there are 8 elements of MA and 6
elements of MB.

(d) The stabilizer of any element M ∈MA is a central extension of a (2, 4, 12)-triangle
group, with center of order 3.

(e) The stabilizer of any element M ∈MB is a central extension of a (2, 3, 12)-triangle
group, with center of order 4.

Sketch of proof. (a) Follows from the above discussion.



6 DONALD I. CARTWRIGHT, VINCENT KOZIARZ, SAI-KEE YEUNG

(b) The point P1 corresponds to x0 = x1 = x2 so that the computation 3/2 = (1− (2 +
2)/12)−1 shows that the spherical triangle group associated to the projective action of the
isotropy group at x ∈ P is (2, 3, 3). Indeed, we have to consider the triangle with angles
(2π/3, 2π/3, 2π/3) and take the symmetry into account (i.e. dividing the triangle into six
parts), so that we obtain a triangle with angles (π/2, π/3, π/3). The center has order given
by 2 = (1− (2 + 2 + 2)/12)−1. Comparing with [ST, Table 1], we see that the relevant group
is the one labelled ]4 in the Shephard-Todd list and the rest of the assertion follows.

(c) Similarly, the point P2 corresponds for instance to x0 = x1 = x3 and the additional
computation 4 = (1 − (2 + 7)/12)−1 shows that the spherical triangle group associated to
the projective action of the isotropy group at y ∈ T is (2, 3, 4). Indeed, we have to consider
the triangle with angles (π/4, π/4, 2π/3) and take the symmetry into account (i.e. dividing
the triangle into two parts), so that we obtain a triangle with angles (π/2, π/3, π/4). The
center has order given by 12 = (1 − (2 + 2 + 7)/12)−1. Comparing with [ST, Table 2], we
see that the relevant group is the one labelled ]10 in the Shephard-Todd list.

(d) Follows from the interpretation of the stabilizer of M ∈ MA as a central extension
with center of order 3 (corresponding to the order of the reflection with mirror M) of a
Deligne-Mostow group with weights (2, 4, 7, 11)/12 coming for instance from the collapsing
of x1 and x2. The associated triangle group is (2, 4, 12) since 2 = (1 − (2 + 4)/12)−1,
4 = (1− (2 + 7)/12)−1 and 12 = (1− (4 + 7)/12)−1.

(e) Similarly, the stabilizer of M ∈ MB is a central extension with center of order 4
(corresponding to the order of the reflection with mirror M) of a (Deligne-)Mostow group
with weights (2, 2, 9, 11)/12 coming for instance from the collapsing of x2 and x3. We have
moreover to take care of the symmetry coming from the first two weights. The associated
triangle group is (2, 3, 12) since 3/2 = (1 − (2 + 2)/12)−1 and 12 = (1 − (2 + 9)/12)−1 so
that we have to divide into two parts a triangle with angles (2π/3, π/12, π/12). �

Remark 2. The data concerning the isotropy groups can be recovered using calculations
in Γ̄, see Proposition A.8.

1.4. Cartwright and Steger discovered a very interesting torsion-free subgroup Π of Γ̄ with
finite index. The surface Π\B2

C is called the Cartwright-Steger surface in this article.

Theorem 2 ([CS2]). The elements

a1 = vuv−1j4buvj2, a2 = v2ubuv−1uv2j and a3 = u−1v2uj9bv−1uv−1j8

of Γ̄ generate a torsion-free subgroup Π of index 864, with Π/[Π,Π] ∼= Z2.

Proof. Using the given presentation of Γ̄, the Magma Index command shows that Π has
index 864 in Γ̄. We see that Π is torsion-free as follows. The 864 elements bµk, for µ = 0, 1,−1
and k ∈ K, form a set of representatives for the cosets Πg of Π in Γ̄. One can verify this
by a method we shall use repeatedly: for g = bµk and g′ = bµ

′
k′, we check that Πg 6= Πg′

unless µ′ = µ and k′ = k by having Magma calculate the index in Γ̄ of 〈a1, a2, a3, g
′g−1〉.

If 1 6= π ∈ Π has finite order, then π = gtg−1 for one of the elements t given in the table
of Proposition A.7, or the inverse of one of these. But then (bµk)t(bµk)−1 ∈ Π for some
µ ∈ {0, 1,−1} and k ∈ K, and Magma’s Index command shows that this is not the case.

The Magma AbelianQuotientInvariants command shows that Π/[Π,Π] ∼= Z2. For
any isomorphism f : Π/[Π,Π] → Z2, the image under f of a3

1a
−2
2 a7

3 is trivial. We can
choose f so that it maps a1, a2 and a3 to (1, 3), (−2, 1) and (−1,−1), respectively. So
f(a1a

−1
2 a2

3) = (1, 0) and f(a−1
1 a2a

−3
3 ) = (0, 1). �

Magma shows that the normalizer of Π in Γ̄ contains Π as a subgroup of index 3, and is
generated by Π and j4. One may verify that

j4a1j
−4 = ζ3(a3a

−3
2 a3

3a1),

j4a2j
−4 = ζ−1a−1

3 , and

j4a3j
−4 = ζ−1a−1

1 a−1
2 a1a

2
2a
−1
1 a−1

2 a1a
−1
3 a−1

1 a2a1.
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With the above isomorphism f : Π/[Π,Π]→ Z2,

f(π) = (m,n) =⇒ f(j4πj−4) = (m,n)

(
0 −1
1 −1

)
for all π ∈ Π. (1)

From now on, all the proofs involving computations with Magma will be given in the
appendix (§A).

1.5. Cartwright and Steger noticed that the group Π can be exhibited as a congruence
subgroup of Γ̄: we have two reductions r2 : Z[ζ] → F4 = F2[ω] and r3 : Z[ζ] → F9 = F3[i]
defined by sending ζ to ω (resp. i) where 1 + ω + ω2 = 0 (resp. i2 = −1). They induce
(surjective) group morphisms ρ2 : Γ̄ → PU(3,F4) and ρ3 : Γ̄ → PU(3,F9) (recall that
PU(3,F4) and PU(3,F9) have respective cardinality 216 and 6048).

Note that for an element of PU(3,F4), the determinant is well defined since ω3 = 1. This
enables us to define a (surjective) morphism det2 = det ◦ ρ2 : Γ̄ → F∗4. Let us denote the
subgroup det−1

2 (1) of index 3 of Γ̄ by Π2.
Remark also that there exist subgroups of order 21 in PU(3,F9) (they are all conjugate)

and let us denote one of them by G21. Then, define Π3 := ρ−1
3 (G21): it is a subgroup of Γ̄

of index 288 = 6048/21.
Finally, one can check that Π2 ∩Π3 is a torsion-free subgroup of Γ̄ of index 864 = 3 · 288

and that it is isomorphic to Π.

1.6.

Lemma 2. The Cartwright-Steger surface X = Π\B2
C has the following numerical invari-

ants:

c21 = 9, c2 = 3, χ(OX) = 1, q := h1,0 = 1, pg := h2,0 = 1, h1,1 = 3.

Proof. The orbifold Γ̄\B2
C has orbifold Euler characteristic 1/288 (see [PY] or [Sa] for in-

stance) so that X has Euler characteristic c2(X) = 3 = 864/288. Then, as it is a two-ball
quotient, c21(X) = 9 and thus its arithmetic genus is χ(OX) = 1

12 (c21 + c2) = 1. Since

Π/[Π,Π] ∼= Z2, we have b1 = 2q = 2. So, from

1 = χ(OX) = 1− q + pg,

3 = c2(X) = 2b0 − 2b1 + b2,

we deduce that pg = 1, b2 = 5, and finally, h1,1 = 3. �

We will see later (Corollary 1) that the Picard number of X is actually 3. It is our purpose
to understand the geometric properties of the surface X, especially using its Albanese map.

2. Summary of configurations of some totally geodesic divisors

Here we summarize results about configuration of totally geodesic divisors on the Cart-
wright-Steger surface X = Π\B2

C. Let π : X → R = Γ̄\B2
C be the projection. We use the

notation of §1.3. From the description of the local groups at P1, P2 and P3, we know that
π−1(P2) consists of 3 = 864/288 points O1 = Π(O), O2 = Π(b · O), O3 = Π(b−1 · O) on X,
π−1(P1) consists of 36 = 864/24 points, and π−1(P3) consists of 72 = 864/12 points.

For the curves DA and DB , their preimages π−1(DA) and π−1(DB) consist of singular
totally geodesic curves on X, denoted to be of types A and B respectively. The curves have
simple crossings at π−1(Pi) for i = 1, 2, 3.

2.1. By Propositions A.9, A.10 and A.11, the (singular) totally geodesic curves on X of
type B consist of three curves of geometric genus 4, denoted by E1, E2 and E3 and associated
with M0, M∞ and M1 respectively (in the notation of Proposition A.10). These curves
are specified by having multiplicities at O1, O2, O3 given by (3, 1, 2), (2, 1, 3) and (1, 4, 1)
respectively and the points in π−1(P2) are the only ones where they can intersect.
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2.2. By Propositions A.13, A.14, A.15 and A.16, the (singular) totally geodesic curves on
X of type A consist of four curves denoted by C1, C2, C3 and C4, associated with b(Mc),
b−1(Mc), Mc and M−c respectively (in the notation of Proposition A.14), and where the
geometric genera are given by 4, 4, 10 and 10 respectively. The curves of type A may inter-
sect at points in π−1(P1) and π−1(P2), and nowhere else. In the following discussions, we
shall mainly focus on C1 and C2, both of which cross O1, O2, O3 with multiplicities (0, 1, 2)
respectively. The corresponding multiplicities for C3 and C4 are (4, 3, 2). The curve C1

passes precisely once through exactly 18 of the 36 points in π−1(P1), as does C2. The curves
C1 and C2 intersect once at 12 of those 36 points.

2.3. A curve of type A and one of type B may intersect at points of π−1(P3), apart from the
intersections at Oj , j = 1, 2, 3, mentioned by the data above. From Proposition A.18, we get
the following data. The curve E1 intersects each of Ci, i = 1, 2, 3, 4 once in normal crossing
in 6 of the 72 points in π−1(P3). The curve E2 has no intersection with C1 and C2, but
intersects once with each of C3, C4 at 12 of the points of π−1(P3). The curve E3 intersects
each of C1 and C2 once at three of the points of π−1(P3), and intersects each of the curves
C3 and C4 once at 9 of the points of π−1(P3).

Remark 3. It can be checked with Magma that the normalizations of the three curves Ei
are orbifold coverings of degree 72 of the orbifold P1

C endowed with three orbifold points of
respective multiplicities (2, 3, 12) hence by the Riemann-Hurwitz formula, the genus of Ei is
indeed

g(Ei) =
72

2

(
−2 +

2− 1

2
+

3− 1

3
+

12− 1

12

)
+ 1 = 4.

Note that 864 = 4 · 3 · 72 where 4 is the order of the reflections of type B and 3 the number
of curves of type B.

In the same way, the normalizations of C1 and C2 (resp. C3 and C4) are orbifold coverings
of degree 36 (resp. 108) of the orbifold P1

C endowed with three orbifold points of respective
multiplicities (2, 3, 12) so that g(C1) = g(C2) = 4 and g(C3) = g(C4) = 10. Here again,
864 = 3(2 · 36 + 2 · 108) where 3 is the order of the reflections of type A.

All these computations are consistent with Lemmas 1(d) and (e).

2.4. We have seen that H1(X,Z) = Ze1 + Ze2
∼= Z2 in terms of a basis e1 and e2. Let D

be a smooth curve of genus 4. A presentation of π1(D) can be given as

〈u1, v1, u2, v2, u3, v3, u4, v4

∣∣ 4∏
i=1

[ui, vi] = 1〉.

For each of the curves D of genus 4, Ei, i = 1, 2, 3 and Cj , j = 1, 2, abusing notation we

denote by f : H1(D̂,Z)→ H1(X,Z) ∼= Z2 the homomorphism induced by the normalization
of the immersed image of D in X. Using Magma, we have found explicitly a basis of such

elements ui, vi, i = 1, . . . , 4 in π1(D̂), and computed their images f(ui), f(uj) in H1(X,Z) in
terms of e1, e2 (see Propositions A.12 and A.17). This is summarized as follows for E1, E2

and C1, which is all we need for later computations.

D f(u1) f(v1) f(u2) f(v2) f(u3) f(v3) f(u4) f(v4)

E1 (−5,−2) (−2, 7) (−2, 1) (0, 0) (1, 4) (3,−6) (2, 5) (−1,−4)

E2 (−1, 2) (2,−1) (−2, 1) (0, 0) (−3, 0) (−1, 2) (−2, 1) (3, 0)

C1 (0,−2) (−2, 0) (−4, 0) (0, 2) (−4, 2) (4, 0) (2, 0) (0,−2)

3. Picard number

3.1.
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Lemma 3. Suppose D is a reduced (not necessarily irreducible) totally geodesic curve on a
smooth complex two-ball quotient X self-intersecting only at P1, . . . , Pk with simple multiplic-
ities given by (b1, · · · , bk) and let us denote by Di (i = 1, . . . , n) its irreducible components,

D̂i their normalization. Let ν : D̂ = ∪iD̂i → D be the normalization of D. Then

KX ·D = 3

n∑
i=1

(g(D̂i)− 1) and D ·D =
1

2
e(D̂) + δ̃, where δ̃ =

k∑
i=1

bi(bi − 1)

and e(D̂) is the Euler characteristic of D̂.

Proof. Note that we are in the case of a (non necessarily connected) immersed smooth
curve in a surface, with singularities given by intersections of transversal local branches.
Moreover, it is well known that for a totally geodesic curve D in a two-ball quotient,
c1(KD̂) = 2

3ν
∗c1(KX) (this is a simple computation involving the curvature form on B2

C).
As a consequence, by the adjunction formula,

KX ·D =

∫
D

c1(KX) =
3

2

∑
i

∫
D̂i

c1(KD̂i
) = 3

n∑
i=1

(g(D̂i)− 1).

Recall moreover from [BHPV, §II.11] that

g(D) = g(D̂)+δan(D), where g(D̂) = 1+
∑
i

(g(D̂i)−1) and δan(D) =
∑
x∈D

dimC(ν∗OD̂/OD)

(here, the genus of a singular curve is its arithmetic genus). From the adjunction formula
for embedded curves, 2(g(D)− 1) = KX ·D +D ·D and therefore,

D ·D = 2(g(D)−1)−KX ·D = 2(g(D̂) + δan(D)−1)−3(g(D̂)−1) = (1− g(D̂)) + 2δan(D).

Finally, observe that in the case at hand, δan(D) = 1
2

∑k
i=1 bi(bi − 1) = 1

2 δ̃. �

3.2.

Lemma 4. We have the following intersection numbers.

(a) For i = 1, 2, 3, we have KX ·Ei = 9. Moreover, for i = 1, 2, Ei ·Ei = 5, Ei ·E3 = 9
and E1 · E2 = 13. We also have E3 · E3 = 9.

(b) Denote by C either C1 or C2. Then KX ·C = 9, C ·C = −1, E1 ·C = 11, E2 ·C = 7
and E3 · C = 9.

Proof. The results follow immediately from Lemma 3 (here, all the involved curves are
irreducible) and the summary in §2.

First, note that since the normalizations of the curves in (a) and (b) all have genus 4,
their intersection with KX is always 9 by Lemma 3. We leave the other computations to
the reader and just observe that:
– a curve Ei can only intersect a curve Ej at π−1(P2),
– two local branches of a curve C can only intersect at π−1(P2),
– a curve C can only intersect a curve Ei at π−1(P2) and π−1(P3). �

3.3. From now on, for any two divisors D and D′ on X, D ≡ D′ will mean that D and D′

are numerically equivalent.

Lemma 5. E1, E2 and C represent numerically linearly independent elements in the Néron-
Severi group, where C = C1 or C2.

Proof. Assume that E1, E2 and C satisfy numerically an identity

aE1 + bE2 + cC ≡ 0.
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By considering the intersection of the above identity with E1, E2 and C respectively, we
conclude that

0 = 5a+ 13b+ 11c

0 = 13a+ 5b+ 7c

0 = 11a+ 7b− c

The determinant of the above linear system is 1296 6= 0. Hence a = b = c = 0. �

3.4.

Corollary 1. The Picard number of X is 3.

Proof. It follows from the previous lemma that the Picard number is at least 3, given by
the classes of E1, E2 and C. On the other hand, h1,1(X) = 3 by Lemma 2. Since the Picard
number is bounded from above by h1,1, we conclude that the Picard number is 3. �

3.5. The following fact is a corollary of the earlier discussions.

Proposition 2. The canonical line bundle KX and E3 give rise to the same class in the
Néron-Severi group. Moreover, KX ≡ E3 ≡ 1

2E1 + 1
2E2.

Proof. From the discussions in the previous section, we know that E1, E2 and C = C1 form
a basis of the Néron-Severi group (which is torsion free since H1(X,Z) = Z2 is torsion free).

Hence we may write

KX ≡ aE1 + bE2 + cC

for some rational numbers a, b and c. By pairing with E1, E2 and C respectively, we arrive
at

9 = 5a+ 13b+ 11c

9 = 13a+ 5b+ 7c

9 = 11a+ 7b− c

Solving the above system of equations, we obtain

KX ≡
1

2
E1 +

1

2
E2.

The same computation leads to E3 ≡ 1
2 (E1 + E2) since E3 · Ei = KX · Ei for i = 1, 2 and

E3 · C = KX · C. �

Remark 4. By the previous proposition, we also have KX ≡ 2
3 ( 1

2E1 + 1
2E2) + 1

3E3 =
1
3 (E1 +E2 +E3). This fact can be recovered directly from the description of X as an orbifold

covering of R = Γ̄\B2
C as in §2.

We use the notation of §1.3. Let q : Q̄ = P2
C → R = P2

C/Σ3 be the projection. First,
we compute the canonical divisor KR of R. We have KR = aDA = 2aDB for some a ∈ Q
(see [DM2, §11.4 and Proposition 11.5] for a description of Pic(R)). If we denote by L =
O(1) the positive generator of Pic(P2

C), we have −3L = KP2
C

= q∗KR + 3L = 6aL + 3L

as q branches at order 2 along DA, and DA has three lines as a preimage in P2
C. Hence

KR = −DA = −2DB.
Now, the orbifold canonical divisor of Γ̄\B2

C is KR+ 3−1
3 DA+ 4−1

4 DB = (−1+ 2
3 + 3

8 )DA =
1
24DA = 1

12DB. In particular, as π∗DB = 4(E1 + E2 + E3), we get the result.
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4. Geometry of a generic fiber of the Albanese map

4.1. Let α : X → T be the Albanese map of X. From Π/[Π,Π] ∼= Z2, we know that T is
an elliptic curve, and in particular, α is onto. Moreover, note that since the image of α is
a curve, the fibers of α are connected (see [U, Proposition 9.19]). Let D be a curve on X.
The mapping α induces a mapping α|D : D → T . Suppose F is the generic fiber of α. Then
the degree of α|D is given by D · F .

Lemma 6. Let m,n, p be the degrees of E1, E2, and C = C1, respectively, over the Albanese
torus T of X. The generic fiber F of the Albanese fibration of X satisfies

F ≡ 1

72

(
(−3m+ 5n+ 2p)E1 + (5m− 7n+ 6p)E2 + 2(m+ 3n− 4p)C

)
.

Proof. From Lemma 5, we may write numerically

F ≡ aE1 + bE2 + cC

for some rational numbers a, b, c. By pairing with E1, E2 and C respectively, we arrive at

m = 5a+ 13b+ 11c

n = 13a+ 5b+ 7c

p = 11a+ 7b− c
The lemma follows from solving the above system of equations. �

4.2.

Lemma 7. The degrees of E1, E2, C = C1 over the Albanese torus T of X are given by

m = 60, n = 12, p = 24.

Proof. Let D represent one of the curves E1, E2, C, ν : D̂ → D the normalization of D and
α̂ = α ◦ ν. Let ω be a positive (1, 1) form on T . Then the degree of D over T is given by

deg(D) =
∫
D
α∗ω∫
T
ω

. The key is to find the degree from the information of the explicit curves

that we have. For this purpose, we use an analogue of the Riemann bilinear relations. Let
η be a holomorphic 1-form on the smooth Riemann surface D̂. Let {ui, vi} be a basis of

π1(D̂) as studied in §2.4. Then the Riemann bilinear relation (cf. [GH, p. 231]) states that∫
D̂

√
−1η ∧ η =

√
−1

4∑
i=1

[∫
ui

η

∫
vi

η −
∫
vi

η

∫
ui

η

]
where we use the same notation for an element of π1(D̂) and its image in H1(D̂,Z). Let us
write T = C/(Z + Zτ) where Im τ > 0. Let ωT =

√
−1dz ∧ dz be the standard (1, 1) form

on C and hence T . The above formula gives∫
T

ωT =
√
−1(τ − τ). (2)

Pulling back to D, the above formula gives∫
D

α∗ωT =

∫
D̂

α̂∗ωT

=

∫
D̂

√
−1α̂∗dz ∧ α̂∗dz

=
√
−1

4∑
i=1

[∫
ui

α̂∗dz

∫
vi

α̂∗dz −
∫
vi

α̂∗dz

∫
ui

α̂∗dz

]

=
√
−1

4∑
i=1

[∫
α̂∗(ui)

dz

∫
α̂∗(vi)

dz −
∫
α̂∗vi

dz

∫
α̂∗ui

dz

]
.

