ON THE CARTWRIGHT-STEGER SURFACE

DONALD I. CARTWRIGHT, VINCENT KOZIARZ, SAI-KEE YEUNG

Abstract

In this article, we study various concrete algebraic and differential geometric properties of the Cartwright-Steger surface. In particular, we determine the genus of a generic fiber of the Albanese fibration, and deduce that the singular fibers are not totally geodesic, answering an open problem about fibrations of a complex ball quotient over a Riemann surface.

0. Introduction

The Cartwright-Steger surface was found during work on the classification of fake projective planes completed in [PY] and [CS1]. A fake projective plane is a smooth surface with the same Betti numbers as the projective plane but not biholomorphic to it. It is known that a fake projective plane is a complex two ball quotient $\Pi \backslash B_{\mathbb{C}}^{2}$ with Euler number 3, where Π is an arithmetic lattice in $\operatorname{PU}(2,1)$, cf. [PY]. In the scheme of classification of fake projective planes carried out in [PY], it was conjectured but not proved in [PY] that the lattice Π associated to a fake projective plane cannot be defined over a pair of number fields $\mathcal{C}_{11}=\left(\mathbb{Q}(\sqrt{3}), \mathbb{Q}\left(\zeta_{12}\right)\right)$, where ζ_{12} is a 12 -th root of unity. Such a Π would be of index 864 in a certain maximal arithmetic subgroup $\bar{\Gamma}$ of $\mathrm{PU}(2,1)$. As reported in [CS1], the authors showed using a lengthy computer search that there is no torsion free lattice Π of index 864 in this $\bar{\Gamma}$ with $b_{1}(\Pi)=0$, but surprisingly there is one with $b_{1}(\Pi)=2$. The surface $\Pi \backslash B_{\mathbb{C}}^{2}$ is the subject of study in this article.

The Cartwright-Steger surface is unique as a Riemannian manifold with the given Euler and first Betti numbers, but has two different biholomorphic structures given by complex conjugation. From an algebraic geometric point of view, the fake projective planes and the Cartwright-Steger surfaces are interesting since they have the smallest possible Euler number, namely 3 , among smooth surfaces of general type, and constitute all such surfaces. From a differential geometric point of view, they are interesting since they constitute smooth complex hyperbolic space forms, or complex ball quotients, of smallest volume in complex dimension two. We refer the reader to $[\mathrm{R}]$, $[\mathrm{Y} 1]$, and $[\mathrm{Y} 2]$ for some general discussions related to the above facts. Unlike fake projective planes, whose lattices arise from division algebras of non-trivial degree as classified, the Cartwright-Steger surface is defined by Hermitian forms over the number fields mentioned above. It is realized among experts that such a surface is commensurable to a Deligne-Mostow surface, the type of surfaces which have been studied by Picard, Le Vavasseur, Mostow, Deligne-Mostow, Terada and many others, cf. [DM1].

Even though the lattice involved is described in [CS2], it is surprising that the algebraic geometric structures of the surface are far from being understood. A typical problem is to find out the genus of a generic fiber of the associated Albanese fibration. Conventional algebraic geometric techniques do not seem to be readily applicable to such a problem. The goal of this article is to develop tools and techniques which allow us to understand concrete surfaces such as the Cartwright-Steger surface. In particular, we recover algebraic geometric

Key words: Special complex surface, Albanese fibration, Complex ball quotients
AMS 2010 Mathematics subject classification: Primary 14D06, 14J29, 32J15
The third author was partially supported by a grant from the National Science Foundation.
properties from a description of the fundamental group of the surface, using a combination of various algebraic geometric, differential geometric, group theoretical techniques and computer implementations.

Here are the results obtained in this paper.
Main Theorem Let X be the Cartwright-Steger surface and $\alpha: X \rightarrow T$ the Albanese map.
(a) The genus of a generic fiber of α is 19 .
(b) All fibers of α have multiplicity 1. The singular set of the fibration α consists of either three nodal singularities or one tacnode singularity.
(c) The Albanese torus T is $\mathbb{C} /(\mathbb{Z}+\omega \mathbb{Z})$, where ω is a cube root of unity.
(d) The Picard number of X is 3 , equal to $h^{1,1}(X)$, so that all the Hodge $(1,1)$ classes are algebraic. The Néron-Severi group is generated by three immersed totally geodesic curves we explicitly give.
(e) The automorphism group Σ of X, isomorphic to \mathbb{Z}_{3}, has 9 fixed points, and induces a nontrivial action on T which has 3 fixed points. Three fixed points of Σ lie over each fixed point in T. Over one fixed point on T, the three fixed points of Σ are of type $\frac{1}{3}(1,1)$. The other 6 fixed points of Σ are of type $\frac{1}{3}(1,2)$.

The Main Theorem follows from Theorem 3, Lemma 9, Corollary 1, Lemma 5 and Lemma 32.

As an immediate consequence, see Theorem 4, we have answered an open problem communicated to us by Ngaiming Mok on properties of fibrations on complex ball quotients.

Corollary There exists a fibration of a smooth complex two ball quotient over a smooth Riemann surface with non-totally geodesic singular fibers.

Apart from the results above, we have given a detailed analysis of the Albanese map in $\S 5$. Moreover, results on the surface parallel to an original construction of Livné [Li] on fibrations of a complex hyperbolic surface over a Riemann surface are explained in Section 6. As another application, we have used the surface to derive some interesting properties related to a question of Nori [N] on Lefschetz properties for singular ample curves on a projective algebraic surface in $\S 7$.

Here are a few words about the presentation of the article. To streamline our arguments and to make the results more understandable, we state and prove the geometric results of the article sequentially in the main parts of the article. Many of these results rely on computations in the groups Π and $\bar{\Gamma}$, often obtained with assistance of the algebra package Magma, and we present these in an appendix. More details can be found on the webpage of the first author at http://www.maths.usyd.edu.au/u/donaldc/cs-surface/.

Acknowledgments. Donald Cartwright thanks Jonathan Hillman for help in obtaining standard presentations of surface groups from non-standard ones. Vincent Koziarz would like to thank Aurel Page for his help in computations involving Magma, Duc-Manh Nguyen for very useful conversations about triangle groups and Riemann surfaces, Arnaud Chéritat for his help in drawing pictures and Frédéric Campana for useful comments. Sai-Kee Yeung would like to thank Martin Deraux, Igor Dolgachev, Ching-Jui Lai, Ngaiming Mok and Domingo Toledo for their interest and helpful comments. The main results of this paper were presented at the 4th South Kyushu workshop on algebra, complex ball quotients and related topics, July 22-25, 2014, Kumamoto, Japan. The first and the third authors thank Fumiharu Kato for his kind invitation.

Since completing this paper, we were informed by Domingo Toledo that he, Fabrizio Catanese, JongHae Keum and Matthew Stover had independently proved some of our results in a paper they are preparing.

1. Basic facts

1.1. Let F be a Hermitian form on \mathbb{C}^{3} with signature $(2,1)$. We denote by $\mathrm{U}(F)=\{g \in$ $\left.\mathrm{GL}(3, \mathbb{C}) \mid g^{*} F g=F\right\}$ the subgroup of $\mathrm{GL}(3, \mathbb{C})$ preserving the form F, by $\mathrm{SU}(F)$ the subgroup of $\mathrm{U}(F)$ of elements with determinant 1 , and by $\mathrm{PU}(F)$ their image in $\operatorname{PGL}(3, \mathbb{C})$. The group $\mathrm{PU}(F)$ is naturally identified with the group of biholomorphisms of the two-ball $B_{\mathbb{C}}^{2}(F):=\left\{[z] \in \mathbb{P}_{\mathbb{C}}^{2}=\mathbb{P}\left(\mathbb{C}^{3}\right) \mid F(z)<0\right\}$.

Our aim is to study a special complex hyperbolic surface $X=\Pi \backslash B_{\mathbb{C}}^{2}(F)$ where Π is a cocompact torsion-free lattice in some $\mathrm{PU}(F)$. The group Π appears as a finite index subgroup of an arithmetic lattice $\bar{\Gamma}$ which can be easily described as follows.

Let $\zeta=\zeta_{12}$ be a primitive 12 -th root of unity. Then $r=\zeta+\zeta^{-1}$ is a square root of 3 . Let $\ell=\mathbb{Q}(\zeta)$ and $k=\mathbb{Q}(r) \subset \ell$. For real and complex calculations below, we take $\zeta=e^{\pi i / 6}$, and then r is the positive square root of 3 . We could define $\bar{\Gamma}$ to be the group of 3×3 matrices g^{\prime} with entries in ℓ such that $g^{\prime *} F^{\prime} g^{\prime}=F^{\prime}$, where

$$
F^{\prime}=\left(\begin{array}{ccc}
r+1 & -1 & 0 \\
-1 & r-1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

such that g^{\prime} has entries in $\mathbb{Z}[\zeta]$, modulo $Z=\left\{\zeta^{j} I: j=0, \ldots, 11\right\}$.
However, it is convenient to work with a diagonal form instead of F^{\prime}. Notice that $F^{\prime}=$ $(r-1)^{-1} \gamma_{0}^{*} F \gamma_{0}$ for

$$
F=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1-r
\end{array}\right), \quad \text { and } \quad \gamma_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1-r & 0 \\
0 & 0 & 1
\end{array}\right)
$$

So we instead define $\bar{\Gamma}$ to be the group of matrices g, modulo Z, with entries in ℓ, which are unitary with respect to F for which $g^{\prime}=\gamma_{0}^{-1} g \gamma_{0}$ has entries in $\mathbb{Z}[\zeta]$. Such g 's have entries in $\frac{1}{r-1} \mathbb{Z}[\zeta] \subset \frac{1}{2} \mathbb{Z}[\zeta]$.

Since F is diagonal, it is easy to make the group $\mathrm{PU}(F)$ act on the standard unit two-ball, which we will just denote by $B_{\mathbb{C}}^{2}$: if $g Z \in \bar{\Gamma}$, the action of $g Z$ on $B_{\mathbb{C}}^{2}$ is given by

$$
(g Z) \cdot(z, w)=\left(z^{\prime}, w^{\prime}\right) \quad \text { if } \quad D g D^{-1}\left(\begin{array}{c}
z \\
w \\
1
\end{array}\right)=\lambda\left(\begin{array}{c}
z^{\prime} \\
w^{\prime} \\
1
\end{array}\right)
$$

for some $\lambda \in \mathbb{C}$, where D is the diagonal matrix with diagonal entries 1,1 and $\sqrt{r-1}$.
We often ignore the distinction between matrices g and elements $g Z$ of $\bar{\Gamma}$, though we sometimes need to carefully distinguish these two objects.

Now $\bar{\Gamma}$ contains a subgroup K of order 288 generated by the two matrices $u=\gamma_{0} u^{\prime} \gamma_{0}^{-1}$ and $v=\gamma_{0} v^{\prime} \gamma_{0}^{-1}$ where

$$
u^{\prime}=\left(\begin{array}{ccc}
\zeta^{3}+\zeta^{2}-\zeta & 1-\zeta & 0 \\
\zeta^{3}+\zeta^{2}-1 & \zeta-\zeta^{3} & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad v^{\prime}=\left(\begin{array}{ccc}
\zeta^{3} & 0 & 0 \\
\zeta^{3}+\zeta^{2}-\zeta-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

A presentation for K is given by the relations

$$
u^{3}=v^{4}=1, \text { and }(u v)^{2}=(v u)^{2} .
$$

The elements of K are most neatly expressed if we use not only the generators u and v, but also $j=(u v)^{2}$, which is the diagonal matrix with diagonal entries ζ, ζ and 1 , and which generates the center of K.

There is one further generator needed for $\bar{\Gamma}$, namely $b=\gamma_{0} b^{\prime} \gamma_{0}^{-1}$ for

$$
b^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 \zeta^{3}-\zeta^{2}+2 \zeta+2 & \zeta^{3}+\zeta^{2}-\zeta-1 & -\zeta^{3}-\zeta^{2} \\
\zeta^{2}+\zeta & -\zeta^{3}-1 & -\zeta^{3}+\zeta+1
\end{array}\right)
$$

Theorem 1 ([CS2]). A presentation of $\bar{\Gamma}$ is given by the generators u, v and b and the relations

$$
u^{3}=v^{4}=b^{3}=1,(u v)^{2}=(v u)^{2}, v b=b v,(b u v)^{3}=(b u v u)^{2} v=1
$$

1.2. Let us record here the connection with a group which was first discovered by Mostow: the group $\bar{\Gamma}$ is isomorphic to a group generated by complex reflections, denoted by $\Gamma_{3, \frac{1}{3}}$ in the paper [Mo1] and by $\Gamma_{3,4}$ in [Pa], and whose presentation (see Parker [Pa]) is

$$
\Gamma_{3,4}=\left\langle J, R_{1}, A_{1}: J^{3}=R_{1}^{3}=A_{1}^{4}=1, A_{1}=\left(J R_{1}^{-1} J\right)^{2}, A_{1} R_{1}=R_{1} A_{1}\right\rangle
$$

Defining $R_{2}=J R_{1} J^{-1}$, it was shown in [Pa, Proposition 4.6] that the subgroup $\left\langle A_{1}, R_{2}\right\rangle$ of $\Gamma_{3,4}$ is finite, with order 288 (actually, it is isomorphic to K above). It has the simple presentation

$$
\left\langle A_{1}, R_{2}: A_{1}^{4}=R_{2}^{3}=1, A_{1} R_{2} A_{1} R_{2}=R_{2} A_{1} R_{2} A_{1}\right\rangle
$$

The following result was communicated to us by John Parker.
Proposition 1. There is an isomorphism $\psi: \bar{\Gamma} \rightarrow \Gamma_{3,4}$ such that

$$
\psi(u)=R_{2}, \psi(v)=A_{1}, \text { and } \psi(b)=R_{1} .
$$

It satisfies $\psi(K)=\left\langle A_{1}, R_{2}\right\rangle$, and its inverse satisfies

$$
\psi^{-1}\left(R_{1}\right)=b, \psi^{-1}\left(A_{1}\right)=v, \psi^{-1}(J)=b u v, \quad \text { and } \quad \psi^{-1}\left(R_{2}\right)=u
$$

1.3. It is also convenient to see $\bar{\Gamma}$ as a (Deligne-)Mostow group: it corresponds to item 8 in the paper of Mostow [Mo2, p. 102] whose associated weights (2, 2, 2, 7, 11)/12 satisfy the condition ($\Sigma \mathrm{INT}$) in the notation of [Mo2]. We refer to [Mo2] and [DM2] for details on the description below.

The orbifold quotient $\bar{\Gamma} \backslash B_{\mathbb{C}}^{2}$ is a compactification of the moduli space of 5 -tuples of distinct points $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \in\left(\mathbb{P}_{\mathbb{C}}^{1}\right)^{5}$ modulo the diagonal action of $\operatorname{PGL}(2, \mathbb{C})$ and the action of the symmetric group on three letters Σ_{3} on the three first points. The compactification can be described as follows. First, it can be easily seen that the moduli space Q of 5 -tuples of distinct points $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \in\left(\mathbb{P}_{\mathbb{C}}^{1}\right)^{5}$ modulo the diagonal action of $\operatorname{PGL}(2, \mathbb{C})$ can be realized as $\mathbb{P}_{\mathbb{C}}^{2}$ with a configuration of six lines removed. In homogeneous coordinates [$\left.X_{0}: X_{1}: X_{2}\right]$ on $\mathbb{P}_{\mathbb{C}}^{2}$, these six lines correspond to the three lines of "type A " with equation $X_{i}=X_{j}(1 \leqslant i<j \leqslant 2)$ and the three lines of "type B " with equation $X_{i}=0(i=0,1,2)$. In fact, the compactification $\bar{Q}=\mathbb{P}_{\mathbb{C}}^{2}$ of Q is determined by the fact that we allow two or three of the points x_{0}, x_{1} and x_{2} to coincide ($x_{0}=x_{1}$ corresponds to $X_{0}=X_{1}, x_{0}=x_{2}$ to $X_{0}=X_{2}$ and $x_{1}=x_{2}$ to $X_{1}=X_{2}$) and we also allow one or two of the points x_{0}, x_{1} and x_{2} to coincide with x_{3} ($x_{0}=x_{3}$ corresponds to $X_{0}=0, x_{1}=x_{3}$ to $X_{1}=0$ and $x_{2}=x_{3}$ to $X_{2}=0$).

Then, as we mentioned above, the underlying topological space of $\bar{\Gamma} \backslash B_{\mathbb{C}}^{2}$ is a compactification R of Q / Σ_{3} and actually is the weighted projective plane $\mathbb{P}(1,2,3) \cong \mathbb{P}_{\mathbb{C}}^{2} / \Sigma_{3}$ where the symmetric group on three letters Σ_{3} acts by permutation of the homogeneous coordinates [$X_{0}: X_{1}: X_{2}$] on $\mathbb{P}_{\mathbb{C}}^{2}$. There are two remarkable (irreducible) divisors on $\mathbb{P}(1,2,3)$: one is the image D_{A} of the divisors of type A, the other one is the image D_{B} of the divisors of type B. The divisor D_{A} has a cusp at the image P_{1} of the point $[1: 1: 1]$ and the divisor D_{B} is smooth. These two divisors meet at two points: once at the image P_{2} of the points $[1: 0: 0],[0: 1: 0]$ or $[0: 0: 1]$ where they are tangent, once at the image P_{3} of the points $[1: 1: 0],[1: 0: 1]$ or $[0: 1: 1]$ where the intersection is transverse. There are also two singular points on $\mathbb{P}(1,2,3)$: one is a singularity of type A_{1} and is the image $P_{4} \in D_{B}$ of the points $[1:-1: 0],[1: 0:-1]$ or $[0: 1:-1]$, the other one is a singularity of type A_{2} and is the image P_{5} of the points $\left[1: \omega: \omega^{2}\right]$ or $\left[1: \omega^{2}: \omega\right]$ where ω is a primitive 3 rd root of unity.

Remark 1. In the book [DM2, p. 111], the divisor D_{A} (resp. D_{B}) is denoted by $D_{A A}$ (resp. $\left.D_{A B}\right)$ and the points P_{1}, \ldots, P_{5} simply by $1, \ldots, 5$.

Figure 1. $\bar{Q}=\mathbb{P}_{\mathbb{C}}^{2}$ and $R=\mathbb{P}_{\mathbb{C}}^{2} / \Sigma_{3}$

There is a standard method to compute the weight of the orbifold divisors on $\bar{\Gamma} \backslash B_{\mathbb{C}}^{2}$ as well as the local groups at the orbifold points, according to the weights $(2,2,2,7,11) / 12$. The weight of D_{A} is $3=2(1-(2+2) / 12)^{-1}$ and the weight of D_{B} is $4=(1-(2+7) / 12)^{-1}$. This means that the preimage of D_{A} (resp. D_{B}) in $B_{\mathbb{C}}^{2}$ is a union of mirrors of complex reflections of order 3 (resp. 4). We will denote by \mathcal{M}_{A} (resp. \mathcal{M}_{B}) the corresponding sets of mirrors. Said another way, the isotropy group at a generic point of some $M \in \mathcal{M}_{A}$ is isomorphic to \mathbb{Z}_{3} and the isotropy group at a generic point of some $M \in \mathcal{M}_{B}$ is isomorphic to \mathbb{Z}_{4}, both generated by a complex reflection of the right order. This of course has to be compared with the description of $\bar{\Gamma}$ as $\Gamma_{3,4}$.

The isotropy group at a point above the transverse intersection P_{3} of D_{A} and D_{B} is naturally isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$. As P_{5} is a singularity of type A_{2} but does not belong to any orbifold divisor, the local group at P_{5} is isomorphic to \mathbb{Z}_{3}. But since $P_{4} \in D_{A}$ is a singularity of type A_{1}, the local group at P_{4} has order $8=2 \cdot 4$ and actually is isomorphic to \mathbb{Z}_{8}.

It is a little bit more difficult to determine the isotropy group above the points P_{1} and P_{2}. It will also be useful to describe the stabilizer in $\bar{\Gamma}$ of a mirror. For this, one can use a method similar to the one in [Der1, Lemma 2.12] and obtain the following lemma which already appeared in an unpublished manuscript of Deraux and Yeung.

Lemma 1. Let \mathcal{M}_{A} (resp. \mathcal{M}_{B}) denote the set of mirrors of complex reflections of order 3 (resp. 4) in $\bar{\Gamma}$.

Let $\mathcal{P} \subset B_{\mathbb{C}}^{2}$ denote the set of points above P_{1} and $\mathcal{T} \subset B_{\mathbb{C}}^{2}$ denote the set of points above P_{2}. The following holds.
(a) The group $\bar{\Gamma}$ acts transitively on \mathcal{M}_{A}, on \mathcal{M}_{B}, on \mathcal{P} and on \mathcal{T}.
(b) For each point $x \in \mathcal{P}$, the stabilizer of x is the one labelled $\sharp 4$ in the Shephard-Todd list. It is a central extension of a $(2,3,3)$-triangle group, with center of order 2 , and has order 24. There are precisely 4 mirrors in \mathcal{M}_{A} through each such $x \in \mathcal{P}$.
(c) For each point $y \in \mathcal{T}$, the stabilizer of y is the one labelled $\sharp 10$ in the Shephard-Todd list. It is a central extension of a (2,3,4)-triangle group, with center of order 12, and has order 288. Through each such $y \in \mathcal{T}$, there are 8 elements of \mathcal{M}_{A} and 6 elements of \mathcal{M}_{B}.
(d) The stabilizer of any element $M \in \mathcal{M}_{A}$ is a central extension of a (2,4,12)-triangle group, with center of order 3 .
(e) The stabilizer of any element $M \in \mathcal{M}_{B}$ is a central extension of a (2,3,12)-triangle group, with center of order 4 .

Sketch of proof. (a) Follows from the above discussion.
(b) The point P_{1} corresponds to $x_{0}=x_{1}=x_{2}$ so that the computation $3 / 2=(1-(2+$ 2) $/ 12)^{-1}$ shows that the spherical triangle group associated to the projective action of the isotropy group at $x \in \mathcal{P}$ is $(2,3,3)$. Indeed, we have to consider the triangle with angles $(2 \pi / 3,2 \pi / 3,2 \pi / 3)$ and take the symmetry into account (i.e. dividing the triangle into six parts), so that we obtain a triangle with angles $(\pi / 2, \pi / 3, \pi / 3)$. The center has order given by $2=(1-(2+2+2) / 12)^{-1}$. Comparing with [ST, Table 1], we see that the relevant group is the one labelled $\sharp 4$ in the Shephard-Todd list and the rest of the assertion follows.
(c) Similarly, the point P_{2} corresponds for instance to $x_{0}=x_{1}=x_{3}$ and the additional computation $4=(1-(2+7) / 12)^{-1}$ shows that the spherical triangle group associated to the projective action of the isotropy group at $y \in \mathcal{T}$ is $(2,3,4)$. Indeed, we have to consider the triangle with angles $(\pi / 4, \pi / 4,2 \pi / 3)$ and take the symmetry into account (i.e. dividing the triangle into two parts), so that we obtain a triangle with angles $(\pi / 2, \pi / 3, \pi / 4)$. The center has order given by $12=(1-(2+2+7) / 12)^{-1}$. Comparing with [ST, Table 2], we see that the relevant group is the one labelled $\sharp 10$ in the Shephard-Todd list.
(d) Follows from the interpretation of the stabilizer of $M \in \mathcal{M}_{A}$ as a central extension with center of order 3 (corresponding to the order of the reflection with mirror M) of a Deligne-Mostow group with weights $(2,4,7,11) / 12$ coming for instance from the collapsing of x_{1} and x_{2}. The associated triangle group is $(2,4,12)$ since $2=(1-(2+4) / 12)^{-1}$, $4=(1-(2+7) / 12)^{-1}$ and $12=(1-(4+7) / 12)^{-1}$.
(e) Similarly, the stabilizer of $M \in \mathcal{M}_{B}$ is a central extension with center of order 4 (corresponding to the order of the reflection with mirror M) of a (Deligne-)Mostow group with weights $(2,2,9,11) / 12$ coming for instance from the collapsing of x_{2} and x_{3}. We have moreover to take care of the symmetry coming from the first two weights. The associated triangle group is $(2,3,12)$ since $3 / 2=(1-(2+2) / 12)^{-1}$ and $12=(1-(2+9) / 12)^{-1}$ so that we have to divide into two parts a triangle with angles $(2 \pi / 3, \pi / 12, \pi / 12)$.
Remark 2. The data concerning the isotropy groups can be recovered using calculations in $\bar{\Gamma}$, see Proposition A.8.
1.4. Cartwright and Steger discovered a very interesting torsion-free subgroup Π of $\bar{\Gamma}$ with finite index. The surface $\Pi \backslash B_{\mathbb{C}}^{2}$ is called the Cartwright-Steger surface in this article.
Theorem 2 ([CS2]). The elements

$$
a_{1}=v u v^{-1} j^{4} b u v j^{2}, \quad a_{2}=v^{2} u b u v^{-1} u v^{2} j \quad \text { and } \quad a_{3}=u^{-1} v^{2} u j^{9} b v^{-1} u v^{-1} j^{8}
$$

of $\bar{\Gamma}$ generate a torsion-free subgroup Π of index 864, with $\Pi /[\Pi, \Pi] \cong \mathbb{Z}^{2}$.
Proof. Using the given presentation of $\bar{\Gamma}$, the Magma Index command shows that Π has index 864 in $\bar{\Gamma}$. We see that Π is torsion-free as follows. The 864 elements $b^{\mu} k$, for $\mu=0,1,-1$ and $k \in K$, form a set of representatives for the cosets Πg of Π in $\bar{\Gamma}$. One can verify this by a method we shall use repeatedly: for $g=b^{\mu} k$ and $g^{\prime}=b^{\mu^{\prime}} k^{\prime}$, we check that $\Pi g \neq \Pi g^{\prime}$ unless $\mu^{\prime}=\mu$ and $k^{\prime}=k$ by having Magma calculate the index in $\bar{\Gamma}$ of $\left\langle a_{1}, a_{2}, a_{3}, g^{\prime} g^{-1}\right\rangle$.

If $1 \neq \pi \in \Pi$ has finite order, then $\pi=g t g^{-1}$ for one of the elements t given in the table of Proposition A.7, or the inverse of one of these. But then $\left(b^{\mu} k\right) t\left(b^{\mu} k\right)^{-1} \in \Pi$ for some $\mu \in\{0,1,-1\}$ and $k \in K$, and Magma's Index command shows that this is not the case.

The Magma AbelianQuotientInvariants command shows that $\Pi /[\Pi, \Pi] \cong \mathbb{Z}^{2}$. For any isomorphism $f: \Pi /[\Pi, \Pi] \rightarrow \mathbb{Z}^{2}$, the image under f of $a_{1}^{3} a_{2}^{-2} a_{3}^{7}$ is trivial. We can choose f so that it maps a_{1}, a_{2} and a_{3} to $(1,3),(-2,1)$ and $(-1,-1)$, respectively. So $f\left(a_{1} a_{2}^{-1} a_{3}^{2}\right)=(1,0)$ and $f\left(a_{1}^{-1} a_{2} a_{3}^{-3}\right)=(0,1)$.