(3)
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In the above, α̂∗ : H1(D̂,Z) → H1(T,Z) ∼= H1(X,Z) ∼= Z2 refers to the map on 1-cycles
induced by α̂. Hence the right-hand side of the above expression in terms of the notation in
§2.4 is (up to sign)

√
−1

4∑
i=1

[∫
f(ui)

dz

∫
f(vi)

dz −
∫
f(vi)

dz

∫
f(ui)

dz

]
=

[
4∑
i=1

det(f(ui), f(vi))

]
√
−1(τ − τ), (4)

where det(f(ui), f(vi)) stands for the determinant of the two by two matrix formed by the
two vectors f(ui) and f(vi) from the table in §2.4. Notice that the resulting number will

be positive if and only if the orientation on D̂ coming from the choice of (u1, v1, . . . , u4, v4)

as a symplectic basis of H1(D̂,Z), and the orientation on T induced by the choice of the
basis (e1, e2) of H1(T,Z) are compatible (i.e. both are the same, or the opposite, as the one
induced by the respective complex structures).

Substituting into (3) and (4) the values of f(ui) and f(vi) from the table in §2.4, we

conclude the values of −60,−12,−24 for the values of
∑4
i=1 det(f(ui), f(vi)) in the case of

E1, E2 and C respectively. We conclude from (2), (3) and (4) that the degrees m,n, p are

given by 60, 12 and 24 respectively, and that the orientation on D̂ and T are not compatible
(we will say more on this below, see §5.5). �

4.3.

Theorem 3. A fiber of the Albanese map α : X → T represents the same numerical class
as −E1 + 5E2, and the genus of a generic fiber F is 19.

Proof. Substituting the values ofm,n, p from the previous lemma into Lemma 6, we conclude
that F represents the same class as −E1 + 5E2 in the Néron-Severi group. Hence

F ·KX = −E1 ·KX + 5E2 ·KX = 36.

On the other hand, from the adjunction formula,

2(g − 1) = (KX + F ) · F = KX · F.

Hence g = 19. �

5. Geometry of the Albanese fibration

5.1. Consider the Albanese fibration α : X → T . First, recall that the fibers of α are
connected (see §4.1). Let Xs be the fiber of α at s ∈ T . It is connected (see §4.1). Now
g(Xs) > 2, because X has negative holomorphic sectional curvature. Although we will not
need this in the sequel, we observe that the fibration cannot be locally holomorphically
trivial. Otherwise there is a smooth non-trivial family of holomorphic mappings from Xs

(where s ∈ T is generic) to X. However, a holomorphic map is harmonic with respect to
any Kähler metric on Xs and the Poincaré metric on X. As the Poincaré metric on X is
strictly negative, it follows from uniqueness of harmonic maps to a negatively curved Kähler
manifold in its homotopy class that the family is actually a singleton, a contradiction.

5.2. The result below is just a rewriting of Proposition X.10 in [Be]. As usual, if D is a (not
necessarily reduced) curve, we denote by g(D) its arithmetic genus (see [BHPV, §II.11]).

Proposition 3. Let X (resp. C) be a smooth complex surface (resp. curve) and π :

X → C a surjective morphism with connected fibers. Let D =
∑k
i=1miDi, (mi > 1)

be a singular fiber of π and let Dred =
∑k
i=1Di be the reduced divisor associated to D.

Let ν : D̂red → Dred be the normalization. For any x in the support of Dred, we define
δtop
x := dimC(ν∗CD̂red/CDred) = ]ν−1(x)− 1 the number of (local) irreducible components of
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Dred at x minus 1 and δan
x := dimC(ν∗OD̂red/ODred) so that µx := 2δan

x − δtop
x is the Milnor

number of Dredat x. We also set µ =
∑
x∈Dred µx. Then, we have

e(Dred)− e(Xs) = µ+
( k∑
i=1

(mi − 1)
(
2(g(Di)− 1)−D2

i

))
−
(
Dred

)2
. (5)

Proof. From Lemma VI.5 and the proof of Proposition X.10 in [Be], we immediately get

e(Dred) = µ+ 2χ(ODred) = µ+ e(Xs) + 2(χ(ODred)− χ(OD)),

where we used the fact that the arithmetic genus of the fibers of a morphism from a surface
onto a curve is constant. Now, since D2 = 0,

2(χ(ODred)− χ(OD)) = (KX +D) ·D − (KX +Dred) ·Dred

= KX · (D −Dred)−
(
Dred

)2
=

k∑
i=1

(mi − 1)(KX +Di) ·Di −
k∑
i=1

(mi − 1)D2
i −

(
Dred

)2
.

That 2δan
x − δtop

x is the Milnor number of Dred at x is proved in [BG, Proposition 1.2.1]. �

Remark 5. In the notation of Proposition 3, µx = 0 if and only if Dred is smooth at x and
if µx = 1 it is easily seen that the singularity of Dred at x is nodal (see Lemmas 1.2.1 and
1.2.4 in [BG] for instance).

Corollary 2. Let I ⊂ T be the set of singular values of the Albanese fibration α. Then

(a)
∑
so∈I

(
e(Xso)− e(Xs)

)
= 3 where Xs is a generic fiber,

(b) the cardinality of I is at most 3,
(c) α has no multiple fiber, and therefore (Xs0)red is singular for at least one s0 ∈ I,
(d) the total number of singular points in the fibers is at most 3 and if equality holds,

the three singularities are nodal and the fibration is stable. More precisely,∑
so∈I

( ∑
x∈Xs0

µx

)
= 3. (6)

Proof. Note first that there are no rational or elliptic curves in X since the holomorphic
sectional curvature of a ball quotient is negative.

(a) From the standard formula for the Euler number of a holomorphic fibration (see [Be,
Lemma VI.4] or [BHPV, Proposition III.11.4]), we have

3 = e(X) = e(T ) · e(Xs) +
∑
so∈I

nso =
∑
so∈I

nso ,

where nso = e(Xso) − e(Xs) for s ∈ To := T − I. Here we used the fact that the Euler
characteric of T vanishes.

(b) It is well known (see [BHPV, Remark III.11.5]), and it can be easily recovered from
Proposition 3, that nso > 0 with equality if and only if Xso is a multiple fiber with (Xso)

red

smooth elliptic. But as we noticed above, this is impossible in our case thus nso > 0 for any
so ∈ I. Since

∑
so∈I nso = 3, we conclude in particular that |I| 6 3 (and each nso 6 3).

(c) Assume first that a fiberD might be writtenD = mDred withm > 2. Then, by (a) and

formula (5), 3 > e(Dred)− e(Xs) > (m− 1)
∑k
i=1(g(Di)− 1) and the only possibility is that

k = 1, m = 2 and g(D1) = 2. However, by Theorem 3, 18 = g(D)− 1 = m(g(D1)− 1) = 2,
a contradiction.

Now, assume that D =
∑k
i=1miDi with k > 2, mi > 1 and m1 > 2. Recall that

by Zariski’s lemma (see [BHPV, Lemma III.8.2]) the self intersection of any effective cycle
supported on Dred must be nonpositive, and it is equal to zero if and only if it is proportional
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to D (in particular D2
1 < 0). Therefore by formula (5), 3 > e(Dred)− e(Xs) > 3−

(
Dred

)2
.

But
(
Dred

)2
= 0 if and only if D = mDred, a case which has already been ruled out.

(d) is a consequence of the previous points, equation (5) and Remark 5. �

5.3.

Lemma 8. deg(α∗ωX|T ) = 1.

Proof. Note that we do not know a priori that the fibration α is stable. The lemma is a
direct consequence of [X, Chapter 1], where it is shown that α∗ωX|T , the direct image of
the relative dualizing sheaf ωX|T , is locally free of rank g = g(Xs), where s ∈ T is a generic
point (as in the classical case of a stable fibration). As a consequence, this is also the case
of R1α∗OX which is the dual sheaf of α∗ωX|T .

Then, using the Leray spectral sequence and the Riemann-Roch formula, we get

χ(OX) = χ(OT )− χ(R1α∗OX) = −deg(R1α∗OX) + (g − 1)(g(T )− 1) = degα∗ωX|T

since degα∗ωX|T = −deg(R1α∗OX) and g(T ) = 1. As χ(OX) = 1, the result follows. �

5.4. Recall from §1.4 (see also §A.5) that the normalizer N of Π in Γ̄ is generated by the
element j4 of order 3 and Π, and the automorphism group Σ of X is given by the group
N/Π, which has order 3. Denote by σ the automorphisms of B2

C and of X induced by j4. If
ξ = (z1, z2) ∈ B2

C, then σ(ξ) = (ωz1, ωz2) where ω = ζ4 is a non trivial cube root of unity.
The Albanese map α : X → T = C/Λ can be lifted to a holomorphic map α0 : B2

C → C
so that α0(O) = 0 (choosing ΠO ∈ X as base point when defining α):

C

B2
C X T

α

α0

If π ∈ Π, then α0(πξ)−α0(ξ) ∈ Λ is independent of ξ ∈ B2
C, and so there is a map θ0 : Π→ Λ

such that α0(πξ) = α0(ξ) + θ0(π) for all ξ ∈ B2
C and π ∈ Π. Since θ0 is a homomorphism, it

factors through our abelianization map f : Π → Z2, see §1.4. So there is a homomorphism
θ : Z2 → Λ such that

α0(πξ) = α0(ξ) + θ(f(π)) for all ξ ∈ B2
C and π ∈ Π. (7)

By the universal property of the Albanese map, there is an automorphism σT : T → T
such that the following diagram commutes:

X T

X T

α

α

σ σT (8)

If the automorphism is trivial, then α0(σ(ξ))−α0(ξ) ∈ Λ for all ξ ∈ B2
C, and so is constant.

Since σ(O) = O, α0(j4ξ) = α0(ξ) for all ξ, and this implies that θ(f(j4πj−4)) = θ(f(π))

for all π ∈ Π. But then (1) implies that θ = 0, because I −
(

0 −1
1 −1

)
is non-singular hence

Πξ 7→ α0(ξ) is a holomorphic function X → C, and so is constant because X is compact,
contradicting surjectivity of α.

As a consequence, Σ acts non trivially on T and since σ(O) = O, the action of Σ fixes the
point α(ΠO) = 0 + Λ. From this and |Σ| = 3, it follows immediately that the elliptic curve
has to be T = C/(Z + ωZ), and the vertical map σT on the right in (8) is z + Λ 7→ ωiz + Λ
with i = 1 or 2. Indeed, the automorphism σT which fixes 0 + Λ is induced by a nontrivial
C-linear automorphism of C preserving Λ (see [Be, Proposition V.12] for instance). Since it
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has order 3, it must be multiplication by ωi, where i = 1 or 2. Hence Λ contains 1 and ω
(after renormalization of the lattice).

It follows that there are precisely 3 fixed points of Σ on T : a fundamental domain of
T consists of two equilateral triangles and the fixed points are given by a vertex and the
centroid of each of the two triangles i.e. are the points pν = ν(2 + ω)/3 + Λ, ν = 0, 1,−1
(notice that (1− ω)−1 = (2 + ω)/3). In particular, we have proved

Lemma 9. The action of Σ descends to a non-trivial action of T . There are three fixed
points in the action of Σ on T . The elliptic curve T is isomorphic to C/(Z + ωZ).

5.5. We still use the notation from §5.4. Note that by definition of the Albanese map,
θ ◦ f : Π → Λ is onto. In other words, a + bω := θ(1, 0) and c + dω := θ(0, 1) (where
a, b, c, d ∈ Z) generate Λ over Z i.e. ad − bc = ±1. We wish to determine whether σT acts
on T by ω or ω2.

The automorphism σ is induced by the action of j4 on B2
C, and recall that j4 normalizes Π.

For any π ∈ Π, we have

α0(j4πO) = α0(j4πj−4j4O) = α0(j4O) + θ(f(j4πj−4)) = α0(O) + θ(f(j4πj−4))

since O is fixed by j4, and

α0(πO) = α0(O) + θ(f(π)).

Clearly, σT acts on T by ωi if and only if α0(j4ξ) = ωiα0(ξ) for all ξ ∈ B2
C. In particular,

for all π ∈ Π, α0(j4πO) = ωiα0(πO). It follows from the above relations that for all π ∈ Π,

θ(f(j4πj−4)) = ωiθ(f(π)).

Since f is surjective, (1) shows that θ(n,−m− n) = ωiθ(m,n) for all m,n ∈ Z, and taking
(m,n) = (1, 0) we get −c − dω = ωi(a + bω). When i = 1, this implies that c = b and
d = b − a, so that ad − bc = −(a2 − ab + b2), and therefore ad − bc = −1 and a + bω is a
power (−ω)ν of −ω, and c + dω = −ω(a + bω). When i = 2, it implies that c = a − b and
d = a, so that ad − bc = a2 − ab + b2, and therefore ad − bc = +1 and a + bω is again a
power (−ω)ν of −ω, and this time c+ dω = −ω2(a+ bω).

Finally, notice that we can multiply α0 by (−ω)−ν , and the new θ we get satisfies θ(1, 0) =
1 in both cases, but the new θ(0, 1) is −ω when i = 1, and −ω2 when i = 2. To sum up, we
have the following

Lemma 10. The action of σT on T is by ω (resp. ω2) if and only if (θ(1, 0), θ(0, 1)) is
equal (up to a rotation) to (1,−ω) (resp. (1,−ω2)).

In order to decide between the two possibilities for the action of σT on T , we will use
the restriction of the Albanese map α to the curve E1 (we could have chosen any of the
other totally geodesic curves in X). Recall that in the course of the proof of Lemma 7, we

noticed that the orientation on Ê1 and the one on T induced by (θ(1, 0), θ(0, 1)) were not

compatible. First, we will determine the orientation on Ê1 induced by the complex structure
on X. For this purpose, we compute the intersection form on H1(Ê1,Z) (where E1 is the

curve associated with the mirror M0 such that π1(Ê1) ∼= Π0) in the basis (δi)16i68 induced
by the generators gi which satisfy the relation

g1g2g3g4g5g6g7g8g
−1
1 g−1

3 g−1
5 g−1

7 g−1
2 g−1

4 g−1
6 g−1

8 = 1

(see the proof of Proposition A.9).

The loops δi are the images in Ê1 of the axes of the generators gi, seen as hyperbolic
elements in SU0 (see Lemmas A.20 and A.21) which are depicted in figure 2, where the
point labelled i represents the attractive point at infinity of the axis of gi. The dashed
geodesics are the axes of the elements g9 = (g1g2)−1, g10 = (g3g4)−1, g11 = (g5g6)−1 and
g12 = (g7g8)−1 that will also be needed.
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Figure 2. Axes of the generators of Π0

Figure 2 was drawn with Maple, using the expression of ψ0(gi) ∈ SU0 in the proof of
Proposition A.9. The matrices in SU0 are unitary with respect to the diagonal form with
diagonal entries 1 and 1− r (see Lemma A.21), and have the form

h =

(
a (r − 1)b
b̄ ā

)
, (9)

where a, b ∈ Z[ζ] and |a|2 − (r − 1)|b|2 = 1. Conjugating them by the diagonal matrix with
diagonal entries 1 and

√
r − 1, we get elements of SU(1, 1). So SU0 acts on the unit disc

B(C) in C and its closure B̄(C). Assuming b 6= 0, the fixed points in B̄(C) of the h in (9)
are

w =
a− ā±

√
(a+ ā)2 − 4

2b̄
√
r − 1

. (10)

These fixed points w satisfy |w| = 1 when |a+ ā| > 2.

We find that the ψ0(gi), i = 1, . . . , 12, are the conjugates by the powers of z =

(
1 0
0 ζ

)
of a single matrix (9), where a = ζ2 + 3ζ + 2 and b = 3 + 2r. In fact, ψ0(gi) = z−nihzni for
(n1, . . . , n12) = (7, 11, 2, 6, 9, 1, 4, 8, 3, 10, 5, 0). So the fixed points of ψ0(gi) are eiθζni and

ei(π−θ)ζni , where θ = tan−1
(√

(2r − 1)/11
)
, eiθ being the fixed point (10) for this a and b,

with the plus sign. An easy calculation shows that eiθζni and ei(π−θ)ζni are the attracting
and repulsing fixed points, respectively, of ψ0(gi).

In figure 3, we drew a fundamental domain for the action of Π0, whose boundary is a
24-gon. The sides of this 24-gon are pairwise identified by the elements gi (i = 1, . . . , 12).
We preferred to use the generators gi’s of Π0 instead of the ui’s and the v′is because their
axes pass closer to the origin of the disc and hence the picture is much clearer.

The δi’s are all oriented in the same way, e.g. from the repulsive point to the attractive
point. As all the geodesics in figure 2 actually meet inside the fundamental domain of figure 3,
we deduce from the picture that the matrix of the intersection form 〈 , 〉 on H1(Ê1,Z) in the



SOME ALGEBRAIC GEOMETRIC FACTS ABOUT THE CARTWRIGHT-STEGER SURFACE 17

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3. Fundamental domain for the action of Π0

basis (δi) and with respect to the usual orientation of the disc is

Iδ =



0 1 0 −1 1 0 −1 1
−1 0 1 0 −1 1 0 −1
0 −1 0 1 0 −1 1 0
1 0 −1 0 1 0 −1 1
−1 1 0 −1 0 1 0 −1
0 −1 1 0 −1 0 1 0
1 0 −1 1 0 −1 0 1
−1 1 0 −1 1 0 −1 0



where the entry in row i and column j is 〈δi, δj〉. Now, we cut the curve Ê1 along the loops
δi in order to obtain a 16-gon ∆ and consider the dual basis (δ∗i ) of (δi), i.e. 〈δi, δ∗j 〉 = δij ,
as depicted in figure 4. Actually, there are a priori two choices for the orientation of the
boundary of ∆ and the one pictured in figure 4 is the good one since the matrix of the
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δ8

δ6

δ4

δ2

δ7

δ5

δ3

δ1δ−1
8

δ−1
7

δ−1
6

δ−1
5

δ−1
4

δ−1
3

δ−1
2

δ−1
1

•
p0

Figure 4. The basis (δ∗i ) in the 16-gon ∆

intersection form in the basis (δ∗i ) has to be the transpose of the inverse

Iδ∗ = tI−1
δ =



0 1 1 1 1 1 1 1
−1 0 0 1 0 1 0 1
−1 0 0 1 1 1 1 1
−1 −1 −1 0 0 1 0 1
−1 0 −1 0 0 1 1 1
−1 −1 −1 −1 −1 0 0 1
−1 0 −1 0 −1 0 0 1
−1 −1 −1 −1 −1 −1 −1 0


of the one in the basis (δi), which is indeed the case as can be checked on the figure.

Since we do not use a standard presentation of the group Π0, we need a generalized
Riemann bilinear relation, a quick proof of which we now give, following [GH, pp. 229–231].

Let p0 be a base point in the interior of ∆ and η a holomorphic 1-form on Ê1. We define
the holomorphic function h(p) =

∫ p
p0
η on the closure of ∆ (which is simply connected),

so that dh = η. Let p be a point on δi and p′ the corresponding point of δ−1
i . Then∫ p′

p
η = h(p′)− h(p) =

∑
j〈δ∗i , δ∗j 〉

∫
δj
η which is independent of p (and p′). Therefore,∫

δi+δ
−1
i

h η̄ =

∫
δi

(h(p)− h(p′))η̄ = −
[∑
j

〈δ∗i , δ∗j 〉
∫
δj

η
] ∫

δi

η̄ =
[∑
j

〈δ∗j , δ∗i 〉
∫
δj

η
] ∫

δi

η̄.

Now,

√
−1

∫
Ê1

η ∧ η̄ =
√
−1

∫
∆

dh ∧ η̄ =
√
−1

∫
∂∆

h η̄ =
√
−1
∑
i

∑
j

〈δ∗j , δ∗i 〉
∫
δj

η

∫
δi

η̄.

We shall apply this formula to η = α̂∗dz, as in the proof of Lemma 7, using the expression
of the gi’s in terms of the generators ai of Π (see the proof of Proposition A.9). We find
using Lemma 10 that

V :=
(∫

δi

α̂∗dz
)
i=1,...,8

= (1 + 4κ, 4− 5κ,−2− 5κ,−5 + 7κ, 5− κ,−1− 4κ,−7 + 2κ, 2 + 5κ)

where κ = −ω (resp. −ω2) if the action of σT is by ω (resp. ω2), since
∫
δi
α̂∗dz = θ(f(gi)).

The coordinates of V are easily computed using the expression of each gi in terms of a1,
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a2 and a3 as given in the first lines of the proof of Proposition A.9, and the computations
in §1.4. Let us just give one example. For instance, g5 = ζ3j4a2a1j

8a−1
2 a3

3a
2
1, hence

f(g5) = f(j4a2j
−4) + f(j4a1j

−4)− f(a2) + 3f(a3) + 2f(a1)

= (1, 1) + (3,−4)− (−2, 1) + 3(−1,−1) + 2(1, 3)

= (5,−1),

hence the 5-th component of V is 5− κ.
As α̂ is holomorphic,

√
−1
∫
Ê1
α̂∗dz ∧ α̂∗dz̄ =

√
−1tV Iδ∗ V̄ must be positive and we find

that it is equal to 60r (resp. −60r) if κ = −ω (resp. κ = −ω2). Therefore, we conclude

Proposition 4. The action of σT on T is by ω.