Magma shows that the normalizer of Π in $\bar{\Gamma}$ contains Π as a subgroup of index 3, and is generated by Π and j^{4}. One may verify that

$$
\begin{aligned}
j^{4} a_{1} j^{-4} & =\zeta^{3}\left(a_{3} a_{2}^{-3} a_{3}^{3} a_{1}\right) \\
j^{4} a_{2} j^{-4} & =\zeta^{-1} a_{3}^{-1}, \quad \text { and } \\
j^{4} a_{3} j^{-4} & =\zeta^{-1} a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{2} a_{1}^{-1} a_{2}^{-1} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2} a_{1}
\end{aligned}
$$

With the above isomorphism $f: \Pi /[\Pi, \Pi] \rightarrow \mathbb{Z}^{2}$,

$$
f(\pi)=(m, n) \quad \Longrightarrow f\left(j^{4} \pi j^{-4}\right)=(m, n)\left(\begin{array}{ll}
0 & -1 \tag{1}\\
1 & -1
\end{array}\right) \quad \text { for all } \pi \in \Pi .
$$

From now on, all the proofs involving computations with Magma will be given in the appendix (§A).
1.5. Cartwright and Steger noticed that the group Π can be exhibited as a congruence subgroup of $\bar{\Gamma}$: we have two reductions $r_{2}: \mathbb{Z}[\zeta] \rightarrow \mathbb{F}_{4}=\mathbb{F}_{2}[\omega]$ and $r_{3}: \mathbb{Z}[\zeta] \rightarrow \mathbb{F}_{9}=\mathbb{F}_{3}[i]$ defined by sending ζ to ω (resp. i) where $1+\omega+\omega^{2}=0$ (resp. $i^{2}=-1$). They induce (surjective) group morphisms $\rho_{2}: \bar{\Gamma} \rightarrow \mathrm{PU}\left(3, \mathbb{F}_{4}\right)$ and $\rho_{3}: \bar{\Gamma} \rightarrow \mathrm{PU}\left(3, \mathbb{F}_{9}\right)$ (recall that $\operatorname{PU}\left(3, \mathbb{F}_{4}\right)$ and $\mathrm{PU}\left(3, \mathbb{F}_{9}\right)$ have respective cardinality 216 and 6048$)$.

Note that for an element of $\operatorname{PU}\left(3, \mathbb{F}_{4}\right)$, the determinant is well defined since $\omega^{3}=1$. This enables us to define a (surjective) morphism $\operatorname{det}_{2}=\operatorname{det} \circ \rho_{2}: \bar{\Gamma} \rightarrow \mathbb{F}_{4}^{*}$. Let us denote the subgroup $\operatorname{det}_{2}^{-1}(1)$ of index 3 of $\bar{\Gamma}$ by Π_{2}.

Remark also that there exist subgroups of order 21 in $\mathrm{PU}\left(3, \mathbb{F}_{9}\right)$ (they are all conjugate) and let us denote one of them by G_{21}. Then, define $\Pi_{3}:=\rho_{3}^{-1}\left(G_{21}\right)$: it is a subgroup of $\bar{\Gamma}$ of index $288=6048 / 21$.

Finally, one can check that $\Pi_{2} \cap \Pi_{3}$ is a torsion-free subgroup of $\bar{\Gamma}$ of index $864=3 \cdot 288$ and that it is isomorphic to Π.

1.6.

Lemma 2. The Cartwright-Steger surface $X=\Pi \backslash B_{\mathbb{C}}^{2}$ has the following numerical invariants:

$$
c_{1}^{2}=9, \quad c_{2}=3, \quad \chi\left(\mathcal{O}_{X}\right)=1, \quad q:=h^{1,0}=1, \quad p_{g}:=h^{2,0}=1, \quad h^{1,1}=3 .
$$

Proof. The orbifold $\bar{\Gamma} \backslash B_{\mathbb{C}}^{2}$ has orbifold Euler characteristic $1 / 288$ (see [PY] or [Sa] for instance) so that X has Euler characteristic $c_{2}(X)=3=864 / 288$. Then, as it is a two-ball quotient, $c_{1}^{2}(X)=9$ and thus its arithmetic genus is $\chi\left(\mathcal{O}_{X}\right)=\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)=1$. Since $\Pi /[\Pi, \Pi] \cong \mathbb{Z}^{2}$, we have $b_{1}=2 q=2$. So, from

$$
\begin{aligned}
& 1=\chi\left(\mathcal{O}_{X}\right)=1-q+p_{g} \\
& 3=c_{2}(X)=2 b_{0}-2 b_{1}+b_{2}
\end{aligned}
$$

we deduce that $p_{g}=1, b_{2}=5$, and finally, $h^{1,1}=3$.
We will see later (Corollary 1) that the Picard number of X is actually 3. It is our purpose to understand the geometric properties of the surface X, especially using its Albanese map.

2. Summary of configurations of some totally geodesic divisors

Here we summarize results about configuration of totally geodesic divisors on the Cart-wright-Steger surface $X=\Pi \backslash B_{\mathbb{C}}^{2}$. Let $\pi: X \rightarrow R=\bar{\Gamma} \backslash B_{\mathbb{C}}^{2}$ be the projection. We use the notation of $\S 1.3$. From the description of the local groups at P_{1}, P_{2} and P_{3}, we know that $\pi^{-1}\left(P_{2}\right)$ consists of $3=864 / 288$ points $O_{1}=\Pi(O), O_{2}=\Pi(b \cdot O), O_{3}=\Pi\left(b^{-1} \cdot O\right)$ on X, $\pi^{-1}\left(P_{1}\right)$ consists of $36=864 / 24$ points, and $\pi^{-1}\left(P_{3}\right)$ consists of $72=864 / 12$ points.

For the curves D_{A} and D_{B}, their preimages $\pi^{-1}\left(D_{A}\right)$ and $\pi^{-1}\left(D_{B}\right)$ consist of singular totally geodesic curves on X, denoted to be of types A and B respectively. The curves have simple crossings at $\pi^{-1}\left(P_{i}\right)$ for $i=1,2,3$.
2.1. By Propositions A.9, A. 10 and A.11, the (singular) totally geodesic curves on X of type B consist of three curves of geometric genus 4, denoted by E_{1}, E_{2} and E_{3} and associated with M_{0}, M_{∞} and M_{1} respectively (in the notation of Proposition A.10). These curves are specified by having multiplicities at O_{1}, O_{2}, O_{3} given by $(3,1,2),(2,1,3)$ and $(1,4,1)$ respectively and the points in $\pi^{-1}\left(P_{2}\right)$ are the only ones where they can intersect.
2.2. By Propositions A.13, A.14, A. 15 and A.16, the (singular) totally geodesic curves on X of type A consist of four curves denoted by C_{1}, C_{2}, C_{3} and C_{4}, associated with $b\left(M_{c}\right)$, $b^{-1}\left(M_{c}\right), M_{c}$ and M_{-c} respectively (in the notation of Proposition A.14), and where the geometric genera are given by $4,4,10$ and 10 respectively. The curves of type A may intersect at points in $\pi^{-1}\left(P_{1}\right)$ and $\pi^{-1}\left(P_{2}\right)$, and nowhere else. In the following discussions, we shall mainly focus on C_{1} and C_{2}, both of which cross O_{1}, O_{2}, O_{3} with multiplicities $(0,1,2)$ respectively. The corresponding multiplicities for C_{3} and C_{4} are $(4,3,2)$. The curve C_{1} passes precisely once through exactly 18 of the 36 points in $\pi^{-1}\left(P_{1}\right)$, as does C_{2}. The curves C_{1} and C_{2} intersect once at 12 of those 36 points.
2.3. A curve of type A and one of type B may intersect at points of $\pi^{-1}\left(P_{3}\right)$, apart from the intersections at $O_{j}, j=1,2,3$, mentioned by the data above. From Proposition A.18, we get the following data. The curve E_{1} intersects each of $C_{i}, i=1,2,3,4$ once in normal crossing in 6 of the 72 points in $\pi^{-1}\left(P_{3}\right)$. The curve E_{2} has no intersection with C_{1} and C_{2}, but intersects once with each of C_{3}, C_{4} at 12 of the points of $\pi^{-1}\left(P_{3}\right)$. The curve E_{3} intersects each of C_{1} and C_{2} once at three of the points of $\pi^{-1}\left(P_{3}\right)$, and intersects each of the curves C_{3} and C_{4} once at 9 of the points of $\pi^{-1}\left(P_{3}\right)$.

Remark 3. It can be checked with Magma that the normalizations of the three curves E_{i} are orbifold coverings of degree 72 of the orbifold $\mathbb{P}_{\mathbb{C}}^{1}$ endowed with three orbifold points of respective multiplicities $(2,3,12)$ hence by the Riemann-Hurwitz formula, the genus of E_{i} is indeed

$$
g\left(E_{i}\right)=\frac{72}{2}\left(-2+\frac{2-1}{2}+\frac{3-1}{3}+\frac{12-1}{12}\right)+1=4 .
$$

Note that $864=4 \cdot 3 \cdot 72$ where 4 is the order of the reflections of type B and 3 the number of curves of type B.

In the same way, the normalizations of C_{1} and C_{2} (resp. C_{3} and C_{4}) are orbifold coverings of degree 36 (resp. 108) of the orbifold $\mathbb{P}_{\mathbb{C}}^{1}$ endowed with three orbifold points of respective multiplicities $(2,3,12)$ so that $g\left(C_{1}\right)=g\left(C_{2}\right)=4$ and $g\left(C_{3}\right)=g\left(C_{4}\right)=10$. Here again, $864=3(2 \cdot 36+2 \cdot 108)$ where 3 is the order of the reflections of type A.

All these computations are consistent with Lemmas 1(d) and (e).
2.4. We have seen that $H_{1}(X, \mathbb{Z})=\mathbb{Z} e_{1}+\mathbb{Z} e_{2} \cong \mathbb{Z}^{2}$ in terms of a basis e_{1} and e_{2}. Let D be a smooth curve of genus 4. A presentation of $\pi_{1}(D)$ can be given as

$$
\left\langle u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}, u_{4}, v_{4} \mid \prod_{i=1}^{4}\left[u_{i}, v_{i}\right]=1\right\rangle
$$

For each of the curves D of genus $4, E_{i}, i=1,2,3$ and $C_{j}, j=1,2$, abusing notation we denote by $f: H_{1}(\widehat{D}, \mathbb{Z}) \rightarrow H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}$ the homomorphism induced by the normalization of the immersed image of D in X. Using Magma, we have found explicitly a basis of such elements $u_{i}, v_{i}, i=1, \ldots, 4$ in $\pi_{1}(\widehat{D})$, and computed their images $f\left(u_{i}\right), f\left(u_{j}\right)$ in $H_{1}(X, \mathbb{Z})$ in terms of e_{1}, e_{2} (see Propositions A. 12 and A.17). This is summarized as follows for E_{1}, E_{2} and C_{1}, which is all we need for later computations.

D	$f\left(u_{1}\right)$	$f\left(v_{1}\right)$	$f\left(u_{2}\right)$	$f\left(v_{2}\right)$	$f\left(u_{3}\right)$	$f\left(v_{3}\right)$	$f\left(u_{4}\right)$	$f\left(v_{4}\right)$
E_{1}	$(-5,-2)$	$(-2,7)$	$(-2,1)$	$(0,0)$	$(1,4)$	$(3,-6)$	$(2,5)$	$(-1,-4)$
E_{2}	$(-1,2)$	$(2,-1)$	$(-2,1)$	$(0,0)$	$(-3,0)$	$(-1,2)$	$(-2,1)$	$(3,0)$
C_{1}	$(0,-2)$	$(-2,0)$	$(-4,0)$	$(0,2)$	$(-4,2)$	$(4,0)$	$(2,0)$	$(0,-2)$

3. Picard number

3.1.

Lemma 3. Suppose D is a reduced (not necessarily irreducible) totally geodesic curve on a smooth complex two-ball quotient X self-intersecting only at P_{1}, \ldots, P_{k} with simple multiplicities given by $\left(b_{1}, \cdots, b_{k}\right)$ and let us denote by $D_{i}(i=1, \ldots, n)$ its irreducible components, \widehat{D}_{i} their normalization. Let $\nu: \widehat{D}=\cup_{i} \widehat{D}_{i} \rightarrow D$ be the normalization of D. Then

$$
K_{X} \cdot D=3 \sum_{i=1}^{n}\left(g\left(\widehat{D}_{i}\right)-1\right) \quad \text { and } D \cdot D=\frac{1}{2} e(\widehat{D})+\widetilde{\delta}, \quad \text { where } \widetilde{\delta}=\sum_{i=1}^{k} b_{i}\left(b_{i}-1\right)
$$

and $e(\widehat{D})$ is the Euler characteristic of \widehat{D}.
Proof. Note that we are in the case of a (non necessarily connected) immersed smooth curve in a surface, with singularities given by intersections of transversal local branches. Moreover, it is well known that for a totally geodesic curve D in a two-ball quotient, $c_{1}\left(K_{\widehat{D}}\right)=\frac{2}{3} \nu^{*} c_{1}\left(K_{X}\right)$ (this is a simple computation involving the curvature form on $B_{\mathbb{C}}^{2}$). As a consequence, by the adjunction formula,

$$
K_{X} \cdot D=\int_{D} c_{1}\left(K_{X}\right)=\frac{3}{2} \sum_{i} \int_{\widehat{D}_{i}} c_{1}\left(K_{\widehat{D}_{i}}\right)=3 \sum_{i=1}^{n}\left(g\left(\widehat{D}_{i}\right)-1\right) .
$$

Recall moreover from [BHPV, §II.11] that
$g(D)=g(\widehat{D})+\delta^{\text {an }}(D)$, where $g(\widehat{D})=1+\sum_{i}\left(g\left(\widehat{D}_{i}\right)-1\right)$ and $\delta^{\text {an }}(D)=\sum_{x \in D} \operatorname{dim}_{\mathbb{C}}\left(\nu_{*} \mathcal{O}_{\widehat{D}} / \mathcal{O}_{D}\right)$
(here, the genus of a singular curve is its arithmetic genus). From the adjunction formula for embedded curves, $2(g(D)-1)=K_{X} \cdot D+D \cdot D$ and therefore,
$D \cdot D=2(g(D)-1)-K_{X} \cdot D=2\left(g(\widehat{D})+\delta^{\text {an }}(D)-1\right)-3(g(\widehat{D})-1)=(1-g(\widehat{D}))+2 \delta^{\text {an }}(D)$.
Finally, observe that in the case at hand, $\delta^{\text {an }}(D)=\frac{1}{2} \sum_{i=1}^{k} b_{i}\left(b_{i}-1\right)=\frac{1}{2} \widetilde{\delta}$.

3.2.

Lemma 4. We have the following intersection numbers.
(a) For $i=1,2,3$, we have $K_{X} \cdot E_{i}=9$. Moreover, for $i=1,2, E_{i} \cdot E_{i}=5, E_{i} \cdot E_{3}=9$ and $E_{1} \cdot E_{2}=13$. We also have $E_{3} \cdot E_{3}=9$.
(b) Denote by C either C_{1} or C_{2}. Then $K_{X} \cdot C=9, C \cdot C=-1, E_{1} \cdot C=11, E_{2} \cdot C=7$ and $E_{3} \cdot C=9$.

Proof. The results follow immediately from Lemma 3 (here, all the involved curves are irreducible) and the summary in $\S 2$.

First, note that since the normalizations of the curves in (a) and (b) all have genus 4, their intersection with K_{X} is always 9 by Lemma 3. We leave the other computations to the reader and just observe that:

- a curve E_{i} can only intersect a curve E_{j} at $\pi^{-1}\left(P_{2}\right)$,
- two local branches of a curve C can only intersect at $\pi^{-1}\left(P_{2}\right)$,
- a curve C can only intersect a curve E_{i} at $\pi^{-1}\left(P_{2}\right)$ and $\pi^{-1}\left(P_{3}\right)$.
3.3. From now on, for any two divisors D and D^{\prime} on $X, D \equiv D^{\prime}$ will mean that D and D^{\prime} are numerically equivalent.

Lemma 5. E_{1}, E_{2} and C represent numerically linearly independent elements in the NéronSeveri group, where $C=C_{1}$ or C_{2}.

Proof. Assume that E_{1}, E_{2} and C satisfy numerically an identity

$$
a E_{1}+b E_{2}+c C \equiv 0
$$

By considering the intersection of the above identity with E_{1}, E_{2} and C respectively, we conclude that

$$
\begin{aligned}
& 0=5 a+13 b+11 c \\
& 0=13 a+5 b+7 c \\
& 0=11 a+7 b-c
\end{aligned}
$$

The determinant of the above linear system is $1296 \neq 0$. Hence $a=b=c=0$.

3.4.

Corollary 1. The Picard number of X is 3 .
Proof. It follows from the previous lemma that the Picard number is at least 3, given by the classes of E_{1}, E_{2} and C. On the other hand, $h^{1,1}(X)=3$ by Lemma 2. Since the Picard number is bounded from above by $h^{1,1}$, we conclude that the Picard number is 3 .
3.5. The following fact is a corollary of the earlier discussions.

Proposition 2. The canonical line bundle K_{X} and E_{3} give rise to the same class in the Néron-Severi group. Moreover, $K_{X} \equiv E_{3} \equiv \frac{1}{2} E_{1}+\frac{1}{2} E_{2}$.

Proof. From the discussions in the previous section, we know that E_{1}, E_{2} and $C=C_{1}$ form a basis of the Néron-Severi group (which is torsion free since $H_{1}(X, \mathbb{Z})=\mathbb{Z}^{2}$ is torsion free).

Hence we may write

$$
K_{X} \equiv a E_{1}+b E_{2}+c C
$$

for some rational numbers a, b and c. By pairing with E_{1}, E_{2} and C respectively, we arrive at

$$
\begin{aligned}
& 9=5 a+13 b+11 c \\
& 9=13 a+5 b+7 c \\
& 9=11 a+7 b-c
\end{aligned}
$$

Solving the above system of equations, we obtain

$$
K_{X} \equiv \frac{1}{2} E_{1}+\frac{1}{2} E_{2}
$$

The same computation leads to $E_{3} \equiv \frac{1}{2}\left(E_{1}+E_{2}\right)$ since $E_{3} \cdot E_{i}=K_{X} \cdot E_{i}$ for $i=1,2$ and $E_{3} \cdot C=K_{X} \cdot C$.

Remark 4. By the previous proposition, we also have $K_{X} \equiv \frac{2}{3}\left(\frac{1}{2} E_{1}+\frac{1}{2} E_{2}\right)+\frac{1}{3} E_{3}=$ $\frac{1}{3}\left(E_{1}+E_{2}+E_{3}\right)$. This fact can be recovered directly from the description of X as an orbifold covering of $R=\bar{\Gamma} \backslash B_{\mathbb{C}}^{2}$ as in §2.

We use the notation of §1.3. Let $q: \bar{Q}=\mathbb{P}_{\mathbb{C}}^{2} \rightarrow R=\mathbb{P}_{\mathbb{C}}^{2} / \Sigma_{3}$ be the projection. First, we compute the canonical divisor K_{R} of R. We have $K_{R}=a D_{A}=2 a D_{B}$ for some $a \in \mathbb{Q}$ (see [DM2, §11.4 and Proposition 11.5] for a description of $\operatorname{Pic}(R)$). If we denote by $L=$ $\mathcal{O}(1)$ the positive generator of $\operatorname{Pic}\left(\mathbb{P}_{\mathbb{C}}^{2}\right)$, we have $-3 L=K_{\mathbb{P}_{\mathbb{C}}^{2}}=q^{*} K_{R}+3 L=6 a L+3 L$ as q branches at order 2 along D_{A}, and D_{A} has three lines as a preimage in $\mathbb{P}_{\mathbb{C}}^{2}$. Hence $K_{R}=-D_{A}=-2 D_{B}$.

Now, the orbifold canonical divisor of $\bar{\Gamma} \backslash B_{\mathbb{C}}^{2}$ is $K_{R}+\frac{3-1}{3} D_{A}+\frac{4-1}{4} D_{B}=\left(-1+\frac{2}{3}+\frac{3}{8}\right) D_{A}=$ $\frac{1}{24} D_{A}=\frac{1}{12} D_{B}$. In particular, as $\pi^{*} D_{B}=4\left(E_{1}+E_{2}+E_{3}\right)$, we get the result.

4. Geometry of a generic fiber of the Albanese map

4.1. Let $\alpha: X \rightarrow T$ be the Albanese map of X. From $\Pi /[\Pi, \Pi] \cong \mathbb{Z}^{2}$, we know that T is an elliptic curve, and in particular, α is onto. Moreover, note that since the image of α is a curve, the fibers of α are connected (see [U, Proposition 9.19]). Let D be a curve on X. The mapping α induces a mapping $\left.\alpha\right|_{D}: D \rightarrow T$. Suppose F is the generic fiber of α. Then the degree of $\left.\alpha\right|_{D}$ is given by $D \cdot F$.

Lemma 6. Let m, n, p be the degrees of E_{1}, E_{2}, and $C=C_{1}$, respectively, over the Albanese torus T of X. The generic fiber F of the Albanese fibration of X satisfies

$$
F \equiv \frac{1}{72}\left((-3 m+5 n+2 p) E_{1}+(5 m-7 n+6 p) E_{2}+2(m+3 n-4 p) C\right)
$$

Proof. From Lemma 5, we may write numerically

$$
F \equiv a E_{1}+b E_{2}+c C
$$

for some rational numbers a, b, c. By pairing with E_{1}, E_{2} and C respectively, we arrive at

$$
\begin{aligned}
m & =5 a+13 b+11 c \\
n & =13 a+5 b+7 c \\
p & =11 a+7 b-c
\end{aligned}
$$

The lemma follows from solving the above system of equations.

4.2 .

Lemma 7. The degrees of $E_{1}, E_{2}, C=C_{1}$ over the Albanese torus T of X are given by

$$
m=60, n=12, p=24
$$

Proof. Let D represent one of the curves $E_{1}, E_{2}, C, \nu: \hat{D} \rightarrow D$ the normalization of D and $\hat{\alpha}=\alpha \circ \nu$. Let ω be a positive $(1,1)$ form on T. Then the degree of D over T is given by $\operatorname{deg}(D)=\frac{\int_{D} \alpha^{*} \omega}{\int_{T} \omega}$. The key is to find the degree from the information of the explicit curves that we have. For this purpose, we use an analogue of the Riemann bilinear relations. Let η be a holomorphic 1-form on the smooth Riemann surface \hat{D}. Let $\left\{u_{i}, v_{i}\right\}$ be a basis of $\pi_{1}(\hat{D})$ as studied in $\S 2.4$. Then the Riemann bilinear relation (cf. [GH, p. 231]) states that

$$
\int_{\hat{D}} \sqrt{-1} \eta \wedge \bar{\eta}=\sqrt{-1} \sum_{i=1}^{4}\left[\int_{u_{i}} \eta \overline{\int_{v_{i}} \eta}-\int_{v_{i}} \eta \overline{\int_{u_{i}} \eta}\right]
$$

where we use the same notation for an element of $\pi_{1}(\hat{D})$ and its image in $H_{1}(\hat{D}, \mathbb{Z})$. Let us write $T=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ where $\operatorname{Im} \tau>0$. Let $\omega_{T}=\sqrt{-1} d z \wedge \overline{d z}$ be the standard $(1,1)$ form on \mathbb{C} and hence T. The above formula gives

$$
\begin{equation*}
\int_{T} \omega_{T}=\sqrt{-1}(\bar{\tau}-\tau) \tag{2}
\end{equation*}
$$

Pulling back to D, the above formula gives

$$
\begin{align*}
\int_{D} \alpha^{*} \omega_{T} & =\int_{\hat{D}} \hat{\alpha}^{*} \omega_{T} \\
& =\int_{\hat{D}} \sqrt{-1} \hat{\alpha}^{*} d z \wedge \hat{\alpha}^{*} \overline{d z} \\
& =\sqrt{-1} \sum_{i=1}^{4}\left[\int_{u_{i}} \hat{\alpha}^{*} d z \overline{\int_{v_{i}} \hat{\alpha}^{*} d z}-\int_{v_{i}} \hat{\alpha}^{*} d z \overline{\int_{u_{i}} \hat{\alpha}^{*} d z}\right] \tag{3}\\
& =\sqrt{-1} \sum_{i=1}^{4}\left[\int_{\hat{\alpha}_{*}\left(u_{i}\right)} d z \overline{\int_{\hat{\alpha}_{*}\left(v_{i}\right)} d z}-\int_{\hat{\alpha}_{*} v_{i}} d z \overline{\int_{\hat{\alpha}_{*} u_{i}} d z}\right] .
\end{align*}
$$

In the above, $\hat{\alpha}_{*}: H_{1}(\hat{D}, \mathbb{Z}) \rightarrow H_{1}(T, \mathbb{Z}) \cong H_{1}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}$ refers to the map on 1-cycles induced by $\hat{\alpha}$. Hence the right-hand side of the above expression in terms of the notation in $\S 2.4$ is (up to sign)

$$
\begin{equation*}
\sqrt{-1} \sum_{i=1}^{4}\left[\int_{f\left(u_{i}\right)} d z \overline{\int_{f\left(v_{i}\right)} d z}-\int_{f\left(v_{i}\right)} d z \overline{\int_{f\left(u_{i}\right)} d z}\right]=\left[\sum_{i=1}^{4} \operatorname{det}\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)\right] \sqrt{-1}(\bar{\tau}-\tau) \tag{4}
\end{equation*}
$$

where $\operatorname{det}\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)$ stands for the determinant of the two by two matrix formed by the two vectors $f\left(u_{i}\right)$ and $f\left(v_{i}\right)$ from the table in $\S 2.4$. Notice that the resulting number will be positive if and only if the orientation on \hat{D} coming from the choice of $\left(u_{1}, v_{1}, \ldots, u_{4}, v_{4}\right)$ as a symplectic basis of $H_{1}(\hat{D}, \mathbb{Z})$, and the orientation on T induced by the choice of the basis $\left(e_{1}, e_{2}\right)$ of $H_{1}(T, \mathbb{Z})$ are compatible (i.e. both are the same, or the opposite, as the one induced by the respective complex structures).

Substituting into (3) and (4) the values of $f\left(u_{i}\right)$ and $f\left(v_{i}\right)$ from the table in $\S 2.4$, we conclude the values of $-60,-12,-24$ for the values of $\sum_{i=1}^{4} \operatorname{det}\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)$ in the case of E_{1}, E_{2} and C respectively. We conclude from (2), (3) and (4) that the degrees m, n, p are given by 60,12 and 24 respectively, and that the orientation on \hat{D} and T are not compatible (we will say more on this below, see §5.5).

4.3.

Theorem 3. A fiber of the Albanese map $\alpha: X \rightarrow T$ represents the same numerical class as $-E_{1}+5 E_{2}$, and the genus of a generic fiber F is 19 .

Proof. Substituting the values of m, n, p from the previous lemma into Lemma 6, we conclude that F represents the same class as $-E_{1}+5 E_{2}$ in the Néron-Severi group. Hence

$$
F \cdot K_{X}=-E_{1} \cdot K_{X}+5 E_{2} \cdot K_{X}=36
$$

On the other hand, from the adjunction formula,

$$
2(g-1)=\left(K_{X}+F\right) \cdot F=K_{X} \cdot F .
$$

Hence $g=19$.