5.6. Let pν = ν(2 + ω)/3 + Λ, ν = 0, 1,−1 be the fixed points of Σ on T , as given by
Lemma 9.

Lemma 11. (a) There are altogether nine fixed points of Aut(X) on X.
(b) The points O1, O2 and O3 mentioned in §2 are fixed points of Σ, all lie in the same

fiber α−1(p0).
(c) The other fixed points are 6 of the 288 points lying in π−1(P5) (see §2 ).
(d) Each of the fibers α−1(pj) for j = 1, 0,−1 contains exactly three of the nine fixed

points of Aut(X).
(e) The fixed points Oi, i = 1, 2, 3 are of type 1

3 (1, 1), and the other six fixed points are

of type 1
3 (1, 2).

Proof. (a) follows from Lemma A.32. This corresponds to the case of Proposition 1.2 (2)(b)
in Keum [K], the latter follows from Lefschetz fixed point formula and holomorphic Lefschetz
fixed point formula. (b), (c) and (d) follow from Proposition A.19. The type of singularities
follows from Lemma A.33, which is also stated as one of the cases in [K, Proposition 1.2],
and was observed by Igor Dolgachev as well. �

5.7.

Lemma 12. Let O = Oi for i = 1, 2, 3. Then α is smooth at O.

Proof. By Lemma 11 and Proposition 4, there exist coordinates (x, y) centered at O ∈ X
and a coordinate z centered at α(O) ∈ T such that α ◦ σ(x, y) = α(ωx, ωy) = ωα(x, y) =
σT ◦ α(x, y). In terms of our local coordinates, we write

α(x, y) =
∑
i,j>0

aijx
iyj

and we have ∑
i,j>0

aijω
i+jxiyj =

∑
i,j>0

aijωx
iyj .

Since the above is true for all x, y, we conclude that for those i, j with aij 6= 0, we actually
have i+ j ≡ 1 (mod 3), hence we may write

α(x, y) = (a10x+ a01y) +
( ∑
i+j=4

aijx
iyj
)

+
∑

i+j=3n+1,n>2

aijx
iyj .

The fiber through O is smooth at O if the first expression is non-zero. If a10 = a01 = 0
then α vanishes at order at least 4, hence αx and αy vanish at order at least 3, so that
O(x, y)/〈αx, αy〉 has length at least 6 (i.e. the Milnor number of the fiber through O is at
least 6). This violates formula (6) in Corollary 2 that the sum of the Milnor numbers at the
singularities is at most 3. Hence α is smooth at O. �
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5.8. Let Q = Qi, i = 1, . . . , 6 be one of the fixed points of σ other than Oj , j = 1, 2, 3 so
that the local action of σ is of type 1

3 (1, 2) at Qi.

Lemma 13. One of the following happens

(i) α is smooth at Q,
(ii) Q is a point of Milnor number 3 i.e. a tacnode.

Proof. By Lemma 11 and Proposition 4, there exist coordinates (x, y) centered at Q ∈ X
and a coordinate z centered at α(Q) ∈ T such that α ◦ σ(x, y) = α(ωx, ω2y) = ωα(x, y) =
σT ◦ α(x, y). As above, we write in terms of our local coordinates

α(x, y) =
∑
i,j>0

aijx
iyj

and we have ∑
i,j>0

aijω
i+2jxiyj =

∑
i,j>0

aijωx
iyj .

We conclude that for those i, j with aij 6= 0, we actually have i+ 2j ≡ 1 (mod 3), hence we
may write

α(x, y) = (a10x) + (a02y
2 + a21x

2y + a13xy
3 + a40x

4) + terms of order at least 5.

It is smooth at (0, 0) if a10 6= 0. This is case (i).
Assume now that a10 = 0. First remark that µQ ≥ 2. Indeed,

αx = 2a21xy + terms of order at least 3

αy = 2a02y + a21x
2 + terms of order at least 3

hence 1 and x are linearly independent in O(x, y)/〈αx, αy〉. However, the case µQ = 2
cannot occur since in this situation there would be exactly one more singular point P on X
with Milnor number 1 by formula (6) in Corollary 2. But we saw in Lemma 12 that none
of the Oi’s is singular and we have just seen that none of the Qi’s can be a singularity with
Milnor number 1. Therefore, P would not be a fixed point of σ and then µP = µσ(P ) which
is a contradiction.

Finally, we recall (see [AGV, p. 183]) that a singularity with Milnor number 3 is holomor-
phically equivalent to a tacnode whose equation is (x2−y)(x2 +y) = 0 (or y(y−x2) = 0) and
we note for instance that both these expressions are a priori admissible in our situation. �

5.9. From the previous two lemmas we deduce the following result about the singularities
of the Albanese map α.

Proposition 5. There are three mutually exclusive possibilities for the singularities of the
Albanese map:

(i) α has exactly one singularity which is a tacnode at some Qi (i = 1, . . . , 6). The
unique singular fiber is then irreducible and has geometric genus 17.

(ii) α has exactly one singular fiber which is one of the three (globally) fixed fibers by σ,
with exactly three nodal singularities, and none of them is a fixed point of σ. The
unique singular fiber might be reducible and its normalization has genus 16.

(iii) α has exactly three singular fibers with exactly one nodal singularity on each of them
and the singular points are the elements of a σ-orbit. In this case, each singular
fiber is irreducible and has geometric genus 18.

Proof. The fact that only one of these three possibilities can occur is a straightforward
consequence of Lemmas 12 and 13 together with formula (6). The genera are easily computed
using formula (5). �
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5.10. Ngaiming Mok has kindly drawn to our attention the following problem which was
open and is interesting to geometric study of complex ball quotient.

Question 1. Does there exists a homomorphism f : X → R from a smooth complex ball
quotient X to a Riemann surface R with a non-totally geodesic singular fiber?

There are very few explicit examples of mappings from a complex ball quotient to a
Riemann surface. The known ones described by Deligne-Mostow, Mostow, Livné, Toledo and
Deraux all have totally geodesic singular fibers, cf. [DM2], [T] or [Der2] and the references
therein.

In the following we show that the surface studied in this note provides such an example.

Theorem 4. None of the singular fibers of the Albanese fibration α : X → T is totally
geodesic.

Proof. Let E be a singular fiber of α and let Ê be the normalization of E. Assume for the
sake of proof by contradiction that E is totally geodesic. According to Lemma 3,

E · E =
1

2
e(Ê) + 2δan(E)

and moreover, g = g(Ê) + δan(E) and E · E = 0 since E is a fiber of the fibration, hence
1 − g + 3δan(E) = 0. Since we have shown that g = 19 in Theorem 3, this leads to
δan(E) = 6. However, for a node δan = 1 and for a tacnode δan = 2. Hence the result
follows from Proposition 5. Note that we could have a priori ruled out the case of a tacnode
since totally geodesic curves have simple crossings. �

6. A Livné-like rational fibration

In his PhD thesis [Li], R. Livné constructed two-ball quotients by taking branched cov-
erings of some generalized universal elliptic curves with level structure and by construction,
these surfaces admit a fibration onto a curve. In the case of the Cartwright-Steger surface,
the Albanese fibration does not appear in the same fashion but one can exhibit another
(rational) fibration appearing in a quite similar way to Livné’s. Our starting point is the
description by Deligne and Mostow of Livné’s fibrations in [DM2, Chapter 16] from which
one can deduce the following (which is only implicit in the book).

6.1. Let R̂ be the surface obtained by blowing up the point P1 ∈ R ∼= P(1, 2, 3), see §1.3.

Let N ≥ 3 be an integer. We endow R̂ with an orbifold structure: the ramification divisors
are the strict transforms of DA, DB that we still denote in the same way and the exceptional
curve that we denote by E with respective weights (N, d, 2), and we denote this orbifold

by R̂N,d,2. We also endow P1
C with an orbifold structure: there are 3 orbifold points, say

p1, p2, p3, with respective weights (2, 3, N) and we denote this orbifold by P1
2,3,N .

Then there exists an orbifold morphism Φ : R̂N,d,2 → P1
2,3,N such that DA is sent onto p3,

Φ(DB) = Φ(E) = P1
C, and the fibers of Φ above p1 and p2 have multiplicity 2 and 3

respectively. The generic fiber of Φ meets E once and DB three times.

6.2. When d = 2, this fibration can be seen as the orbifold quotient of the universal gen-
eralized elliptic curve with structure of level N by the group SL(2,ZN ) o (ZN )2. In this
setting, it is natural to take p1 = 1728, p2 = 0 and p3 = ∞, Φ can then be seen as the
j-invariant (the fibers of Φ are rational curves which are the quotient of the corresponding
elliptic curves by ±1, the image of 0 is on E, the image of 2-torsion points on DB), and
C = P1

C\{∞} is the set of values of the j-invariant. Above the point at infinity we have a
“special curve” DA, and the ramifications 2 and 3 at 1728 and 0 respectively are due to the
fact that the corresponding elliptic curves have additional automorphisms.

The case we are interested in is R̂4,3,2 = ̂̄Γ\B2
C, i.e. we have N = 3 and d = 4 (it can be

checked that indeed, E has weight −2, the minus sign meaning that it can be contracted,
see [DM2, §17.9]) and P1

2,3,N = P1
2,3,3 is the orbifold attached to the tetrahedron group.
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6.3. Let us consider Π2 (see §1.5): we saw that it is a subgroup of index 3 of Γ̄. We define

Y := Π2\B2
C and Ŷ its blow up at the preimage of P1 by the natural morphism Y → R so

that we have a ramified covering Ŷ → R̂ whose branch locus is DA (of order 3). Then Ŷ
has a natural orbifold structure. The ramification divisors are the preimage D′B of DB with
weight d = 4 and the preimage E′ of E with weight −2. Both D′B and E′ are irreducible.

The orbifold P1
2,3,3 also admits an orbifold covering P1

2,2,2 → P1
2,3,3 of order 3 whose branch

locus consists of the two points of weight 3 in P1
2,3,3 and where P1

2,2,2 is the quotient of P1
C

by the subgroup of the tetrahedron group isomorphic to Z2 × Z2. The 3 orbifold points in
P1

2,2,2 have weight 2 and are the points above the orbifold point of weight 2 in P1
2,3,3.

The fibration Φ then lifts to an orbifold fibration Φ′ : Ŷ → P1
2,2,2 such that the divisor E′

is a section of Φ′ and D′B has order 3 over the base. In other words, the generic fiber of Φ′ is
an orbifold P1

C with 4 orbifold points of weights (2, 4, 4, 4). There is one special fiber which
is the preimage D′A of DA and which is an orbifold of type (2, 4, 12) and there are also 3
multiple fibers of order 2 (above the 3 orbifold points of P1

2,2,2).

6.4. Finally, there exists an orbifold cover X̂ of Ŷ of order 288 with 36 = 864/24 exceptional
curves (where 24 is the order of the isotropy group in Γ̄ of a point x ∈ P) and once these
curves are contracted, we obtain the surface X = Π\B2

C = (Π2 ∩Π3)\B2
C.

We thus have the following diagram

Alb(X) = T X

(288:1)

��

αoo X̂oo

(288:1)
��

Φ̂′

��

Y

!!

Ŷoo
(3:1)

//

Φ′

��

R̂

Φ

��

// R

}}

P1
2,2,2

(3:1)
// P1

2,3,3

We see in particular that the elliptic curve Alb(X) should be the rigid part of the Jacobian

of the curves of the fibration Φ̂′ : X̂ → P1
2,2,2 which are ramified coverings of P1

C of type
(2, 4, 4, 4).

This point of view is also confirmed by the computation of the genus of the curves of
type A. Indeed, the general fiber of Φ̂′ is a ramified covering of P1

C of order 288 and type
(2, 4, 4, 4) so that by the Riemann-Hurwitz formula its genus is

288

2

(
−2 +

2− 1

2
+ 3 · 4− 1

4

)
+ 1 = 109.

On the other hand, the arithmetic genus is constant on the fibration of a smooth surface
onto a curve. Let us compute the arithmetic genus of the fiber of type A using the same
method as in the proof of Lemma 3. Recall from §2.2 that the fiber has four irreducible
components, two have genus 4 and two have genus 10, and moreover there are exactly three
singular points, each of the same type, namely eight local branches crossing transversally.
Then this curve has arithmetic genus

1 + 2(4− 1) + 2(10− 1) + 3
(8 · 7

2

)
= 109

which is the expected number.

7. Lefschetz type question

7.1. The goal of this section is to show that the Cartwright-Steger surface X provides
examples for some natural questions related to Lefschetz properties of ample hypersurfaces
in projective algebraic manifolds. In studying Lefschetz properties, Nori posted in [N] the
following problem.
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Question 2. Let D be an effective divisor on a surface X with D · D > 0. Let N be the
normal subgroup of π1(X) generated by the images of the fundamental group of the non
singular models of all the curves in D. Is [π1(X) : N ] finite?

The N defined above is the normal closure of the images of the fundamental group of the
non singular models of all the curves in D.

Nori in [N] answered the above question affirmatively in the special case that D has only
nodal singularities and satisfies the assumption that D · D > 2r(D), where r(D) is the
number of nodes. Some special cases of hyperellitpic fibrations have also been confirmed
by Gurjar-Paul-Purnaprajna [GPP]. The question has attracted a lot of attention from
studies of properties of fundamental groups of algebraic surfaces and function properties of
their universal coverings, such as Lefschetz type properties or holomorphic convexity of the
universal coverings.

7.2. We show that the Cartwright-Steger surface provides an interesting example to illus-
trate the problem.

Proposition 6. Let X be the Cartwright-Steger surface. Let D = E1 be the genus 4 curve
of type B having multiplicities (3, 1, 2) at the points Oi defined in §2.1. Let i : D → X

be the inclusion map, ρ : D̂ → D the normalization of D, and N the normal closure of

(i ◦ ρ)∗π1(D̂) in π1(X). Then

(a) D ·D > 0,

(b) [π1(X) : (i ◦ ρ)∗π1(D̂)] =∞,
(c) [π1(X) : N ] = 21,
(d) π1(X) = i∗π1(D).

Proof. (a) follows from Lemma 4 where we computed D ·D = 5 > 0.
(b). We recall results and use notation of §A.2. The curve D is irreducible by construction

and the universal covering of D is a totally geodesic curve M0 on the universal covering B2
C

of the Cartwright-Steger surface X. The stabilizer Π0 < Π of M0 as a set in B2
C is then a

Fuchsian group of M0
∼= ∆, the unit disk. Since Π is torsion-free, so is the action of Π0 on

M0. However, the image of Π0\M0 in X has self-intersection singularities on X since there
are elements g ∈ Π−Π0 such that g ·M0 ∩M0 6= ∅.

In our situation, a smooth model of D is a normalization D̂ of D and is simply given by
Π0\M0. Hence from construction, the fundamental group of a smooth model of D is Π0. In
fact, it suffices for us to know that the fundamental group is commensurable to Π0. Clearly,

the fundamental group π1(D̂) = Π0 has infinite index in Π, since the cohomology dimension
of Π0 is 2 and the corresponding one for Π is 4.

Part (c) follows from Lemma A.28.
Part (d) follows from Corollary A.3. �

Appendix A. Calculations in the group Γ̄

A.1. The action of Γ̄ on B2
C. The elements u and v of Γ̄ are complex reflections of order 3

and 4, respectively. For α ∈ C, define

Mα = {(z, w) ∈ B2
C : z = αw}.

We also let M∞ = {(z, w) ∈ B2
C : w = 0}. Setting c = (r − 1)(ζ3 − 1)/2 = ζ2 − ζ, one can

check that u fixes each point of Mc, and v fixes each point of M0. LetMA = {g(Mc) : g ∈ Γ̄}
andMB = {g(M0) : g ∈ Γ̄}. We refer to these sets as mirrors of types A and B, respectively,
since g(Mc) and g(M0) are the sets of points of B2

C fixed by the complex reflection gug−1,
and gvg−1, respectively.

Note that the powers of (ζ−1j)ν , ν = 1, . . . , 11, are complex reflections, but in their action
on B2

C they fix only the origin O = (0, 0).
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Proposition 7. The non-trivial elements of finite order in Γ̄ are all conjugate to one of the
elements in the following table, or the inverse of one of these.

d Representatives of elements of order d

2 v2, j6, (bu−1)2

3 u, j4, uj4, buv

4 v, j3, vj3, v2j3, bu−1

6 j2, v2j2, v2uj, v2uj5, bv2u−1j, bv2

8 uvj, ζ−1bj, (ζ−1bj)3

12 j, j5, uv−1j2, uv−1j3, uv−1j6, uv−1j−1, v2j, uv2, uj, uj3, bv, (bv)−5

24 uv, vuj2

The elements v and v2 fix each point of M0, while u fixes each point of Mc. The remaining
elements in the table each fix just one point of B2

C.

Proof. Elements gZ ∈ Γ̄ which fix points of B2
C must have finite order, because Γ̄ acts

discontinuously on B2
C. Conversely (see [CS2, Lemma 3.3]) any element of finite order in Γ̄

fixes at least one point of B2
C, and is conjugate to an element of K ∪ bK ∪ bu−1bK. One

can easily list the nontrivial elements of finite order in this last set (there are 408 of them,
76 in bK and 45 in bu−1bK), all having order dividing 24. Routine calculations show that
any such element (and hence each nontrivial element of finite order in Γ̄) has a matrix
representative g conjugate to one of the elements in the above table, or its inverse. One may
verify that, with the exception of the elements conjugate to buv or its inverse, each element
gZ of order d in Γ̄ has a matrix representative g such that gd = I. Note that (buv)3 = ζ−1I.

To check that the elements in the table other than u, v and v2 fix only one point of B2
C,

note that gZ ∈ Γ̄ fixes (z, w) ∈ B2
C if and only if (z, w, 1/

√
r − 1 )T is an eigenvector

of g. In each case, we find that there is only one eigenvalue λ of g having an eigenvector
(v1, v2, v3)T satisfying |v1|2 + |v2|2 < (r− 1)|v3|2, corresponding to a fixed point (z, w) with
z = v1/(v3

√
r − 1) and w = v2/(v3

√
r − 1). See also the proof of Proposition 8 below. �

For α ∈ C ∪ {∞} and for ξ ∈ B2
C, let

Γ̄α = {g ∈ Γ̄ : g(Mα) = Mα} and Γ̄ξ = {g ∈ Γ̄ : g.ξ = ξ}
denote the stabilizer of Mα and ξ, respectively. We next describe the ξ for which Γ̄ξ 6= {1}.
Two points are particularly important: the origin O, and

P =
(c(ζ − 1)√

r − 1
,
ζ − 1√
r − 1

)
. (11)

As observed in [CS2, Lemma 3.1], Γ̄O = K. For P we have the following:

Lemma 14. The subgroup Γ̄P of Γ̄ has order 24, and centre of order 2. It is generated by
elements fz = (bu−1)2, f2 = bu−1, f3 = jbv−1j and f ′3 = u, and has a presentation

f2
2 = fz, f

3
3 = 1, f ′3

3
= 1, f2

z = 1, f ′3f3f2 = 1, [f2, fz] = [f3, fz] = [f ′3, fz] = 1.

The subgroup Γ̄P ∩ Γ̄c equals 〈fz, f ′3〉, and has order 6. Let r1 = 1, r2 = f2, r3 = f3 and
r4 = f ′3f2. Then P ∈ rν(Mc) for ν = 1, 2, 3, 4, and the rν(Mc) are distinct.

We can find 36 elements k1, . . . , k36 of K such that

Γ̄ =

36⋃
i=1

ΠkiΓ̄P , a disjoint union. (12)

Proof. Suppose that g ∈ Γ̄ and g.P = P . Then

d(g.O,O) ≤ d(g.O, g.P ) + d(g.P, P ) + d(P,O) = 2d(P,O) = log
(1 + ‖P‖

1− ‖P‖

)
.
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Here ‖P‖2 = |c|2(2 − r)|/(r − 1) + (2 − r)/(r − 1) = 2r − 3. Since the squared Hilbert-
Schmidt norm ‖g‖2HS of any g ∈ U(2, 1) is 3 + 4 sinh2(d(g.O,O)) ([CS2, Lemma 3.2]), this
gives ‖g‖2HS ≤ 8r + 15. Now the g ∈ Γ̄ such that ‖g‖2HS ≤ 8r + 15 consist of the three
double cosets K, KbK and Kbu−1bK ([CS2, §3]). So it is enough to run through the
elements g of these double cosets (48672 in all) checking the condition g.P = P . This search
found 24 elements with this property. In particular it found the elements fz, f2, f3 and f ′3
above. One may check that they satisfy the given relations. The abstract group generated
by elements fz, f2, f3 and f ′3 satisfying these relations has order 24. So the stabilizer of P
in Γ̄ has order 24, and has the presentation given above.