5. Geometry of the Albanese fibration

5.1. Consider the Albanese fibration $\alpha: X \rightarrow T$. First, recall that the fibers of α are connected (see $\S 4.1$). Let X_{s} be the fiber of α at $s \in T$. It is connected (see $\S 4.1$). Now $g\left(X_{s}\right) \geqslant 2$, because X has negative holomorphic sectional curvature. Although we will not need this in the sequel, we observe that the fibration cannot be locally holomorphically trivial. Otherwise there is a smooth non-trivial family of holomorphic mappings from X_{s} (where $s \in T$ is generic) to X. However, a holomorphic map is harmonic with respect to any Kähler metric on X_{s} and the Poincaré metric on X. As the Poincaré metric on X is strictly negative, it follows from uniqueness of harmonic maps to a negatively curved Kähler manifold in its homotopy class that the family is actually a singleton, a contradiction.
5.2. The result below is just a rewriting of Proposition X. 10 in [Be]. As usual, if D is a (not necessarily reduced) curve, we denote by $g(D)$ its arithmetic genus (see [BHPV, §II.11]).

Proposition 3. Let X (resp. C) be a smooth complex surface (resp. curve) and π : $X \rightarrow C$ a surjective morphism with connected fibers. Let $D=\sum_{i=1}^{k} m_{i} D_{i}, \quad\left(m_{i} \geqslant 1\right)$ be a singular fiber of π and let $D^{\mathrm{red}}=\sum_{i=1}^{k} D_{i}$ be the reduced divisor associated to D. Let $\nu: \widehat{D^{\text {red }}} \rightarrow D^{\text {red }}$ be the normalization. For any x in the support of D^{red}, we define $\delta_{x}^{\text {top }}:=\operatorname{dim}_{\mathbb{C}}\left(\nu_{*} \mathbb{C}_{\widehat{D^{\text {red }}}} / \mathbb{C}_{D^{\text {red }}}\right)=\sharp \nu^{-1}(x)-1$ the number of (local) irreducible components of
D^{red} at x minus 1 and $\delta_{x}^{\mathrm{an}}:=\operatorname{dim}_{\mathbb{C}}\left(\nu_{*} \mathcal{O}_{\widehat{D^{\mathrm{red}}}} / \mathcal{O}_{D^{\mathrm{red}}}\right)$ so that $\mu_{x}:=2 \delta_{x}^{\mathrm{an}}-\delta_{x}^{\text {top }}$ is the Milnor number of D^{red} at x. We also set $\mu=\sum_{x \in D^{\mathrm{red}}} \mu_{x}$. Then, we have

$$
\begin{equation*}
e\left(D^{\mathrm{red}}\right)-e\left(X_{s}\right)=\mu+\left(\sum_{i=1}^{k}\left(m_{i}-1\right)\left(2\left(g\left(D_{i}\right)-1\right)-D_{i}^{2}\right)\right)-\left(D^{\mathrm{red}}\right)^{2} \tag{5}
\end{equation*}
$$

Proof. From Lemma VI. 5 and the proof of Proposition X. 10 in [Be], we immediately get

$$
e\left(D^{\mathrm{red}}\right)=\mu+2 \chi\left(\mathcal{O}_{D^{\mathrm{red}}}\right)=\mu+e\left(X_{s}\right)+2\left(\chi\left(\mathcal{O}_{D^{\mathrm{red}}}\right)-\chi\left(\mathcal{O}_{D}\right)\right)
$$

where we used the fact that the arithmetic genus of the fibers of a morphism from a surface onto a curve is constant. Now, since $D^{2}=0$,

$$
\begin{aligned}
2\left(\chi\left(\mathcal{O}_{D^{\mathrm{red}}}\right)-\chi\left(\mathcal{O}_{D}\right)\right) & =\left(K_{X}+D\right) \cdot D-\left(K_{X}+D^{\mathrm{red}}\right) \cdot D^{\mathrm{red}} \\
& =K_{X} \cdot\left(D-D^{\mathrm{red}}\right)-\left(D^{\mathrm{red}}\right)^{2} \\
& =\sum_{i=1}^{k}\left(m_{i}-1\right)\left(K_{X}+D_{i}\right) \cdot D_{i}-\sum_{i=1}^{k}\left(m_{i}-1\right) D_{i}^{2}-\left(D^{\mathrm{red}}\right)^{2} .
\end{aligned}
$$

That $2 \delta_{x}^{\mathrm{an}}-\delta_{x}^{\mathrm{top}}$ is the Milnor number of D^{red} at x is proved in [BG, Proposition 1.2.1].
Remark 5. In the notation of Proposition 3, $\mu_{x}=0$ if and only if $D^{\text {red }}$ is smooth at x and if $\mu_{x}=1$ it is easily seen that the singularity of $D^{\text {red }}$ at x is nodal (see Lemmas 1.2.1 and 1.2.4 in [BG] for instance).

Corollary 2. Let $I \subset T$ be the set of singular values of the Albanese fibration α. Then
(a) $\sum_{s_{o} \in I}\left(e\left(X_{s_{o}}\right)-e\left(X_{s}\right)\right)=3$ where X_{s} is a generic fiber,
(b) the cardinality of I is at most 3,
(c) α has no multiple fiber, and therefore $\left(X_{s_{0}}\right)^{\text {red }}$ is singular for at least one $s_{0} \in I$,
(d) the total number of singular points in the fibers is at most 3 and if equality holds, the three singularities are nodal and the fibration is stable. More precisely,

$$
\begin{equation*}
\sum_{s_{o} \in I}\left(\sum_{x \in X_{s_{0}}} \mu_{x}\right)=3 . \tag{6}
\end{equation*}
$$

Proof. Note first that there are no rational or elliptic curves in X since the holomorphic sectional curvature of a ball quotient is negative.
(a) From the standard formula for the Euler number of a holomorphic fibration (see $[\mathrm{Be}$, Lemma VI.4] or [BHPV, Proposition III.11.4]), we have

$$
3=e(X)=e(T) \cdot e\left(X_{s}\right)+\sum_{s_{o} \in I} n_{s_{o}}=\sum_{s_{o} \in I} n_{s_{o}},
$$

where $n_{s_{o}}=e\left(X_{s_{o}}\right)-e\left(X_{s}\right)$ for $s \in T_{o}:=T-I$. Here we used the fact that the Euler characteric of T vanishes.
(b) It is well known (see [BHPV, Remark III.11.5]), and it can be easily recovered from Proposition 3, that $n_{s_{o}} \geqslant 0$ with equality if and only if $X_{s_{o}}$ is a multiple fiber with $\left(X_{s_{o}}\right)^{\text {red }}$ smooth elliptic. But as we noticed above, this is impossible in our case thus $n_{s_{o}}>0$ for any $s_{o} \in I$. Since $\sum_{s_{o} \in I} n_{s_{o}}=3$, we conclude in particular that $|I| \leqslant 3$ (and each $n_{s_{o}} \leqslant 3$).
(c) Assume first that a fiber D might be written $D=m D^{\text {red }}$ with $m \geqslant 2$. Then, by (a) and formula (5), $3 \geqslant e\left(D^{\text {red }}\right)-e\left(X_{s}\right) \geqslant(m-1) \sum_{i=1}^{k}\left(g\left(D_{i}\right)-1\right)$ and the only possibility is that $k=1, m=2$ and $g\left(D_{1}\right)=2$. However, by Theorem 3, $18=g(D)-1=m\left(g\left(D_{1}\right)-1\right)=2$, a contradiction.

Now, assume that $D=\sum_{i=1}^{k} m_{i} D_{i}$ with $k \geqslant 2, m_{i} \geqslant 1$ and $m_{1} \geqslant 2$. Recall that by Zariski's lemma (see [BHPV, Lemma III.8.2]) the self intersection of any effective cycle supported on $D^{\text {red }}$ must be nonpositive, and it is equal to zero if and only if it is proportional
to D (in particular $D_{1}^{2}<0$). Therefore by formula (5), $3 \geqslant e\left(D^{\text {red }}\right)-e\left(X_{s}\right) \geqslant 3-\left(D^{\text {red }}\right)^{2}$. But $\left(D^{\text {red }}\right)^{2}=0$ if and only if $D=m D^{\text {red }}$, a case which has already been ruled out.
(d) is a consequence of the previous points, equation (5) and Remark 5.

5.3.

Lemma 8. $\operatorname{deg}\left(\alpha_{*} \omega_{X \mid T}\right)=1$.
Proof. Note that we do not know a priori that the fibration α is stable. The lemma is a direct consequence of [X, Chapter 1], where it is shown that $\alpha_{*} \omega_{X \mid T}$, the direct image of the relative dualizing sheaf $\omega_{X \mid T}$, is locally free of rank $g=g\left(X_{s}\right)$, where $s \in T$ is a generic point (as in the classical case of a stable fibration). As a consequence, this is also the case of $R^{1} \alpha_{*} \mathcal{O}_{X}$ which is the dual sheaf of $\alpha_{*} \omega_{X \mid T}$.

Then, using the Leray spectral sequence and the Riemann-Roch formula, we get

$$
\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{T}\right)-\chi\left(R^{1} \alpha_{*} \mathcal{O}_{X}\right)=-\operatorname{deg}\left(R^{1} \alpha_{*} \mathcal{O}_{X}\right)+(g-1)(g(T)-1)=\operatorname{deg} \alpha_{*} \omega_{X \mid T}
$$

since $\operatorname{deg} \alpha_{*} \omega_{X \mid T}=-\operatorname{deg}\left(R^{1} \alpha_{*} \mathcal{O}_{X}\right)$ and $g(T)=1$. As $\chi\left(\mathcal{O}_{X}\right)=1$, the result follows.
5.4. Recall from $\S 1.4$ (see also \S A.5) that the normalizer N of Π in $\bar{\Gamma}$ is generated by the element j^{4} of order 3 and Π, and the automorphism group Σ of X is given by the group N / Π, which has order 3. Denote by σ the automorphisms of $B_{\mathbb{C}}^{2}$ and of X induced by j^{4}. If $\xi=\left(z_{1}, z_{2}\right) \in B_{\mathbb{C}}^{2}$, then $\sigma(\xi)=\left(\omega z_{1}, \omega z_{2}\right)$ where $\omega=\zeta^{4}$ is a non trivial cube root of unity.

The Albanese map $\alpha: X \rightarrow T=\mathbb{C} / \Lambda$ can be lifted to a holomorphic map $\alpha_{0}: B_{\mathbb{C}}^{2} \rightarrow \mathbb{C}$ so that $\alpha_{0}(O)=0$ (choosing $\Pi O \in X$ as base point when defining α):

If $\pi \in \Pi$, then $\alpha_{0}(\pi \xi)-\alpha_{0}(\xi) \in \Lambda$ is independent of $\xi \in B_{\mathbb{C}}^{2}$, and so there is a map $\theta_{0}: \Pi \rightarrow \Lambda$ such that $\alpha_{0}(\pi \xi)=\alpha_{0}(\xi)+\theta_{0}(\pi)$ for all $\xi \in B_{\mathbb{C}}^{2}$ and $\pi \in \Pi$. Since θ_{0} is a homomorphism, it factors through our abelianization map $f: \Pi \rightarrow \mathbb{Z}^{2}$, see $\S 1.4$. So there is a homomorphism $\theta: \mathbb{Z}^{2} \rightarrow \Lambda$ such that

$$
\begin{equation*}
\alpha_{0}(\pi \xi)=\alpha_{0}(\xi)+\theta(f(\pi)) \quad \text { for all } \xi \in B_{\mathbb{C}}^{2} \text { and } \pi \in \Pi \tag{7}
\end{equation*}
$$

By the universal property of the Albanese map, there is an automorphism $\sigma_{T}: T \rightarrow T$ such that the following diagram commutes:

If the automorphism is trivial, then $\alpha_{0}(\sigma(\xi))-\alpha_{0}(\xi) \in \Lambda$ for all $\xi \in B_{\mathbb{C}}^{2}$, and so is constant. Since $\sigma(O)=O, \alpha_{0}\left(j^{4} \xi\right)=\alpha_{0}(\xi)$ for all ξ, and this implies that $\theta\left(f\left(j^{4} \pi j^{-4}\right)\right)=\theta(f(\pi))$ for all $\pi \in \Pi$. But then (1) implies that $\theta=0$, because $I-\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$ is non-singular hence $\Pi \xi \mapsto \alpha_{0}(\xi)$ is a holomorphic function $X \rightarrow \mathbb{C}$, and so is constant because X is compact, contradicting surjectivity of α.

As a consequence, Σ acts non trivially on T and since $\sigma(O)=O$, the action of Σ fixes the point $\alpha(\Pi O)=0+\Lambda$. From this and $|\Sigma|=3$, it follows immediately that the elliptic curve has to be $T=\mathbb{C} /(\mathbb{Z}+\omega \mathbb{Z})$, and the vertical map σ_{T} on the right in (8) is $z+\Lambda \mapsto \omega^{i} z+\Lambda$ with $i=1$ or 2 . Indeed, the automorphism σ_{T} which fixes $0+\Lambda$ is induced by a nontrivial \mathbb{C}-linear automorphism of \mathbb{C} preserving Λ (see [Be, Proposition V.12] for instance). Since it
has order 3 , it must be multiplication by ω^{i}, where $i=1$ or 2 . Hence Λ contains 1 and ω (after renormalization of the lattice).

It follows that there are precisely 3 fixed points of Σ on T : a fundamental domain of T consists of two equilateral triangles and the fixed points are given by a vertex and the centroid of each of the two triangles i.e. are the points $p_{\nu}=\nu(2+\omega) / 3+\Lambda, \nu=0,1,-1$ (notice that $\left.(1-\omega)^{-1}=(2+\omega) / 3\right)$. In particular, we have proved

Lemma 9. The action of Σ descends to a non-trivial action of T. There are three fixed points in the action of Σ on T. The elliptic curve T is isomorphic to $\mathbb{C} /(\mathbb{Z}+\omega \mathbb{Z})$.
5.5. We still use the notation from §5.4. Note that by definition of the Albanese map, $\theta \circ f: \Pi \rightarrow \Lambda$ is onto. In other words, $a+b \omega:=\theta(1,0)$ and $c+d \omega:=\theta(0,1)$ (where $a, b, c, d \in \mathbb{Z}$) generate Λ over \mathbb{Z} i.e. $a d-b c= \pm 1$. We wish to determine whether σ_{T} acts on T by ω or ω^{2}.

The automorphism σ is induced by the action of j^{4} on $B_{\mathbb{C}}^{2}$, and recall that j^{4} normalizes Π. For any $\pi \in \Pi$, we have

$$
\alpha_{0}\left(j^{4} \pi O\right)=\alpha_{0}\left(j^{4} \pi j^{-4} j^{4} O\right)=\alpha_{0}\left(j^{4} O\right)+\theta\left(f\left(j^{4} \pi j^{-4}\right)\right)=\alpha_{0}(O)+\theta\left(f\left(j^{4} \pi j^{-4}\right)\right)
$$

since O is fixed by j^{4}, and

$$
\alpha_{0}(\pi O)=\alpha_{0}(O)+\theta(f(\pi))
$$

Clearly, σ_{T} acts on T by ω^{i} if and only if $\alpha_{0}\left(j^{4} \xi\right)=\omega^{i} \alpha_{0}(\xi)$ for all $\xi \in B_{\mathbb{C}}^{2}$. In particular, for all $\pi \in \Pi, \alpha_{0}\left(j^{4} \pi O\right)=\omega^{i} \alpha_{0}(\pi O)$. It follows from the above relations that for all $\pi \in \Pi$,

$$
\theta\left(f\left(j^{4} \pi j^{-4}\right)\right)=\omega^{i} \theta(f(\pi))
$$

Since f is surjective, (1) shows that $\theta(n,-m-n)=\omega^{i} \theta(m, n)$ for all $m, n \in \mathbb{Z}$, and taking $(m, n)=(1,0)$ we get $-c-d \omega=\omega^{i}(a+b \omega)$. When $i=1$, this implies that $c=b$ and $d=b-a$, so that $a d-b c=-\left(a^{2}-a b+b^{2}\right)$, and therefore $a d-b c=-1$ and $a+b \omega$ is a power $(-\omega)^{\nu}$ of $-\omega$, and $c+d \omega=-\omega(a+b \omega)$. When $i=2$, it implies that $c=a-b$ and $d=a$, so that $a d-b c=a^{2}-a b+b^{2}$, and therefore $a d-b c=+1$ and $a+b \omega$ is again a power $(-\omega)^{\nu}$ of $-\omega$, and this time $c+d \omega=-\omega^{2}(a+b \omega)$.

Finally, notice that we can multiply α_{0} by $(-\omega)^{-\nu}$, and the new θ we get satisfies $\theta(1,0)=$ 1 in both cases, but the new $\theta(0,1)$ is $-\omega$ when $i=1$, and $-\omega^{2}$ when $i=2$. To sum up, we have the following

Lemma 10. The action of σ_{T} on T is by ω (resp. ω^{2}) if and only if $(\theta(1,0), \theta(0,1))$ is equal (up to a rotation) to $(1,-\omega)$ (resp. $\left(1,-\omega^{2}\right)$).

In order to decide between the two possibilities for the action of σ_{T} on T, we will use the restriction of the Albanese map α to the curve E_{1} (we could have chosen any of the other totally geodesic curves in X). Recall that in the course of the proof of Lemma 7, we noticed that the orientation on \hat{E}_{1} and the one on T induced by $(\theta(1,0), \theta(0,1))$ were not compatible. First, we will determine the orientation on \hat{E}_{1} induced by the complex structure on X. For this purpose, we compute the intersection form on $H_{1}\left(\hat{E}_{1}, \mathbb{Z}\right)$ (where E_{1} is the curve associated with the mirror M_{0} such that $\left.\pi_{1}\left(\hat{E}_{1}\right) \cong \Pi_{0}\right)$ in the basis $\left(\delta_{i}\right)_{1 \leqslant i \leqslant 8}$ induced by the generators g_{i} which satisfy the relation

$$
g_{1} g_{2} g_{3} g_{4} g_{5} g_{6} g_{7} g_{8} g_{1}^{-1} g_{3}^{-1} g_{5}^{-1} g_{7}^{-1} g_{2}^{-1} g_{4}^{-1} g_{6}^{-1} g_{8}^{-1}=1
$$

(see the proof of Proposition A.9).
The loops δ_{i} are the images in \hat{E}_{1} of the axes of the generators g_{i}, seen as hyperbolic elements in SU_{0} (see Lemmas A. 20 and A.21) which are depicted in figure 2, where the point labelled i represents the attractive point at infinity of the axis of g_{i}. The dashed geodesics are the axes of the elements $g_{9}=\left(g_{1} g_{2}\right)^{-1}, g_{10}=\left(g_{3} g_{4}\right)^{-1}, g_{11}=\left(g_{5} g_{6}\right)^{-1}$ and $g_{12}=\left(g_{7} g_{8}\right)^{-1}$ that will also be needed.

Figure 2. Axes of the generators of Π_{0}

Figure 2 was drawn with Maple, using the expression of $\psi_{0}\left(g_{i}\right) \in \mathrm{SU}_{0}$ in the proof of Proposition A.9. The matrices in SU_{0} are unitary with respect to the diagonal form with diagonal entries 1 and $1-r$ (see Lemma A.21), and have the form

$$
h=\left(\begin{array}{cc}
a & (r-1) b \tag{9}\\
\bar{b} & \bar{a}
\end{array}\right)
$$

where $a, b \in \mathbb{Z}[\zeta]$ and $|a|^{2}-(r-1)|b|^{2}=1$. Conjugating them by the diagonal matrix with diagonal entries 1 and $\sqrt{r-1}$, we get elements of $\operatorname{SU}(1,1)$. So SU_{0} acts on the unit disc $B(\mathbb{C})$ in \mathbb{C} and its closure $\bar{B}(\mathbb{C})$. Assuming $b \neq 0$, the fixed points in $\bar{B}(\mathbb{C})$ of the h in (9) are

$$
\begin{equation*}
w=\frac{a-\bar{a} \pm \sqrt{(a+\bar{a})^{2}-4}}{2 \bar{b} \sqrt{r-1}} \tag{10}
\end{equation*}
$$

These fixed points w satisfy $|w|=1$ when $|a+\bar{a}|>2$.
We find that the $\psi_{0}\left(g_{i}\right), i=1, \ldots, 12$, are the conjugates by the powers of $z=\left(\begin{array}{ll}1 & 0 \\ 0 & \zeta\end{array}\right)$ of a single matrix (9), where $a=\zeta^{2}+3 \zeta+2$ and $b=3+2 r$. In fact, $\psi_{0}\left(g_{i}\right)=z^{-n_{i}} h z^{n_{i}}$ for $\left(n_{1}, \ldots, n_{12}\right)=(7,11,2,6,9,1,4,8,3,10,5,0)$. So the fixed points of $\psi_{0}\left(g_{i}\right)$ are $e^{i \theta} \zeta^{n_{i}}$ and $e^{i(\pi-\theta)} \zeta^{n_{i}}$, where $\theta=\tan ^{-1}(\sqrt{(2 r-1) / 11}), e^{i \theta}$ being the fixed point (10) for this a and b, with the plus sign. An easy calculation shows that $e^{i \theta} \zeta^{n_{i}}$ and $e^{i(\pi-\theta)} \zeta^{n_{i}}$ are the attracting and repulsing fixed points, respectively, of $\psi_{0}\left(g_{i}\right)$.

In figure 3, we drew a fundamental domain for the action of Π_{0}, whose boundary is a 24 -gon. The sides of this 24 -gon are pairwise identified by the elements $g_{i}(i=1, \ldots, 12)$. We preferred to use the generators g_{i} 's of Π_{0} instead of the u_{i} 's and the $v_{i}^{\prime} s$ because their axes pass closer to the origin of the disc and hence the picture is much clearer.

The δ_{i} 's are all oriented in the same way, e.g. from the repulsive point to the attractive point. As all the geodesics in figure 2 actually meet inside the fundamental domain of figure 3, we deduce from the picture that the matrix of the intersection form \langle,$\rangle on H_{1}\left(\hat{E}_{1}, \mathbb{Z}\right)$ in the

Figure 3. Fundamental domain for the action of Π_{0}
basis $\left(\delta_{i}\right)$ and with respect to the usual orientation of the disc is

$$
I_{\delta}=\left(\begin{array}{cccccccc}
0 & 1 & 0 & -1 & 1 & 0 & -1 & 1 \\
-1 & 0 & 1 & 0 & -1 & 1 & 0 & -1 \\
0 & -1 & 0 & 1 & 0 & -1 & 1 & 0 \\
1 & 0 & -1 & 0 & 1 & 0 & -1 & 1 \\
-1 & 1 & 0 & -1 & 0 & 1 & 0 & -1 \\
0 & -1 & 1 & 0 & -1 & 0 & 1 & 0 \\
1 & 0 & -1 & 1 & 0 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 & 1 & 0 & -1 & 0
\end{array}\right)
$$

where the entry in row i and column j is $\left\langle\delta_{i}, \delta_{j}\right\rangle$. Now, we cut the curve \hat{E}_{1} along the loops δ_{i} in order to obtain a 16 -gon Δ and consider the dual basis $\left(\delta_{i}^{*}\right)$ of $\left(\delta_{i}\right)$, i.e. $\left\langle\delta_{i}, \delta_{j}^{*}\right\rangle=\delta_{i j}$, as depicted in figure 4. Actually, there are a priori two choices for the orientation of the boundary of Δ and the one pictured in figure 4 is the good one since the matrix of the

Figure 4. The basis (δ_{i}^{*}) in the 16 -gon Δ
intersection form in the basis $\left(\delta_{i}^{*}\right)$ has to be the transpose of the inverse

$$
I_{\delta^{*}}={ }^{t} I_{\delta}^{-1}=\left(\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
-1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 0 & 0 & 1 & 0 & 1 \\
-1 & 0 & -1 & 0 & 0 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 & -1 & 0 & 0 & 1 \\
-1 & 0 & -1 & 0 & -1 & 0 & 0 & 1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & 0
\end{array}\right)
$$

of the one in the basis $\left(\delta_{i}\right)$, which is indeed the case as can be checked on the figure.
Since we do not use a standard presentation of the group Π_{0}, we need a generalized Riemann bilinear relation, a quick proof of which we now give, following [GH, pp. 229-231].

Let p_{0} be a base point in the interior of Δ and η a holomorphic 1-form on \hat{E}_{1}. We define the holomorphic function $h(p)=\int_{p_{0}}^{p} \eta$ on the closure of Δ (which is simply connected), so that $d h=\eta$. Let p be a point on δ_{i} and p^{\prime} the corresponding point of δ_{i}^{-1}. Then $\int_{p}^{p^{\prime}} \eta=h\left(p^{\prime}\right)-h(p)=\sum_{j}\left\langle\delta_{i}^{*}, \delta_{j}^{*}\right\rangle \int_{\delta_{j}} \eta$ which is independent of p (and p^{\prime}). Therefore,

$$
\int_{\delta_{i}+\delta_{i}^{-1}} h \bar{\eta}=\int_{\delta_{i}}\left(h(p)-h\left(p^{\prime}\right)\right) \bar{\eta}=-\left[\sum_{j}\left\langle\delta_{i}^{*}, \delta_{j}^{*}\right\rangle \int_{\delta_{j}} \eta\right] \int_{\delta_{i}} \bar{\eta}=\left[\sum_{j}\left\langle\delta_{j}^{*}, \delta_{i}^{*}\right\rangle \int_{\delta_{j}} \eta\right] \int_{\delta_{i}} \bar{\eta}
$$

Now,

$$
\sqrt{-1} \int_{\hat{E}_{1}} \eta \wedge \bar{\eta}=\sqrt{-1} \int_{\Delta} d h \wedge \bar{\eta}=\sqrt{-1} \int_{\partial \Delta} h \bar{\eta}=\sqrt{-1} \sum_{i} \sum_{j}\left\langle\delta_{j}^{*}, \delta_{i}^{*}\right\rangle \int_{\delta_{j}} \eta \int_{\delta_{i}} \bar{\eta} .
$$

We shall apply this formula to $\eta=\hat{\alpha}^{*} d z$, as in the proof of Lemma 7 , using the expression of the g_{i} 's in terms of the generators a_{i} of Π (see the proof of Proposition A.9). We find using Lemma 10 that
$V:=\left(\int_{\delta_{i}} \hat{\alpha}^{*} d z\right)_{i=1, \ldots, 8}=(1+4 \kappa, 4-5 \kappa,-2-5 \kappa,-5+7 \kappa, 5-\kappa,-1-4 \kappa,-7+2 \kappa, 2+5 \kappa)$ where $\kappa=-\omega$ (resp. $-\omega^{2}$) if the action of σ_{T} is by ω (resp. ω^{2}), since $\int_{\delta_{i}} \hat{\alpha}^{*} d z=\theta\left(f\left(g_{i}\right)\right)$. The coordinates of V are easily computed using the expression of each g_{i} in terms of a_{1},
a_{2} and a_{3} as given in the first lines of the proof of Proposition A.9, and the computations in §1.4. Let us just give one example. For instance, $g_{5}=\zeta^{3} j^{4} a_{2} a_{1} j^{8} a_{2}^{-1} a_{3}^{3} a_{1}^{2}$, hence

$$
\begin{aligned}
f\left(g_{5}\right) & =f\left(j^{4} a_{2} j^{-4}\right)+f\left(j^{4} a_{1} j^{-4}\right)-f\left(a_{2}\right)+3 f\left(a_{3}\right)+2 f\left(a_{1}\right) \\
& =(1,1)+(3,-4)-(-2,1)+3(-1,-1)+2(1,3) \\
& =(5,-1),
\end{aligned}
$$

hence the 5 -th component of V is $5-\kappa$.
As $\hat{\alpha}$ is holomorphic, $\sqrt{-1} \int_{\hat{E}_{1}} \hat{\alpha}^{*} d z \wedge \hat{\alpha}^{*} d \bar{z}=\sqrt{-1}{ }^{t} V I_{\delta^{*}} \bar{V}$ must be positive and we find that it is equal to $60 r$ (resp. $-60 r$) if $\kappa=-\omega$ (resp. $\kappa=-\omega^{2}$). Therefore, we conclude

Proposition 4. The action of σ_{T} on T is by ω.
5.6. Let $p_{\nu}=\nu(2+\omega) / 3+\Lambda, \nu=0,1,-1$ be the fixed points of Σ on T, as given by Lemma 9 .