The statements about Γ̄P ∩ Γ̄c and r1, . . . , r4 are easily verified.
Magma verifies that the 36 elements k′ν , k

′
νj

4, k′νj
8, for the following 12 elements k′ν of K,

is a set of representatives for the distinct double cosets ΠgΓ̄P in Γ̄:

v, v2, vuv−1, vu−1v2u, v−1, uv2, j, j2, 1, j3, uv, u−1v−1. (13)

The order of the k′ν has be chosen to make the tables in the proof of Proposition 16 tidier. �

Routine calculations show that the fixed points of γ3 = buv, γ8 = ζ−1bj and γ12 = bv are

ξ3 =
( c1√

r − 1
,

c2√
r − 1

)
, ξ8 =

(
0,

(1− 2 sin(π/12))ζ3

√
r − 1

)
and ξ12 =

(
0,

ζ − 1√
r − 1

)
, (14)

respectively, where for λ = e−πi/18,

c1 = ζ3 − ζ2 − ζ + 1 + (ζ2 − ζ + 1)λ+ (−ζ3 + ζ2 − 1)λ2, and c2 = ζ3 − (ζ − 1)λ2.

Lemma 15. For d = 3, 8 and 12, the group Γ̄ξd is cyclic of order d, generated by γd.

Proof. By the method used in the proof of Lemma 14, we see that in each of these three
cases, Γ̄ξ ⊂ K ∪KbK, and then search this set for the elements fixing ξ. �

For ξ ∈ B2
C, let MA(ξ), respectively MB(ξ) denote the set of distinct mirrors M , of

type A and B, respectively, containing ξ.

Lemma 16. The groups Γ̄c and Γ̄0 are the commutators in Γ̄ of u and v, respectively.
For each ξ ∈ B2

C, |MA(ξ)|, respectively |MB(ξ)|, is equal to the number of elements of Γ̄ξ
conjugate to u, respectively v.

Proof. Suppose that g ∈ Γ̄ commutes with u. If ξ ∈ Mc, then u.(g.ξ) = g.(u.ξ) = g.ξ, so
that g.ξ is one of the points of B2

C fixed by u, and so is in Mc. Thus g ∈ Γ̄c. Conversely,
if g ∈ Γ̄c, then gug−1 fixes each point of Mc. A simple calculation shows that the h ∈ Γ̄
fixing each point of Mc are just the powers of u. Considering traces and determinants, we
find that u is not conjugate to its inverse. Hence gug−1 = u. The proof for v is similar.

If ξ ∈ g(Mc), then g−1.ξ ∈ Mc, and so u.g−1.ξ = g−1.ξ. Hence gug−1 ∈ Γ̄ξ. If

g, g′ ∈ Γ̄ and gug−1 = g′ug′
−1 ∈ Γ̄ξ, then g−1g′ commutes with u, and so is in Γ̄c, so

that g(Mc) = g′(Mc). So |MA(ξ)| is the number of distinct conjugates of u belonging to Γ̄ξ.
The calculation of |MB(ξ)| is the same. �

Lemma 17. The orbit under the finite group K of Mc consists of the eight mirrors Mα for
α = c±±± = ±(r ± 1)(i ± 1)/2 (so that for example c = c+−−), and MA(O) is the set of
these Mα’s. The 8 elements kα ∈ K in the proof below form a set of representatives of the
cosets gKc in K, for Kc = K ∩ Γ̄c = 〈u, j〉.

Proof. We know that u fixes each point of Mc. Also, j.(αw,w) = (αζw, ζw) for any w
and α, and so j(Mα) = Mα for any α. So the 36 elements of the subgroup Kc = 〈u, j〉 of K
fix the set Mc. For α = c+−−, c−−+, c−−− and c+−+, let kα = 1, v, v2 and v3, respectively,
and then kα.(cw,w) = (αw′, w′) ∈ Mα for w′ = w. For α = c−++, c−+−, c+++ and c++−,
let kα = u−1v2u, vu−1v2u, v2u−1v2u and v3u−1v2u, respectively, and then kα.(cw,w) =
(αw′, w′) ∈ Mα for w′ = −cw. So the eight elements kα lie in distinct cosets gKc. To see
that MA(O) consists just of these Mα’s, we apply Lemma 16. Let k ∈ K be a conjugate
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gug−1 of u for some g ∈ Γ̄. Then k fixes each point of g(Mc). But the 8 elements kαuk
−1
α

are the only elements of order 3 in K fixing more than one point of B2
C. �

Lemma 18. The orbit under the finite group K of M0 consists of the six mirrors Mα for
α ∈ {0, 1,−1, i,−i,∞}, andMB(O) is the set of these Mα’s. The 6 elements kα ∈ K in the
proof below form a set of representatives of the cosets gK0 in K, for K0 = K ∩ Γ̄0 = 〈v, j〉.

Proof. We know that v fixes each point of M0 and that j(M0) = M0. So the 48 elements
of the subgroup K0 = 〈v, j〉 of K fix the set M0. For k0 = 1 and k∞ = u−1v2uj6, we have
k0.(0, w) = (0, w) ∈ M0 and k∞.(0, w) = (w, 0) ∈ M∞. For α = i,−1,−i, 1, let kα = uj,
vuj, v2uj and v3uj, respectively, and then kα.(0, w) = (αw′, w′) ∈Mα for w′ = (i+ 1)w/2.
The last statement is now clear. The proof thatMB(O) consists of these Mα’s is similar to
that of the corresponding statement in Lemma 17. �

By a generic element of Mc, respectively, M0, we mean a point ξ ∈Mc, respectively M0,
which is not in the Γ̄-orbit of O, P , ξ8 or ξ12. We shall see that no point in the Γ̄-orbit of ξ3
belongs to Mc or M0.

Proposition 8. The ξ ∈ B2
C for which Γ̄ξ 6= {1} are either in the Γ̄-orbit of a generic point

of Mc or M0, or in the Γ̄-orbit of one of O, P , ξ3, ξ8 or ξ12. With notation as above, we
record the following data for these points:

ξ Γ̄ξ |Γ̄ξ| |MA(ξ)| |MB(ξ)|
O K 288 8 6

P 〈fz, f3, f
′
3〉 24 4 0

ξ3 〈γ3〉 3 0 0

ξ8 〈γ8〉 8 0 1

ξ12 〈γ12〉 12 1 1

generic Mc 〈u〉 3 1 0

generic M0 〈v〉 4 0 1

Proof. By assumption, there is a non-trivial element of Γ̄ fixing ξ, and this element must
be of finite order, and so is conjugate to one of the elements in the table of Proposition 7.
So we may assume that ξ is fixed by one of the elements in that table. If ξ is fixed by one
of the elements in the table belonging to K, other than u, v and v2, then ξ = O. There are
9 elements in the table which do not belong to K. By Lemma 15, if ξ is fixed by buv, then
ξ = ξ3. If ξ is fixed by ζ−1bj or (ζ−1bj)3, then ξ = ξ8. If ξ is fixed by bu−1 or (bu−1)2, then
ξ = P , by Lemma 14. If ξ is fixed by bv2u−1j, then it is fixed by (bv2u−1j)3 = v−1fzv,
where fz is as in Lemma 14, and so ξ is in the K-orbit of P . Since b and v commute,
bv2 = (bv)−2, and so the points fixed by (bv)−5, bv and bv2 are all the same, and equal
to ξ12. If ξ is fixed by one of the elements u, v and v2, but is not fixed by any other element
in the table, then ξ is a generic point of either Mc or M0.

We have already seen in Lemmas 17 and 18 that |MA(O)| = 8 and |MB(O)| = 6.
We calculated Γ̄P in Lemma 14. It is easy to verify that it contains eight elements of

order 3, namely rνu
±1r−1

ν , ν = 1, . . . , 4, for rν as in Lemma 14. So |MA(P )| = 4. Also, Γ̄P
contains six elements of order 4, but all are conjugate to bu−1 or its inverse. So Γ̄B contains
no conjugates of v, so that |MB(P )| = 0.

Since γ3 = buv is not conjugate to u±1, Γ̄ξ3 = 〈γ3〉 contains no conjugates of u, and
clearly none of v, and so |MA(ξ3)| = |MB(ξ3)| = 0.

Now 〈ζ−1bj〉 contains two elements of order 4, namely (ζ−1bj)2 = ζ−3v and its inverse.
As v is not conjugate to v−1, we see that 〈ζ−1bj〉 contains just one conjugate of v, so that
|MB(ξ8)| = 1. Since Γ̄ξ8 contains no elements of order 3, we have |MA(ξ8)| = 0.
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The elements of order 3 and 4 in 〈bv〉 are (bv)±4 = b±1 and (bv)±3 = v∓1, respectively.
Using b = (ub)u(ub)−1, we see that 〈bv〉 contains just one conjugate of each of u and v. So
|MA(ξ12)| = |MB(ξ12)| = 1. �

We next want to describe the groups Γ̄c and Γ̄0 of elements fixing Mc and M0, respectively.

Lemma 19. For any α ∈ C, a 3× 3 matrix g = (gij) with complex entries which is unitary
with respect to F satisfies g(Mα) = Mα if and only if

(a) g13 = αg23, and
(b) g12 = α(αg21 − g11 + g22).

Proof. This is straightforward. �

Lemma 20. If gZ ∈ Γ̄, then gZ ∈ Γ̄0 if and only if we can write

g = θ′

1 0 0
0 1 0
0 0 θ

1 0 0
0 a (r − 1)b

0 b a

 (15)

where a, b ∈ Z[ζ], θ, θ′ ∈ {ζk : k = 0, . . . , 11}, |a|2 − (r − 1)|b|2 = 1, and a− 1 ∈ (r − 1)Z[ζ].

This expression for g is unique, with θ′ = g11 and θ′
3
θ = det(g).

Proof. Suppose that gZ ∈ Γ̄0. Applying Lemma 19 for α = 0 to g and to

g−1 = F−1g∗F =

 ḡ11 ḡ21 −(r − 1)ḡ31

ḡ12 ḡ22 −(r − 1)ḡ32

−ḡ13/(r − 1) −ḡ23/(r − 1) ḡ33

 , (16)

we see that g12 = g13 = g21 = g31 = 0. The condition that γ−1
0 gγ0 has entries in Z[ζ] tells

us that g11, g22, g33, g32, (g11 − g22)/(r − 1) and g23/(r − 1) are in Z[ζ].
Now g∗Fg = F implies that |g11|2 = 1. This and g11 ∈ Z[ζ] implies that g11 is a power of ζ,

and so replacing g by g−1
11 g, we may suppose that g11 = 1. Also, a = g22 and b = g23/(r− 1)

are in Z[ζ]. Now det(g) = det(γ−1
0 gγ0) ∈ Z[ζ], and g∗Fg = F implies that |det(g)| = 1. So

θ = det(g) is also a power of ζ. Using the fact that F−1g∗F equals θ−1Adj(g), we see that
g33 = ādet(g) and g32 = b̄det(g), and then that |a|2 − (r − 1)|b|2 = 1. Finally, it is easy to
check that γ−1

0 gγ0 has entries in Z[ζ] if and only if a− 1 ∈ (r − 1)Z[ζ]. �

Let U0 denote the group of matrices with entries in Z[ζ] which are unitary with respect
to (

1 0
0 1− r

)
.

If SU0 is the subgroup of U0 consisting of its elements of determinant 1, then U0 is the

semidirect product of SU0 and the group of order 12 generated by the matrix z =

(
1 0
0 ζ

)
.

We define an embedding of Γ̄0 into U0 as follows. If gZ ∈ Γ̄0, write g as in (15), and set

ψ0(gZ) =

(
1 0
0 θ

)(
a (r − 1)b

b a

)
. (17)

Lemma 21. The group SU0 is generated by

d =

(
ζ 0
0 ζ−1

)
and x =

(
ζ3 + ζ2 − 1 −ζ2 − ζ + 1
ζ3 + ζ2 − 1 −ζ3 − ζ2

)
,

and has the following presentation with respect to these generators:

〈d, x | d12 = x3 = 1, (dx2)3 = d6, d6x = xd6〉.

We get a presentation of U0 by adding the generator z and the relations z12 = 1, zdz−1 = d
and zxz−1 = d6x−1d. The subgroup H0 = 〈xd, dx, d3〉 of SU0 has index 3.
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Proof. Given a field F not of characteristic 2, and α, β ∈ F×, the quaternion algebra (α, β)F
consists of elements ξ = x0 + x1i + x2j + x3k, where x0, . . . , x3 ∈ F, with an associative
multiplication satisfying ij = k = −ji and i2 = α, j2 = β. The reduced norm N(ξ) = NA(ξ)
of ξ is x2

0 −αx2
1 − βx2

2 +αβx2
3. If ξ, ξ′ ∈ A, then N(ξξ′) = N(ξ)N(ξ′). Writing a = x0 + x1i

and b = x2 +x3i, we can think of (α, β)F as consisting of elements a+bj, where a, b ∈ F(
√
α),

j2 = β, and ja = aj for the automorphism : x0 + x1i 7→ x0 − x1i of F(
√
α). The classical

Hamiltonian quaternion algebra is H = (−1,−1)R. We have NH(a + bj) = |a|2 + |b|2 for
a, b ∈ R(

√
−1 ) = C.

Let A = (−1, r − 1)Q(r). Identifying i ∈ A with ζ3 ∈ ` = Q(ζ), we see that A = {a+ bj :

a, b ∈ `}, and that N(a+ bj) = |a|2 − (r − 1)|b|2. Let O = {a+ bj ∈ A : a, b ∈ Z[ζ]}. Then
O is a subring of A, closed under (left) multiplication by Z[r], and so is an order in A. In
fact, it is a maximal order. Clearly SU0 is isomorphic to the group O1 of elements of O
having reduced norm 1. The group Z[r]× of units in Z[r] consists of the elements m + nr,
where m,n ∈ Z and m2 − 3n2 = ±1. Now m2 − 3n2 = −1 never holds, and m2 − 3n2 = 1
if and only if m + nr = (2 + r)k for some k ∈ Z (see [NZM, §7.8], for example). So Z[r]×

is generated by −1 and 2 + r. If ξ ∈ O×, then N(ξ) ∈ Z[r]×. In fact, N(ξ) is never equal

to −1, for if ε : Q(r)→ R is the field embedding mapping r to −
√

3, then

f : x0 + x1i+ x2j + x3k 7→ ε(x0) + ε(x1) i+ ε(x2)

√√
3 + 1 j + ε(x3)

√√
3 + 1 k

is an embedding of A into H satisfying ε(NA(ξ)) = NH(f(ξ)). Now O1 ⊂ O×. Since
2+r = N(ζ+1), if ξ ∈ O× andN(ξ) = (2+r)k, then ξ/(ζ+1)k ∈ O1. Since (ζ+1)2 = ζ(2+r),
we see that O1/{1,−1} embeds as an index 2 subgroup of O×/Z[r]×. Magma has routines
for finding a presentation of O×/Z[r]×. As these may be less familiar to the reader, we give
some details. We set up Q(ζ), Q(r) and A with the commands

L〈z〉 := CyclotomicField(12);

K〈r〉 := sub〈 L | z + 1/z〉;
A〈i, j, k〉 := QuaternionAlgebra〈 K | − 1, r− 1〉;

As ζ = (r + ζ3)/2, we set zz := (r + i)/2; and O := Order([1, zz, j, zz∗j]);. Now the commands
G := FuchsianGroup(O); and u, m := Group(G); and u; give a presentation for O×/Z[r]×. The com-
mand [A!Quaternion(m(U.i)) : i in [1..2]]; makes the generators u1, u2 explicit. We find that u1 =
(2 + r − i)/2 and u2 = −(r + 2)(i + k). These satisfy u12

1 = u2
2 = (u1u2)3 = 1 (mod Z[r]×).

Note that N(u1) = N(u2) = 2 + r. Magma verifies that the subgroup of the abstract group
〈u1, u2 | u12

1 = u2
2 = (u1u2)3 = 1〉 has a single index 2 subgroup, and it is generated by g1 = u2u

−1
1

and g2 = u2
1, and the relations g31 = (g1g2)3 = g62 = 1 give a presentation. For the given concrete

u1, u2 ∈ A, we set g1 = u2u
−1
1 and g2 = (2 − r)u2

1. Then g1, g2 ∈ O1 generate O1/{−1, 1} and
satisfy g31 = 1, (g1g2)3 = −1 = g62 . The given elements d and x are just g−1

2 and g−3
2 g1g

−3
2 . So they

and the given relations form a presentation of SU0.
The remaining assertions are routine to verify. �

Lemma 22. The image under ψ0 of Γ̄0 is 〈z〉H0.

Proof. The elements xd, dx, d3 and z are all in ψ0(Γ̄0), being respectively the images of the
elements gZ of Γ̄0 for the following g’s:

ζ−4j−3bj7, ζ−4j−1bj5, ζ−3v−1j6, and ζj−1.

Now d 6∈ ψ0(Γ̄0) since ζ − 1 6∈ (r − 1)Z[ζ]. So we have 〈z〉H0 ⊂ ψ0(Γ̄0) $ U0. Since H0 has
index 3 in SU0 we have 〈z〉H0 = ψ0(Γ̄0). �

We now describe Γ̄c. Recall that c = (r − 1)(ζ3 − 1)/2 = ζ2 − ζ.

Lemma 23. If gZ ∈ Γ̄, then gZ ∈ Γ̄c if and only if we can write

g = θ′

1 0 0
0 1 0
0 0 θ

(a(2− r) + 1)/(3− r) c(a− 1)/(3− r) bc
(a− 1)c/(3− r) (a+ 2− r)/(3− r) b

bc/(r − 1) b/(r − 1) a

 (18)
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where a, b ∈ Z[ζ], θ, θ′ ∈ {ζk : k = 0, . . . , 11}, |a|2− r|b|2 = 1, and a− 1 ∈ (ζ4− 1)Z[ζ]. This

expression for g is unique, with θ′ = g11 − cg21 and θ′
3
θ = det(g).

Proof. Suppose that gZ ∈ Γ̄0. Applying Lemma 19 for α = c to g and to g−1, we have
g13 = cg23, g12 = c(cg21 − g11 + g22), g31 = cg32, and g21 = c(cg12 − g11 + g22). From the
second and fourth of these equations, we find that cg12 = cg21.

Using Lemma 19 again, we see that the map g 7→ g11−cg21 is multiplicative on the group
of matrices satisfying g(Mc) = Mc. So we get 1 =

(
g11 − cg21

)(
g11 − cg12

)
= |g11 − cg21|2

by applying this to g and g−1, and so θ′ = g11 − cg21 has modulus 1. The condition that
γ−1

0 gγ0 has entries in Z[ζ] implies in particular that g11, g21 ∈ 1
r−1Z[ζ], so that θ′ ∈ 1

r−1Z[ζ].

This and |θ′| = 1 imply that θ′ ∈ {ζk : k = 0, . . . , 11}. So replacing g by θ′
−1
g, if necessary,

we may suppose that g11 − cg21 = 1. We can now express g11, g12 and g21 in terms of g22.
Now let N = F−1g∗F − Adj(g)/θ = (nij), where θ = det(g). By (16), this is zero. We
solve cn11 + n12 = 0 for g22, obtaining g22 = (|c|2 + θg33)/(|c|2 + 1). Now solving n31 = 0,
we get g32 = g23/((r − 1)θ̄) = θg23/(r − 1), using |θ| = 1. Write a = θg33 and b = g23.
Then (18) holds. There is just one remaining condition on a and b to ensure that N = 0,
namely |a|2 − r|b|2 = 1. This equation is also the condition that the determinant of the last

matrix on the right in (18) is 1. So taking determinants, we see that det(g) = θ′
3
θ. As in

Lemma 20, det(g) ∈ Z[ζ], and so θ ∈ {ζk : k = 0, . . . , 11} too. Finally, by considering g − I,
it is routine to check that γ−1

0 gγ0 has entries in Z[ζ] if and only if a− 1 ∈ (ζ4 − 1)Z[ζ]. �

Let Uc be the group of matrices with entries in Z[ζ] which are unitary with respect to(
1 0
0 −r

)
.

If SUc is the subgroup of Uc consisting of its elements of determinant 1, then Uc is the
semidirect product of SUc and the group of order 12 generated by the above matrix z. We
define an embedding of Γ̄c into Uc as follows. If gZ ∈ Γ̄c, write g as in (18), and set

ψc(gZ) =

(
1 0
0 θ

)(
a rb

b a

)
. (19)

Then ψc is an injective homomorphism Γ̄c → Uc.

Lemma 24. The group SUc has generators

d =

(
ζ 0
0 ζ−1

)
, q =

(
r + 1 r/c
1/c r + 1

)
, and s =

(
ζ3(r + 1) r/c

1/c ζ−3(r + 1)

)
,

and has the following presentation with respect to these generators:

SUc = 〈d, q, s | d12 = 1, s2 = (qd3)2 = (qd2sd2)2 = d6〉.

A presentation for Uc is obtained to adding to the above presentation of SUc the generator
z and the relations z12 = 1, zd = dz, zsz−1 = dqd2 and zqz−1 = d−2sd−1. The subgroup
Hc = 〈sd, ds, q〉 has index 4 in SUc.