Lemma 11. (a) There are altogether nine fixed points of $\operatorname{Aut}(X)$ on X.
(b) The points O_{1}, O_{2} and O_{3} mentioned in §2 are fixed points of Σ, all lie in the same fiber $\alpha^{-1}\left(p_{0}\right)$.
(c) The other fixed points are 6 of the 288 points lying in $\pi^{-1}\left(P_{5}\right)$ (see §2).
(d) Each of the fibers $\alpha^{-1}\left(p_{j}\right)$ for $j=1,0,-1$ contains exactly three of the nine fixed points of $\operatorname{Aut}(X)$.
(e) The fixed points $O_{i}, i=1,2,3$ are of type $\frac{1}{3}(1,1)$, and the other six fixed points are of type $\frac{1}{3}(1,2)$.

Proof. (a) follows from Lemma A.32. This corresponds to the case of Proposition 1.2 (2)(b) in Keum $[\mathrm{K}]$, the latter follows from Lefschetz fixed point formula and holomorphic Lefschetz fixed point formula. (b), (c) and (d) follow from Proposition A.19. The type of singularities follows from Lemma A.33, which is also stated as one of the cases in [K, Proposition 1.2], and was observed by Igor Dolgachev as well.

5.7.

Lemma 12. Let $O=O_{i}$ for $i=1,2,3$. Then α is smooth at O.
Proof. By Lemma 11 and Proposition 4, there exist coordinates (x, y) centered at $O \in X$ and a coordinate z centered at $\alpha(O) \in T$ such that $\alpha \circ \sigma(x, y)=\alpha(\omega x, \omega y)=\omega \alpha(x, y)=$ $\sigma_{T} \circ \alpha(x, y)$. In terms of our local coordinates, we write

$$
\alpha(x, y)=\sum_{i, j \geqslant 0} a_{i j} x^{i} y^{j}
$$

and we have

$$
\sum_{i, j \geqslant 0} a_{i j} \omega^{i+j} x^{i} y^{j}=\sum_{i, j \geqslant 0} a_{i j} \omega x^{i} y^{j} .
$$

Since the above is true for all x, y, we conclude that for those i, j with $a_{i j} \neq 0$, we actually have $i+j \equiv 1(\bmod 3)$, hence we may write

$$
\alpha(x, y)=\left(a_{10} x+a_{01} y\right)+\left(\sum_{i+j=4} a_{i j} x^{i} y^{j}\right)+\sum_{i+j=3 n+1, n \geqslant 2} a_{i j} x^{i} y^{j} .
$$

The fiber through O is smooth at O if the first expression is non-zero. If $a_{10}=a_{01}=0$ then α vanishes at order at least 4 , hence α_{x} and α_{y} vanish at order at least 3 , so that $\mathcal{O}(x, y) /\left\langle\alpha_{x}, \alpha_{y}\right\rangle$ has length at least 6 (i.e. the Milnor number of the fiber through O is at least 6). This violates formula (6) in Corollary 2 that the sum of the Milnor numbers at the singularities is at most 3 . Hence α is smooth at O.
5.8. Let $Q=Q_{i}, i=1, \ldots, 6$ be one of the fixed points of σ other than $O_{j}, j=1,2,3$ so that the local action of σ is of type $\frac{1}{3}(1,2)$ at Q_{i}.

Lemma 13. One of the following happens
(i) α is smooth at Q,
(ii) Q is a point of Milnor number 3 i.e. a tacnode.

Proof. By Lemma 11 and Proposition 4, there exist coordinates (x, y) centered at $Q \in X$ and a coordinate z centered at $\alpha(Q) \in T$ such that $\alpha \circ \sigma(x, y)=\alpha\left(\omega x, \omega^{2} y\right)=\omega \alpha(x, y)=$ $\sigma_{T} \circ \alpha(x, y)$. As above, we write in terms of our local coordinates

$$
\alpha(x, y)=\sum_{i, j \geqslant 0} a_{i j} x^{i} y^{j}
$$

and we have

$$
\sum_{i, j \geqslant 0} a_{i j} \omega^{i+2 j} x^{i} y^{j}=\sum_{i, j \geqslant 0} a_{i j} \omega x^{i} y^{j}
$$

We conclude that for those i, j with $a_{i j} \neq 0$, we actually have $i+2 j \equiv 1(\bmod 3)$, hence we may write

$$
\alpha(x, y)=\left(a_{10} x\right)+\left(a_{02} y^{2}+a_{21} x^{2} y+a_{13} x y^{3}+a_{40} x^{4}\right)+\text { terms of order at least } 5 .
$$

It is smooth at $(0,0)$ if $a_{10} \neq 0$. This is case (i).
Assume now that $a_{10}=0$. First remark that $\mu_{Q} \geq 2$. Indeed,

$$
\begin{aligned}
& \alpha_{x}=2 a_{21} x y+\text { terms of order at least } 3 \\
& \alpha_{y}=2 a_{02} y+a_{21} x^{2}+\text { terms of order at least } 3
\end{aligned}
$$

hence 1 and x are linearly independent in $\mathcal{O}(x, y) /\left\langle\alpha_{x}, \alpha_{y}\right\rangle$. However, the case $\mu_{Q}=2$ cannot occur since in this situation there would be exactly one more singular point P on X with Milnor number 1 by formula (6) in Corollary 2. But we saw in Lemma 12 that none of the O_{i} 's is singular and we have just seen that none of the Q_{i} 's can be a singularity with Milnor number 1. Therefore, P would not be a fixed point of σ and then $\mu_{P}=\mu_{\sigma(P)}$ which is a contradiction.

Finally, we recall (see [AGV, p. 183]) that a singularity with Milnor number 3 is holomorphically equivalent to a tacnode whose equation is $\left(x^{2}-y\right)\left(x^{2}+y\right)=0\left(\right.$ or $\left.y\left(y-x^{2}\right)=0\right)$ and we note for instance that both these expressions are a priori admissible in our situation.
5.9. From the previous two lemmas we deduce the following result about the singularities of the Albanese map α.

Proposition 5. There are three mutually exclusive possibilities for the singularities of the Albanese map:
(i) α has exactly one singularity which is a tacnode at some $Q_{i}(i=1, \ldots, 6)$. The unique singular fiber is then irreducible and has geometric genus 17 .
(ii) α has exactly one singular fiber which is one of the three (globally) fixed fibers by σ, with exactly three nodal singularities, and none of them is a fixed point of σ. The unique singular fiber might be reducible and its normalization has genus 16.
(iii) α has exactly three singular fibers with exactly one nodal singularity on each of them and the singular points are the elements of a σ-orbit. In this case, each singular fiber is irreducible and has geometric genus 18.

Proof. The fact that only one of these three possibilities can occur is a straightforward consequence of Lemmas 12 and 13 together with formula (6). The genera are easily computed using formula (5).
5.10. Ngaiming Mok has kindly drawn to our attention the following problem which was open and is interesting to geometric study of complex ball quotient.
Question 1. Does there exists a homomorphism $f: X \rightarrow R$ from a smooth complex ball quotient X to a Riemann surface R with a non-totally geodesic singular fiber?

There are very few explicit examples of mappings from a complex ball quotient to a Riemann surface. The known ones described by Deligne-Mostow, Mostow, Livné, Toledo and Deraux all have totally geodesic singular fibers, cf. [DM2], [T] or [Der2] and the references therein.

In the following we show that the surface studied in this note provides such an example.
Theorem 4. None of the singular fibers of the Albanese fibration $\alpha: X \rightarrow T$ is totally geodesic.
Proof. Let E be a singular fiber of α and let \widehat{E} be the normalization of E. Assume for the sake of proof by contradiction that E is totally geodesic. According to Lemma 3,

$$
E \cdot E=\frac{1}{2} e(\widehat{E})+2 \delta^{\mathrm{an}}(E)
$$

and moreover, $g=g(\widehat{E})+\delta^{\text {an }}(E)$ and $E \cdot E=0$ since E is a fiber of the fibration, hence $1-g+3 \delta^{\text {an }}(E)=0$. Since we have shown that $g=19$ in Theorem 3, this leads to $\delta^{\text {an }}(E)=6$. However, for a node $\delta^{\text {an }}=1$ and for a tacnode $\delta^{\text {an }}=2$. Hence the result follows from Proposition 5. Note that we could have a priori ruled out the case of a tacnode since totally geodesic curves have simple crossings.

6. A Livné-Like rational fibration

In his PhD thesis [Li], R. Livné constructed two-ball quotients by taking branched coverings of some generalized universal elliptic curves with level structure and by construction, these surfaces admit a fibration onto a curve. In the case of the Cartwright-Steger surface, the Albanese fibration does not appear in the same fashion but one can exhibit another (rational) fibration appearing in a quite similar way to Livné's. Our starting point is the description by Deligne and Mostow of Livné's fibrations in [DM2, Chapter 16] from which one can deduce the following (which is only implicit in the book).
6.1. Let \hat{R} be the surface obtained by blowing up the point $P_{1} \in R \cong \mathbb{P}(1,2,3)$, see $\S 1.3$. Let $N \geq 3$ be an integer. We endow \hat{R} with an orbifold structure: the ramification divisors are the strict transforms of D_{A}, D_{B} that we still denote in the same way and the exceptional curve that we denote by E with respective weights ($N, d, 2$), and we denote this orbifold by $\hat{R}_{N, d, 2}$. We also endow $\mathbb{P}_{\mathbb{C}}^{1}$ with an orbifold structure: there are 3 orbifold points, say p_{1}, p_{2}, p_{3}, with respective weights $(2,3, N)$ and we denote this orbifold by $\mathbb{P}_{2,3, N}^{1}$.

Then there exists an orbifold morphism $\Phi: \hat{R}_{N, d, 2} \rightarrow \mathbb{P}_{2,3, N}^{1}$ such that D_{A} is sent onto p_{3}, $\Phi\left(D_{B}\right)=\Phi(E)=\mathbb{P}_{\mathbb{C}}^{1}$, and the fibers of Φ above p_{1} and p_{2} have multiplicity 2 and 3 respectively. The generic fiber of Φ meets E once and D_{B} three times.
6.2. When $d=2$, this fibration can be seen as the orbifold quotient of the universal generalized elliptic curve with structure of level N by the group $\operatorname{SL}\left(2, \mathbb{Z}_{N}\right) \rtimes\left(\mathbb{Z}_{N}\right)^{2}$. In this setting, it is natural to take $p_{1}=1728, p_{2}=0$ and $p_{3}=\infty, \Phi$ can then be seen as the j-invariant (the fibers of Φ are rational curves which are the quotient of the corresponding elliptic curves by ± 1, the image of 0 is on E, the image of 2 -torsion points on D_{B}), and $\mathbb{C}=\mathbb{P}_{\mathbb{C}}^{1} \backslash\{\infty\}$ is the set of values of the j-invariant. Above the point at infinity we have a "special curve" D_{A}, and the ramifications 2 and 3 at 1728 and 0 respectively are due to the fact that the corresponding elliptic curves have additional automorphisms.

The case we are interested in is $\hat{R}_{4,3,2}=\widehat{\bar{\Gamma} \backslash B_{\mathbb{C}}^{2}}$, i.e. we have $N=3$ and $d=4$ (it can be checked that indeed, E has weight -2 , the minus sign meaning that it can be contracted, see $[\mathrm{DM} 2, \S 17.9])$ and $\mathbb{P}_{2,3, N}^{1}=\mathbb{P}_{2,3,3}^{1}$ is the orbifold attached to the tetrahedron group.
6.3. Let us consider Π_{2} (see $\S 1.5$): we saw that it is a subgroup of index 3 of $\bar{\Gamma}$. We define $Y:=\Pi_{2} \backslash B_{\mathbb{C}}^{2}$ and \hat{Y} its blow up at the preimage of P_{1} by the natural morphism $Y \rightarrow R$ so that we have a ramified covering $\hat{Y} \rightarrow \hat{R}$ whose branch locus is D_{A} (of order 3). Then \hat{Y} has a natural orbifold structure. The ramification divisors are the preimage D_{B}^{\prime} of D_{B} with weight $d=4$ and the preimage E^{\prime} of E with weight -2 . Both D_{B}^{\prime} and E^{\prime} are irreducible.

The orbifold $\mathbb{P}_{2,3,3}^{1}$ also admits an orbifold covering $\mathbb{P}_{2,2,2}^{1} \rightarrow \mathbb{P}_{2,3,3}^{1}$ of order 3 whose branch locus consists of the two points of weight 3 in $\mathbb{P}_{2,3,3}^{1}$ and where $\mathbb{P}_{2,2,2}^{1}$ is the quotient of $\mathbb{P}_{\mathbb{C}}^{1}$ by the subgroup of the tetrahedron group isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The 3 orbifold points in $\mathbb{P}_{2,2,2}^{1}$ have weight 2 and are the points above the orbifold point of weight 2 in $\mathbb{P}_{2,3,3}^{1}$.

The fibration Φ then lifts to an orbifold fibration $\Phi^{\prime}: \hat{Y} \rightarrow \mathbb{P}_{2,2,2}^{1}$ such that the divisor E^{\prime} is a section of Φ^{\prime} and D_{B}^{\prime} has order 3 over the base. In other words, the generic fiber of Φ^{\prime} is an orbifold $\mathbb{P}_{\mathbb{C}}^{1}$ with 4 orbifold points of weights $(2,4,4,4)$. There is one special fiber which is the preimage D_{A}^{\prime} of D_{A} and which is an orbifold of type $(2,4,12)$ and there are also 3 multiple fibers of order 2 (above the 3 orbifold points of $\mathbb{P}_{2,2,2}^{1}$).
6.4. Finally, there exists an orbifold cover \hat{X} of \hat{Y} of order 288 with $36=864 / 24$ exceptional curves (where 24 is the order of the isotropy group in $\bar{\Gamma}$ of a point $x \in \mathcal{P}$) and once these curves are contracted, we obtain the surface $X=\Pi \backslash B_{\mathbb{C}}^{2}=\left(\Pi_{2} \cap \Pi_{3}\right) \backslash B_{\mathbb{C}}^{2}$.

We thus have the following diagram

We see in particular that the elliptic curve $\operatorname{Alb}(X)$ should be the rigid part of the Jacobian of the curves of the fibration $\hat{\Phi}^{\prime}: \hat{X} \rightarrow \mathbb{P}_{2,2,2}^{1}$ which are ramified coverings of $\mathbb{P}_{\mathbb{C}}^{1}$ of type $(2,4,4,4)$.

This point of view is also confirmed by the computation of the genus of the curves of type A. Indeed, the general fiber of $\hat{\Phi}^{\prime}$ is a ramified covering of $\mathbb{P}_{\mathbb{C}}^{1}$ of order 288 and type $(2,4,4,4)$ so that by the Riemann-Hurwitz formula its genus is

$$
\frac{288}{2}\left(-2+\frac{2-1}{2}+3 \cdot \frac{4-1}{4}\right)+1=109
$$

On the other hand, the arithmetic genus is constant on the fibration of a smooth surface onto a curve. Let us compute the arithmetic genus of the fiber of type A using the same method as in the proof of Lemma 3. Recall from $\S 2.2$ that the fiber has four irreducible components, two have genus 4 and two have genus 10 , and moreover there are exactly three singular points, each of the same type, namely eight local branches crossing transversally. Then this curve has arithmetic genus

$$
1+2(4-1)+2(10-1)+3\left(\frac{8 \cdot 7}{2}\right)=109
$$

which is the expected number.

7. Lefschetz type question

7.1. The goal of this section is to show that the Cartwright-Steger surface X provides examples for some natural questions related to Lefschetz properties of ample hypersurfaces in projective algebraic manifolds. In studying Lefschetz properties, Nori posted in [N] the following problem.

Question 2. Let D be an effective divisor on a surface X with $D \cdot D>0$. Let N be the normal subgroup of $\pi_{1}(X)$ generated by the images of the fundamental group of the non singular models of all the curves in D. Is $\left[\pi_{1}(X): N\right]$ finite?

The N defined above is the normal closure of the images of the fundamental group of the non singular models of all the curves in D.

Nori in [N$]$ answered the above question affirmatively in the special case that D has only nodal singularities and satisfies the assumption that $D \cdot D>2 r(D)$, where $r(D)$ is the number of nodes. Some special cases of hyperellitpic fibrations have also been confirmed by Gurjar-Paul-Purnaprajna [GPP]. The question has attracted a lot of attention from studies of properties of fundamental groups of algebraic surfaces and function properties of their universal coverings, such as Lefschetz type properties or holomorphic convexity of the universal coverings.
7.2. We show that the Cartwright-Steger surface provides an interesting example to illustrate the problem.

Proposition 6. Let X be the Cartwright-Steger surface. Let $D=E_{1}$ be the genus 4 curve of type B having multiplicities $(3,1,2)$ at the points O_{i} defined in §2.1. Let $i: D \rightarrow X$ be the inclusion map, $\rho: \widehat{D} \rightarrow D$ the normalization of D, and N the normal closure of $(i \circ \rho)_{*} \pi_{1}(\widehat{D})$ in $\pi_{1}(X)$. Then
(a) $D \cdot D>0$,
(b) $\left[\pi_{1}(X):(i \circ \rho)_{*} \pi_{1}(\widehat{D})\right]=\infty$,
(c) $\left[\pi_{1}(X): N\right]=21$,
(d) $\pi_{1}(X)=i_{*} \pi_{1}(D)$.

Proof. (a) follows from Lemma 4 where we computed $D \cdot D=5>0$.
(b). We recall results and use notation of \S A.2. The curve D is irreducible by construction and the universal covering of D is a totally geodesic curve M_{0} on the universal covering $B_{\mathbb{C}}^{2}$ of the Cartwright-Steger surface X. The stabilizer $\Pi_{0}<\Pi$ of M_{0} as a set in $B_{\mathbb{C}}^{2}$ is then a Fuchsian group of $M_{0} \cong \Delta$, the unit disk. Since Π is torsion-free, so is the action of Π_{0} on M_{0}. However, the image of $\Pi_{0} \backslash M_{0}$ in X has self-intersection singularities on X since there are elements $g \in \Pi-\Pi_{0}$ such that $g \cdot M_{0} \cap M_{0} \neq \emptyset$.

In our situation, a smooth model of D is a normalization \widehat{D} of D and is simply given by $\Pi_{0} \backslash M_{0}$. Hence from construction, the fundamental group of a smooth model of D is Π_{0}. In fact, it suffices for us to know that the fundamental group is commensurable to Π_{0}. Clearly, the fundamental group $\pi_{1}(\widehat{D})=\Pi_{0}$ has infinite index in Π, since the cohomology dimension of Π_{0} is 2 and the corresponding one for Π is 4 .

Part (c) follows from Lemma A.28.
Part (d) follows from Corollary A.3.

Appendix A. Calculations in the group $\bar{\Gamma}$

A.1. The action of $\bar{\Gamma}$ on $B_{\mathbb{C}}^{2}$. The elements u and v of $\bar{\Gamma}$ are complex reflections of order 3 and 4 , respectively. For $\alpha \in \mathbb{C}$, define

$$
M_{\alpha}=\left\{(z, w) \in B_{\mathbb{C}}^{2}: z=\alpha w\right\}
$$

We also let $M_{\infty}=\left\{(z, w) \in B_{\mathbb{C}}^{2}: w=0\right\}$. Setting $c=(r-1)\left(\zeta^{3}-1\right) / 2=\zeta^{2}-\zeta$, one can check that u fixes each point of M_{c}, and v fixes each point of M_{0}. Let $\mathcal{M}_{A}=\left\{g\left(M_{c}\right): g \in \bar{\Gamma}\right\}$ and $\mathcal{M}_{B}=\left\{g\left(M_{0}\right): g \in \bar{\Gamma}\right\}$. We refer to these sets as mirrors of types A and B, respectively, since $g\left(M_{c}\right)$ and $g\left(M_{0}\right)$ are the sets of points of $B_{\mathbb{C}}^{2}$ fixed by the complex reflection $g u g^{-1}$, and $g v g^{-1}$, respectively.

Note that the powers of $\left(\zeta^{-1} j\right)^{\nu}, \nu=1, \ldots, 11$, are complex reflections, but in their action on $B_{\mathbb{C}}^{2}$ they fix only the origin $O=(0,0)$.

Proposition 7. The non-trivial elements of finite order in $\bar{\Gamma}$ are all conjugate to one of the elements in the following table, or the inverse of one of these.

d	Representatives of elements of order d
2	$v^{2}, j^{6},\left(b u^{-1}\right)^{2}$
3	$u, j^{4}, u j^{4}, b u v$
4	$v, j^{3}, v j^{3}, v^{2} j^{3}, b u^{-1}$
6	$j^{2}, v^{2} j^{2}, v^{2} u j, v^{2} u j^{5}, b v^{2} u^{-1} j, b v^{2}$
8	$u v j, \zeta^{-1} b j,\left(\zeta^{-1} b j\right)^{3}$
12	$j, j^{5}, u v^{-1} j^{2}, u v^{-1} j^{3}, u v^{-1} j^{6}, u v^{-1} j^{-1}, v^{2} j, u v^{2}, u j, u j^{3}, b v,(b v)^{-5}$
24	$u v, v u j^{2}$

The elements v and v^{2} fix each point of M_{0}, while u fixes each point of M_{c}. The remaining elements in the table each fix just one point of $B_{\mathbb{C}}^{2}$.
Proof. Elements $g Z \in \bar{\Gamma}$ which fix points of $B_{\mathbb{C}}^{2}$ must have finite order, because $\bar{\Gamma}$ acts discontinuously on $B_{\mathbb{C}}^{2}$. Conversely (see [CS2, Lemma 3.3]) any element of finite order in $\bar{\Gamma}$ fixes at least one point of $B_{\mathbb{C}}^{2}$, and is conjugate to an element of $K \cup b K \cup b u^{-1} b K$. One can easily list the nontrivial elements of finite order in this last set (there are 408 of them, 76 in $b K$ and 45 in $b u^{-1} b K$), all having order dividing 24 . Routine calculations show that any such element (and hence each nontrivial element of finite order in $\bar{\Gamma}$) has a matrix representative g conjugate to one of the elements in the above table, or its inverse. One may verify that, with the exception of the elements conjugate to buv or its inverse, each element $g Z$ of order d in $\bar{\Gamma}$ has a matrix representative g such that $g^{d}=I$. Note that $(b u v)^{3}=\zeta^{-1} I$.

To check that the elements in the table other than u, v and v^{2} fix only one point of $B_{\mathbb{C}}^{2}$, note that $g Z \in \bar{\Gamma}$ fixes $(z, w) \in B_{\mathbb{C}}^{2}$ if and only if $(z, w, 1 / \sqrt{r-1})^{T}$ is an eigenvector of g. In each case, we find that there is only one eigenvalue λ of g having an eigenvector $\left(v_{1}, v_{2}, v_{3}\right)^{T}$ satisfying $\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2}<(r-1)\left|v_{3}\right|^{2}$, corresponding to a fixed point (z, w) with $z=v_{1} /\left(v_{3} \sqrt{r-1}\right)$ and $w=v_{2} /\left(v_{3} \sqrt{r-1}\right)$. See also the proof of Proposition 8 below.

For $\alpha \in \mathbb{C} \cup\{\infty\}$ and for $\xi \in B_{\mathbb{C}}^{2}$, let

$$
\bar{\Gamma}_{\alpha}=\left\{g \in \bar{\Gamma}: g\left(M_{\alpha}\right)=M_{\alpha}\right\} \quad \text { and } \quad \bar{\Gamma}_{\xi}=\{g \in \bar{\Gamma}: g . \xi=\xi\}
$$

denote the stabilizer of M_{α} and ξ, respectively. We next describe the ξ for which $\bar{\Gamma}_{\xi} \neq\{1\}$. Two points are particularly important: the origin O, and

$$
\begin{equation*}
P=\left(\frac{c(\zeta-1)}{\sqrt{r-1}}, \frac{\zeta-1}{\sqrt{r-1}}\right) . \tag{11}
\end{equation*}
$$

As observed in [CS2, Lemma 3.1], $\bar{\Gamma}_{O}=K$. For P we have the following:
Lemma 14. The subgroup $\bar{\Gamma}_{P}$ of $\bar{\Gamma}$ has order 24, and centre of order 2. It is generated by elements $f_{z}=\left(b u^{-1}\right)^{2}, f_{2}=b u^{-1}, f_{3}=j b v^{-1} j$ and $f_{3}^{\prime}=u$, and has a presentation

$$
f_{2}^{2}=f_{z}, f_{3}^{3}=1, f_{3}^{\prime 3}=1, f_{z}^{2}=1, f_{3}^{\prime} f_{3} f_{2}=1,\left[f_{2}, f_{z}\right]=\left[f_{3}, f_{z}\right]=\left[f_{3}^{\prime}, f_{z}\right]=1
$$

The subgroup $\bar{\Gamma}_{P} \cap \bar{\Gamma}_{c}$ equals $\left\langle f_{z}, f_{3}^{\prime}\right\rangle$, and has order 6 . Let $r_{1}=1, r_{2}=f_{2}, r_{3}=f_{3}$ and $r_{4}=f_{3}^{\prime} f_{2}$. Then $P \in r_{\nu}\left(M_{c}\right)$ for $\nu=1,2,3,4$, and the $r_{\nu}\left(M_{c}\right)$ are distinct.

We can find 36 elements k_{1}, \ldots, k_{36} of K such that

$$
\begin{equation*}
\bar{\Gamma}=\bigcup_{i=1}^{36} \Pi k_{i} \bar{\Gamma}_{P}, \quad \text { a disjoint union } . \tag{12}
\end{equation*}
$$

Proof. Suppose that $g \in \bar{\Gamma}$ and $g . P=P$. Then

$$
d(g . O, O) \leq d(g . O, g \cdot P)+d(g . P, P)+d(P, O)=2 d(P, O)=\log \left(\frac{1+\|P\|}{1-\|P\|}\right)
$$

Here $\|P\|^{2}=|c|^{2}(2-r) \mid /(r-1)+(2-r) /(r-1)=2 r-3$. Since the squared HilbertSchmidt norm $\|g\|_{H S}^{2}$ of any $g \in U(2,1)$ is $3+4 \sinh ^{2}(d(g . O, O))$ ([CS2, Lemma 3.2]), this gives $\|g\|_{H S}^{2} \leq 8 r+15$. Now the $g \in \bar{\Gamma}$ such that $\|g\|_{H S}^{2} \leq 8 r+15$ consist of the three double cosets $K, K b K$ and $K b u^{-1} b K$ ([CS2, §3]). So it is enough to run through the elements g of these double cosets (48672 in all) checking the condition $g . P=P$. This search found 24 elements with this property. In particular it found the elements f_{z}, f_{2}, f_{3} and f_{3}^{\prime} above. One may check that they satisfy the given relations. The abstract group generated by elements f_{z}, f_{2}, f_{3} and f_{3}^{\prime} satisfying these relations has order 24 . So the stabilizer of P in $\bar{\Gamma}$ has order 24, and has the presentation given above.