Proof. The proof is similar to that of Lemma 21. We use the quaternion algebra A =
(−1, r)Q(r) and the maximal order O = {a+ bj : a, b ∈ Z[ζ]}. Since N(a+ bj) = |a|2− r|b|2,

we have SUc
∼= O1. Again O1/{−1, 1} embeds as a subgroup of index 2 in O×/Z[r]×

(we exclude N(ξ) = −1 in the same way, with 31/4 in place of
√√

3 + 1 in the definition
of the embedding A → H). This time we get a presentation for O×/Z[r]× with generators
u1 = (r+2−i)/2 and u2 = (r+1−(3r+5)i−2(r+2)k)/2 satisfying u12

1 = u4
2 = (u1u2)2 = 1

(mod Z[r]×). The elements g1 = u2u
−1
1 , g2 = u2

1 and g3 = u1u2 generate one of the three
index 2 subgroups of the abstract group 〈u1, u2 | u12

1 = u4
2 = (u1u2)2 = 1〉, and this subgroup

has presentation (g1g2)2 = (g1g3)2 = g2
3 = g6

2 = 1. For the given concrete u1, u2 ∈ A, we
set g1 = u2u

−1
1 and g2 = (2 − r)u2

1 and g3 = (2 − r)u1u2. Then g1, g2, g3 ∈ O1 generate
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O1/{−1, 1} and satisfy (g1g2)2 = (g1g3)2 = g2
3 = g6

2 = −1. We have g1 = −ds, g2 = d−1

and g3 = −d2qd. The result follows. �

Lemma 25. The image of Γ̄c in Uc is 〈z〉Hc.

Proof. Now Hc ⊂ ψc(Γ̄c), since for the following elements g of Γ̄:

ζ−4j7bu−1buj7, ζ−4j−3bu−1buj5, j4bu−1bu−1j2,

we have det(g) = 1, g11 − cg21 = 1, g13 = cg23 and g12 = c(cg21 − g11 + g22), while ψc(gZ)
equals sd, ds and q, respectively. Also, z = ψc(gZ) for g = ζj−1. Hence 〈z〉Hc ⊂ ψc(Γ̄c).
Now d, d2, d3 6∈ ψc(Γ̄c), since ζi − 1 6∈ (ζ4 − 1)Z[ζ] for i = 1, 2, 3, and so the index of ψc(Γ̄c)
in Uc is at least 4. Since [SUc : Hc] = 4, we must have ψc(Γ̄c) = 〈z〉Hc. �

The subgroup Π of Γ̄ is torsion-free, and so the set X = Π\B2
C is a smooth compact

complex surface. Let ϕ : B2
C → X be the natural map. IfM is a mirror of type A orB, let Γ̄M

denote the stabilizer of M (so Γ̄α = Γ̄Mα
) The group ΠM = {π ∈ Π : π(M) = M} = Π∩ Γ̄M

acts on M , and is the fundamental group of C1
M := ΠM\M . We denote by ϕM the map

ΠMξ 7→ Πξ from C1
M to X, and write Πα and ϕα instead of ΠMα and ϕMα , respectively.

A.2. The groups ΠM when M is a mirror of type B. As at the end of the last section,
Π0 = ΠM0 = {π ∈ Π : π(M0) = M0} = Π ∩ Γ̄0.

Proposition 9. The group Π0 has a presentation

〈u1, . . . , u4, v1, . . . , v4 : [u1, v1][u2, v2][u3, v3][u4, v4] = 1〉, (20)

with explicit generators ui, vi, given below, and so Π0\M0 is a curve of genus 4. The
image under ψ0 of Π0 is a normal subgroup of SU0 which is an index 24 subgroup of H0 =
〈xd, dx, d3〉.

Proof. Using the fact that j4 normalizes Π, we can define g1, . . . , g8 ∈ Π by setting g1 =
ζ5a−3

3 a−1
1 a2a1, g3 = ζ−4a2a

−2
1 a−3

3 a−1
1 , g5 = ζ3j4a2a1j

8a−1
2 a3

3a
2
1, and g7 = j4a−1

1 a−1
2 j4a2a1j

4,
and then g2ν = j4g2ν−1j

−4 for ν = 1, 2, 3, 4. With the given scalar factors, each gj has de-
terminant 1 and (1, 1)-entry 1. They satisfy the relation:

g1g2g3g4g5g6g7g8g
−1
1 g−1

3 g−1
5 g−1

7 g−1
2 g−1

4 g−1
6 g−1

8 = 1. (21)

The gj were found by a search amongst the short words in the generators of Π. We show
that g1, . . . , g8 generate Π0. Each gj has determinant 1, and has the form1 0 0

0 a b
0 c d

 ,

where a, b, c, d ∈ Z[ζ]. Hence G = 〈g1, . . . , g8〉 is contained in Π0, and ψ0 embeds G in SU0.
With h1 = xd, h2 = dx and h3 = d3 the generators of H0, we find that

ψ0(g1) = h3h2h
−1
3 h−1

1 ,

ψ0(g2) = h1h2h1h
−1
3 ,

ψ0(g3) = h2h
−2
1 h−2

2 h−1
3 ,

ψ0(g4) = h−1
3 h2h1h2,

ψ0(g5) = h−1
1 h−1

2 h3h
−1
2 ,

ψ0(g6) = h2h3h
−1
1 h−1

3 ,

ψ0(g7) = h3h
−1
2 h−1

3 h1,

ψ0(g8) = h−1
1 h3h

−1
1 h−1

2 .

Magma tells us that ψ0(G) is normal in SU0 and has index 24 in H0, which has index 12
in 〈z〉H0 = ψ0(Γ̄0). So G has index 288 in Γ̄0. The group K0 = K ∩ Γ̄0 = 〈u, j〉 has
order 48, and acts freely on any transversal of G in Γ̄0, since G is torsion-free. So we can
find 6 = 288/48 elements t1, . . . , t6 in Γ̄0 so that

Γ̄0 =

6⋃
i=1

GtiK0. (22)
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For example, if τ1, τ2 and τ3 are the elements of Γ̄0 given in the proof of Lemma 22 satisfying
ψ0(τi) = hi for i = 1, 2, 3, then we can take t1, . . . , t6 to be

1, τ1, jτ1, j
2τ1, j

3τ1, and τ1τ
−1
2 .

If G were strictly contained in Π0, then there would be a transversal element tik 6= 1,
where i ∈ {1, . . . , 6} and k ∈ K0, such that tik ∈ Π0. But Magma verifies that if tik 6= 1,
then 〈a1, a2, a3, tik〉 has index less than 864 in Γ̄ , so that tik 6∈ Π. So Π0 is generated
by g1, . . . , g8, and Magma’s Rewrite command shows that these generators and the single
relation (21) form a presentation of Π0.

We now replace g1, . . . , g8 by generators u1, . . . , v4 satisfying (20). Our thanks go to
Jonathan Hillman for showing us this method. The word W on the left in (21) is a product
of 16 letters g±1

i , with exactly one of each letter. Moreover, W has the form AdeBd−1Ce−1

where d and e are letters, and A, B and C are words not involving the letters d, d−1, e, e−1.
Notice that

AdeBd−1Ce−1 = [D1, E1] · E1ACBE
−1
1 for D1 = Ad and E1 = eB. (23)

The word W ′ = ACB, which is a product of 12 letters g±1
i , i = 1, . . . , 6, with exactly one

of each letter, again has the form A′d′e′B′d′
−1
C ′e′

−1
, and so we can repeat this manoevre,

obtaining

A′d′e′B′d′
−1
C ′e′

−1
= [D2, E2] · E2A

′C ′B′E−1
2 for D2 = A′d′ and E2 = e′B′.

Once again, W ′′ = A′C ′B′ has the form of the word on the left in (23), and we can repeat
the manoevre, and then once more. In this way we obtain words D1, . . . , D4 and E1, . . . , E4

so that W = [u1, v1][u2, v2][u3, v3][u4, v4] for

u1 = D1,

u2 = E1D2E
−1
1 ,

u3 = E1E2D3E
−1
2 E−1

1 ,

u4 = E1E2E3D4E
−1
3 E−1

2 E−1
1 ,

and

v1 = E1,

v2 = E1E2E
−1
1 ,

v3 = E1E2E3E
−1
2 E−1

1 ,

v4 = E1E2E3E4E
−1
3 E−1

2 E−1
1 .

(24)

The words Di and Ei are easily read off from the original word W . Explicitly:

D1 = g1g2g3g4g5g6g7,

D2 = g1g2g3g4,

D3 = g1,

D4 = g−1
3 ,

and

E1 = g8g
−1
1 g−1

3 g−1
5 ,

E2 = g5g6g
−1
2 ,

E3 = g2g3g
−1
6 ,

E4 = g6.

(25)

This procedure can easily be reversed, by first expressing the gi’s in terms of the Dj ’s and
Ej ’s, and then these in terms of u1, v1, . . . , u4, v4. We give the results of these calculations
explicitly:

g1 = v−1
1 v−1

2 u3v2v1,

g2 = v−1
1 v−1

2 v4u4v3v2v1,

g3 = v−1
1 v−1

2 v−1
3 u−1

4 v3v2v1,

g4 = v−1
1 v−1

2 v−1
3 v−1

4 u−1
3 v2u2v1,

g5 = v−1
1 v4u4v

−1
4 v3v2v1,

g6 = v−1
1 v−1

2 v−1
3 v4v3v2v1,

g7 = v−1
1 v−1

2 v−1
3 u−1

4 v−1
4 u−1

2 v1u1,

g8 = v4u4v
−1
4 u−1

4 v3u3v2v1.

Hence Π0 has the presentation (20) for the ui’s and vi’s given in (24). �

We now consider ΠM for the other mirrors M of type B.

Proposition 10. If g ∈ Γ̄ and M = g(M0) is a mirror of type B, then

(a) There is a π ∈ Π such that π(M) = M0, M1 or M∞.
(b) Correspondingly, ΠM is conjugate in Π to either Π0, Π1 or Π∞.
(c) ΠM = gΠ0g

−1.
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(d) h(ΠM )h−1 = Πh(M) for any h ∈ Γ̄.

In particular, it follows from (c) that for any mirror M of type B, ΠM\M ∼= Π0\M0

Proof. (a) Since the elements bµk, µ = 0, 1,−1 and k ∈ K, form a set of coset representatives
of Π in Γ̄, and since, by Lemma 18, the kα, α ∈ {0, 1,−1, i,−i,∞}, form a set of coset
representatives of K0 = K ∩ Γ̄0 in K, we may assume that M = bµ(Mα) for some µ ∈
{0, 1,−1} and α ∈ {0, 1,−1, i,−i,∞}. For the cases with µ = 0, we have

a−1
1 a−1

2 (M−1) = a−1
1 a−1

2 a1(Mi) = M0, and a−1
2 (M−i) = M∞.

Here is a table of elements π ∈ Π such that π(bMα) = Mβ ∈ {M0,M1,M∞}:

α 0 1 −1 i −i ∞
π 1 a−2

2 a3
3a

2
1a
−1
2 a−1

1 a−3
3 a−1

2 a−1
2 a1a

−1
2

β 0 1 1 1 1 ∞

Here is a table of elements π ∈ Π such that π(b−1Mα) = Mβ ∈ {M0,M1,M∞}:

α 0 1 −1 i −i ∞
π 1 a−1

3 a−1
1 a−1

2 a−1
3 a−1

1 a−2
2 a−2

3 a−2
2 a−2

1 a−3
3

β 0 ∞ ∞ 1 ∞ 0

This proves (a), and (b) follows immediately, since if M ′ = π(M) with π ∈ Π, we have
ΠM ′ = πΠMπ

−1.
(c) We first show that hΠ0h

−1 ⊂ Π for each h ∈ Γ̄. We may assume that h = bµk for
some µ ∈ {0, 1,−1} and some k ∈ K, and for such h, we must check that hgjh

−1 ∈ Π for
each of the 8 generators gj of Π0 given in the proof of Proposition 9. We do this as usual by
having Magma check that 〈a1, a2, a3, hgjh

−1〉 has index 864 in Γ̄. It follows, in particular,
that hΠ0h

−1 = Π0 for each h ∈ Γ̄0.
We next prove (c) in the cases g = kβ , β = 1,∞. Now gΠ0g

−1 ⊂ Π and so kβΠ0k
−1
β ⊂ Πβ

for both β = 1,∞. To see that kβΠ0k
−1
β = Πβ , note that by Proposition 9, Π0 ⊂ k−1

β Πβkβ ⊂
Γ̄0. We saw in the proof of Proposition 9 that the elements tik, i = 1, . . . , 6, k ∈ K0, form a
transversal of Π0 in Γ̄0. We show that Π0 = k−1

β Πβkβ by checking that tik 6∈ k−1
β Πβkβ unless

tik = 1, and this is done by Magma checking that the index in Γ̄ of 〈a1, a2, a3, kβ(tik)k−1
β 〉

is less than 864.
Now we know that kβΠ0k

−1
β = Πβ for β = 0, 1,∞, we use (a) to see that for our given g,

there is a π ∈ Π so that g(M0) = π(Mβ) for one of these β’s. Then h = k−1
β π−1g is in Γ̄0,

so that hΠ0h
−1 = Π0. Then (π−1g)Π0(π−1g)−1 = Πβ by the case g = kβ of (c) we have

already proved. Finally gΠ0g
−1 = π(ΠMβ

)π−1 = Ππ(Mβ) = ΠM .
Part (d) follows immediately from (c). �

It is a consequence of Proposition 11 below that the three possibilities in (a) are mutually
exclusive.

For any mirror M , the embedding M ↪→ B2
C induces an immersion ϕM : ΠM\M → X.

Whenever M is of type B, it follows from Proposition 10(c) and (a) that ΠM\M ∼= Π0\M0,
and that the image of ϕM is equal to the image of either ϕM0

, ϕM1
or ϕM∞ .

We want to find out how the curves ϕM (ΠM\M) = ϕ(M) self-intersect.

Lemma 26. Suppose that x ∈ X is the image under ϕM of two or more distinct ele-
ments of ΠM\M . If M is of type B, then x must be one of the three points Π(O), Π(b.O)
and Π(b−1.O). If M is of type A, then x is either one of these three points or one of the
36 points Π(ki.P ), where the ki are as in (12). If ξ ∈M , then ϕM (ΠMξ) is one of the three
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points Π(bµ.O), µ = 0, 1,−1, if and only if ξ is in the Γ̄-orbit of O, and it is one of the
36 points Π(ki.P ) if and only if ξ is in the Γ̄-orbit of P .

Proof. Suppose that ξ, ξ′ ∈ M and that ϕM (ΠMξ) = ϕM (ΠMξ
′) = x, with ΠMξ 6= ΠMξ

′.
Then ξ′ = πξ for some π ∈ Π. If M = g(M0) is of type B, then both ξ, πξ ∈ M are fixed
by gvg−1, so that both gvg−1 and π−1gvg−1π are in Γ̄ξ, and so either π−1gvg−1π = gvg−1

or |MB(ξ)| ≥ 2, by Lemma 16. Now π−1gvg−1π = gvg−1 means that g−1πg commutes
with v, and so is in Γ̄0 by the same lemma, and so π ∈ gΓ̄0g

−1 = Γ̄M . But then π ∈ Π∩ Γ̄M ,
so that ΠMξ

′ = ΠMξ, contrary to hypothesis. Hence |MB(ξ)| ≥ 2, and so ξ is in the Γ̄-orbit
of O, by Proposition 8. Since the elements bµk, µ = 0, 1,−1 and k ∈ K, form a set of coset
representatives of Π in Γ̄, we can write ξ = πbµ.O for some π ∈ Π and µ ∈ {0, 1,−1}. So
x = ϕM (ΠMξ) = Πξ = Π(bµ.O).

If M = g(Mc) is of type A, and ξ, ξ′ ∈ M satisfy ϕM (ΠMξ) = ϕM (ΠMξ
′) = x, with

ΠMξ 6= ΠMξ
′, we similarly show that |MA(ξ)| ≥ 2, but now Proposition 8 shows that ξ is

in the Γ̄-orbit of either O or P . The last statement, in the case when ξ is in the Γ̄-orbit
of P , follows from (12). �

It is a consequence of Proposition 16 below that when M is of type A, the 12 points
Π(ki.P ) for i = 25, . . . , 36, are each the image under ϕM of just one element of ΠM\M .

Lemma 27. For each mirror M of type B, there are exactly six distinct ΠMξ ∈ ΠM\M
such that ξ ∈M is in the Γ̄-orbit of O.

Proof. Write M = g(M0). If ξ ∈ M0 is in the Γ̄-orbit of O, then g.ξ ∈ M is in the Γ̄-orbit
of O, and conversely. Also, if ξ, ξ′ ∈M0, then Π0ξ = Π0ξ

′ if and only if ΠM (g.ξ) = ΠM (g.ξ′),
by Proposition 10(c). So we may assume that M = M0. So suppose that ξ ∈ M0 is in the
Γ̄-orbit of O. Writing ξ = g.O, we have O ∈ g−1(M0). By Lemma 18, the distinct mirrors
of type B containing O are the kβ(M0), β ∈ {0, 1,−1, i,−i,∞}. So g−1(M0) = k(M0), for
some k ∈ K. Hence ξ = g.O = (gk).O = h.O for some h ∈ Γ̄0. Since G in (22) equals Π0,
(22) implies that ξ = π0ti.O for some π0 ∈ Π0 and some i ∈ {1, . . . , 6}. So Π0ξ is one of the
six elements Π0(ti.O), i = 1, . . . , 6, and these are evidently distinct. So there are exactly 6
distinct Π0ξ’s in Π0\M0 with ξ ∈M0 in the Γ̄-orbit of O. �

For any mirror M , and any µ ∈ {0, 1,−1}, let

nµ(M) = ]{ΠMξ ∈ ΠM\M : ϕM (ΠMξ) = Π(bµ.O)}.

By the last lemma, n0(M) + n1(M) + n−1(M) = 6 if M is of type B.

Proposition 11. If M is a mirror of type B, then according to the three possibilities in
Proposition 10(a), (n0(M), n1(M), n−1(M)) is either (3, 1, 2), (1, 4, 1) or (2, 1, 3), respec-
tively.

Proof. For any mirror M , nµ(M) equals

]{ΠMπ ∈ ΠM\Π : π(bµ.O) ∈M}, (26)

for if ξ ∈ M , ϕM (ΠMξ) = Π(bµ.O) if and only if there is a π ∈ Π such that πbµ.O = ξ.
If πbµ.O = ξ and π′bµ.O = ξ′, with π, π′ ∈ Π and ξ, ξ′ ∈ M , then ΠMξ = ΠMξ

′ if and
only if π′bµ.O = πMπb

µ.O for some πM ∈ ΠM , or equivalently, (πMπb
µ)−1(π′bµ) ∈ K.

Since Π is torsion-free, this holds if and only if π′ = πMπ. So ΠMξ = ΠMξ
′ if and only if

ΠMπ = ΠMπ
′.

If M ′ = π(M) for some π ∈ Π, then clearly nµ(M ′) = nµ(M) for µ = 0, 1,−1, so we need
only calculate nµ(Mα) for α = 0, 1,∞. A search amongst the short words in the generators
a1, a2 and a3 of Π, looking for π ∈ Π such that π.(bµ.O) ∈ Mα, found the elements in the
following table:
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Πα coset representatives of π ∈ Π such that π.(bµ.O) ∈Mα

α µ = 0 µ = 1 µ = −1

0 1, a−1
1 a−1

2 , a−1
1 a−1

2 a1 1 1, a−2
1 a−3

3

1 1 a−1
2 , a−2

2 , a−1
1 a−3

3 , a3
3a

2
1a
−1
2 a−2

3

∞ 1, a−1
2 a−1

2 a1a
−1
2 a−2

2 , a−1
3 a−1

1 a−1
2 , a−1

3 a−1
1 a−2

2

It is easy to check that distinct elements π1, π2 in the same cell of this table satisfy π2π
−1
1 6∈

Γ̄α, and so belong to different Πα-cosets. Since there are six elements given in each row of the
table, it follows from Lemma 26 that the table gives a complete list of coset representatives.

�

Corollary 3. The subgroup of Π generated by {π ∈ Π : π.O ∈M0} equals Π.

Proof. Denote the subgroup by S. From the α = 0, µ = 0 cell in the table in the proof
of Proposition 11, we see that a1, a2 ∈ S. As j4a2j

−4 = ζ−1a−1
3 , and S is closed under

conjugation by j4, we have a3 ∈ S too. So S = Π. �

The fact that n0(M0), n0(M1) and n0(M∞) are different shows that if α, β ∈ {0, 1,∞}
are distinct, then there is no π ∈ Π such that π(Mα) = Mβ . Equivalently, it shows that the
images of ϕM0

, ϕM1
and ϕM∞ are distinct. So the cases in Proposition 10(a) are mutually

exclusive.

Lemma 28. The normal closure N0 of Π0 in Π has index 21 in Π and is normal in Γ̄. For
any mirror M of type B, the normal closure NM of ΠM in Π is equal to N0.

Proof. Let g1, . . . , g8 be the eight generators of Π0 used in the proof of Proposition 9. Then
N0 contains, as well as the gν ’s, all conjugates of the gν ’s by elements of Π. Magma verifies
that the gν ’s and their conjugates aigνa

−1
i and a−1

i gνai, i = 1, 2, 3, generate a normal
subgroup N of Γ̄ of index 21× 864, and so N0 = N .