The statements about $\bar{\Gamma}_{P} \cap \bar{\Gamma}_{c}$ and r_{1}, \ldots, r_{4} are easily verified.
Magma verifies that the 36 elements $k_{\nu}^{\prime}, k_{\nu}^{\prime} j^{4}, k_{\nu}^{\prime} j^{8}$, for the following 12 elements k_{ν}^{\prime} of K, is a set of representatives for the distinct double cosets $\Pi g \bar{\Gamma}_{P}$ in $\bar{\Gamma}$:

$$
\begin{equation*}
v, v^{2}, v u v^{-1}, v u^{-1} v^{2} u, v^{-1}, u v^{2}, j, j^{2}, 1, j^{3}, u v, u^{-1} v^{-1} \tag{13}
\end{equation*}
$$

The order of the k_{ν}^{\prime} has be chosen to make the tables in the proof of Proposition 16 tidier.
Routine calculations show that the fixed points of $\gamma_{3}=b u v, \gamma_{8}=\zeta^{-1} b j$ and $\gamma_{12}=b v$ are

$$
\begin{equation*}
\xi_{3}=\left(\frac{c_{1}}{\sqrt{r-1}}, \frac{c_{2}}{\sqrt{r-1}}\right), \quad \xi_{8}=\left(0, \frac{(1-2 \sin (\pi / 12)) \zeta^{3}}{\sqrt{r-1}}\right) \quad \text { and } \quad \xi_{12}=\left(0, \frac{\zeta-1}{\sqrt{r-1}}\right) \tag{14}
\end{equation*}
$$

respectively, where for $\lambda=e^{-\pi i / 18}$,

$$
c_{1}=\zeta^{3}-\zeta^{2}-\zeta+1+\left(\zeta^{2}-\zeta+1\right) \lambda+\left(-\zeta^{3}+\zeta^{2}-1\right) \lambda^{2}, \quad \text { and } \quad c_{2}=\zeta^{3}-(\zeta-1) \lambda^{2}
$$

Lemma 15. For $d=3,8$ and 12, the group $\bar{\Gamma}_{\xi_{d}}$ is cyclic of order d, generated by γ_{d}.
Proof. By the method used in the proof of Lemma 14, we see that in each of these three cases, $\bar{\Gamma}_{\xi} \subset K \cup K b K$, and then search this set for the elements fixing ξ.

For $\xi \in B_{\mathbb{C}}^{2}$, let $\mathcal{M}_{A}(\xi)$, respectively $\mathcal{M}_{B}(\xi)$ denote the set of distinct mirrors M, of type A and B, respectively, containing ξ.
Lemma 16. The groups $\bar{\Gamma}_{c}$ and $\bar{\Gamma}_{0}$ are the commutators in $\bar{\Gamma}$ of u and v, respectively. For each $\xi \in B_{\mathbb{C}}^{2},\left|\mathcal{M}_{A}(\xi)\right|$, respectively $\left|\mathcal{M}_{B}(\xi)\right|$, is equal to the number of elements of $\bar{\Gamma}_{\xi}$ conjugate to u, respectively v.
Proof. Suppose that $g \in \bar{\Gamma}$ commutes with u. If $\xi \in M_{c}$, then $u .(g . \xi)=g .(u . \xi)=g . \xi$, so that $g . \xi$ is one of the points of $B_{\mathbb{C}}^{2}$ fixed by u, and so is in M_{c}. Thus $g \in \bar{\Gamma}_{c}$. Conversely, if $g \in \bar{\Gamma}_{c}$, then $g u g^{-1}$ fixes each point of M_{c}. A simple calculation shows that the $h \in \bar{\Gamma}$ fixing each point of M_{c} are just the powers of u. Considering traces and determinants, we find that u is not conjugate to its inverse. Hence $g u g^{-1}=u$. The proof for v is similar.

If $\xi \in g\left(M_{c}\right)$, then $g^{-1} \cdot \xi \in M_{c}$, and so $u \cdot g^{-1} \cdot \xi=g^{-1} \cdot \xi$. Hence $g u g^{-1} \in \bar{\Gamma}_{\xi}$. If $g, g^{\prime} \in \bar{\Gamma}$ and $g u g^{-1}=g^{\prime} u g^{\prime-1} \in \bar{\Gamma}_{\xi}$, then $g^{-1} g^{\prime}$ commutes with u, and so is in $\bar{\Gamma}_{c}$, so that $g\left(M_{c}\right)=g^{\prime}\left(M_{c}\right)$. So $\left|\mathcal{M}_{A}(\xi)\right|$ is the number of distinct conjugates of u belonging to $\bar{\Gamma}_{\xi}$. The calculation of $\left|\mathcal{M}_{B}(\xi)\right|$ is the same.

Lemma 17. The orbit under the finite group K of M_{c} consists of the eight mirrors M_{α} for $\alpha=c_{ \pm \pm \pm}= \pm(r \pm 1)(i \pm 1) / 2$ (so that for example $c=c_{+--}$), and $\mathcal{M}_{A}(O)$ is the set of these M_{α} 's. The 8 elements $k_{\alpha} \in K$ in the proof below form a set of representatives of the cosets $g K_{c}$ in K, for $K_{c}=K \cap \bar{\Gamma}_{c}=\langle u, j\rangle$.
Proof. We know that u fixes each point of M_{c}. Also, $j .(\alpha w, w)=(\alpha \zeta w, \zeta w)$ for any w and α, and so $j\left(M_{\alpha}\right)=M_{\alpha}$ for any α. So the 36 elements of the subgroup $K_{c}=\langle u, j\rangle$ of K fix the set M_{c}. For $\alpha=c_{+--}, c_{--+}, c_{---}$and c_{+-+}, let $k_{\alpha}=1, v, v^{2}$ and v^{3}, respectively, and then $k_{\alpha} \cdot(c w, w)=\left(\alpha w^{\prime}, w^{\prime}\right) \in M_{\alpha}$ for $w^{\prime}=w$. For $\alpha=c_{-++}, c_{-+-}, c_{+++}$and c_{++-}, let $k_{\alpha}=u^{-1} v^{2} u, v u^{-1} v^{2} u, v^{2} u^{-1} v^{2} u$ and $v^{3} u^{-1} v^{2} u$, respectively, and then $k_{\alpha} \cdot(c w, w)=$ $\left(\alpha w^{\prime}, w^{\prime}\right) \in M_{\alpha}$ for $w^{\prime}=-c w$. So the eight elements k_{α} lie in distinct cosets $g K_{c}$. To see that $\mathcal{M}_{A}(O)$ consists just of these M_{α} 's, we apply Lemma 16 . Let $k \in K$ be a conjugate
$g u g^{-1}$ of u for some $g \in \bar{\Gamma}$. Then k fixes each point of $g\left(M_{c}\right)$. But the 8 elements $k_{\alpha} u k_{\alpha}^{-1}$ are the only elements of order 3 in K fixing more than one point of $B_{\mathbb{C}}^{2}$.

Lemma 18. The orbit under the finite group K of M_{0} consists of the six mirrors M_{α} for $\alpha \in\{0,1,-1, i,-i, \infty\}$, and $\mathcal{M}_{B}(O)$ is the set of these M_{α} 's. The 6 elements $k_{\alpha} \in K$ in the proof below form a set of representatives of the cosets $g K_{0}$ in K, for $K_{0}=K \cap \bar{\Gamma}_{0}=\langle v, j\rangle$.
Proof. We know that v fixes each point of M_{0} and that $j\left(M_{0}\right)=M_{0}$. So the 48 elements of the subgroup $K_{0}=\langle v, j\rangle$ of K fix the set M_{0}. For $k_{0}=1$ and $k_{\infty}=u^{-1} v^{2} u j^{6}$, we have $k_{0} .(0, w)=(0, w) \in M_{0}$ and $k_{\infty} \cdot(0, w)=(w, 0) \in M_{\infty}$. For $\alpha=i,-1,-i, 1$, let $k_{\alpha}=u j$, $v u j, v^{2} u j$ and $v^{3} u j$, respectively, and then $k_{\alpha} \cdot(0, w)=\left(\alpha w^{\prime}, w^{\prime}\right) \in M_{\alpha}$ for $w^{\prime}=(i+1) w / 2$. The last statement is now clear. The proof that $\mathcal{M}_{B}(O)$ consists of these M_{α} 's is similar to that of the corresponding statement in Lemma 17.

By a generic element of M_{c}, respectively, M_{0}, we mean a point $\xi \in M_{c}$, respectively M_{0}, which is not in the $\bar{\Gamma}$-orbit of O, P, ξ_{8} or ξ_{12}. We shall see that no point in the $\bar{\Gamma}$-orbit of ξ_{3} belongs to M_{c} or M_{0}.

Proposition 8. The $\xi \in B_{\mathbb{C}}^{2}$ for which $\bar{\Gamma}_{\xi} \neq\{1\}$ are either in the $\bar{\Gamma}$-orbit of a generic point of M_{c} or M_{0}, or in the $\bar{\Gamma}$-orbit of one of O, P, ξ_{3}, ξ_{8} or ξ_{12}. With notation as above, we record the following data for these points:

ξ	$\bar{\Gamma}_{\xi}$	$\left\|\bar{\Gamma}_{\xi}\right\|$	$\left\|\mathcal{M}_{A}(\xi)\right\|$	$\left\|\mathcal{M}_{B}(\xi)\right\|$
O	K	288	8	6
P	$\left\langle f_{z}, f_{3}, f_{3}^{\prime}\right\rangle$	24	4	0
ξ_{3}	$\left\langle\gamma_{3}\right\rangle$	3	0	0
ξ_{8}	$\left\langle\gamma_{8}\right\rangle$	8	0	1
ξ_{12}	$\left\langle\gamma_{12}\right\rangle$	12	1	1
generic M_{c}	$\langle u\rangle$	3	1	0
generic M_{0}	$\langle v\rangle$	4	0	1

Proof. By assumption, there is a non-trivial element of $\bar{\Gamma}$ fixing ξ, and this element must be of finite order, and so is conjugate to one of the elements in the table of Proposition 7. So we may assume that ξ is fixed by one of the elements in that table. If ξ is fixed by one of the elements in the table belonging to K, other than u, v and v^{2}, then $\xi=O$. There are 9 elements in the table which do not belong to K. By Lemma 15 , if ξ is fixed by buv, then $\xi=\xi_{3}$. If ξ is fixed by $\zeta^{-1} b j$ or $\left(\zeta^{-1} b j\right)^{3}$, then $\xi=\xi_{8}$. If ξ is fixed by $b u^{-1}$ or $\left(b u^{-1}\right)^{2}$, then $\xi=P$, by Lemma 14. If ξ is fixed by $b v^{2} u^{-1} j$, then it is fixed by $\left(b v^{2} u^{-1} j\right)^{3}=v^{-1} f_{z} v$, where f_{z} is as in Lemma 14, and so ξ is in the K-orbit of P. Since b and v commute, $b v^{2}=(b v)^{-2}$, and so the points fixed by $(b v)^{-5}, b v$ and $b v^{2}$ are all the same, and equal to ξ_{12}. If ξ is fixed by one of the elements u, v and v^{2}, but is not fixed by any other element in the table, then ξ is a generic point of either M_{c} or M_{0}.

We have already seen in Lemmas 17 and 18 that $\left|\mathcal{M}_{A}(O)\right|=8$ and $\left|\mathcal{M}_{B}(O)\right|=6$.
We calculated $\bar{\Gamma}_{P}$ in Lemma 14. It is easy to verify that it contains eight elements of order 3, namely $r_{\nu} u^{ \pm 1} r_{\nu}^{-1}, \nu=1, \ldots, 4$, for r_{ν} as in Lemma 14. So $\left|\mathcal{M}_{A}(P)\right|=4$. Also, $\bar{\Gamma}_{P}$ contains six elements of order 4 , but all are conjugate to $b u^{-1}$ or its inverse. So $\bar{\Gamma}_{B}$ contains no conjugates of v, so that $\left|\mathcal{M}_{B}(P)\right|=0$.

Since $\gamma_{3}=b u v$ is not conjugate to $u^{ \pm 1}, \bar{\Gamma}_{\xi_{3}}=\left\langle\gamma_{3}\right\rangle$ contains no conjugates of u, and clearly none of v, and so $\left|\mathcal{M}_{A}\left(\xi_{3}\right)\right|=\left|\mathcal{M}_{B}\left(\xi_{3}\right)\right|=0$.

Now $\left\langle\zeta^{-1} b j\right\rangle$ contains two elements of order 4 , namely $\left(\zeta^{-1} b j\right)^{2}=\zeta^{-3} v$ and its inverse. As v is not conjugate to v^{-1}, we see that $\left\langle\zeta^{-1} b j\right\rangle$ contains just one conjugate of v, so that $\left|\mathcal{M}_{B}\left(\xi_{8}\right)\right|=1$. Since $\bar{\Gamma}_{\xi_{8}}$ contains no elements of order 3 , we have $\left|\mathcal{M}_{A}\left(\xi_{8}\right)\right|=0$.

The elements of order 3 and 4 in $\langle b v\rangle$ are $(b v)^{ \pm 4}=b^{ \pm 1}$ and $(b v)^{ \pm 3}=v^{\mp 1}$, respectively. Using $b=(u b) u(u b)^{-1}$, we see that $\langle b v\rangle$ contains just one conjugate of each of u and v. So $\left|\mathcal{M}_{A}\left(\xi_{12}\right)\right|=\left|\mathcal{M}_{B}\left(\xi_{12}\right)\right|=1$.

We next want to describe the groups $\bar{\Gamma}_{c}$ and $\bar{\Gamma}_{0}$ of elements fixing M_{c} and M_{0}, respectively.
Lemma 19. For any $\alpha \in \mathbb{C}$, $a 3 \times 3$ matrix $g=\left(g_{i j}\right)$ with complex entries which is unitary with respect to F satisfies $g\left(M_{\alpha}\right)=M_{\alpha}$ if and only if
(a) $g_{13}=\alpha g_{23}$, and
(b) $g_{12}=\alpha\left(\alpha g_{21}-g_{11}+g_{22}\right)$.

Proof. This is straightforward.
Lemma 20. If $g Z \in \bar{\Gamma}$, then $g Z \in \bar{\Gamma}_{0}$ if and only if we can write

$$
g=\theta^{\prime}\left(\begin{array}{lll}
1 & 0 & 0 \tag{15}\\
0 & 1 & 0 \\
0 & 0 & \theta
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a & (r-1) b \\
0 & \bar{b} & \bar{a}
\end{array}\right)
$$

where $a, b \in \mathbb{Z}[\zeta], \theta, \theta^{\prime} \in\left\{\zeta^{k}: k=0, \ldots, 11\right\},|a|^{2}-(r-1)|b|^{2}=1$, and $a-1 \in(r-1) \mathbb{Z}[\zeta]$. This expression for g is unique, with $\theta^{\prime}=g_{11}$ and $\theta^{\prime 3} \theta=\operatorname{det}(g)$.

Proof. Suppose that $g Z \in \bar{\Gamma}_{0}$. Applying Lemma 19 for $\alpha=0$ to g and to

$$
g^{-1}=F^{-1} g^{*} F=\left(\begin{array}{ccc}
\bar{g}_{11} & \bar{g}_{21} & -(r-1) \bar{g}_{31} \tag{16}\\
\bar{g}_{12} & \bar{g}_{22} & -(r-1) \bar{g}_{32} \\
-\bar{g}_{13} /(r-1) & -\bar{g}_{23} /(r-1) & \bar{g}_{33}
\end{array}\right)
$$

we see that $g_{12}=g_{13}=g_{21}=g_{31}=0$. The condition that $\gamma_{0}^{-1} g \gamma_{0}$ has entries in $\mathbb{Z}[\zeta]$ tells us that $g_{11}, g_{22}, g_{33}, g_{32},\left(g_{11}-g_{22}\right) /(r-1)$ and $g_{23} /(r-1)$ are in $\mathbb{Z}[\zeta]$.

Now $g^{*} F g=F$ implies that $\left|g_{11}\right|^{2}=1$. This and $g_{11} \in \mathbb{Z}[\zeta]$ implies that g_{11} is a power of ζ, and so replacing g by $g_{11}^{-1} g$, we may suppose that $g_{11}=1$. Also, $a=g_{22}$ and $b=g_{23} /(r-1)$ are in $\mathbb{Z}[\zeta]$. Now $\operatorname{det}(g)=\operatorname{det}\left(\gamma_{0}^{-1} g \gamma_{0}\right) \in \mathbb{Z}[\zeta]$, and $g^{*} F g=F$ implies that $|\operatorname{det}(g)|=1$. So $\theta=\operatorname{det}(g)$ is also a power of ζ. Using the fact that $F^{-1} g^{*} F$ equals $\theta^{-1} \operatorname{Adj}(g)$, we see that $g_{33}=\bar{a} \operatorname{det}(g)$ and $g_{32}=\bar{b} \operatorname{det}(g)$, and then that $|a|^{2}-(r-1)|b|^{2}=1$. Finally, it is easy to check that $\gamma_{0}^{-1} g \gamma_{0}$ has entries in $\mathbb{Z}[\zeta]$ if and only if $a-1 \in(r-1) \mathbb{Z}[\zeta]$.

Let U_{0} denote the group of matrices with entries in $\mathbb{Z}[\zeta]$ which are unitary with respect to

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 1-r
\end{array}\right)
$$

If SU_{0} is the subgroup of U_{0} consisting of its elements of determinant 1 , then U_{0} is the semidirect product of SU_{0} and the group of order 12 generated by the matrix $z=\left(\begin{array}{ll}1 & 0 \\ 0 & \zeta\end{array}\right)$. We define an embedding of $\bar{\Gamma}_{0}$ into U_{0} as follows. If $g Z \in \bar{\Gamma}_{0}$, write g as in (15), and set

$$
\psi_{0}(g Z)=\left(\begin{array}{ll}
1 & 0 \tag{17}\\
0 & \theta
\end{array}\right)\left(\begin{array}{cc}
a & (r-1) b \\
\bar{b} & \bar{a}
\end{array}\right) .
$$

Lemma 21. The group SU_{0} is generated by

$$
d=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right) \quad \text { and } \quad x=\left(\begin{array}{cc}
\zeta^{3}+\zeta^{2}-1 & -\zeta^{2}-\zeta+1 \\
\zeta^{3}+\zeta^{2}-1 & -\zeta^{3}-\zeta^{2}
\end{array}\right)
$$

and has the following presentation with respect to these generators:

$$
\left\langle d, x \mid d^{12}=x^{3}=1,\left(d x^{2}\right)^{3}=d^{6}, d^{6} x=x d^{6}\right\rangle
$$

We get a presentation of U_{0} by adding the generator z and the relations $z^{12}=1, z d z^{-1}=d$ and $z x z^{-1}=d^{6} x^{-1} d$. The subgroup $H_{0}=\left\langle x d, d x, d^{3}\right\rangle$ of SU_{0} has index 3.

Proof. Given a field \mathbb{F} not of characteristic 2 , and $\alpha, \beta \in \mathbb{F}^{\times}$, the quaternion algebra $(\alpha, \beta)_{\mathbb{F}}$ consists of elements $\xi=x_{0}+x_{1} i+x_{2} j+x_{3} k$, where $x_{0}, \ldots, x_{3} \in \mathbb{F}$, with an associative multiplication satisfying $i j=k=-j i$ and $i^{2}=\alpha, j^{2}=\beta$. The reduced norm $N(\xi)=N_{A}(\xi)$ of ξ is $x_{0}^{2}-\alpha x_{1}^{2}-\beta x_{2}^{2}+\alpha \beta x_{3}^{2}$. If $\xi, \xi^{\prime} \in A$, then $N\left(\xi \xi^{\prime}\right)=N(\xi) N\left(\xi^{\prime}\right)$. Writing $a=x_{0}+x_{1} i$ and $b=x_{2}+x_{3} i$, we can think of $(\alpha, \beta)_{\mathbb{F}}$ as consisting of elements $a+b j$, where $a, b \in \mathbb{F}(\sqrt{\alpha})$, $j^{2}=\beta$, and $j a=\bar{a} j$ for the automorphism ${ }^{-}: x_{0}+x_{1} i \mapsto x_{0}-x_{1} i$ of $\mathbb{F}(\sqrt{\alpha})$. The classical Hamiltonian quaternion algebra is $\mathbb{H}=(-1,-1)_{\mathbb{R}}$. We have $N_{\mathbb{H}}(a+b j)=|a|^{2}+|b|^{2}$ for $a, b \in \mathbb{R}(\sqrt{-1})=\mathbb{C}$.

Let $A=(-1, r-1)_{\mathbb{Q}(r)}$. Identifying $i \in A$ with $\zeta^{3} \in \ell=\mathbb{Q}(\zeta)$, we see that $A=\{a+b j$: $a, b \in \ell\}$, and that $N(a+b j)=|a|^{2}-(r-1)|b|^{2}$. Let $\mathcal{O}=\{a+b j \in A: a, b \in \mathbb{Z}[\zeta]\}$. Then \mathcal{O} is a subring of A, closed under (left) multiplication by $\mathbb{Z}[r]$, and so is an order in A. In fact, it is a maximal order. Clearly SU_{0} is isomorphic to the group \mathcal{O}^{1} of elements of \mathcal{O} having reduced norm 1 . The group $\mathbb{Z}[r]^{\times}$of units in $\mathbb{Z}[r]$ consists of the elements $m+n r$, where $m, n \in \mathbb{Z}$ and $m^{2}-3 n^{2}= \pm 1$. Now $m^{2}-3 n^{2}=-1$ never holds, and $m^{2}-3 n^{2}=1$ if and only if $m+n r=(2+r)^{k}$ for some $k \in \mathbb{Z}$ (see [NZM, §7.8], for example). So $\mathbb{Z}[r]^{\times}$ is generated by -1 and $2+r$. If $\xi \in \mathcal{O}^{\times}$, then $N(\xi) \in \mathbb{Z}[r]^{\times}$. In fact, $N(\xi)$ is never equal to -1 , for if $\epsilon: \mathbb{Q}(r) \rightarrow \mathbb{R}$ is the field embedding mapping r to $-\sqrt{3}$, then

$$
f: x_{0}+x_{1} i+x_{2} j+x_{3} k \mapsto \epsilon\left(x_{0}\right)+\epsilon\left(x_{1}\right) i+\epsilon\left(x_{2}\right) \sqrt{\sqrt{3}+1} j+\epsilon\left(x_{3}\right) \sqrt{\sqrt{3}+1} k
$$

is an embedding of A into \mathbb{H} satisfying $\epsilon\left(N_{A}(\xi)\right)=N_{\mathbb{H}}(f(\xi))$. Now $\mathcal{O}^{1} \subset \mathcal{O}^{\times}$. Since $2+r=N(\zeta+1)$, if $\xi \in \mathcal{O}^{\times}$and $N(\xi)=(2+r)^{k}$, then $\xi /(\zeta+1)^{k} \in \mathcal{O}^{1}$. Since $(\zeta+1)^{2}=\zeta(2+r)$, we see that $\mathcal{O}^{1} /\{1,-1\}$ embeds as an index 2 subgroup of $\mathcal{O}^{\times} / \mathbb{Z}[r]^{\times}$. Magma has routines for finding a presentation of $\mathcal{O}^{\times} / \mathbb{Z}[r]^{\times}$. As these may be less familiar to the reader, we give some details. We set up $\mathbb{Q}(\zeta), \mathbb{Q}(r)$ and A with the commands
$\mathrm{L}\langle\mathrm{z}\rangle:=$ CyclotomicField(12);
$\mathrm{K}\langle\mathrm{r}\rangle:=\operatorname{sub}\langle\mathrm{L} \mid \mathrm{z}+1 / \mathrm{z}\rangle$;
$\mathrm{A}\langle\mathrm{i}, \mathrm{j}, \mathrm{k}\rangle:=$ QuaternionAlgebra $\langle\mathrm{K} \mid-1, \mathrm{r}-1\rangle$;
As $\zeta=\left(r+\zeta^{3}\right) / 2$, we set $z z:=(r+i) / 2$; and $0:=\operatorname{Order}([1, z z, j, z z * j]) ;$. Now the commands $\mathrm{G}:=\operatorname{FuchsianGroup}(0) ;$ and $\mathrm{u}, \mathrm{m}:=\operatorname{Group}(\mathrm{G})$; and u ; give a presentation for $\mathcal{O}^{\times} / \mathbb{Z}[r]^{\times}$. The command [A!Quaternion($\mathrm{m}(\mathrm{U} . \mathrm{i})): \mathrm{i}$ in [1..2]]; makes the generators u_{1}, u_{2} explicit. We find that $u_{1}=$ $(2+r-i) / 2$ and $u_{2}=-(r+2)(i+k)$. These satisfy $u_{1}^{12}=u_{2}^{2}=\left(u_{1} u_{2}\right)^{3}=1\left(\bmod \mathbb{Z}[r]^{\times}\right)$. Note that $N\left(u_{1}\right)=N\left(u_{2}\right)=2+r$. Magma verifies that the subgroup of the abstract group $\left\langle u_{1}, u_{2} \mid u_{1}^{12}=u_{2}^{2}=\left(u_{1} u_{2}\right)^{3}=1\right\rangle$ has a single index 2 subgroup, and it is generated by $g_{1}=u_{2} u_{1}^{-1}$ and $g_{2}=u_{1}^{2}$, and the relations $g_{1}^{3}=\left(g_{1} g_{2}\right)^{3}=g_{2}^{6}=1$ give a presentation. For the given concrete $u_{1}, u_{2} \in A$, we set $g_{1}=u_{2} u_{1}^{-1}$ and $g_{2}=(2-r) u_{1}^{2}$. Then $g_{1}, g_{2} \in \mathcal{O}^{1}$ generate $\mathcal{O}^{1} /\{-1,1\}$ and satisfy $g_{1}^{3}=1,\left(g_{1} g_{2}\right)^{3}=-1=g_{2}^{6}$. The given elements d and x are just g_{2}^{-1} and $g_{2}^{-3} g_{1} g_{2}^{-3}$. So they and the given relations form a presentation of SU_{0}.

The remaining assertions are routine to verify.
Lemma 22. The image under ψ_{0} of $\bar{\Gamma}_{0}$ is $\langle z\rangle H_{0}$.
Proof. The elements $x d, d x, d^{3}$ and z are all in $\psi_{0}\left(\bar{\Gamma}_{0}\right)$, being respectively the images of the elements $g Z$ of $\bar{\Gamma}_{0}$ for the following g 's:

$$
\zeta^{-4} j^{-3} b j^{7}, \quad \zeta^{-4} j^{-1} b j^{5}, \quad \zeta^{-3} v^{-1} j^{6}, \quad \text { and } \zeta j^{-1}
$$

Now $d \notin \psi_{0}\left(\bar{\Gamma}_{0}\right)$ since $\zeta-1 \notin(r-1) \mathbb{Z}[\zeta]$. So we have $\langle z\rangle H_{0} \subset \psi_{0}\left(\bar{\Gamma}_{0}\right) \varsubsetneqq \mathrm{U}_{0}$. Since H_{0} has index 3 in SU_{0} we have $\langle z\rangle H_{0}=\psi_{0}\left(\bar{\Gamma}_{0}\right)$.