To prove the second statement, by Proposition 10(a) and (b), it is enough to check this
when M = Mα, α = 1,∞. Now Πα = kαΠ0k

−1
α ⊂ kαN0k

−1
α = N0 because N0 is normal

in Γ̄. Because N0 ⊂ Π, we have Nα ⊂ N0. Magma verifies that the 24 elements kαgνk
−1
α and

a±1
2 kαgνk

−1
α a∓1

2 , ν = 1, . . . , 8, generate a subgroup in Γ̄ of index 21× 864. This subgroup is
contained in Nα, and so Nα = N0. �

We conclude this section with some calculations involving the abelianization map f : Π→
Π/[Π,Π] ∼= Z2 (see just after Theorem 1), which are needed in Section 2.4.

Proposition 12. The images under the abelianization map f of the generators ui and vi
of Π0 are as follows:

f(u1) = (−5,−2),

f(v1) = (−2, 7),

f(u2) = (−2, 1),

f(v2) = (0, 0),

f(u3) = (1, 4),

f(v3) = (3,−6),

f(u4) = (2, 5),

f(v4) = (−1,−4).

Presentations (20) of the groups Π1 and Π∞, and calculations of the corresponding f(ui)
and f(vi) are given below. The image under f of ΠM for any mirror of type B is equal to
{(m,n) ∈ Z2 : m− n is divisible by 3}.

Proof. In the notation of the proof of Proposition 9, f(ui) = f(Di) and f(vi) = f(Ei) for
i = 1, . . . , 4, and so it is routine to calculate these from the given expressions (25) for Di

and Ei, and from this we read off f(Π0).
Next we consider Π1 and Π∞. If g1, . . . , g8 are the generators of Π0 given in the proof of

Proposition 9, then Π1 and Π∞ have generators g′i = k1gik
−1
1 and g′′i = k∞gik

−1
∞ , respec-

tively, which satisfy the same relation (21) as do the gi’s. So we get generators ui and vi
for these groups by using (24), and by using (25) with the gi’s replaced by g′i’s and g′′i ’s,
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respectively. To calculate the f(ui) and f(vi)’s, we need to express the g′i’s and g′′i ’s in terms
of the generators of Π. One may verify that:

g′1 = ζ2a−3
2 a3

3a1a2a1a3a1a2,

g′3 = ζ3j4(a−2
2 a−1

1 a−1
3 a1a

2
2a
−1
1 a−1

2 a1)j8,

g′5 = ζ5j8(a−1
1 a−1

3 a1a
2
2a
−1
1 a−1

2 a1a3a3)j4,

g′7 = ζ−5j4(a−2
1 a−3

3 a−1
1 a−1

3 )j8,

and

g′′1 = ζ−4j4(a−1
1 a−2

3 a−1
1 )j8a−1

1 a−1
2 ,

g′′3 = ζ−2j8(a3a1a2a
−1
1 a−1

2 )j4,

g′′5 = ζ−1j8(a−1
2 a−1

3 )j4,

g′′7 = ζ−2j4(a1a3a
−1
1 a−2

3 )j8,

and g′2ν = j4g′2ν−1j
−4 and g′′2ν = j4g′′2ν−1j

−4 for ν = 1, 2, 3, 4. So in the case Π1 we get

f(u1) = (−3, 0),

f(v1) = (0, 3),

f(u2) = (2,−1),

f(v2) = (−4, 2),

f(u3) = (1, 4),

f(v3) = (7,−8),

f(u4) = (0, 3),

f(v4) = (−3, 0),

while in the case Π∞, we get

f(u1) = (−1, 2),

f(v1) = (2,−1),

f(u2) = (−2, 1),

f(v2) = (0, 0),

f(u3) = (−3, 0),

f(v3) = (−1, 2),

f(u4) = (−2, 1),

f(v4) = (3, 0).

For any mirror M of type B, the image under f of ΠM is the image of the normal closure
of ΠM , and so is the same as that of Π0. �

A.3. The groups ΠM when M is a mirror of type A. Recall that c = (r−1)(ζ3−1)/2,
and that by Lemma 25 we have an injective homomorphism ψc : Γ̄c → Uc with image 〈z〉Hc.

Proposition 13. The group Πc has a presentation

〈u1, . . . , u10, v1, . . . , v10 : [u1, v1][u2, v2] · · · [u9, v9][u10, v10] = 1〉, (27)

with explicit generators ui, vi, given below, and so Πc\Mc is a curve of genus 10. The image
under ψc of Πc is a normal subgroup of SUc which is an index 27 subgroup of Hc = 〈sd, ds, q〉.

Proof. The proof is very similar to that of Proposition 9. We recall that j4 normalizes Π,
and define 20 elements g1, . . . , g20 of Π by setting

g1 = j8a−1
1 a2a1a3a

−1
1 j4a2a1,

g3 = ζj4a2a1a
−2
2 a−1

1 a3j
4a3

3j
4,

g5 = ζ4j8a−1
1 j4a2a1j

4a3a
−1
2 a1a3a

−1
1 j8,

g7 = ζ−5j8a2a1j
4a−1

3 j4a2a
−1
1 a−1

2 a−3
3 j8,

g9 = ζ4j8a−1
1 a−2

2 a−1
1 a−1

3 j8a−1
1 a−1

2 j8,

g12 = (−1)a−1
2 a1a3a

−1
1 a−1

3 j4a3a1a
2
2a
−1
1 a−1

2 j8,

g15 = ζj4a1j
4a2a3a

−1
1 j4,

g17 = ζ−2j8a−2
1 a−1

2 j4a3a1a2a1,

g19 = ζ−1a−1
2 a1a3a

−1
1 a−2

3 j4a1a2j
4a−1

1 a−1
2 j4,

and also gν+1 = j4gνj
−4 for ν ∈ {1, 3, 5, 7, 9, 10, 12, 13, 15, 17, 19}. Each h = gj satisfies

h13 = ch23 and h12 = c(ch21 − h11 + h22), and so is in Πc, by Lemma 19. With the given
scalar factors, each has determinant 1 and satisfies h11− ch21 = 1 (cf. Lemma 23). The gj ’s
satisfy

g4g
−1
14 g

−1
2 g−1

17 g9g19g20g14g
−1
7 g−1

10 g
−1
5 g−1

16 g
−1
3 g−1

12 g1g2g
−1
18 g10g

−1
19 g12

× g−1
8 g−1

11 g
−1
6 g15g16g

−1
4 g−1

13 g
−1
1 g17g18g11g

−1
20 g13g7g8g

−1
9 g5g6g

−1
15 g3 = 1.

(28)

The elements gj were found by a search for elements of Πc amongst the short words in the
generators of Π. The conjugates by j4 and by j8 of the elements found were added to the
output, and then products of pairs of all these elements were formed, retaining those of
small Hilbert-Schmidt norm (cf. [CS2, Lemma 3.2]).
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Hence G = 〈g1, . . . , g20〉 is contained in Πc, and ψc embeds G in SUc. With h1 = sd,
h2 = ds and h3 = q the generators of Hc, we find that

ψc(g1) = h−1
1 h−1

2 h−1
3 h2h1h3,

ψc(g2) = h−1
3 h1h3h

2
2h1,

ψc(g3) = h1h3h2h
−1
3 h2h1,

ψc(g4) = h2h
2
1h3h2h

−1
3 ,

ψc(g5) = h−1
1 h2h1h

−1
2 ,

ψc(g6) = h2
2h

2
1h2h1,

ψc(g7) = h2h
2
1h

2
2h1,

ψc(g8) = h−1
1 h−1

2 h1h2,

ψc(g9) = h−3
1 ,

ψc(g10) = h2h
−3
1 h−1

2 ,

ψc(g11) = h−1
1 h−1

2 h−3
1 h2h1,

ψc(g12) = h−1
2 h−1

3 h−1
2 h−1

3 h−1
1 h−1

3 h−1
1 ,

ψc(g13) = h−1
3 h2h1h

−1
3 h2h1h

−1
3 h2h1,

ψc(g14) = h2h1h
−1
3 h2h1h

−1
3 h2h1h

−1
3 ,

ψc(g15) = h1h3h2h
−1
1 h2h1h

−1
2 h−1

3 h2h1,

ψc(g16) = h−1
1 h−1

2 h3h
2
2h1h

−1
2 h−1

3 ,

ψc(g17) = h−2
1 h−1

2 h−1
3 h1h3,

ψc(g18) = h2h
−1
1 h−1

2 h−1
3 h1h3h

−1
1 h−1

2 ,

ψc(g19) = h−1
2 h−1

3 h2
2h1h3,

ψc(g20) = h2h1h
−1
2 h−1

3 h1h3h2h
−1
1 h2h1.

Magma tells us that ψc(G) is normal in SUc and has index 27 in Hc, which has index 12 in
〈z〉Hc = ψc(Γ̄c). So G has index 324 in Γ̄c. The group Kc = K∩Γ̄c = 〈v, j〉 has order 36, and
acts freely on any transversal of G in Γ̄c, since G is torsion-free. So we can find 9 = 324/36
elements t1, . . . , t9 in Γ̄c so that

Γ̄c =

9⋃
i=1

GtiKc. (29)

For example, if τ1, τ2 and τ3 are the elements of Γ̄c given in the proof of Lemma 25 satisfying
ψc(τi) = hi for i = 1, 2, 3, then we can take t1, . . . , t9 to be

1, τ1, jτ1, j
2τ1, j

3τ1, τ1τ3, jτ1τ3, j
2τ1τ3, and j3τ1τ3.

If G were strictly contained in Πc, then there would be a transversal element tik 6= 1,
where i ∈ {1, . . . , 9} and k ∈ Kc, such that tik ∈ Πc. But Magma verifies that if tik 6= 1,
then 〈a1, a2, a3, tik〉 has index less than 864 in Γ̄ , so that tik 6∈ Π. So Πc is generated
by g1, . . . , g20, and Magma’s Rewrite command shows that these generators and the single
relation (28) form a presentation of Πc.

We now replace this presentation by a presentation (27). The method used in the proof of
Proposition 9 extends to this case, and we can write the word on the left in (28) as a product
[u1, v1][u2, v2] · · · [u9, v9][u10, v10], where for each i, we have ui = E1 · · ·Ei−1DiE

−1
i−1 · · ·E

−1
1

and vi = E1 · · ·Ei−1EiE
−1
i−1 · · ·E

−1
1 , where

D1 = g4g
−1
14 g

−1
2 g−1

17 g9g19g20g14g
−1
7 g−1

10 g
−1
5 g−1

16 ,

D2 = g4g
−1
14 g

−1
2 g−1

17 g9g19g20g14g
−1
7 g−1

10 g
−1
5 g−1

4 g−1
13 g

−1
1 g17g18g11g

−1
20 g13g7g8g

−1
9 g5g6,

D3 = g4g
−1
14 g

−1
2 g−1

17 g9g19g20g14g
−1
7 g−1

10 g
−1
5 g−1

4 g−1
13 g

−1
1 g17g18,

D5 = g4g
−1
7 g−1

10 g
−1
5 g−1

4 g−1
13 g

−1
1 g17g10g

−1
19 g12g

−1
8 ,

and

D4 = g4g
−1
14 ,

D6 = g4,

D7 = g−1
13 g

−1
1 g17g10g

−1
19 g12g

−1
9 ,

D8 = g−1
13 g

−1
1 ,

D9 = g−1
13 g10g

−1
19 ,

D10 = g−1
13 ,
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and also

E1 = g−1
3 g−1

12 g1g2g
−1
18 g10g

−1
19 g12g

−1
8 g−1

11 g
−1
6 g15,

E2 = g−1
15 g

−1
12 g1g2g

−1
18 g10g

−1
19 g12g

−1
8 g−1

11 ,

E3 = g11g
−1
20 g13g7g8g

−1
9 g5g

−1
12 g1g2,

E4 = g−1
2 g−1

17 g9g19g20,

E5 = g−1
20 g13g7,

E6 = g−1
7 g−1

10 g
−1
5 ,

E7 = g5g
−1
12 g1g

−1
17 ,

E8 = g17g10g
−1
19 g12g19g13g

−1
10 g

−1
12 ,

E9 = g12,

E10 = g10.

The generators g1, . . . , g20 can be expressed in terms of u1, v1, . . . , u10, v10 by first expressing
them in terms of the Di’s and Ei’s, as in the proof of Proposition 9. Hence Πc has the
presentation (27) for the given ui’s and vi’s. �

We now consider ΠM for the other mirrors M of type A. As well as c = (r−1)(z3−1)/2 =
c+−−, the parameter −c = c−−− is important in the next result.

Proposition 14. If g ∈ Γ̄ and M = g(Mc) is a mirror of type A, then

(a) There is a π ∈ Π such that π(M) = M ′, where M ′ ∈ {Mc,M−c, b(Mc), b
−1(Mc)}.

(b) If M ′ is as in (a), then ΠM is conjugate in Π to ΠM ′ .
(c) ΠM = gΠcg

−1 in the first two cases of (a), and in particular if g = kα for any
α ∈ {c+++, . . . , c−−−}, so that Πα = kαΠck

−1
α for all these α’s.

(d) In the other two cases of (a), gΠcg
−1 has index 3 in ΠM .

Proof. (a) Since the elements bµk, µ = 0, 1,−1 and k ∈ K, form a set of coset representatives
of Π in Γ̄, and since the kα, α ∈ {c+++, . . . , c−−−}, form a set of coset representatives
ofKc = K∩Γ̄c inK, by Lemma 17, we may assume thatM = bµ(Mα) for some µ ∈ {0, 1,−1}
and α ∈ {c+++, . . . , c−−−}.

The next three tables list elements π ∈ Π and M ′ ∈ {Mc,M−c, b(Mc), b
−1(Mc)} such

that π(bµ(Mα)) = M ′ for each of these α’s, and for µ = 0, 1 and −1, respectively.

α c+++ c++− c+−+ c+−− c−++ c−+− c−−+ c−−−

π a22 a1a
−1
3 a−1

3 a1a
2
2 1 a1a

−1
3 a1a3 a22a

−1
1 a−1

3 a−1
1 a−2

2 a−1
1 1

M ′ M−c Mc M−c Mc Mc M−c Mc M−c

α c+++ c++− c+−+ c+−− c−++ c−+− c−−+ c−−−

π a−3
3 π∗ a2a

−1
1 a−3

2 1 a−1
1 a−1

2 a1a3a
−1
2 a3a1a

−1
2 a2a

−1
1 a−1

2 a−1
1 a−2

2

M ′ Mc M−c M−c b(Mc) Mc b−1(Mc) M−c Mc

α c+++ c++− c+−+ c+−− c−++ c−+− c−−+ c−−−

π a2a
−2
1 a−3

3 a−2
1 a−3

3 a−1
2 a2

2a1a3 1 a3
3a1a

−1
2 π† a−1

1 a−3
2 a−1

1 a−1
2

M ′ M−c M−c b−1(Mc) b−1(Mc) b(Mc) b(Mc) Mc Mc

where π∗ = a−1
1 a−1

2 a−2
3 a2

1a
−1
2 and π† = a2a

−2
1 a−1

3 a1a
−1
3 a−1

1 a−2
2 . This proves (a), and (b)

follows immediately, since Ππ(M) = πΠMπ
−1 for any π ∈ Π.

(c) We first show that hΠch
−1 ⊂ Π for each h ∈ Γ̄. We may assume that h = bµk for

some µ ∈ {0, 1,−1} and some k ∈ K, and for such h, we must check that hgjh
−1 ∈ Π for

each of the 20 generators gj of Πc given in Proposition 13. We do this as usual by having
Magma check that 〈a1, a2, a3, hgjh

−1〉 has index 864 in Γ̄. It follows, in particular, that
hΠch

−1 = Πc for each h ∈ Γ̄c.
We next prove (c) in the case g = k−c, and (d) in the cases g = b and g = b−1. Now

gΠcg
−1 ⊂ Π and so gΠcg

−1 ⊂ ΠM for M = g(Mc). So

Πc ⊂ g−1ΠMg ⊂ Γ̄c.
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We saw in the proof of Proposition 13 that the elements tik, i = 1, . . . , 9, k ∈ Kc, form
a transversal of Πc in Γ̄c. Now tik ∈ g−1ΠMg if and only if gtikg

−1 ∈ Π, and so if and
only if the index in Γ̄ of 〈a1, a2, a3, gtikg

−1〉 equals 864. We find that if g = k−c, then
tik ∈ g−1ΠMg only if tik = 1. It follows that Πc = g−1ΠMg if g = k−c, proving (c) in
that case. However when g = b, we find that, as well as tik = 1, also t6u

2j8 and t8u
2j6 are

in g−1ΠMg, and that when g = b−1, as well as tik = 1, also t3u
2j7 and t5j

9 are in g−1ΠMg.
Explicitly,

bτ1τ3u
2j8b−1 = a3

3a1a
2
3j

8a−2
2 a3

3a1j
4,

bj2τ1τ3u
2j6b−1 = ζ3a3

2a
−1
1 a−1

3 j8a−2
2 a−1

1 j4,

b−1jτ1u
2j7b = −j8a1a

−1
3 a−1

1 a−2
2 j8a2a1j

8,

b−1j3τ1j
9b = ζ3j4a−1

1 a−1
2 a−3

3 a−1
1 a2a1j

8,
(30)

are in Π. Magma checks that no other gtikg
−1 6= 1 are in Π. So for both g = b and g = b−1,

gΠcg
−1 has index 3 in ΠM , proving (d) in these cases.

Now we know that kβΠck
−1
β = Πβ for β = c,−c, suppose that g ∈ Γ̄, and write M =

g(Mc). Suppose there is a π ∈ Π so that π(M) = Mβ for one of these β’s. Then h = k−1
β πg

is in Γ̄c, so that hΠch
−1 = Πc. Then (πg)Πc(πg)−1 = Πβ by the case g = kβ of (c) we

have already proved. Finally gΠcg
−1 = π−1(ΠMβ

)π = Ππ−1(Mβ) = ΠM . This completes the
proof of (c).

To prove (d), suppose that M = g(Mc) and that there is a π ∈ Π such that π(M) =
bµ(Mc), for µ = 1 or −1. Then h = b−µπg ∈ Γ̄c and so hΠch

−1 = Πc, and therefore
(πg)Πc(πg)−1 = bµΠcb

−µ, which has index 3 in Πbµ(Mc), by the cases g = b and b−1 of (d).

So gΠcg
−1 has index 3 in π−1(Πbµ(Mc))π = Ππ−1(bµ(Mc)) = ΠM . �

It is a consequence of Proposition 16 below that the four possibilities in Proposition 14(a)
are mutually exclusive. If M is a mirror of type A, then by Proposition 14(a), the image of
the immersion ϕM : ΠM\M → X is equal to the image of ϕM ′ for M ′ = Mc, M−c, b(Mc)
or b−1(Mc). By Proposition 16 again, these images are distinct.

If there is a π ∈ Π such that π(M) = Mc or M−c (in particular if M = Mα for some
α ∈ {c+++, . . . , c−−−}), Proposition 14(c) shows that ΠM\M ∼= Πc\Mc, so that ΠM\M is
a surface of genus 10. For the other two possibilities in Proposition 14(a), things are very
different, as we now see.

Proposition 15. If M is a mirror of type A, and if there is a π ∈ Π such that π(M) = b(Mc)
or b−1(Mc), then ΠM\M is a surface of genus 4.

Proof. We may assume that M = bµ(Mc) for µ = 1 or −1. As we saw in the proof of
Proposition 14, b−µΠMb

µ is the union of three cosets Πctik of Πc in Γ̄c. Recall that we have
an injective homomorphism ψc : Γ̄c → Uc, and ψc(Πc) has index 27 in Hc = 〈h1, h2, h3〉 ⊂
Uc. We find that

ψc(τ1τ3u
2j8) = h1h3h

−1
1 h−1

2 ,

ψc(j
2τ1τ3u

2j6) = h2h
−1
1 h−1

2 h−1
3 ,

and
ψc(jτ1u

2j7) = h2h1h3,

ψc(j
3τ1j

9) = h−1
3 h−1

1 h−1
2 .

(31)

So ψc(Πc) ⊂ ψc(b
−µΠMb

µ) ⊂ Hc, and ψc(b
−µΠMb

µ) has index 9 in Hc, and is generated
by ψ(Πc) and two more elements, which are given in (31) (cf. (30)). We find that in both
cases, ψc(b

−µΠMb
µ) is generated by eight elements satisfying a single relation, and have

abelianization Z8. So the same is true of ΠM .
Let us record here generators of Π ∩ bΓ̄cb−1 (= ΠM for M = b(Mc)):

p1 = ζ−1a3
2a
−1
1 a−1

3 j8a−2
2 a−1

1 j4,

p2 = a3
3a1a

2
3a2a1j

4a−1
3 j8a−2

3 a−1
1 a−3

3 ,

p3 = ζ4j8a−1
1 a−3

3 a2
2j

4a−2
3 a−1

1 a−3
3 ,

p4 = ζ−2j8a2a1a
−2
2 a−1

1 j4a3
3a

2
1a
−1
2 ,

p5 = ζ−4a3
3a1a

2
3j

4a−1
1 j8a2

3a1a
−3
2 ,

p6 = ζ4a3
3a1a2a1a3a

−3
2 ,

p7 = ζ−1a3
3a1j

8a1a
−2
2 a−1

1 a2
3j

4,

p8 = ζ−2j4a−2
3 j8a2a1a2a1a

−2
2 ,
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the scalar factors arranged so that each h = b−1pνb satisfies h11− ch21 = 1 = det(h). These
satisfy the relation

p−1
5 p−1

2 p5p1p3p
−1
8 p4p

−1
1 p−1

7 p−1
6 p7p2p

−1
3 p8p

−1
4 p6 = 1.

Here are the images under ψc of the b−1pνb’s in Hc:

ψc(b
−1p1b) = h2h

−1
1 h−1

2 h−1
3 ,

ψc(b
−1p2b) = h2h

−1
3 h−1

1 h−1
2 ,

ψc(b
−1p3b) = h2h1h

−1
3 h−1

1 ,

ψc(b
−1p4b) = h−1

1 h−1
2 h3h2h

2
1,

ψc(b
−1p5b) = h1h3h2h

−1
1 h3,

ψc(b
−1p6b) = h2h

2
1h2h1h3,

ψc(b
−1p7b) = h2h1h

−1
2 h−1

3 h−1
2 ,

ψc(b
−1p8b) = h−1

1 h−1
2 h3h2h

−1
1 .

Following the same procedure as in the proof of Proposition 9, we obtain a presentation (20)
for Π∩ bΓ̄cb−1, with ui = E1 · · ·Ei−1DiE

−1
i−1 · · ·E

−1
1 and vi = E1 · · ·Ei−1EiE

−1
i−1 · · ·E

−1
1 for

D1 = p−1
5 p−1

2 p5p1p3p
−1
8 p4p

−1
1 p−1

7 ,

D2 = p−1
5 p−1

2 p5p1p3p
−1
8 ,

D3 = p−1
5 p−1

2 p5p1,

D4 = p−1
5 ,

and

E1 = p−1
6 ,

E2 = p4p
−1
1 p2p

−1
3 ,

E3 = p3,

E4 = p−1
2 .

Let us also record here generators of Π ∩ b−1Γ̄cb (= ΠM for M = b−1(Mc)):

m1 = ζ2j8a1a
−1
3 a−1

1 a−2
2 j8a2a1j

8,

m2 = ζ−3j8a1a
3
3j

4,

m3 = ζ−5j4a−2
2 a−1

1 a−1
3 j8a1a

−2
3 a−1

1 a−2
2 ,

m4 = −j8a1a
−1
3 a−1

1 a2a
−1
1 a−1

2 j4a−2
2 a3

3a1,

m5 = ζ4j4a−2
1 a−3

3 j4a−1
1 a−1

2 j4a−1
2 a3

3a1,

m6 = ζ−4j4a−1
1 a−1

2 a1a
3
3a1a

−1
2 j4a−1

1 a−2
2 a3

3j
4,

m7 = ζ2a3a1a2j
4a2a1j

8,

m8 = −j4a−1
1 a−1

2 a1a
2
2a1j

8a2a
−1
3 a−1

1 a−2
2 ,

the scalar factors arranged so that each h = bmνb
−1 satisfies h11−ch21 = 1 = det(h). These

satisfy the relation

m3m
−1
8 m4m5m

−1
7 m2m

−1
3 m1m

−1
5 m7m

−1
4 m−1

1 m6m
−1
2 m−1

6 m8 = 1.

Here are the images under ψc of the bmνb
−1’s in Hc:

ψc(bm1b
−1) = h2h1h3,

ψc(bm2b
−1) = h−1

1 h−1
2 h3h

−1
1 h−1

2 ,

ψc(bm3b
−1) = h−1

1 h−1
2 h−1

3 ,

ψc(bm4b
−1) = h2h

−3
1 h−1

2 ,

ψc(bm5b
−1) = h2h1h

−1
2 h−1

1 h2h1h3,

ψc(bm6b
−1) = h2

2h
2
1h2h1,

ψc(bm7b
−1) = h−1

1 h−1
2 h3h2h

2
1h

2
2h1h3,

ψc(bm8b
−1) = h2h

−1
1 h−1

2 h1.

In the same way, we obtain a presentation (20) for Π ∩ b−1Γ̄cb, with generators ui =
E1 · · ·Ei−1DiE

−1
i−1 · · ·E

−1
1 and vi = E1 · · ·Ei−1EiE

−1
i−1 · · ·E

−1
1 for

D1 = m3,

D2 = m1m
−1
5 m7m

−1
4 m−1

1 m6,

D3 = m1m
−1
5 ,

D4 = m1,

E1 = m−1
8 m4m5m

−1
7 m2,

E2 = m−1
2 ,

E3 = m7m
−1
4 m−1

1 m4,

E4 = m−1
4 .

�

We want to find out how these curves ϕM (ΠM\M) = ϕ(M) self-intersect. See Lemma 26.

Lemma 29. Suppose that M is a mirror of type A, and that there is a π ∈ Π such that
π(M) = Mc or M−c, respectively such that π(M) = b(Mc) or b−1(Mc). There are exactly 9
(respectively 3) distinct ΠMξ ∈ ΠM\M such that ξ ∈ M is in the Γ̄-orbit of O. There are
exactly 54 (respectively 18) distinct ΠMξ ∈ ΠM\M such that ξ ∈M is in the Γ̄-orbit of P .
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Proof. Write M = g(Mc). Suppose first that there is a π ∈ Π such that π(M) = Mβ for
β = c or −c. Then by Proposition 14, we have ΠM = gΠcg

−1 and so the number of distinct
ΠMξ, with ξ ∈M in the Γ̄-orbit of O (respectively of P ) is the same as the number of distinct
Πcξ, with ξ ∈Mc in the Γ̄-orbit of O (respectively of P ). So we may suppose that M = Mc.
If ξ ∈Mc is in the Γ̄-orbit of O then writing ξ = g.O, we have O ∈ g−1(Mc). By Lemma 17,
the distinct mirrors of type A containing O are the kα(Mc), α ∈ {c+++, . . . , c−−−}. So
g−1(Mc) = k(Mc) for some k ∈ K. Hence ξ = g.O = (gk).O = h.O for some h ∈ Γ̄c.
By (29) (where now G = Πc) Πcξ is one of the 9 elements Πc(ti.O), i = 1, . . . , 9, and these
are evidently distinct.

If ξ ∈ Mc is in the Γ̄-orbit of P , then using the fact that the four distinct mirrors of
type A containing P are the rν(Mc), ν = 1, 2, 3, 4, where rν ∈ Γ̄P are given in Lemma 14,
we similarly find that ξ = h(P ) for some h ∈ Γ̄c. This time the group Γ̄P ∩¯̄Γc has order 6,
and acts freely on any transversal of Πc in Γ̄c. So there are 54 = 324/6 elements s1, . . . , s54

of Γ̄c such that Γ̄c is the disjoint union of the double cosets Πcsi(Γ̄P ∩ Γ̄c). So ξ = h.P ,
with h ∈ Γ̄c, implies that Πcξ is one of the 54 elements Πc(si.P ) of Πc\Mc, and these are
evidently distinct.

If instead there is a π ∈ Π such that π(M) = bµ(Mc) for µ = 1 or −1, we may suppose

that M = bµ(Mc). Then Πc ⊂ b−µΠMb
µ ⊂ Γ̄c, and Πc is of index 3 in Π̃c = b−µΠMb

µ. So

Π̃c has index 108 in Γ̄c. Since Π̃c is torsion-free, the group Kc = K ∩ Γ̄c acts freely on any
transversal of Π̃c in Γ̄c, and so we can find 3 = 108/36 elements u1, u2, u3 ∈ Γ̄c such that

Γ̄c =

3⋃
i=1

Π̃cuiKc, a disjoint union.

So if ξ ∈ M is in the Γ̄-orbit of O, we find that ξ = bµh.O for some h ∈ Γ̄c and then that
ΠMξ is one of the three elements ΠM (bµui.O). Similarly, we can write Πc as the union of

18 = 108/6 double cosets Π̃cvi(Γ̄P ∩Kc), and if ξ ∈ M is in the Γ̄-orbit of P , then we can
write ξ = (bµh).P for some h ∈ Γ̄c, and ΠMξ is one of the points ΠM (bµvi.P ). �

We now calculate for mirrors M of type A, the numbers nν(M), ν = 0, 1,−1, as well as
the numbers

mi(M) = ]{ΠMξ ∈ ΠM\M : ϕM (ΠMξ) = Π(ki.P )}
for i = 1, . . . , 36. Here the ki ∈ K are as in (12) and (13). If M and M ′ are two such
mirrors, and if M ′ = π(M) for some π ∈ Π, then nν(M ′) = nν(M) and mi(M

′) = mi(M)
for each ν and i, and so by Proposition 14(a), we need only do the calculation for the four
mirrors Mc, M−c, b(Mc) and b−1(Mc).

Proposition 16. For mirrors M of type A, the numbers nν(M) are as follows:

M n0(M) n1(M) n−1(M)

Mc 4 3 2

M−c 4 3 2

b(Mc) 0 1 2

b−1(Mc) 0 1 2

The numbers mi = mi(M) are as follows:

M m1 . . . ,m12 m13, . . . ,m18 m19, . . . ,m24 m25, . . . ,m36

Mc 2 0 3 1

M−c 2 3 0 1

b(Mc) 0 0 1 1

b−1(Mc) 0 1 0 1
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Proof. Using (26), we read off the numbers nν(M) by counting the elements in cells of the
next three tables: It is easy to check that distinct elements π1, π2 in the same cell of this
table satisfy π2π

−1
1 6∈ Γ̄M , and so belong to different ΠM -cosets.

The next three tables list, for µ = 0, 1 and −1, respectively, ΠM -coset representatives
π ∈ Π such that π(bµ.O) ∈M ′ for each M ′ ∈ {Mc,M−c, b(Mc), b

−1(Mc)}.

Mc 1, a1a
−1
3 , a1a

−1
3 a1a3, a−1

1 a−2
2 a−1

1

M−c 1, a2
2, a2

2a
−1
1 a−1

3 , a−1
3 a1a

2
2

b(Mc) —

b−1(Mc) —

Mc a−1
1 a−2

2 , a−3
3 , a−1

1 a−1
2 a1a3a

−1
2

M−c a2a
−1
1 a−1

2 , a2a
−1
1 a−3

2 , a−1
1 a−1

2 a−2
3 a2

1a
−1
2

b(Mc) 1

b−1(Mc) a3a1a
−1
2

Mc a−1
1 a−1

2 , a−1
1 a−3

2

M−c a−2
1 a−3

3 a−1
2 , a2a

−2
1 a−3

3

b(Mc) a3
3a1a

−1
2 , a2a

−2
1 a−1

3 a1a
−1
3 a−1

1 a−2
2

b−1(Mc) 1, a2
2a1a3

For these three tables, there are in total 9 elements given in the first row, 9 in the second
row, 3 in the third row and 3 in the fourth row. So it follows from Lemma 29 that the tables
give complete lists of coset representatives.

For i = 1, . . . , 36, mi(M) = ]{ΠMπ ∈ ΠM\Π : (πki).P ∈M}, which is proved as was (26).
If kj = kij

4, then mj(M) = mi(M) for each M ∈ {Mc,M−c, b(Mc), b
−1(Mc)}. For if

M = Mc or M−c and (πki).P ∈ M , then ((j4πj−4)(kij
4)).P = (j4πki).P ∈ j4(M) = M .

If also (π′ki).P ∈ M , then π′π−1 ∈ ΠM if and only if (j4π′j−4)(j4πj−4)−1 ∈ ΠM because
j4 normalizes ΠM in these cases. To see that mj(M) = mi(M) when kj = kij

4 and
M = bµ(Mc) for µ = 1,−1, notice first that for µ = 0, 1,−1,

bµj4b−µj−4 = πµ ∈ Π, for π0 = 1, π1 = ζ−4a2a
−2
1 a−3

3 a−1
1 and π−1 = a2

2a1a3a
−1
1 . (32)

If (πki).P ∈ bµ(Mc), then

((πµj
4πj−4)(kij

4)).P = πµj
4((πki).P )) ∈ πµj4(bµ(Mc)) = bµj4(Mc) = bµ(Mc).

If also (π′ki).P ∈ M = bµ(Mc), then π′π−1 ∈ ΠM if and only if (πµj
4π′j−4)(πµj

4πj−4)−1

is in ΠM , because we see from bµj4 = πµj
4bµ that πµj

4 normalizes ΠM . So π 7→ πµj
4πj−4

induces a bijection between the two sets we are counting.
So writing ki = k′νj

4α, with the k′ν as in (13), the numbers mi(M) depend only on ν, and
can be read off by counting the elements π in the cells of the following tables:
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k′ν Mc M−c

v a−1
1 a−2

2 a−1
1 , a−1

1 a−3
2 a2a

−1
1 a−1

2 , a−1
1 a−3

3 a2

v2 a−1
1 a−1

2 , a−1
1 a−2

2 1, a−1
1 a−3

3 a2

vuv−1 a1a
−1
3 a1a3, a−1

1 a−3
2 a−1

1 a−1
2 a1a

2
2, a−1

1 a−1
2 a1a

2
2a
−1
1 a−1

2

vu−1v2u a−1
1 a2, a1a

−1
3 a−1

2 a2a
−1
1 a−1

2 , a22a
−1
1 a−1

3

v−1 — a−1
3 a1a

2
2, a−1

1 a−3
3 a2, a2a

−1
1 a−3

2

uv2 — a−1
3 , a22, a−1

1 a−1
2 a−3

3

j 1, a−1
1 a−3

2 , a−3
2 a23 —

j2 1, a1a
−1
3 a1a3a

−1
2 , a−1

1 a−2
2 a−2

1 a−1
2 —

1 1 a−1
1 a−3

3 a2

j3 1 a−1
1 a−1

2

uv a1a
−1
3 a−1

2 a1a
−1
3 a−1

3 a1a
2
2

u−1v−1 a−1
1 a−2

2 a−1
1 a−1

1 a−1
2 a1a

2
2

k′ν b(Mc) b−1(Mc)

v — —

v2 — —

vuv−1 — —

vu−1v2u — —

v−1 — a22a1a3

uv2 — 1

k′ν b(Mc) b−1(Mc)

j a33a1 —

j2 a33a1a
2
3 —

1 1 1

j3 a2a
−2
1 a−1

3 a1a
−1
3 a−1

1 a−1
2 a3

uv a33a1 1

u−1v−1 1 a3a1

Notice that writing ki = k′νj
4α, the numbers of coset representatives given are 2 (for

ν = 1, . . . , 4), 0 (for ν = 5, 6), 3 (for ν = 7, 8), and 1 for ν = 9, . . . , 12, adding up to 18 for
each given α ∈ {0, 1, 2}, and thus adding up to 54 in total. So by Lemma 29, the table is
complete. Similarly for M = M−c, the numbers given add up to 54. On the other hand, for
M = b(Mc), the numbers of coset representatives given are 0 (for ν = 1, . . . , 6) and 1 (for
ν = 7, . . . , 12), adding up to 6 for each given α ∈ {0, 1, 2}, and thus adding up to 18 in total.
Again by Lemma 29, the table is complete. Similarly for M = b−1(Mc). �

Let us make a few remarks about the above numbers nν(M) and mi(M):

(a) From n0(M) = 0 for M = b(Mc) and b−1(Mc), we see that the mirrors M of type A for
which ΠM\M is a surface of genus 10 are just the M for which the point ΠO is in the image
of ϕM .

(b) The numbers nν(M) alone are not sufficient to distinguish the cases for which there is a
π ∈ Π such that π(M) = Mc and π(M) = M−c, nor between the cases π(M) = b(Mc) and
π(M) = b−1(Mc). The numbers mi(M) do make these distinctions.

(c) We can refine Lemma 26 as follows: For i = 25, . . . , 36, we have mi(M) = 1 for each
mirror of type A and so these points x = Π(ki.P ) of X are all in the image of ϕM , but
there is no self-intersecting of the curves there. For the M for which there is a π(M) = Mc

or π(M) = M−c, only 30 of the points x = Π(ki.P ) are in the image of ϕM , and self-
intersecting happens at only 18 of them. For the M for which there is a π(M) = b(Mc)
or π(M) = b−1(Mc), only 18 of the points x = Π(ki.P ) are in the image of ϕM , and self-
intersecting happens at none of them. In fact, for these M , self-intersections happen only
at x = Π(b−1.O).

Lemma 30. The normal closure Nc of Πc in Π has index 84 in Π, and is normal in Γ̄. For
any mirror M such that there is a π ∈ Π so that π(M) = Mc or M−c, the normal closure
NM of ΠM in Π is equal to Nc.
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Proof. Consider the generators g1, . . . , g20 of Πc given in Proposition 13. The 140 elements
gj , aigja

−1
i , and a−1

i gjai, for j = 1, . . . , 20 and i = 1, 2, 3, must lie in any normal subgroup
of Π containing Πc. If L is the subgroup that they generate, then the Magma Index command
shows that L has index 72576 = 84 × 864 in Γ̄, and the IsNormal command shows that L
is normal in Γ̄. It is then clear that this L must equal Nc.

By Proposition 14, in proving the second statement, we may assume that M = M−c.
Magma verifies that k−cgjk

−1
−c , aik−cgjk

−1
−ca

−1
i and a−1

i k−cgjk
−1
−cai, for j = 1, . . . , 20 and

i = 1, 2, 3, generate a normal subgroup of Γ̄ of index 84× 864. The result follows. �

Lemma 31. If M is a mirror and if there is a π ∈ Π such that π(M) = b(Mc) or b−1(Mc),
then the normal closure in Π of ΠM is of index 4 in Π, and is independent of M . It is not
normal in Γ̄.

Proof. We need only consider the cases M = b(Mc) and M = b−1(Mc).
(a) For M = b(Mc), consider the following 8 elements xi of Π. Magma verifies that

〈x1, . . . , x8〉 is a normal subgroup of Π of index 4.

x1 = a3
3a

2
1a
−1
2 a3a1a

2
2a
−1
1 a−1

3 j8a2a
−1
1 a−1

3 j4,

x2 = a3a
−1
1 a−3

3 a2
2a1a

−2
2 a−1

1 a3a1a
−1
3 ,

x3 = a1a
−2
2 a3

3,

x4 = a−2
2 a3

3a1,

x5 = a3a1a
−2
2 a2

3,

x6 = a−1
1 a−2

2 a3
3a

2
1,

x7 = j8a−1
1 a−1

2 j4a−1
1 ,

x8 = a3a
−2
2 a3

3a1a
−1
3 .

For the following 8 elements yi of Π, one may verify using Lemma 19 that each b−1y−1
i xiyib

is in Γ̄c.

y1 = a1a
−1
2 a3a

−3
2 ,

y2 = a3a1a
−1
2 a3a

−3
2 ,

y3 = a2
1a

2
3a1a

−1
3 a−1

1 a−2
2 ,

y4 = a1a
2
3a1a

−1
3 a−1

1 a−2
2 ,

y5 = a3a
2
1a

2
3a1a

−1
3 a−1

1 a−2
2 ,

y6 = a2
3a1a

−1
3 a−1

1 a−2
2 ,

y7 = a1a
−2
2 a3a

−3
2 ,

y8 = a−1
3 a−1

1 a−3
3 a2

2.

So each y−1
i xiyi is in ΠM = Π ∩ bΓ̄cb−1, so that each xi is in the normal closure of ΠM .

This proves the result for M = b(Mc).
(b) For M = b−1(Mc), consider the following 7 elements xi of Π. Magma verifies that

〈x1, . . . , x7〉 is a normal subgroup of Π of index 4, and equals the normal closure calculated
in (a):

x1 = a−1
3 a−1

1 a2a
−1
3 a−1

1 a2a
−1
1 a−3

3 ,

x2 = a−1
3 a−1

1 a2a
−1
1 a−4

3 a−1
1 a2,

x3 = a−1
1 j4a3

2a
−1
3 a−1

1 j8,

x4 = j4a3
2a
−1
3 a−1

1 j8a−1
1 ,

x5 = j8a2a1j
4a−3

3 ,

x6 = j8a3a1j
4a1a

−2
3 a−1

1 ,

x7 = j8a1a3a
−1
1 a3a

−1
2 j8a−1

1 j4a3
3a1a

2
2j

4.

For the following 7 elements yi of Π, one may verify using Lemma 19 that each by−1
i xiyib

−1

is in Γ̄c.

y1 = a−1
1 a−3

3 a−1
1 a−1

3 ,

y2 = a1a3a
−3
2 a2

3,

y3 = a−1
1 a−3

3 a−1
1 a−1

3 ,

y4 = a−3
3 a−1

1 a−1
3 ,

y5 = a−1
1 a−1

3 ,

y6 = a−1
3 ,

y7 = a1a
−1
3 a−1

1 a−1
2 a3

3a
2
1.

So each y−1
i xiyi is in ΠM = Π ∩ b−1Γ̄cb, so that each xi is in the normal closure of ΠM .

This proves the result for M = b−1(Mc). �

We conclude this section with some calculations involving the abelianization map which
will are needed in Section 2.4.