We now describe $\bar{\Gamma}_{c}$. Recall that $c=(r-1)\left(\zeta^{3}-1\right) / 2=\zeta^{2}-\zeta$.
Lemma 23. If $g Z \in \bar{\Gamma}$, then $g Z \in \bar{\Gamma}_{c}$ if and only if we can write

$$
g=\theta^{\prime}\left(\begin{array}{lll}
1 & 0 & 0 \tag{18}\\
0 & 1 & 0 \\
0 & 0 & \theta
\end{array}\right)\left(\begin{array}{ccc}
(a(2-r)+1) /(3-r) & c(a-1) /(3-r) & b c \\
(a-1) \bar{c} /(3-r) & (a+2-r) /(3-r) & b \\
\bar{b} \bar{c} /(r-1) & \bar{b} /(r-1) & \bar{a}
\end{array}\right)
$$

where $a, b \in \mathbb{Z}[\zeta], \theta, \theta^{\prime} \in\left\{\zeta^{k}: k=0, \ldots, 11\right\},|a|^{2}-r|b|^{2}=1$, and $a-1 \in\left(\zeta^{4}-1\right) \mathbb{Z}[\zeta]$. This expression for g is unique, with $\theta^{\prime}=g_{11}-c g_{21}$ and $\theta^{\prime 3} \theta=\operatorname{det}(g)$.

Proof. Suppose that $g Z \in \bar{\Gamma}_{0}$. Applying Lemma 19 for $\alpha=c$ to g and to g^{-1}, we have $g_{13}=c g_{23}, g_{12}=c\left(c g_{21}-g_{11}+g_{22}\right), \overline{g_{31}}=c \overline{g_{32}}$, and $\overline{g_{21}}=c\left(c \overline{g_{12}}-\overline{g_{11}}+\overline{g_{22}}\right)$. From the second and fourth of these equations, we find that $\bar{c} g_{12}=c g_{21}$.

Using Lemma 19 again, we see that the map $g \mapsto g_{11}-c g_{21}$ is multiplicative on the group of matrices satisfying $g\left(M_{c}\right)=M_{c}$. So we get $1=\left(g_{11}-c g_{21}\right)\left(\overline{g_{11}}-c \overline{g_{12}}\right)=\left|g_{11}-c g_{21}\right|^{2}$ by applying this to g and g^{-1}, and so $\theta^{\prime}=g_{11}-c g_{21}$ has modulus 1 . The condition that $\gamma_{0}^{-1} g \gamma_{0}$ has entries in $\mathbb{Z}[\zeta]$ implies in particular that $g_{11}, g_{21} \in \frac{1}{r-1} \mathbb{Z}[\zeta]$, so that $\theta^{\prime} \in \frac{1}{r-1} \mathbb{Z}[\zeta]$. This and $\left|\theta^{\prime}\right|=1$ imply that $\theta^{\prime} \in\left\{\zeta^{k}: k=0, \ldots, 11\right\}$. So replacing g by $\theta^{\prime-1} g$, if necessary, we may suppose that $g_{11}-c g_{21}=1$. We can now express g_{11}, g_{12} and g_{21} in terms of g_{22}. Now let $N=F^{-1} g^{*} F-\operatorname{Adj}(g) / \theta=\left(n_{i j}\right)$, where $\theta=\operatorname{det}(g)$. By (16), this is zero. We solve $c n_{11}+n_{12}=0$ for g_{22}, obtaining $g_{22}=\left(|c|^{2}+\theta \overline{g_{33}}\right) /\left(|c|^{2}+1\right)$. Now solving $n_{31}=0$, we get $g_{32}=\overline{g_{23}} /((r-1) \bar{\theta})=\theta \overline{g_{23}} /(r-1)$, using $|\theta|=1$. Write $a=\theta \overline{g_{33}}$ and $b=g_{23}$. Then (18) holds. There is just one remaining condition on a and b to ensure that $N=0$, namely $|a|^{2}-r|b|^{2}=1$. This equation is also the condition that the determinant of the last matrix on the right in (18) is 1 . So taking determinants, we see that $\operatorname{det}(g)=\theta^{\prime 3} \theta$. As in Lemma 20, $\operatorname{det}(g) \in \mathbb{Z}[\zeta]$, and so $\theta \in\left\{\zeta^{k}: k=0, \ldots, 11\right\}$ too. Finally, by considering $g-I$, it is routine to check that $\gamma_{0}^{-1} g \gamma_{0}$ has entries in $\mathbb{Z}[\zeta]$ if and only if $a-1 \in\left(\zeta^{4}-1\right) \mathbb{Z}[\zeta]$.

Let U_{c} be the group of matrices with entries in $\mathbb{Z}[\zeta]$ which are unitary with respect to

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -r
\end{array}\right) .
$$

If SU_{c} is the subgroup of U_{c} consisting of its elements of determinant 1 , then U_{c} is the semidirect product of SU_{c} and the group of order 12 generated by the above matrix z. We define an embedding of $\bar{\Gamma}_{c}$ into U_{c} as follows. If $g Z \in \bar{\Gamma}_{c}$, write g as in (18), and set

$$
\psi_{c}(g Z)=\left(\begin{array}{cc}
1 & 0 \tag{19}\\
0 & \theta
\end{array}\right)\left(\begin{array}{cc}
a & r b \\
\bar{b} & \bar{a}
\end{array}\right) .
$$

Then ψ_{c} is an injective homomorphism $\bar{\Gamma}_{c} \rightarrow \mathrm{U}_{c}$.
Lemma 24. The group SU_{c} has generators

$$
d=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right), q=\left(\begin{array}{cc}
r+1 & r / c \\
1 / \bar{c} & r+1
\end{array}\right), \text { and } s=\left(\begin{array}{cc}
\zeta^{3}(r+1) & r / c \\
1 / \bar{c} & \zeta^{-3}(r+1)
\end{array}\right),
$$

and has the following presentation with respect to these generators:

$$
\mathrm{SU}_{c}=\left\langle d, q, s \mid d^{12}=1, s^{2}=\left(q d^{3}\right)^{2}=\left(q d^{2} s d^{2}\right)^{2}=d^{6}\right\rangle
$$

A presentation for U_{c} is obtained to adding to the above presentation of SU_{c} the generator z and the relations $z^{12}=1, z d=d z, z s z^{-1}=d q d^{2}$ and $z q z^{-1}=d^{-2} s d^{-1}$. The subgroup $H_{c}=\langle s d, d s, q\rangle$ has index 4 in SU_{c}.

Proof. The proof is similar to that of Lemma 21. We use the quaternion algebra $A=$ $(-1, r)_{\mathbb{Q}(r)}$ and the maximal order $\mathcal{O}=\{a+b j: a, b \in \mathbb{Z}[\zeta]\}$. Since $N(a+b j)=|a|^{2}-r|b|^{2}$, we have $\mathrm{SU}_{c} \cong \mathcal{O}^{1}$. Again $\mathcal{O}^{1} /\{-1,1\}$ embeds as a subgroup of index 2 in $\mathcal{O}^{\times} / \mathbb{Z}[r]^{\times}$ (we exclude $N(\xi)=-1$ in the same way, with $3^{1 / 4}$ in place of $\sqrt{\sqrt{3}+1}$ in the definition of the embedding $A \rightarrow \mathbb{H}$). This time we get a presentation for $\mathcal{O}^{\times} / \mathbb{Z}[r]^{\times}$with generators $u_{1}=(r+2-i) / 2$ and $u_{2}=(r+1-(3 r+5) i-2(r+2) k) / 2$ satisfying $u_{1}^{12}=u_{2}^{4}=\left(u_{1} u_{2}\right)^{2}=1$ $\left(\bmod \mathbb{Z}[r]^{\times}\right)$. The elements $g_{1}=u_{2} u_{1}^{-1}, g_{2}=u_{1}^{2}$ and $g_{3}=u_{1} u_{2}$ generate one of the three index 2 subgroups of the abstract group $\left\langle u_{1}, u_{2} \mid u_{1}^{12}=u_{2}^{4}=\left(u_{1} u_{2}\right)^{2}=1\right\rangle$, and this subgroup has presentation $\left(g_{1} g_{2}\right)^{2}=\left(g_{1} g_{3}\right)^{2}=g_{3}^{2}=g_{2}^{6}=1$. For the given concrete $u_{1}, u_{2} \in A$, we set $g_{1}=u_{2} u_{1}^{-1}$ and $g_{2}=(2-r) u_{1}^{2}$ and $g_{3}=(2-r) u_{1} u_{2}$. Then $g_{1}, g_{2}, g_{3} \in \mathcal{O}^{1}$ generate
$\mathcal{O}^{1} /\{-1,1\}$ and satisfy $\left(g_{1} g_{2}\right)^{2}=\left(g_{1} g_{3}\right)^{2}=g_{3}^{2}=g_{2}^{6}=-1$. We have $g_{1}=-d s, g_{2}=d^{-1}$ and $g_{3}=-d^{2} q d$. The result follows.

Lemma 25. The image of $\bar{\Gamma}_{c}$ in U_{c} is $\langle z\rangle H_{c}$.
Proof. Now $H_{c} \subset \psi_{c}\left(\bar{\Gamma}_{c}\right)$, since for the following elements g of $\bar{\Gamma}$:

$$
\zeta^{-4} j^{7} b u^{-1} b u j^{7}, \quad \zeta^{-4} j^{-3} b u^{-1} b u j^{5}, \quad j^{4} b u^{-1} b u^{-1} j^{2},
$$

we have $\operatorname{det}(g)=1, g_{11}-c g_{21}=1, g_{13}=c g_{23}$ and $g_{12}=c\left(c g_{21}-g_{11}+g_{22}\right)$, while $\psi_{c}(g Z)$ equals $s d$, $d s$ and q, respectively. Also, $z=\psi_{c}(g Z)$ for $g=\zeta j^{-1}$. Hence $\langle z\rangle H_{c} \subset \psi_{c}\left(\bar{\Gamma}_{c}\right)$. Now $d, d^{2}, d^{3} \notin \psi_{c}\left(\bar{\Gamma}_{c}\right)$, since $\zeta^{i}-1 \notin\left(\zeta^{4}-1\right) \mathbb{Z}[\zeta]$ for $i=1,2,3$, and so the index of $\psi_{c}\left(\bar{\Gamma}_{c}\right)$ in U_{c} is at least 4. Since $\left[\mathrm{SU}_{c}: H_{c}\right]=4$, we must have $\psi_{c}\left(\bar{\Gamma}_{c}\right)=\langle z\rangle H_{c}$.

The subgroup Π of $\bar{\Gamma}$ is torsion-free, and so the set $X=\Pi \backslash B_{\mathbb{C}}^{2}$ is a smooth compact complex surface. Let $\varphi: B_{\mathbb{C}}^{2} \rightarrow X$ be the natural map. If M is a mirror of type A or B, let $\bar{\Gamma}_{M}$ denote the stabilizer of M (so $\bar{\Gamma}_{\alpha}=\bar{\Gamma}_{M_{\alpha}}$) The group $\Pi_{M}=\{\pi \in \Pi: \pi(M)=M\}=\Pi \cap \bar{\Gamma}_{M}$ acts on M, and is the fundamental group of $\mathcal{C}_{M}^{1}:=\Pi_{M} \backslash M$. We denote by φ_{M} the map $\Pi_{M} \xi \mapsto \Pi \xi$ from \mathcal{C}_{M}^{1} to X, and write Π_{α} and φ_{α} instead of $\Pi_{M_{\alpha}}$ and $\varphi_{M_{\alpha}}$, respectively.
A.2. The groups Π_{M} when M is a mirror of type B. As at the end of the last section, $\Pi_{0}=\Pi_{M_{0}}=\left\{\pi \in \Pi: \pi\left(M_{0}\right)=M_{0}\right\}=\Pi \cap \bar{\Gamma}_{0}$.

Proposition 9. The group Π_{0} has a presentation

$$
\begin{equation*}
\left\langle u_{1}, \ldots, u_{4}, v_{1}, \ldots, v_{4}:\left[u_{1}, v_{1}\right]\left[u_{2}, v_{2}\right]\left[u_{3}, v_{3}\right]\left[u_{4}, v_{4}\right]=1\right\rangle, \tag{20}
\end{equation*}
$$

with explicit generators u_{i}, v_{i}, given below, and so $\Pi_{0} \backslash M_{0}$ is a curve of genus 4. The image under ψ_{0} of Π_{0} is a normal subgroup of SU_{0} which is an index 24 subgroup of $H_{0}=$ $\left\langle x d, d x, d^{3}\right\rangle$.
Proof. Using the fact that j^{4} normalizes Π, we can define $g_{1}, \ldots, g_{8} \in \Pi$ by setting $g_{1}=$ $\zeta^{5} a_{3}^{-3} a_{1}^{-1} a_{2} a_{1}, g_{3}=\zeta^{-4} a_{2} a_{1}^{-2} a_{3}^{-3} a_{1}^{-1}, g_{5}=\zeta^{3} j^{4} a_{2} a_{1} j^{8} a_{2}^{-1} a_{3}^{3} a_{1}^{2}$, and $g_{7}=j^{4} a_{1}^{-1} a_{2}^{-1} j^{4} a_{2} a_{1} j^{4}$, and then $g_{2 \nu}=j^{4} g_{2 \nu-1} j^{-4}$ for $\nu=1,2,3,4$. With the given scalar factors, each g_{j} has determinant 1 and $(1,1)$-entry 1 . They satisfy the relation:

$$
\begin{equation*}
g_{1} g_{2} g_{3} g_{4} g_{5} g_{6} g_{7} g_{8} g_{1}^{-1} g_{3}^{-1} g_{5}^{-1} g_{7}^{-1} g_{2}^{-1} g_{4}^{-1} g_{6}^{-1} g_{8}^{-1}=1 \tag{21}
\end{equation*}
$$

The g_{j} were found by a search amongst the short words in the generators of Π. We show that g_{1}, \ldots, g_{8} generate Π_{0}. Each g_{j} has determinant 1, and has the form

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right),
$$

where $a, b, c, d \in \mathbb{Z}[\zeta]$. Hence $G=\left\langle g_{1}, \ldots, g_{8}\right\rangle$ is contained in Π_{0}, and ψ_{0} embeds G in SU_{0}. With $h_{1}=x d, h_{2}=d x$ and $h_{3}=d^{3}$ the generators of H_{0}, we find that

$$
\begin{array}{lll}
\psi_{0}\left(g_{1}\right)=h_{3} h_{2} h_{3}^{-1} h_{1}^{-1}, & \psi_{0}\left(g_{4}\right)=h_{3}^{-1} h_{2} h_{1} h_{2}, & \psi_{0}\left(g_{7}\right)=h_{3} h_{2}^{-1} h_{3}^{-1} h_{1} \\
\psi_{0}\left(g_{2}\right)=h_{1} h_{2} h_{1} h_{3}^{-1}, & \psi_{0}\left(g_{5}\right)=h_{1}^{-1} h_{2}^{-1} h_{3} h_{2}^{-1}, & \psi_{0}\left(g_{8}\right)=h_{1}^{-1} h_{3} h_{1}^{-1} h_{2}^{-1} . \\
\psi_{0}\left(g_{3}\right)=h_{2} h_{1}^{-2} h_{2}^{-2} h_{3}^{-1}, & \psi_{0}\left(g_{6}\right)=h_{2} h_{3} h_{1}^{-1} h_{3}^{-1}, &
\end{array}
$$

Magma tells us that $\psi_{0}(G)$ is normal in SU_{0} and has index 24 in H_{0}, which has index 12 in $\langle z\rangle H_{0}=\psi_{0}\left(\bar{\Gamma}_{0}\right)$. So G has index 288 in $\bar{\Gamma}_{0}$. The group $K_{0}=K \cap \bar{\Gamma}_{0}=\langle u, j\rangle$ has order 48, and acts freely on any transversal of G in $\bar{\Gamma}_{0}$, since G is torsion-free. So we can find $6=288 / 48$ elements t_{1}, \ldots, t_{6} in $\bar{\Gamma}_{0}$ so that

$$
\begin{equation*}
\bar{\Gamma}_{0}=\bigcup_{i=1}^{6} G t_{i} K_{0} \tag{22}
\end{equation*}
$$

For example, if τ_{1}, τ_{2} and τ_{3} are the elements of $\bar{\Gamma}_{0}$ given in the proof of Lemma 22 satisfying $\psi_{0}\left(\tau_{i}\right)=h_{i}$ for $i=1,2,3$, then we can take t_{1}, \ldots, t_{6} to be

$$
1, \tau_{1}, j \tau_{1}, j^{2} \tau_{1}, j^{3} \tau_{1}, \text { and } \tau_{1} \tau_{2}^{-1}
$$

If G were strictly contained in Π_{0}, then there would be a transversal element $t_{i} k \neq 1$, where $i \in\{1, \ldots, 6\}$ and $k \in K_{0}$, such that $t_{i} k \in \Pi_{0}$. But Magma verifies that if $t_{i} k \neq 1$, then $\left\langle a_{1}, a_{2}, a_{3}, t_{i} k\right\rangle$ has index less than 864 in $\bar{\Gamma}$, so that $t_{i} k \notin \Pi$. So Π_{0} is generated by g_{1}, \ldots, g_{8}, and Magma's Rewrite command shows that these generators and the single relation (21) form a presentation of Π_{0}.

We now replace g_{1}, \ldots, g_{8} by generators u_{1}, \ldots, v_{4} satisfying (20). Our thanks go to Jonathan Hillman for showing us this method. The word W on the left in (21) is a product of 16 letters $g_{i}^{ \pm 1}$, with exactly one of each letter. Moreover, W has the form $A d e B d^{-1} C e^{-1}$ where d and e are letters, and A, B and C are words not involving the letters d, d^{-1}, e, e^{-1}. Notice that

$$
\begin{equation*}
A d e B d^{-1} C e^{-1}=\left[D_{1}, E_{1}\right] \cdot E_{1} A C B E_{1}^{-1} \quad \text { for } D_{1}=A d \text { and } E_{1}=e B \tag{23}
\end{equation*}
$$

The word $W^{\prime}=A C B$, which is a product of 12 letters $g_{i}^{ \pm 1}, i=1, \ldots, 6$, with exactly one of each letter, again has the form $A^{\prime} d^{\prime} e^{\prime} B^{\prime} d^{\prime-1} C^{\prime} e^{\prime-1}$, and so we can repeat this manoevre, obtaining

$$
A^{\prime} d^{\prime} e^{\prime} B^{\prime} d^{\prime-1} C^{\prime} e^{\prime-1}=\left[D_{2}, E_{2}\right] \cdot E_{2} A^{\prime} C^{\prime} B^{\prime} E_{2}^{-1} \quad \text { for } D_{2}=A^{\prime} d^{\prime} \text { and } E_{2}=e^{\prime} B^{\prime}
$$

Once again, $W^{\prime \prime}=A^{\prime} C^{\prime} B^{\prime}$ has the form of the word on the left in (23), and we can repeat the manoevre, and then once more. In this way we obtain words D_{1}, \ldots, D_{4} and E_{1}, \ldots, E_{4} so that $W=\left[u_{1}, v_{1}\right]\left[u_{2}, v_{2}\right]\left[u_{3}, v_{3}\right]\left[u_{4}, v_{4}\right]$ for

$$
\begin{array}{ll}
u_{1}=D_{1}, & v_{1}=E_{1}, \\
u_{2}=E_{1} D_{2} E_{1}^{-1}, & v_{2}=E_{1} E_{2} E_{1}^{-1}, \\
u_{3}=E_{1} E_{2} D_{3} E_{2}^{-1} E_{1}^{-1}, & \text { and } \\
u_{4}=E_{1} E_{2} E_{3} D_{4} E_{3}^{-1} E_{2}^{-1} E_{1}^{-1}, & v_{3}=E_{1} E_{2} E_{3} E_{2}^{-1} E_{1}^{-1}, \\
v_{4}=E_{1} E_{2} E_{3} E_{4} E_{3}^{-1} E_{2}^{-1} E_{1}^{-1} .
\end{array}
$$

The words D_{i} and E_{i} are easily read off from the original word W. Explicitly:

$$
\begin{array}{ll}
D_{1}=g_{1} g_{2} g_{3} g_{4} g_{5} g_{6} g_{7}, & E_{1}=g_{8} g_{1}^{-1} g_{3}^{-1} g_{5}^{-1}, \\
D_{2}=g_{1} g_{2} g_{3} g_{4}, & \text { and } \\
D_{3}=g_{1}, & E_{2}=g_{5} g_{6} g_{2}^{-1}, \tag{25}\\
D_{4}=g_{3}^{-1}, & E_{3}=g_{2} g_{3} g_{6}^{-1}, \\
E_{4}=g_{6} .
\end{array}
$$

This procedure can easily be reversed, by first expressing the g_{i} 's in terms of the D_{j} 's and E_{j} 's, and then these in terms of $u_{1}, v_{1}, \ldots, u_{4}, v_{4}$. We give the results of these calculations explicitly:

$$
\begin{array}{ll}
g_{1}=v_{1}^{-1} v_{2}^{-1} u_{3} v_{2} v_{1}, & g_{5}=v_{1}^{-1} v_{4} u_{4} v_{4}^{-1} v_{3} v_{2} v_{1} \\
g_{2}=v_{1}^{-1} v_{2}^{-1} v_{4} u_{4} v_{3} v_{2} v_{1}, & g_{6}=v_{1}^{-1} v_{2}^{-1} v_{3}^{-1} v_{4} v_{3} v_{2} v_{1} \\
g_{3}=v_{1}^{-1} v_{2}^{-1} v_{3}^{-1} u_{4}^{-1} v_{3} v_{2} v_{1}, & g_{7}=v_{1}^{-1} v_{2}^{-1} v_{3}^{-1} u_{4}^{-1} v_{4}^{-1} u_{2}^{-1} v_{1} u_{1}, \\
g_{4}=v_{1}^{-1} v_{2}^{-1} v_{3}^{-1} v_{4}^{-1} u_{3}^{-1} v_{2} u_{2} v_{1}, & g_{8}=v_{4} u_{4} v_{4}^{-1} u_{4}^{-1} v_{3} u_{3} v_{2} v_{1}
\end{array}
$$

Hence Π_{0} has the presentation (20) for the u_{i} 's and v_{i} 's given in (24).
We now consider Π_{M} for the other mirrors M of type B.
Proposition 10. If $g \in \bar{\Gamma}$ and $M=g\left(M_{0}\right)$ is a mirror of type B, then
(a) There is a $\pi \in \Pi$ such that $\pi(M)=M_{0}, M_{1}$ or M_{∞}.
(b) Correspondingly, Π_{M} is conjugate in Π to either Π_{0}, Π_{1} or Π_{∞}.
(c) $\Pi_{M}=g \Pi_{0} g^{-1}$.
(d) $h\left(\Pi_{M}\right) h^{-1}=\Pi_{h(M)}$ for any $h \in \bar{\Gamma}$.

In particular, it follows from (c) that for any mirror M of type $B, \Pi_{M} \backslash M \cong \Pi_{0} \backslash M_{0}$
Proof. (a) Since the elements $b^{\mu} k, \mu=0,1,-1$ and $k \in K$, form a set of coset representatives of Π in $\bar{\Gamma}$, and since, by Lemma 18, the $k_{\alpha}, \alpha \in\{0,1,-1, i,-i, \infty\}$, form a set of coset representatives of $K_{0}=K \cap \bar{\Gamma}_{0}$ in K, we may assume that $M=b^{\mu}\left(M_{\alpha}\right)$ for some $\mu \in$ $\{0,1,-1\}$ and $\alpha \in\{0,1,-1, i,-i, \infty\}$. For the cases with $\mu=0$, we have

$$
a_{1}^{-1} a_{2}^{-1}\left(M_{-1}\right)=a_{1}^{-1} a_{2}^{-1} a_{1}\left(M_{i}\right)=M_{0}, \quad \text { and } \quad a_{2}^{-1}\left(M_{-i}\right)=M_{\infty}
$$

Here is a table of elements $\pi \in \Pi$ such that $\pi\left(b M_{\alpha}\right)=M_{\beta} \in\left\{M_{0}, M_{1}, M_{\infty}\right\}$:

α	0	1	-1	i	$-i$	∞
π	1	a_{2}^{-2}	$a_{3}^{3} a_{1}^{2} a_{2}^{-1}$	$a_{1}^{-1} a_{3}^{-3}$	a_{2}^{-1}	$a_{2}^{-1} a_{1} a_{2}^{-1}$
β	0	1	1	1	1	∞

Here is a table of elements $\pi \in \Pi$ such that $\pi\left(b^{-1} M_{\alpha}\right)=M_{\beta} \in\left\{M_{0}, M_{1}, M_{\infty}\right\}$:

α	0	1	-1	i	$-i$	∞
π	1	$a_{3}^{-1} a_{1}^{-1} a_{2}^{-1}$	$a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}$	a_{3}^{-2}	a_{2}^{-2}	$a_{1}^{-2} a_{3}^{-3}$
β	0	∞	∞	1	∞	0

This proves (a), and (b) follows immediately, since if $M^{\prime}=\pi(M)$ with $\pi \in \Pi$, we have $\Pi_{M^{\prime}}=\pi \Pi_{M} \pi^{-1}$.
(c) We first show that $h \Pi_{0} h^{-1} \subset \Pi$ for each $h \in \bar{\Gamma}$. We may assume that $h=b^{\mu} k$ for some $\mu \in\{0,1,-1\}$ and some $k \in K$, and for such h, we must check that $h g_{j} h^{-1} \in \Pi$ for each of the 8 generators g_{j} of Π_{0} given in the proof of Proposition 9. We do this as usual by having Magma check that $\left\langle a_{1}, a_{2}, a_{3}, h g_{j} h^{-1}\right\rangle$ has index 864 in $\bar{\Gamma}$. It follows, in particular, that $h \Pi_{0} h^{-1}=\Pi_{0}$ for each $h \in \bar{\Gamma}_{0}$.

We next prove (c) in the cases $g=k_{\beta}, \beta=1, \infty$. Now $g \Pi_{0} g^{-1} \subset \Pi$ and so $k_{\beta} \Pi_{0} k_{\beta}^{-1} \subset \Pi_{\beta}$ for both $\beta=1, \infty$. To see that $k_{\beta} \Pi_{0} k_{\beta}^{-1}=\Pi_{\beta}$, note that by Proposition $9, \Pi_{0} \subset k_{\beta}^{-1} \Pi_{\beta} k_{\beta} \subset$ $\bar{\Gamma}_{0}$. We saw in the proof of Proposition 9 that the elements $t_{i} k, i=1, \ldots, 6, k \in K_{0}$, form a transversal of Π_{0} in $\bar{\Gamma}_{0}$. We show that $\Pi_{0}=k_{\beta}^{-1} \Pi_{\beta} k_{\beta}$ by checking that $t_{i} k \notin k_{\beta}^{-1} \Pi_{\beta} k_{\beta}$ unless $t_{i} k=1$, and this is done by Magma checking that the index in $\bar{\Gamma}$ of $\left\langle a_{1}, a_{2}, a_{3}, k_{\beta}\left(t_{i} k\right) k_{\beta}^{-1}\right\rangle$ is less than 864.

Now we know that $k_{\beta} \Pi_{0} k_{\beta}^{-1}=\Pi_{\beta}$ for $\beta=0,1, \infty$, we use (a) to see that for our given g, there is a $\pi \in \Pi$ so that $g\left(M_{0}\right)=\pi\left(M_{\beta}\right)$ for one of these β 's. Then $h=k_{\beta}^{-1} \pi^{-1} g$ is in $\bar{\Gamma}_{0}$, so that $h \Pi_{0} h^{-1}=\Pi_{0}$. Then $\left(\pi^{-1} g\right) \Pi_{0}\left(\pi^{-1} g\right)^{-1}=\Pi_{\beta}$ by the case $g=k_{\beta}$ of (c) we have already proved. Finally $g \Pi_{0} g^{-1}=\pi\left(\Pi_{M_{\beta}}\right) \pi^{-1}=\Pi_{\pi\left(M_{\beta}\right)}=\Pi_{M}$.

Part (d) follows immediately from (c).
It is a consequence of Proposition 11 below that the three possibilities in (a) are mutually exclusive.

For any mirror M, the embedding $M \hookrightarrow B_{\mathbb{C}}^{2}$ induces an immersion $\varphi_{M}: \Pi_{M} \backslash M \rightarrow X$. Whenever M is of type B, it follows from Proposition 10 (c) and (a) that $\Pi_{M} \backslash M \cong \Pi_{0} \backslash M_{0}$, and that the image of φ_{M} is equal to the image of either $\varphi_{M_{0}}, \varphi_{M_{1}}$ or $\varphi_{M_{\infty}}$.

We want to find out how the curves $\varphi_{M}\left(\Pi_{M} \backslash M\right)=\varphi(M)$ self-intersect.
Lemma 26. Suppose that $x \in X$ is the image under φ_{M} of two or more distinct elements of $\Pi_{M} \backslash M$. If M is of type B, then x must be one of the three points $\Pi(O), \Pi(b . O)$ and $\Pi\left(b^{-1} . O\right)$. If M is of type A, then x is either one of these three points or one of the 36 points $\Pi\left(k_{i} . P\right)$, where the k_{i} are as in (12). If $\xi \in M$, then $\varphi_{M}\left(\Pi_{M} \xi\right)$ is one of the three
points $\Pi\left(b^{\mu} . O\right), \mu=0,1,-1$, if and only if ξ is in the $\bar{\Gamma}$-orbit of O, and it is one of the 36 points $\Pi\left(k_{i} . P\right)$ if and only if ξ is in the $\bar{\Gamma}$-orbit of P.

Proof. Suppose that $\xi, \xi^{\prime} \in M$ and that $\varphi_{M}\left(\Pi_{M} \xi\right)=\varphi_{M}\left(\Pi_{M} \xi^{\prime}\right)=x$, with $\Pi_{M} \xi \neq \Pi_{M} \xi^{\prime}$. Then $\xi^{\prime}=\pi \xi$ for some $\pi \in \Pi$. If $M=g\left(M_{0}\right)$ is of type B, then both $\xi, \pi \xi \in M$ are fixed by $g v g^{-1}$, so that both $g v g^{-1}$ and $\pi^{-1} g v g^{-1} \pi$ are in $\bar{\Gamma}_{\xi}$, and so either $\pi^{-1} g v g^{-1} \pi=g v g^{-1}$ or $\left|\mathcal{M}_{B}(\xi)\right| \geq 2$, by Lemma 16. Now $\pi^{-1} g v g^{-1} \pi=g v g^{-1}$ means that $g^{-1} \pi g$ commutes with v, and so is in $\bar{\Gamma}_{0}$ by the same lemma, and so $\pi \in g \bar{\Gamma}_{0} g^{-1}=\bar{\Gamma}_{M}$. But then $\pi \in \Pi \cap \bar{\Gamma}_{M}$, so that $\Pi_{M} \xi^{\prime}=\Pi_{M} \xi$, contrary to hypothesis. Hence $\left|\mathcal{M}_{B}(\xi)\right| \geq 2$, and so ξ is in the $\bar{\Gamma}$-orbit of O, by Proposition 8 . Since the elements $b^{\mu} k, \mu=0,1,-1$ and $k \in K$, form a set of coset representatives of Π in $\bar{\Gamma}$, we can write $\xi=\pi b^{\mu} . O$ for some $\pi \in \Pi$ and $\mu \in\{0,1,-1\}$. So $x=\varphi_{M}\left(\Pi_{M} \xi\right)=\Pi \xi=\Pi\left(b^{\mu} . O\right)$.

If $M=g\left(M_{c}\right)$ is of type A, and $\xi, \xi^{\prime} \in M$ satisfy $\varphi_{M}\left(\Pi_{M} \xi\right)=\varphi_{M}\left(\Pi_{M} \xi^{\prime}\right)=x$, with $\Pi_{M} \xi \neq \Pi_{M} \xi^{\prime}$, we similarly show that $\left|\mathcal{M}_{A}(\xi)\right| \geq 2$, but now Proposition 8 shows that ξ is in the $\bar{\Gamma}$-orbit of either O or P. The last statement, in the case when ξ is in the $\bar{\Gamma}$-orbit of P, follows from (12).

It is a consequence of Proposition 16 below that when M is of type A, the 12 points $\Pi\left(k_{i} . P\right)$ for $i=25, \ldots, 36$, are each the image under φ_{M} of just one element of $\Pi_{M} \backslash M$.

Lemma 27. For each mirror M of type B, there are exactly six distinct $\Pi_{M} \xi \in \Pi_{M} \backslash M$ such that $\xi \in M$ is in the $\bar{\Gamma}$-orbit of O.

Proof. Write $M=g\left(M_{0}\right)$. If $\xi \in M_{0}$ is in the $\bar{\Gamma}$-orbit of O, then $g . \xi \in M$ is in the $\bar{\Gamma}$-orbit of O, and conversely. Also, if $\xi, \xi^{\prime} \in M_{0}$, then $\Pi_{0} \xi=\Pi_{0} \xi^{\prime}$ if and only if $\Pi_{M}(g \cdot \xi)=\Pi_{M}\left(g \cdot \xi^{\prime}\right)$, by Proposition 10(c). So we may assume that $M=M_{0}$. So suppose that $\xi \in M_{0}$ is in the $\bar{\Gamma}$-orbit of O. Writing $\xi=g . O$, we have $O \in g^{-1}\left(M_{0}\right)$. By Lemma 18, the distinct mirrors of type B containing O are the $k_{\beta}\left(M_{0}\right), \beta \in\{0,1,-1, i,-i, \infty\}$. So $g^{-1}\left(M_{0}\right)=k\left(M_{0}\right)$, for some $k \in K$. Hence $\xi=g . O=(g k) . O=h . O$ for some $h \in \bar{\Gamma}_{0}$. Since G in (22) equals Π_{0}, (22) implies that $\xi=\pi_{0} t_{i} . O$ for some $\pi_{0} \in \Pi_{0}$ and some $i \in\{1, \ldots, 6\}$. So $\Pi_{0} \xi$ is one of the six elements $\Pi_{0}\left(t_{i} . O\right), i=1, \ldots, 6$, and these are evidently distinct. So there are exactly 6 distinct $\Pi_{0} \xi$'s in $\Pi_{0} \backslash M_{0}$ with $\xi \in M_{0}$ in the $\bar{\Gamma}$-orbit of O.

For any mirror M, and any $\mu \in\{0,1,-1\}$, let

$$
n_{\mu}(M)=\sharp\left\{\Pi_{M} \xi \in \Pi_{M} \backslash M: \varphi_{M}\left(\Pi_{M} \xi\right)=\Pi\left(b^{\mu} . O\right)\right\} .
$$

By the last lemma, $n_{0}(M)+n_{1}(M)+n_{-1}(M)=6$ if M is of type B.
Proposition 11. If M is a mirror of type B, then according to the three possibilities in Proposition 10(a), ($\left.n_{0}(M), n_{1}(M), n_{-1}(M)\right)$ is either $(3,1,2),(1,4,1)$ or $(2,1,3)$, respectively.

Proof. For any mirror $M, n_{\mu}(M)$ equals

$$
\begin{equation*}
\sharp\left\{\Pi_{M} \pi \in \Pi_{M} \backslash \Pi: \pi\left(b^{\mu} . O\right) \in M\right\}, \tag{26}
\end{equation*}
$$

for if $\xi \in M, \varphi_{M}\left(\Pi_{M} \xi\right)=\Pi\left(b^{\mu} . O\right)$ if and only if there is a $\pi \in \Pi$ such that $\pi b^{\mu} . O=\xi$. If $\pi b^{\mu} . O=\xi$ and $\pi^{\prime} b^{\mu} . O=\xi^{\prime}$, with $\pi, \pi^{\prime} \in \Pi$ and $\xi, \xi^{\prime} \in M$, then $\Pi_{M} \xi=\Pi_{M} \xi^{\prime}$ if and only if $\pi^{\prime} b^{\mu} . O=\pi_{M} \pi b^{\mu} . O$ for some $\pi_{M} \in \Pi_{M}$, or equivalently, $\left(\pi_{M} \pi b^{\mu}\right)^{-1}\left(\pi^{\prime} b^{\mu}\right) \in K$. Since Π is torsion-free, this holds if and only if $\pi^{\prime}=\pi_{M} \pi$. So $\Pi_{M} \xi=\Pi_{M} \xi^{\prime}$ if and only if $\Pi_{M} \pi=\Pi_{M} \pi^{\prime}$.

If $M^{\prime}=\pi(M)$ for some $\pi \in \Pi$, then clearly $n_{\mu}\left(M^{\prime}\right)=n_{\mu}(M)$ for $\mu=0,1,-1$, so we need only calculate $n_{\mu}\left(M_{\alpha}\right)$ for $\alpha=0,1, \infty$. A search amongst the short words in the generators a_{1}, a_{2} and a_{3} of Π, looking for $\pi \in \Pi$ such that $\pi .\left(b^{\mu} . O\right) \in M_{\alpha}$, found the elements in the following table:

Π_{α} coset representatives of $\pi \in \Pi$ such that $\pi .\left(b^{\mu} . O\right) \in M_{\alpha}$			
α	$\mu=0$	$\mu=1$	$\mu=-1$
0	$1, a_{1}^{-1} a_{2}^{-1}, a_{1}^{-1} a_{2}^{-1} a_{1}$	1	$1, a_{1}^{-2} a_{3}^{-3}$
1	1	$a_{2}^{-1}, a_{2}^{-2}, a_{1}^{-1} a_{3}^{-3}, a_{3}^{3} a_{1}^{2} a_{2}^{-1}$	a_{3}^{-2}
∞	$1, a_{2}^{-1}$	$a_{2}^{-1} a_{1} a_{2}^{-1}$	$a_{2}^{-2}, a_{3}^{-1} a_{1}^{-1} a_{2}^{-1}, a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}$

It is easy to check that distinct elements π_{1}, π_{2} in the same cell of this table satisfy $\pi_{2} \pi_{1}^{-1} \notin$ $\bar{\Gamma}_{\alpha}$, and so belong to different Π_{α}-cosets. Since there are six elements given in each row of the table, it follows from Lemma 26 that the table gives a complete list of coset representatives.

Corollary 3. The subgroup of Π generated by $\left\{\pi \in \Pi: \pi . O \in M_{0}\right\}$ equals Π.
Proof. Denote the subgroup by S. From the $\alpha=0, \mu=0$ cell in the table in the proof of Proposition 11, we see that $a_{1}, a_{2} \in S$. As $j^{4} a_{2} j^{-4}=\zeta^{-1} a_{3}^{-1}$, and S is closed under conjugation by j^{4}, we have $a_{3} \in S$ too. So $S=\Pi$.

The fact that $n_{0}\left(M_{0}\right), n_{0}\left(M_{1}\right)$ and $n_{0}\left(M_{\infty}\right)$ are different shows that if $\alpha, \beta \in\{0,1, \infty\}$ are distinct, then there is no $\pi \in \Pi$ such that $\pi\left(M_{\alpha}\right)=M_{\beta}$. Equivalently, it shows that the images of $\varphi_{M_{0}}, \varphi_{M_{1}}$ and $\varphi_{M_{\infty}}$ are distinct. So the cases in Proposition 10(a) are mutually exclusive.

Lemma 28. The normal closure N_{0} of Π_{0} in Π has index 21 in Π and is normal in $\bar{\Gamma}$. For any mirror M of type B, the normal closure N_{M} of Π_{M} in Π is equal to N_{0}.

Proof. Let g_{1}, \ldots, g_{8} be the eight generators of Π_{0} used in the proof of Proposition 9. Then N_{0} contains, as well as the g_{ν} 's, all conjugates of the g_{ν} 's by elements of Π. Magma verifies that the g_{ν} 's and their conjugates $a_{i} g_{\nu} a_{i}^{-1}$ and $a_{i}^{-1} g_{\nu} a_{i}, i=1,2,3$, generate a normal subgroup N of $\bar{\Gamma}$ of index 21×864, and so $N_{0}=N$.

To prove the second statement, by Proposition 10(a) and (b), it is enough to check this when $M=M_{\alpha}, \alpha=1, \infty$. Now $\Pi_{\alpha}=k_{\alpha} \Pi_{0} k_{\alpha}^{-1} \subset k_{\alpha} N_{0} k_{\alpha}^{-1}=N_{0}$ because N_{0} is normal in $\bar{\Gamma}$. Because $N_{0} \subset \Pi$, we have $N_{\alpha} \subset N_{0}$. Magma verifies that the 24 elements $k_{\alpha} g_{\nu} k_{\alpha}^{-1}$ and $a_{2}^{ \pm 1} k_{\alpha} g_{\nu} k_{\alpha}^{-1} a_{2}^{\mp 1}, \nu=1, \ldots, 8$, generate a subgroup in $\bar{\Gamma}$ of index 21×864. This subgroup is contained in N_{α}, and so $N_{\alpha}=N_{0}$.

We conclude this section with some calculations involving the abelianization map $f: \Pi \rightarrow$ $\Pi /[\Pi, \Pi] \cong \mathbb{Z}^{2}$ (see just after Theorem 1), which are needed in Section 2.4.

Proposition 12. The images under the abelianization map f of the generators u_{i} and v_{i} of Π_{0} are as follows:

$$
\begin{array}{llll}
f\left(u_{1}\right)=(-5,-2), & f\left(u_{2}\right)=(-2,1), & f\left(u_{3}\right)=(1,4), & f\left(u_{4}\right)=(2,5) \\
f\left(v_{1}\right)=(-2,7), & f\left(v_{2}\right)=(0,0), & f\left(v_{3}\right)=(3,-6), & f\left(v_{4}\right)=(-1,-4)
\end{array}
$$

Presentations (20) of the groups Π_{1} and Π_{∞}, and calculations of the corresponding $f\left(u_{i}\right)$ and $f\left(v_{i}\right)$ are given below. The image under f of Π_{M} for any mirror of type B is equal to $\left\{(m, n) \in \mathbb{Z}^{2}: m-n\right.$ is divisible by 3$\}$.
Proof. In the notation of the proof of Proposition 9, $f\left(u_{i}\right)=f\left(D_{i}\right)$ and $f\left(v_{i}\right)=f\left(E_{i}\right)$ for $i=1, \ldots, 4$, and so it is routine to calculate these from the given expressions (25) for D_{i} and E_{i}, and from this we read off $f\left(\Pi_{0}\right)$.

Next we consider Π_{1} and Π_{∞}. If g_{1}, \ldots, g_{8} are the generators of Π_{0} given in the proof of Proposition 9, then Π_{1} and Π_{∞} have generators $g_{i}^{\prime}=k_{1} g_{i} k_{1}^{-1}$ and $g_{i}^{\prime \prime}=k_{\infty} g_{i} k_{\infty}^{-1}$, respectively, which satisfy the same relation (21) as do the g_{i} 's. So we get generators u_{i} and v_{i} for these groups by using (24), and by using (25) with the g_{i} 's replaced by g_{i}^{\prime} 's and $g_{i}^{\prime \prime \prime}$'s,
respectively. To calculate the $f\left(u_{i}\right)$ and $f\left(v_{i}\right)$'s, we need to express the $g_{i}^{\prime \prime}$'s and $g_{i}^{\prime \prime \prime}$'s in terms of the generators of Π. One may verify that:

$$
\begin{array}{ll}
g_{1}^{\prime}=\zeta^{2} a_{2}^{-3} a_{3}^{3} a_{1} a_{2} a_{1} a_{3} a_{1} a_{2}, & g_{5}^{\prime}=\zeta^{5} j^{8}\left(a_{1}^{-1} a_{3}^{-1} a_{1} a_{2}^{2} a_{1}^{-1} a_{2}^{-1} a_{1} a_{3} a_{3}\right) j^{4}, \\
g_{3}^{\prime}=\zeta^{3} j^{4}\left(a_{2}^{-2} a_{1}^{-1} a_{3}^{-1} a_{1} a_{2}^{2} a_{1}^{-1} a_{2}^{-1} a_{1}\right) j^{8}, & g_{7}^{\prime}=\zeta^{-5} j^{4}\left(a_{1}^{-2} a_{3}^{-3} a_{1}^{-1} a_{3}^{-1}\right) j^{8}
\end{array}
$$

and

$$
\begin{array}{ll}
g_{1}^{\prime \prime}=\zeta^{-4} j^{4}\left(a_{1}^{-1} a_{3}^{-2} a_{1}^{-1}\right) j^{8} a_{1}^{-1} a_{2}^{-1}, & g_{5}^{\prime \prime}=\zeta^{-1} j^{8}\left(a_{2}^{-1} a_{3}^{-1}\right) j^{4} \\
g_{3}^{\prime \prime}=\zeta^{-2} j^{8}\left(a_{3} a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}\right) j^{4}, & g_{7}^{\prime \prime}=\zeta^{-2} j^{4}\left(a_{1} a_{3} a_{1}^{-1} a_{3}^{-2}\right) j^{8}
\end{array}
$$

and $g_{2 \nu}^{\prime}=j^{4} g_{2 \nu-1}^{\prime} j^{-4}$ and $g_{2 \nu}^{\prime \prime}=j^{4} g_{2 \nu-1}^{\prime \prime} j^{-4}$ for $\nu=1,2,3,4$. So in the case Π_{1} we get

$$
\left.\begin{array}{lll}
f\left(u_{1}\right)=(-3,0), & f\left(u_{2}\right)=(2,-1), & f\left(u_{3}\right)=(1,4),
\end{array} \quad f\left(u_{4}\right)=(0,3), ~ 子, ~ f\left(v_{3}\right)=(7,-8), \quad f\left(v_{4}\right)=(-3,0), ~ f\left(v_{2}\right)=(-4,2), \quad f\left(v_{3}\right), \quad f, 3\right)
$$

while in the case Π_{∞}, we get

$$
\begin{array}{lll}
f\left(u_{1}\right)=(-1,2), & f\left(u_{2}\right)=(-2,1), & f\left(u_{3}\right)=(-3,0),
\end{array} \quad f\left(u_{4}\right)=(-2,1), ~ 子\left(v_{1}\right)=(2,-1), \quad f\left(v_{2}\right)=(0,0), \quad f\left(v_{3}\right)=(-1,2), \quad f\left(v_{4}\right)=(3,0) .
$$

For any mirror M of type B, the image under f of Π_{M} is the image of the normal closure of Π_{M}, and so is the same as that of Π_{0}.
A.3. The groups Π_{M} when M is a mirror of type A. Recall that $c=(r-1)\left(\zeta^{3}-1\right) / 2$, and that by Lemma 25 we have an injective homomorphism $\psi_{c}: \bar{\Gamma}_{c} \rightarrow \mathrm{U}_{c}$ with image $\langle z\rangle H_{c}$.

Proposition 13. The group Π_{c} has a presentation

$$
\begin{equation*}
\left\langle u_{1}, \ldots, u_{10}, v_{1}, \ldots, v_{10}:\left[u_{1}, v_{1}\right]\left[u_{2}, v_{2}\right] \cdots\left[u_{9}, v_{9}\right]\left[u_{10}, v_{10}\right]=1\right\rangle, \tag{27}
\end{equation*}
$$

with explicit generators u_{i}, v_{i}, given below, and so $\Pi_{c} \backslash M_{c}$ is a curve of genus 10. The image under ψ_{c} of Π_{c} is a normal subgroup of SU_{c} which is an index 27 subgroup of $H_{c}=\langle s d, d s, q\rangle$.

Proof. The proof is very similar to that of Proposition 9. We recall that j^{4} normalizes Π, and define 20 elements g_{1}, \ldots, g_{20} of Π by setting

$$
\begin{array}{ll}
g_{1}=j^{8} a_{1}^{-1} a_{2} a_{1} a_{3} a_{1}^{-1} j^{4} a_{2} a_{1}, & g_{12}=(-1) a_{2}^{-1} a_{1} a_{3} a_{1}^{-1} a_{3}^{-1} j^{4} a_{3} a_{1} a_{2}^{2} a_{1}^{-1} a_{2}^{-1} j^{8}, \\
g_{3}=\zeta j^{4} a_{2} a_{1} a_{2}^{-2} a_{1}^{-1} a_{3} j^{4} a_{3}^{3} j^{4}, & g_{15}=\zeta j^{4} a_{1} j^{4} a_{2} a_{3} a_{1}^{-1} j^{4}, \\
g_{5}=\zeta^{4} j^{8} a_{1}^{-1} j^{4} a_{2} a_{1} j^{4} a_{3} a_{2}^{-1} a_{1} a_{3} a_{1}^{-1} j^{8}, & g_{17}=\zeta^{-2} j^{8} a_{1}^{-2} a_{2}^{-1} j^{4} a_{3} a_{1} a_{2} a_{1}, \\
g_{7}=\zeta^{-5} j^{8} a_{2} a_{1} j^{4} a_{3}^{-1} j^{4} a_{2} a_{1}^{-1} a_{2}^{-1} a_{3}^{-3} j^{8}, & g_{19}=\zeta^{-1} a_{2}^{-1} a_{1} a_{3} a_{1}^{-1} a_{3}^{-2} j^{4} a_{1} a_{2} j^{4} a_{1}^{-1} a_{2}^{-1} j^{4}, \\
g_{9}=\zeta^{4} j^{8} a_{1}^{-1} a_{2}^{-2} a_{1}^{-1} a_{3}^{-1} j^{8} a_{1}^{-1} a_{2}^{-1} j^{8}, &
\end{array}
$$

and also $g_{\nu+1}=j^{4} g_{\nu} j^{-4}$ for $\nu \in\{1,3,5,7,9,10,12,13,15,17,19\}$. Each $h=g_{j}$ satisfies $h_{13}=c h_{23}$ and $h_{12}=c\left(c h_{21}-h_{11}+h_{22}\right)$, and so is in Π_{c}, by Lemma 19. With the given scalar factors, each has determinant 1 and satisfies $h_{11}-c h_{21}=1$ (cf. Lemma 23). The g_{j} 's satisfy

$$
\begin{align*}
& g_{4} g_{14}^{-1} g_{2}^{-1} g_{17}^{-1} g_{9} g_{19} g_{20} g_{14} g_{7}^{-1} g_{10}^{-1} g_{5}^{-1} g_{16}^{-1} g_{3}^{-1} g_{12}^{-1} g_{1} g_{2} g_{18}^{-1} g_{10} g_{19}^{-1} g_{12} \\
& \quad \times g_{8}^{-1} g_{11}^{-1} g_{6}^{-1} g_{15} g_{16} g_{4}^{-1} g_{13}^{-1} g_{1}^{-1} g_{17} g_{18} g_{11} g_{20}^{-1} g_{13} g_{7} g_{8} g_{9}^{-1} g_{5} g_{6} g_{15}^{-1} g_{3}=1 . \tag{28}
\end{align*}
$$

The elements g_{j} were found by a search for elements of Π_{c} amongst the short words in the generators of Π. The conjugates by j^{4} and by j^{8} of the elements found were added to the output, and then products of pairs of all these elements were formed, retaining those of small Hilbert-Schmidt norm (cf. [CS2, Lemma 3.2]).

Hence $G=\left\langle g_{1}, \ldots, g_{20}\right\rangle$ is contained in Π_{c}, and ψ_{c} embeds G in SU_{c}. With $h_{1}=s d$, $h_{2}=d s$ and $h_{3}=q$ the generators of H_{c}, we find that

$$
\begin{array}{ll}
\psi_{c}\left(g_{1}\right)=h_{1}^{-1} h_{2}^{-1} h_{3}^{-1} h_{2} h_{1} h_{3}, & \psi_{c}\left(g_{11}\right)=h_{1}^{-1} h_{2}^{-1} h_{1}^{-3} h_{2} h_{1}, \\
\psi_{c}\left(g_{2}\right)=h_{3}^{-1} h_{1} h_{3} h_{2}^{2} h_{1}, & \psi_{c}\left(g_{12}\right)=h_{2}^{-1} h_{3}^{-1} h_{2}^{-1} h_{3}^{-1} h_{1}^{-1} h_{3}^{-1} h_{1}^{-1}, \\
\psi_{c}\left(g_{3}\right)=h_{1} h_{3} h_{2} h_{3}^{-1} h_{2} h_{1}, & \psi_{c}\left(g_{13}\right)=h_{3}^{-1} h_{2} h_{1} h_{3}^{-1} h_{2} h_{1} h_{3}^{-1} h_{2} h_{1} \\
\psi_{c}\left(g_{4}\right)=h_{2} h_{1}^{2} h_{3} h_{2} h_{3}^{-1}, & \psi_{c}\left(g_{14}\right)=h_{2} h_{1} h_{3}^{-1} h_{2} h_{1} h_{3}^{-1} h_{2} h_{1} h_{3}^{-1} \\
\psi_{c}\left(g_{5}\right)=h_{1}^{-1} h_{2} h_{1} h_{2}^{-1}, & \psi_{c}\left(g_{15}\right)=h_{1} h_{3} h_{2} h_{1}^{-1} h_{2} h_{1} h_{2}^{-1} h_{3}^{-1} h_{2} h_{1}, \\
\psi_{c}\left(g_{6}\right)=h_{2}^{2} h_{1}^{2} h_{2} h_{1}, & \psi_{c}\left(g_{16}\right)=h_{1}^{-1} h_{2}^{-1} h_{3} h_{2}^{2} h_{1} h_{2}^{-1} h_{3}^{-1}, \\
\psi_{c}\left(g_{7}\right)=h_{2} h_{1}^{2} h_{2}^{2} h_{1}, & \psi_{c}\left(g_{17}\right)=h_{1}^{-2} h_{2}^{-1} h_{3}^{-1} h_{1} h_{3}, \\
\psi_{c}\left(g_{8}\right)=h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}, & \psi_{c}\left(g_{18}\right)=h_{2} h_{1}^{-1} h_{2}^{-1} h_{3}^{-1} h_{1} h_{3} h_{1}^{-1} h_{2}^{-1}, \\
\psi_{c}\left(g_{9}\right)=h_{1}^{-3}, & \psi_{c}\left(g_{19}\right)=h_{2}^{-1} h_{3}^{-1} h_{2}^{2} h_{1} h_{3}, \\
\psi_{c}\left(g_{10}\right)=h_{2} h_{1}^{-3} h_{2}^{-1}, & \psi_{c}\left(g_{20}\right)=h_{2} h_{1} h_{2}^{-1} h_{3}^{-1} h_{1} h_{3} h_{2} h_{1}^{-1} h_{2} h_{1} .
\end{array}
$$

Magma tells us that $\psi_{c}(G)$ is normal in SU_{c} and has index 27 in H_{c}, which has index 12 in $\langle z\rangle H_{c}=\psi_{c}\left(\bar{\Gamma}_{c}\right)$. So G has index 324 in $\bar{\Gamma}_{c}$. The group $K_{c}=K \cap \bar{\Gamma}_{c}=\langle v, j\rangle$ has order 36, and acts freely on any transversal of G in $\bar{\Gamma}_{c}$, since G is torsion-free. So we can find $9=324 / 36$ elements t_{1}, \ldots, t_{9} in $\bar{\Gamma}_{c}$ so that

$$
\begin{equation*}
\bar{\Gamma}_{c}=\bigcup_{i=1}^{9} G t_{i} K_{c} \tag{29}
\end{equation*}
$$

For example, if τ_{1}, τ_{2} and τ_{3} are the elements of $\bar{\Gamma}_{c}$ given in the proof of Lemma 25 satisfying $\psi_{c}\left(\tau_{i}\right)=h_{i}$ for $i=1,2,3$, then we can take t_{1}, \ldots, t_{9} to be

$$
1, \tau_{1}, j \tau_{1}, j^{2} \tau_{1}, j^{3} \tau_{1}, \tau_{1} \tau_{3}, j \tau_{1} \tau_{3}, j^{2} \tau_{1} \tau_{3}, \text { and } j^{3} \tau_{1} \tau_{3}
$$

If G were strictly contained in Π_{c}, then there would be a transversal element $t_{i} k \neq 1$, where $i \in\{1, \ldots, 9\}$ and $k \in K_{c}$, such that $t_{i} k \in \Pi_{c}$. But Magma verifies that if $t_{i} k \neq 1$, then $\left\langle a_{1}, a_{2}, a_{3}, t_{i} k\right\rangle$ has index less than 864 in $\bar{\Gamma}$, so that $t_{i} k \notin \Pi$. So Π_{c} is generated by g_{1}, \ldots, g_{20}, and Magma's Rewrite command shows that these generators and the single relation (28) form a presentation of Π_{c}.