Proposition 17. If M is a mirror of type A, and ΠM\M has genus 10, then the image
under f of ΠM is {(m,n) ∈ Z2 : m−n is divisible by 6 and n is divisible by 2}. If ΠM\M
has genus 4, the image of ΠM is {(m,n) ∈ Z2 : m, n are divisible by 2}. The images
under f of the generators ui and vi for M = Mc, M−c, b(Mc) and b−1(Mc) are given below.
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Proof. For M = Mc, in the notation of the proof of Proposition 13, f(ui) = f(Di) and
f(vi) = f(Ei) for i = 1, . . . , 10, and so it is routine to calculate these from the given
expressions for Di and Ei, and from this we read off f(Πc). We find that

f(u1) = (4,−2),

f(v1) = (4,−2),

f(u2) = (2,−4),

f(v2) = (−6, 6),

f(u3) = (2,−4),

f(v3) = (−2,−2),

f(u4) = (2,−4),

f(v4) = (2,−4),

f(u5) = (−6, 6),

f(v5) = (2, 2),

and that

f(u6) = (−2,−2),

f(v6) = (−4, 2),

f(u7) = (−4, 2),

f(v7) = (−2,−2),

f(u8) = (−8, 4),

f(v8) = (8, 2),

f(u9) = (−6, 0),

f(v9) = (2, 2),

f(u10) = (−2, 4),

f(v10) = (6,−6).

For M = M−c, ΠM has generators g′i = k−cgik
−1
−c , which satisfy the same relation (28)

as do the gi’s. So we get generators ui and vi for these groups by defining elements Di

and Ei as in the proof of Proposition 13, with the gi’s there replaced by g′i’s, then defining
ui = E1 · · ·Ei−1DiE

−1
i−1 · · ·E

−1
1 and vi = E1 · · ·Ei−1EiE

−1
i−1 · · ·E

−1
1 for i = 1, . . . , 10. To

calculate these f(ui) and f(vi)’s, we need to express the g′i’s in terms of the generators of Π.
We find that

g′1 = j4a−1
1 a−3

3 a2
2j

4a−2
2 a3

3a1j
4,

g′3 = ζ2j8a2
2a

2
3j

4,

g′5 = ζ−4j8a−1
1 a−1

2 a1a
2
2j

8a−1
1 a−3

3 j8a2a1,

g′7 = ζ−3j8a1a
2
2a
−1
1 a−1

2 j8a−1
3 a−1

1 a2a1a
−1
2 j8,

g′9 = ζ−2j8a−1
1 a−1

2 a−2
3 a−1

1 j8a−2
2 a−1

1 j8,

g′12 = j4a−1
1 a−3

3 a2
2j

8a−1
1 j4a2a

−1
1 a3j

8,

g′15 = ζ4j8a2a1a3a
−1
1 j4a−1

1 a−3
3 a−2

1 a−3
3 ,

g′17 = ζ−2j8a−1
1 a−1

2 j4a−1
1 a−3

3 j8a1a
−1
2 a3

3a1j
4,

and
g′19 = ζ−2j4a1a2a

−2
1 a−2

3 j4a2a
−1
1 a−1

2 j8a2
2a
−1
1 a−1

2 j8a−1
2 ,

and g′ν+1 = j4g′νj
−4 for ν ∈ {1, 3, 5, 7, 9, 10, 12, 13, 15, 17, 19}.

It is then routine to calculate the f(ui) and f(vi), and we obtain

f(u1) = (−4, 8),

f(v1) = (8,−4),

f(u2) = (−8, 4),

f(v2) = (2, 2),

f(u3) = (−6, 6),

f(v3) = (4,−8),

f(u4) = (−4, 2),

f(v4) = (2, 2),

f(u5) = (−8, 4),

f(v5) = (2, 2),

and

f(u6) = (−6, 0),

f(v6) = (−6, 6),

f(u7) = (−4,−4),

f(v7) = (2,−4),

f(u8) = (−6, 0),

f(v8) = (6, 0),

f(u9) = (−4,−4),

f(v9) = (−2, 4),

f(u10) = (−4, 2),

f(v10) = (4,−2).

For M = b(Mc) and M = b−1(Mc), generators ui and vi were given in the proof of Propo-
sition 15. For M = b(Mc) we read off

f(u1) = (0,−2),

f(v1) = (−2, 0),

f(u2) = (−4, 0),

f(v2) = (0, 2),

f(u3) = (−4, 2),

f(v3) = (4, 0),

f(u4) = (2, 0),

f(v4) = (0,−2),

and for M = b−1(Mc), we read off

f(u1) = (2, 0),

f(v1) = (−2, 4),

f(u2) = (4, 0),

f(v2) = (−2, 2),

f(u3) = (0, 0),

f(v3) = (2,−2),

f(u4) = (0, 2),

f(v4) = (−4, 2).

�

A.4. The points of X coming from the Γ̄-orbit of ξ12. Recall that the point ξ12 ∈ X
was defined in (14). It is the point of B2

C fixed by γ12 = bv. By Proposition 8, it belongs to
exactly one mirror of type A (namely g(Mc) for g = bu, since (ub)u(ub)−1 = b = (bv)4 = γ4

12

fixes ξ12), and exactly one mirror of type B (namely M0).

Proposition 18. There are exactly 72 distinct points Πξ in X such that ξ is in the Γ̄-orbit
of ξ12. The set of these points may be partitioned into three subsets of size 24, consisting of
the points in the images of M0, M1 and M∞, respectively. For α = 0, 1,∞, the set of 24
points belonging to the image of Mα is partitioned into sets of n1, n2, n3 and n4 points in
the images of Mc, M−c, b(Mc) and b−1(Mc), respectively, where
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(a) for α = 0, (n1, n2, n3, n4) = (6, 6, 6, 6),
(b) for α = 1, (n1, n2, n3, n4) = (9, 9, 3, 3),
(c) for α =∞, (n1, n2, n3, n4) = (12, 12, 0, 0).

Proof. Recall that T = {bµk : µ ∈ {0, 1,−1} and k ∈ K} is a set of representatives for the set
of 864 distinct cosets Πg, g ∈ Γ̄. Since Π is torsion-free, the group 〈γ12〉 acts freely on T , and

so we can find 72 = 864/12 elements s1, . . . , s72 of T such that Γ̄ =
⋃72
i=1 Πsi〈γ12〉, a disjoint

union. Because Γ̄ξ12 = 〈γ12〉, as we saw in Lemma 15, the points Π(si.ξ12) ∈ X are distinct,
and consist of the Πξ in X such that ξ is in the Γ̄-orbit of ξ12. Magma verifies that we can
take s1, . . . , s72 to be the elements s′ν , s′νj

4 and s′νj
8, where s′1, . . . , s

′
24 are the elements in

the first column of the table below. Since |MA(ξ12)| = 1 = |MB(ξ12)| by Proposition 8, each
Π(si.ξ12) belongs to the image of exactly one of M0, M1 and M∞, and to the image of exactly
one of Mc, M−c, b(Mc) and b−1(Mc). For each i, we can find π, π′ ∈ Π so that πsiξ12 ∈M
and π′siξ12 ∈M ′, where M ∈ {M0,M1,M∞} and M ′ ∈ {Mc,M−c, b(Mc), b

−1(Mc)}.
If π ∈ Π, si = bµk, and πsiξ12 ∈ Mα, where µ ∈ {0, 1,−1}, k ∈ K, and α ∈

{0, 1,∞, c,−c}, then with πµ ∈ Π as in (32),

sij
4ξ12 = bµj4kξ12 = πµj

4bµkξ12 = πµj
4π−1(πbµkξ12) ∈ πµj4π−1(Mα) = πµj

4π−1j−4(Mα),

so that π̃sij
4ξ12 ∈Mα for π̃ = j4πj−4π−1

µ . Similarly, if πsiξ12 ∈ bν(Mc), then

πµj
4π−1(πbµkξ12) ∈ πµj4π−1(bν(Mc)) = πµj

4π−1bνj−4(Mc) = πµj
4π−1π−νj

−4bν(Mc)

shows that π̃sij
4ξ12 ∈ bν(Mc) for π̃ = j4π−1

−νπj
−4π−1

µ .
So it is enough to find, for ν = 1, . . . , 24, π, π′ ∈ Π so that πs′νξ12 ∈M and π′s′νξ12 ∈M ′,

where M ∈ {M0,M1,M∞} and M ′ ∈ {Mc,M−c, b(Mc), b
−1(Mc)}. Suitable π, π′ are listed

in the next table.
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s′ν π M π′ M ′

j2 1 M0 a−1
1 a−2

2 a−2
1 a−1

2 Mc

uj a−1
1 a−1

2 a1 M0 a−3
2 a23 Mc

1 1 M0 a−1
1 a−3

3 a2 M−c

uj3 a−1
1 a−1

2 a1 M0 a−1
1 a−1

2 M−c

j 1 M0 a33a1 b(Mc)

uj2 a−1
1 a−1

2 a1 M0 a33a1a
2
3 b(Mc)

j3 1 M0 a3 b−1(Mc)

u a−1
1 a−1

2 a1 M0 1 b−1(Mc)

v−1uj 1 M1 a1a
−1
3 a−1

2 a1a
−1
3 Mc

v−1uj3 1 M1 a1a
−1
3 a1a3a2a

−1
3 Mc

bu a−1
1 a−3

3 M1 1 Mc

v−1uj2 1 M1 a−1
3 M−c

buj a−1
1 a−3

3 M1 a−1
1 a−1

2 a1a
2
2 M−c

bvuj a33a
2
1a
−1
2 M1 a2 M−c

bv−1uj a−2
2 M1 a32a

−1
3 a−1

1 a−3
3 b(Mc)

v−1u 1 M1 a22a1a3 b−1(Mc)

vu−1j a−1
2 M∞ a−1

1 a−1
2 Mc

vu−1j2 a−1
2 M∞ a−1

1 a−2
2 a−1

1 a2 Mc

uv−1uj 1 M∞ a3a
−3
2 a33a1 Mc

b−1vuj2 a−1
3 a−1

1 a−2
2 M∞ a1a

−1
3 a1a3a

−2
2 Mc

vu−1 a−1
2 M∞ a2a

−1
1 a−1

2 M−c

vu−1j3 a−1
2 M∞ a22a

−1
1 a3a1 M−c

uv−1u 1 M∞ a1a2a
−2
1 a−3

3 a2a1 M−c

bvu−1v2uj a−1
2 a1a

−1
2 M∞ a2a

−1
1 a−2

2 M−c

For each pair (M,M ′) we can read off from this table the i such that πsiξ12 ∈ M and
π′siξ12 ∈M ′ for some π, π′ ∈ Π. �

A.5. The fixed points of the automorphisms of X. As we saw in §1, the normalizer
of Π in Γ̄ contains Π as a subgroup of index 3, and is generated by Π and j4. Denote by σ the
automorphisms of B2

C and of X induced by j4. If ξ = (z1, z2) ∈ B2
C, then σ(ξ) = (ωz1, ωz2).

Lemma 32. The automorphism σ of X has exactly 9 fixed points. These are the three
points ΠbµO, µ = 0, 1,−1, and six points Πhiξ3, i = 1, . . . , 6, where ξ3, as in (14), is the
fixed point of γ3 = buv.

Proof. If Πξ is fixed by σ, then Πj4ξ = Πξ, and so πj4ξ = ξ for some π ∈ Π. This implies
that πj4 has finite order. It cannot be trivial, since Π is torsion free. So there is an element t,
in the list of representative nontrivial elements of finite order in Γ̄ given in Proposition 7,
or the inverse of one of these, such that πj4 = gtg−1 for some g ∈ Γ̄. Thus gtg−1j−4 ∈ Π.
Since the elements bµk, µ = 0, 1,−1 and k ∈ K, form a set of coset representatives for Π
in Γ̄, and since j4 normalizes Π, we can assume that g = bµk for some µ and k.

So we search through the finite set of elements bµktk−1b−µj−4, checking which are in Π
(by the remark below, we need only consider the cases t = j4, t = buv and t = (buv)−1).
We find that bµktk−1b−µj−4 ∈ Π only happens for t = j4 and t = buv. When t = j4, we
have bµktk−1b−µj−4 = bµj4b−µj−4, independent of k. We find that these three elements
are in Π. Explicitly, bµj4b−µj−4 = πµ for πµ given in (32). and these equations mean that
the three points Π(bµ.O) are fixed by σ.

For t = buv, we find that bµktk−1b−µj−4 ∈ Π for only 18 pairs (µ, k). This means that
σ fixes Π(bµk.ξ3) for these 18 (µ, k)’s. If (µ, k) satisfies bµktk−1b−µj−4 ∈ Π, then so does
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(µ, kj4), since we can write bµj4 = πµj
4bµ for some πµ ∈ Π, as we have just seen. Moreover,

Π(bµkj4.ξ3) = Π(bµk.ξ3), since kj4 = j4k and so

Π(bµkj4.ξ3) = Π(πµj
4bµk.ξ3) = Π(j4bµk.ξ3) = σ

(
Π(bµk.ξ3)

)
= Π(bµk.ξ3).

So we need only consider six of the (µ, k)’s, and correspondingly setting

h1 = b−1vuj3,

h4 = b−1v2uj3,

h2 = u−1vj,

h5 = vj2,

h3 = buv2j2,

h6 = bvu−1v,

we have hi(buv)h−1
i j−4 = π′i ∈ Π for i = 1, . . . , 6; explicitly,

π′1 = ζ4a2
2a1a

3
3,

π′4 = ζ−5a3
3a

2
1a

3
3,

π′2 = j8a1j
4,

π′5 = ζ−1j4a−1
1 a−1

2 j8,

π′3 = ζ2j8a1a
3
2j

4a2a1a
−2
2 a−1

1 .

π′6 = ζa2a
−1
1 .

These six points Πhiξ3 are distinct, as we see by checking that (bµ
′
k′)(buv)ε(bµk)−1 is not

in Π for ε = 0, 1, 2 when (µ′, k′) and (µ, k) are distinct pairs in the above list. �

Remark 6. If π ∈ Π, then π′ = (πj4)3 = (π)(j4πj8)(j8πj4) is also in Π. Since the
possible orders of the elements of Γ̄ are the divisors of 24, if πj4 has finite order, then
1 = (πj4)24 = (π′)8, so π′ must be 1, so that (πj4)3 must be 1. Obviously, πj4 6= 1, and
so πj4 must have order 3. Write πj4 = gtg−1 for some g ∈ Γ̄, where t3 = 1 and t or t−1

is in the table in Proposition 7. We know from (32) that for each µ ∈ {0, 1,−1}, there is
a πµ ∈ Π such that bµj4b−µj−4 = πµ. Using this and writing g = π′bµk, where π′ ∈ Π,
µ ∈ {0, 1,−1}, and k ∈ K, we get

πj4 = π′bµktk−1b−µπ′
−1

= π′bµktk−1(j−4b−µπµj
4)π′

−1

= π′(bµk)(tj−4)(bµk)−1(πµj
4π′
−1
j−4)j4.

So (bµk)(tj−4)(bµk)−1 is in Π, and therefore either t = j4 or tj−4 has infinite order. In
particular, apart from t = j4, our t cannot be in K, and so must be buv or (buv)−1.

Lemma 33. In the notation of Lemma 32, the six points Πhiξ3 are of type 1
3 (1, 2), while

the three points ΠbµO are of type 1
3 (1, 1).

Proof. If γ ∈ Γ̄, then writing γ.(z1, z2) = (w1, w2), a routine calculation shows that(
∂w1

∂z1
∂w2

∂z1
∂w1

∂z2
∂w2

∂z2

)
,

evaluated at ξ = (z1, z2), equals

ζ2/(r − 1)

(γ31κz1 + γ32κz2 + γ33)2

(
κz2γ23 + (r − 1) γ22 −(κz2γ13 + (r − 1) γ12)
−(κz1γ23 + (r − 1) γ21) κz1γ13 + (r − 1) γ11

)
,

where κ =
√
r − 1. Taking γ = hiγ3h

−1
i and ξ = ξ3 = (c1/κ, c2/κ) as given in (14), we find

that this matrix has eigenvalues e±2πi/3. If instead we take γ = bµj4b−µ, and ξ = bµO, for
µ = 0, 1,−1, we find that the matrix is e2πi/3I. �

Proposition 19. With the notation of §5.4, three of the nine fixed points of σ are mapped
by α to each of p0, p1 and p−1. Moreover, α(ΠbO) = α(Πb−1O) = α(ΠO), α(Πh1ξ3) =
α(Πh2ξ3) = α(Πh3ξ3) and α(Πh4ξ3) = α(Πh5ξ3) = α(Πh6ξ3).

Proof. Writing α(Πξ) = α0(ξ) + Λ, as before, where α0(O) = 0, we proved in Lemma 10
that

α0(j4ξ) = ωα0(ξ) for all ξ ∈ B2
C.

Now bj4b−1 = π1j
4 for π1 as in (32), and f(π1) = (−2,−5), so by Lemma 10 and Proposi-

tion 4,

α0(bj4b−1ξ) = α0(π1j
4ξ) = α0(j4ξ)− 2 + 5ω = ωα0(ξ)− 2 + 5ω.
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In particular, taking ξ = bO, we have α0(bO) = ωα0(bO)− 2 + 5ω, so that

α0(bO) =
2 + ω

3
(−2 + 5ω) = ω − 3 ∈ Λ.

Hence α(Πb.O) = α(ΠO) = p0.
Similarly, b−1j4b = π−1j

4 for π−1 as in (32), and f(π−1) = (−5, 1), so that

α0(b−1j4bξ) = α0(π−1j
4ξ) = α0(j4ξ) + θ(f(π−1)) = ωα0(ξ)− 5− ω.

So taking ξ = b−1O, we have α0(b−1O) = ωα0(b−1O)− 5− ω, so that

α0(b−1O) =
2 + ω

3
(−5− ω) = −3− 2ω ∈ Λ.

Hence α(Πb−1.O) = α(ΠO) = p0 too.
Recall now that hi(buv)h−1

i j−4 = π′i ∈ Π for i = 1, . . . , 6, and so

α0(hi(buv)h−1
i ξ) = α0(π′ij

4ξ) = α0(j4ξ) + θ(f(π′i)) = ωα0(ξ) + θ(f(π′i)).

In particular, taking ξ = hiξ3, we get α0(hiξ3) = ωα0(hiξ3) + θ(f(π′i)), so that

α0(hiξ3) =
2 + ω

3
θ(f(π′i)).

Calculating
f(π′1) = (−6, 2),

f(π′4) = (−4, 0),

f(π′2) = (−4, 1),

f(π′5) = (−4, 3),

f(π′3) = (1,−6),

f(π′6) = (−3,−2),

we have

θ(f(π′1)) = −6− 2ω

θ(f(π′2)) = −4− ω
θ(f(π′3)) = 1 + 6ω

≡ 1− (1− ω)

≡ 1 + (1− ω)

≡ 1

and

θ(f(π′4)) = −4

θ(f(π′5)) = −4− 3ω

θ(f(π′6)) = −3 + 2ω

≡ −1

≡ −1

≡ −1 + (1− ω),

where the congruences are modulo 3. Hence α(Πhiξ3) = 2+ω
3 + Λ for i = 1, 2, 3 and

α(Πhiξ3) = − 2+ω
3 + Λ for i = 4, 5, 6. �
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Birkhäuser/Springer, New York, 2012
[BHPV] Barth, W. P., Hulek, K., Peters, Chris A. M., Van de Ven, A., Compact complex surfaces. Second

edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys

in Mathematics 4. Springer-Verlag, Berlin, 2004.
[Be] Beauville, A., Complex algebraic surfaces. Translated from the 1978 French original by R. Barlow,

with assistance from N. I. Shepherd-Barron and M. Reid. Second edition. London Mathematical

Society Student Texts, 34. Cambridge University Press, Cambridge, 1996.
[BG] Buchweitz, R.-O., Greuel, G.-M., The Milnor number and deformations of complex curve singular-

ities, Invent. Math. 58 (1980), 241–281.

[CS1] Cartwright, D., Steger, T., Enumeration of the 50 fake projective planes, C.
R. Acad. Sci. Paris, Ser. 1, 348 (2010), 11–13, see also weblink provided,

http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/.
[CS2] Cartwright, D., Steger, T., Finding generators and relations for groups acting on the hyperbolic

ball, preprint.

[DM1] Deligne, P., Mostow, G. D., Monodromy of hypergeometric functions and nonlattice integral mon-

odromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89.
[DM2] Deligne, P., Mostow, G. D., Commensurabilities among lattices in PU(1, n). Annals of Mathematics

Studies, 132. Princeton University Press, Princeton, NJ, 1993.
[Der1] Deraux, M., A negatively curved Kähler threefold not covered by the ball, Invent. Math. 160 (2005),

501–525.
[Der2] Deraux, M., Forgetful maps between Deligne-Mostow ball quotients, Geom. Dedicata 150 (2011),

377–389

[GH] Griffiths, P., Harris, J., Principles of algebraic geometry, John Wiley & Sons, Inc., 1978.



SOME ALGEBRAIC GEOMETRIC FACTS ABOUT THE CARTWRIGHT-STEGER SURFACE 49

[GPP] Gurjar, R., Paul, S., Purnaprajna, B. P., On the fundamental group of hyperelliptic fibrations and

some applications. Invent. Math. 186 (2011), 237–254.

[K] Keum, J., Toward a geometric construction of fake projective planes, Rend. Lincei Mat. Appl. 23
(2012), 137–155.
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