We now replace this presentation by a presentation (27). The method used in the proof of Proposition 9 extends to this case, and we can write the word on the left in (28) as a product $\left[u_{1}, v_{1}\right]\left[u_{2}, v_{2}\right] \cdots\left[u_{9}, v_{9}\right]\left[u_{10}, v_{10}\right]$, where for each i, we have $u_{i}=E_{1} \cdots E_{i-1} D_{i} E_{i-1}^{-1} \cdots E_{1}^{-1}$ and $v_{i}=E_{1} \cdots E_{i-1} E_{i} E_{i-1}^{-1} \cdots E_{1}^{-1}$, where

$$
\begin{aligned}
& D_{1}=g_{4} g_{14}^{-1} g_{2}^{-1} g_{17}^{-1} g_{9} g_{19} g_{20} g_{14} g_{7}^{-1} g_{10}^{-1} g_{5}^{-1} g_{16}^{-1} \\
& D_{2}=g_{4} g_{14}^{-1} g_{2}^{-1} g_{17}^{-1} g_{9} g_{19} g_{20} g_{14} g_{7}^{-1} g_{10}^{-1} g_{5}^{-1} g_{4}^{-1} g_{13}^{-1} g_{1}^{-1} g_{17} g_{18} g_{11} g_{20}^{-1} g_{13} g_{7} g_{8} g_{9}^{-1} g_{5} g_{6} \\
& D_{3}=g_{4} g_{14}^{-1} g_{2}^{-1} g_{17}^{-1} g_{9} g_{19} g_{20} g_{14} g_{7}^{-1} g_{10}^{-1} g_{5}^{-1} g_{4}^{-1} g_{13}^{-1} g_{1}^{-1} g_{17} g_{18} \\
& D_{5}=g_{4} g_{7}^{-1} g_{10}^{-1} g_{5}^{-1} g_{4}^{-1} g_{13}^{-1} g_{1}^{-1} g_{17} g_{10} g_{19}^{-1} g_{12} g_{8}^{-1}
\end{aligned}
$$

and

$$
\begin{array}{llr}
D_{4}=g_{4} g_{14}^{-1}, & D_{7}=g_{13}^{-1} g_{1}^{-1} g_{17} g_{10} g_{19}^{-1} g_{12} g_{9}^{-1}, & D_{9}=g_{13}^{-1} g_{10} g_{19}^{-1} \\
D_{6}=g_{4}, & D_{8}=g_{13}^{-1} g_{1}^{-1}, & D_{10}=g_{13}^{-1}
\end{array}
$$

and also

$$
\begin{array}{ll}
E_{1}=g_{3}^{-1} g_{12}^{-1} g_{1} g_{2} g_{18}^{-1} g_{10} g_{19}^{-1} g_{12} g_{8}^{-1} g_{11}^{-1} g_{6}^{-1} g_{15}, & E_{6}=g_{7}^{-1} g_{10}^{-1} g_{5}^{-1}, \\
E_{2}=g_{15}^{-1} g_{12}^{-1} g_{1} g_{2} g_{18}^{-1} g_{10} g_{19}^{-1} g_{12} g_{8}^{-1} g_{11}^{-1}, & E_{7}=g_{5} g_{12}^{-1} g_{1} g_{17}^{-1}, \\
E_{3}=g_{11} g_{20}^{-1} g_{13} g_{7} g_{8} g_{9}^{-1} g_{5} g_{12}^{-1} g_{1} g_{2}, & E_{8}=g_{17} g_{10} g_{19}^{-1} g_{12} g_{19} g_{13} g_{10}^{-1} g_{12}^{-1}, \\
E_{4}=g_{2}^{-1} g_{17}^{-1} g_{9} g_{19} g_{20}, & E_{9}=g_{12}, \\
E_{5}=g_{20}^{-1} g_{13} g_{7}, & E_{10}=g_{10} .
\end{array}
$$

The generators g_{1}, \ldots, g_{20} can be expressed in terms of $u_{1}, v_{1}, \ldots, u_{10}, v_{10}$ by first expressing them in terms of the D_{i} 's and E_{i} 's, as in the proof of Proposition 9. Hence Π_{c} has the presentation (27) for the given u_{i} 's and v_{i} 's.

We now consider Π_{M} for the other mirrors M of type A. As well as $c=(r-1)\left(z^{3}-1\right) / 2=$ c_{+--}, the parameter $-c=c_{---}$is important in the next result.

Proposition 14. If $g \in \bar{\Gamma}$ and $M=g\left(M_{c}\right)$ is a mirror of type A, then
(a) There is a $\pi \in \Pi$ such that $\pi(M)=M^{\prime}$, where $M^{\prime} \in\left\{M_{c}, M_{-c}, b\left(M_{c}\right), b^{-1}\left(M_{c}\right)\right\}$.
(b) If M^{\prime} is as in (a), then Π_{M} is conjugate in Π to $\Pi_{M^{\prime}}$.
(c) $\Pi_{M}=g \Pi_{c} g^{-1}$ in the first two cases of (a), and in particular if $g=k_{\alpha}$ for any $\alpha \in\left\{c_{+++}, \ldots, c_{---}\right\}$, so that $\Pi_{\alpha}=k_{\alpha} \Pi_{c} k_{\alpha}^{-1}$ for all these α 's.
(d) In the other two cases of (a), $g \Pi_{c} g^{-1}$ has index 3 in Π_{M}.

Proof. (a) Since the elements $b^{\mu} k, \mu=0,1,-1$ and $k \in K$, form a set of coset representatives of Π in $\bar{\Gamma}$, and since the $k_{\alpha}, \alpha \in\left\{c_{+++}, \ldots, c_{---}\right\}$, form a set of coset representatives of $K_{c}=K \cap \bar{\Gamma}_{c}$ in K, by Lemma 17, we may assume that $M=b^{\mu}\left(M_{\alpha}\right)$ for some $\mu \in\{0,1,-1\}$ and $\alpha \in\left\{c_{+++}, \ldots, c_{---}\right\}$.

The next three tables list elements $\pi \in \Pi$ and $M^{\prime} \in\left\{M_{c}, M_{-c}, b\left(M_{c}\right), b^{-1}\left(M_{c}\right)\right\}$ such that $\pi\left(b^{\mu}\left(M_{\alpha}\right)\right)=M^{\prime}$ for each of these α^{\prime} 's, and for $\mu=0,1$ and -1 , respectively.

α	c_{+++}	c_{++-}	c_{+-+}	c_{+--}	c_{-++}	c_{-+-}	c_{--+}	c_{---}
π	a_{2}^{2}	$a_{1} a_{3}^{-1}$	$a_{3}^{-1} a_{1} a_{2}^{2}$	1	$a_{1} a_{3}^{-1} a_{1} a_{3}$	$a_{2}^{2} a_{1}^{-1} a_{3}^{-1}$	$a_{1}^{-1} a_{2}^{-2} a_{1}^{-1}$	1
M^{\prime}	M_{-c}	M_{c}	M_{-c}	M_{c}	M_{c}	M_{-c}	M_{c}	M_{-c}

α	c_{+++}	c_{++-}	c_{+-+}	c_{+--}	c_{-++}	c_{-+-}	c_{--+}	c_{---}
π	a_{3}^{-3}	π^{*}	$a_{2} a_{1}^{-1} a_{2}^{-3}$	1	$a_{1}^{-1} a_{2}^{-1} a_{1} a_{3} a_{2}^{-1}$	$a_{3} a_{1} a_{2}^{-1}$	$a_{2} a_{1}^{-1} a_{2}^{-1}$	$a_{1}^{-1} a_{2}^{-2}$
M^{\prime}	M_{c}	M_{-c}	M_{-c}	$b\left(M_{c}\right)$	M_{c}	$b^{-1}\left(M_{c}\right)$	M_{-c}	M_{c}

α	c_{+++}	c_{++-}	c_{+-+}	c_{+--}	c_{-++}	c_{-+-}	c_{--+}	c_{---}
π	$a_{2} a_{1}^{-2} a_{3}^{-3}$	$a_{1}^{-2} a_{3}^{-3} a_{2}^{-1}$	$a_{2}^{2} a_{1} a_{3}$	1	$a_{3}^{3} a_{1} a_{2}^{-1}$	π^{\dagger}	$a_{1}^{-1} a_{2}^{-3}$	$a_{1}^{-1} a_{2}^{-1}$
M^{\prime}	M_{-c}	M_{-c}	$b^{-1}\left(M_{c}\right)$	$b^{-1}\left(M_{c}\right)$	$b\left(M_{c}\right)$	$b\left(M_{c}\right)$	M_{c}	M_{c}

where $\pi^{*}=a_{1}^{-1} a_{2}^{-1} a_{3}^{-2} a_{1}^{2} a_{2}^{-1}$ and $\pi^{\dagger}=a_{2} a_{1}^{-2} a_{3}^{-1} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}$. This proves (a), and (b) follows immediately, since $\Pi_{\pi(M)}=\pi \Pi_{M} \pi^{-1}$ for any $\pi \in \Pi$.
(c) We first show that $h \Pi_{c} h^{-1} \subset \Pi$ for each $h \in \bar{\Gamma}$. We may assume that $h=b^{\mu} k$ for some $\mu \in\{0,1,-1\}$ and some $k \in K$, and for such h, we must check that $h g_{j} h^{-1} \in \Pi$ for each of the 20 generators g_{j} of Π_{c} given in Proposition 13. We do this as usual by having Magma check that $\left\langle a_{1}, a_{2}, a_{3}, h g_{j} h^{-1}\right\rangle$ has index 864 in $\bar{\Gamma}$. It follows, in particular, that $h \Pi_{c} h^{-1}=\Pi_{c}$ for each $h \in \bar{\Gamma}_{c}$.

We next prove (c) in the case $g=k_{-c}$, and (d) in the cases $g=b$ and $g=b^{-1}$. Now $g \Pi_{c} g^{-1} \subset \Pi$ and so $g \Pi_{c} g^{-1} \subset \Pi_{M}$ for $M=g\left(M_{c}\right)$. So

$$
\Pi_{c} \subset g^{-1} \Pi_{M} g \subset \bar{\Gamma}_{c}
$$

We saw in the proof of Proposition 13 that the elements $t_{i} k, i=1, \ldots, 9, k \in K_{c}$, form a transversal of Π_{c} in $\bar{\Gamma}_{c}$. Now $t_{i} k \in g^{-1} \Pi_{M} g$ if and only if $g t_{i} k g^{-1} \in \Pi$, and so if and only if the index in $\bar{\Gamma}$ of $\left\langle a_{1}, a_{2}, a_{3}, g t_{i} k g^{-1}\right\rangle$ equals 864. We find that if $g=k_{-c}$, then $t_{i} k \in g^{-1} \Pi_{M} g$ only if $t_{i} k=1$. It follows that $\Pi_{c}=g^{-1} \Pi_{M} g$ if $g=k_{-c}$, proving (c) in that case. However when $g=b$, we find that, as well as $t_{i} k=1$, also $t_{6} u^{2} j^{8}$ and $t_{8} u^{2} j^{6}$ are in $g^{-1} \Pi_{M} g$, and that when $g=b^{-1}$, as well as $t_{i} k=1$, also $t_{3} u^{2} j^{7}$ and $t_{5} j^{9}$ are in $g^{-1} \Pi_{M} g$. Explicitly,

$$
\begin{align*}
b \tau_{1} \tau_{3} u^{2} j^{8} b^{-1} & =a_{3}^{3} a_{1} a_{3}^{2} j^{8} a_{2}^{-2} a_{3}^{3} a_{1} j^{4}, & b^{-1} j \tau_{1} u^{2} j^{7} b & =-j^{8} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2} j^{8} a_{2} a_{1} j^{8}, \\
b j^{2} \tau_{1} \tau_{3} u^{2} j^{6} b^{-1} & =\zeta^{3} a_{2}^{3} a_{1}^{-1} a_{3}^{-1} j^{8} a_{2}^{-2} a_{1}^{-1} j^{4}, & b^{-1} j^{3} \tau_{1} j^{9} b & =\zeta^{3} j^{4} a_{1}^{-1} a_{2}^{-1} a_{3}^{-3} a_{1}^{-1} a_{2} a_{1} j^{8}, \tag{30}
\end{align*}
$$

are in Π. Magma checks that no other $g t_{i} k g^{-1} \neq 1$ are in Π. So for both $g=b$ and $g=b^{-1}$, $g \Pi_{c} g^{-1}$ has index 3 in Π_{M}, proving (d) in these cases.

Now we know that $k_{\beta} \Pi_{c} k_{\beta}^{-1}=\Pi_{\beta}$ for $\beta=c,-c$, suppose that $g \in \bar{\Gamma}$, and write $M=$ $g\left(M_{c}\right)$. Suppose there is a $\pi \in \Pi$ so that $\pi(M)=M_{\beta}$ for one of these β 's. Then $h=k_{\beta}^{-1} \pi g$ is in $\bar{\Gamma}_{c}$, so that $h \Pi_{c} h^{-1}=\Pi_{c}$. Then $(\pi g) \Pi_{c}(\pi g)^{-1}=\Pi_{\beta}$ by the case $g=k_{\beta}$ of (c) we have already proved. Finally $g \Pi_{c} g^{-1}=\pi^{-1}\left(\Pi_{M_{\beta}}\right) \pi=\Pi_{\pi^{-1}\left(M_{\beta}\right)}=\Pi_{M}$. This completes the proof of (c).

To prove (d), suppose that $M=g\left(M_{c}\right)$ and that there is a $\pi \in \Pi$ such that $\pi(M)=$ $b^{\mu}\left(M_{c}\right)$, for $\mu=1$ or -1 . Then $h=b^{-\mu} \pi g \in \bar{\Gamma}_{c}$ and so $h \Pi_{c} h^{-1}=\Pi_{c}$, and therefore $(\pi g) \Pi_{c}(\pi g)^{-1}=b^{\mu} \Pi_{c} b^{-\mu}$, which has index 3 in $\Pi_{b^{\mu}\left(M_{c}\right)}$, by the cases $g=b$ and b^{-1} of (d). So $g \Pi_{c} g^{-1}$ has index 3 in $\pi^{-1}\left(\Pi_{b^{\mu}\left(M_{c}\right)}\right) \pi=\Pi_{\pi^{-1}\left(b^{\mu}\left(M_{c}\right)\right)}=\Pi_{M}$.

It is a consequence of Proposition 16 below that the four possibilities in Proposition 14(a) are mutually exclusive. If M is a mirror of type A, then by Proposition 14(a), the image of the immersion $\varphi_{M}: \Pi_{M} \backslash M \rightarrow X$ is equal to the image of $\varphi_{M^{\prime}}$ for $M^{\prime}=M_{c}, M_{-c}, b\left(M_{c}\right)$ or $b^{-1}\left(M_{c}\right)$. By Proposition 16 again, these images are distinct.

If there is a $\pi \in \Pi$ such that $\pi(M)=M_{c}$ or M_{-c} (in particular if $M=M_{\alpha}$ for some $\alpha \in\left\{c_{+++}, \ldots, c_{---}\right\}$), Proposition 14 (c) shows that $\Pi_{M} \backslash M \cong \Pi_{c} \backslash M_{c}$, so that $\Pi_{M} \backslash M$ is a surface of genus 10. For the other two possibilities in Proposition 14(a), things are very different, as we now see.

Proposition 15. If M is a mirror of type A, and if there is a $\pi \in \Pi$ such that $\pi(M)=b\left(M_{c}\right)$ or $b^{-1}\left(M_{c}\right)$, then $\Pi_{M} \backslash M$ is a surface of genus 4 .

Proof. We may assume that $M=b^{\mu}\left(M_{c}\right)$ for $\mu=1$ or -1 . As we saw in the proof of Proposition 14, $b^{-\mu} \Pi_{M} b^{\mu}$ is the union of three cosets $\Pi_{c} t_{i} k$ of Π_{c} in $\bar{\Gamma}_{c}$. Recall that we have an injective homomorphism $\psi_{c}: \bar{\Gamma}_{c} \rightarrow \mathrm{U}_{c}$, and $\psi_{c}\left(\Pi_{c}\right)$ has index 27 in $H_{c}=\left\langle h_{1}, h_{2}, h_{3}\right\rangle \subset$ U_{c}. We find that

$$
\begin{align*}
\psi_{c}\left(\tau_{1} \tau_{3} u^{2} j^{8}\right) & =h_{1} h_{3} h_{1}^{-1} h_{2}^{-1}, & \psi_{c}\left(j \tau_{1} u^{2} j^{7}\right) & =h_{2} h_{1} h_{3} \\
\psi_{c}\left(j^{2} \tau_{1} \tau_{3} u^{2} j^{6}\right) & =h_{2} h_{1}^{-1} h_{2}^{-1} h_{3}^{-1}, & \text { and } & \psi_{c}\left(j^{3} \tau_{1} j^{9}\right) \tag{31}
\end{align*}=h_{3}^{-1} h_{1}^{-1} h_{2}^{-1} .
$$

So $\psi_{c}\left(\Pi_{c}\right) \subset \psi_{c}\left(b^{-\mu} \Pi_{M} b^{\mu}\right) \subset H_{c}$, and $\psi_{c}\left(b^{-\mu} \Pi_{M} b^{\mu}\right)$ has index 9 in H_{c}, and is generated by $\psi\left(\Pi_{c}\right)$ and two more elements, which are given in (31) (cf. (30)). We find that in both cases, $\psi_{c}\left(b^{-\mu} \Pi_{M} b^{\mu}\right)$ is generated by eight elements satisfying a single relation, and have abelianization \mathbb{Z}^{8}. So the same is true of Π_{M}.

Let us record here generators of $\Pi \cap b \bar{\Gamma}_{c} b^{-1}\left(=\Pi_{M}\right.$ for $\left.M=b\left(M_{c}\right)\right)$:

$$
\begin{array}{ll}
p_{1}=\zeta^{-1} a_{2}^{3} a_{1}^{-1} a_{3}^{-1} j^{8} a_{2}^{-2} a_{1}^{-1} j^{4}, & p_{5}=\zeta^{-4} a_{3}^{3} a_{1} a_{3}^{2} j^{4} a_{1}^{-1} j^{8} a_{3}^{2} a_{1} a_{2}^{-3}, \\
p_{2}=a_{3}^{3} a_{1} a_{3}^{2} a_{2} a_{1} j^{4} a_{3}^{-1} j^{8} a_{3}^{-2} a_{1}^{-1} a_{3}^{-3}, & p_{6}=\zeta^{4} a_{3}^{3} a_{1} a_{2} a_{1} a_{3} a_{2}^{-3}, \\
p_{3}=\zeta^{4} j^{8} a_{1}^{-1} a_{3}^{-3} a_{2}^{2} j^{4} a_{3}^{-2} a_{1}^{-1} a_{3}^{-3}, & p_{7}=\zeta-1 a_{3}^{3} a_{1} j^{8} a_{1} a_{2}^{-2} a_{1}^{-1} a_{3}^{2} j^{4}, \\
p_{4}=\zeta^{-2} j^{8} a_{2} a_{1} a_{2}^{-2} a_{1}^{-1} j^{4} a_{3}^{3} a_{1}^{2} a_{2}^{-1}, & p_{8}=\zeta^{-2} j^{4} a_{3}^{-2} j^{8} a_{2} a_{1} a_{2} a_{1} a_{2}^{-2},
\end{array}
$$

the scalar factors arranged so that each $h=b^{-1} p_{\nu} b$ satisfies $h_{11}-c h_{21}=1=\operatorname{det}(h)$. These satisfy the relation

$$
p_{5}^{-1} p_{2}^{-1} p_{5} p_{1} p_{3} p_{8}^{-1} p_{4} p_{1}^{-1} p_{7}^{-1} p_{6}^{-1} p_{7} p_{2} p_{3}^{-1} p_{8} p_{4}^{-1} p_{6}=1
$$

Here are the images under ψ_{c} of the $b^{-1} p_{\nu} b$'s in H_{c} :

$$
\begin{array}{ll}
\psi_{c}\left(b^{-1} p_{1} b\right)=h_{2} h_{1}^{-1} h_{2}^{-1} h_{3}^{-1}, & \psi_{c}\left(b^{-1} p_{5} b\right)=h_{1} h_{3} h_{2} h_{1}^{-1} h_{3} \\
\psi_{c}\left(b^{-1} p_{2} b\right)=h_{2} h_{3}^{-1} h_{1}^{-1} h_{2}^{-1}, & \psi_{c}\left(b^{-1} p_{6} b\right)=h_{2} h_{1}^{2} h_{2} h_{1} h_{3} \\
\psi_{c}\left(b^{-1} p_{3} b\right)=h_{2} h_{1} h_{3}^{-1} h_{1}^{-1}, & \psi_{c}\left(b^{-1} p_{7} b\right)=h_{2} h_{1} h_{2}^{-1} h_{3}^{-1} h_{2}^{-1} \\
\psi_{c}\left(b^{-1} p_{4} b\right)=h_{1}^{-1} h_{2}^{-1} h_{3} h_{2} h_{1}^{2}, & \psi_{c}\left(b^{-1} p_{8} b\right)=h_{1}^{-1} h_{2}^{-1} h_{3} h_{2} h_{1}^{-1}
\end{array}
$$

Following the same procedure as in the proof of Proposition 9, we obtain a presentation (20) for $\Pi \cap b \bar{\Gamma}_{c} b^{-1}$, with $u_{i}=E_{1} \cdots E_{i-1} D_{i} E_{i-1}^{-1} \cdots E_{1}^{-1}$ and $v_{i}=E_{1} \cdots E_{i-1} E_{i} E_{i-1}^{-1} \cdots E_{1}^{-1}$ for

$$
\begin{array}{ll}
D_{1}=p_{5}^{-1} p_{2}^{-1} p_{5} p_{1} p_{3} p_{8}^{-1} p_{4} p_{1}^{-1} p_{7}^{-1}, & E_{1}=p_{6}^{-1} \\
D_{2}=p_{5}^{-1} p_{2}^{-1} p_{5} p_{1} p_{3} p_{8}^{-1}, & \text { and } \\
E_{2}=p_{4} p_{1}^{-1} p_{2} p_{3}^{-1}, \\
D_{3}=p_{5}^{-1} p_{2}^{-1} p_{5} p_{1}, & E_{3}=p_{3} \\
D_{4}=p_{5}^{-1}, & E_{4}=p_{2}^{-1}
\end{array}
$$

Let us also record here generators of $\Pi \cap b^{-1} \bar{\Gamma}_{c} b\left(=\Pi_{M}\right.$ for $\left.M=b^{-1}\left(M_{c}\right)\right)$:

$$
\begin{array}{ll}
m_{1}=\zeta^{2} j^{8} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2} j^{8} a_{2} a_{1} j^{8}, & m_{5}=\zeta^{4} j^{4} a_{1}^{-2} a_{3}^{-3} j^{4} a_{1}^{-1} a_{2}^{-1} j^{4} a_{2}^{-1} a_{3}^{3} a_{1} \\
m_{2}=\zeta^{-3} j^{8} a_{1} a_{3}^{3} j^{4}, & m_{6}=\zeta^{-4} j^{4} a_{1}^{-1} a_{2}^{-1} a_{1} a_{3}^{3} a_{1} a_{2}^{-1} j^{4} a_{1}^{-1} a_{2}^{-2} a_{3}^{3} j^{4} \\
m_{3}=\zeta^{-5} j^{4} a_{2}^{-2} a_{1}^{-1} a_{3}^{-1} j^{8} a_{1} a_{3}^{-2} a_{1}^{-1} a_{2}^{-2}, & m_{7}=\zeta^{2} a_{3} a_{1} a_{2} j^{4} a_{2} a_{1} j^{8} \\
m_{4}=-j^{8} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2} a_{1}^{-1} a_{2}^{-1} j^{4} a_{2}^{-2} a_{3}^{3} a_{1}, & m_{8}=-j^{4} a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{2} a_{1} j^{8} a_{2} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}
\end{array}
$$

the scalar factors arranged so that each $h=b m_{\nu} b^{-1}$ satisfies $h_{11}-c h_{21}=1=\operatorname{det}(h)$. These satisfy the relation

$$
m_{3} m_{8}^{-1} m_{4} m_{5} m_{7}^{-1} m_{2} m_{3}^{-1} m_{1} m_{5}^{-1} m_{7} m_{4}^{-1} m_{1}^{-1} m_{6} m_{2}^{-1} m_{6}^{-1} m_{8}=1
$$

Here are the images under ψ_{c} of the $b m_{\nu} b^{-1}$'s in H_{c} :

$$
\begin{array}{ll}
\psi_{c}\left(b m_{1} b^{-1}\right)=h_{2} h_{1} h_{3}, & \psi_{c}\left(b m_{5} b^{-1}\right)=h_{2} h_{1} h_{2}^{-1} h_{1}^{-1} h_{2} h_{1} h_{3} \\
\psi_{c}\left(b m_{2} b^{-1}\right)=h_{1}^{-1} h_{2}^{-1} h_{3} h_{1}^{-1} h_{2}^{-1}, & \psi_{c}\left(b m_{6} b^{-1}\right)=h_{2}^{2} h_{1}^{2} h_{2} h_{1} \\
\psi_{c}\left(b m_{3} b^{-1}\right)=h_{1}^{-1} h_{2}^{-1} h_{3}^{-1}, & \psi_{c}\left(b m_{7} b^{-1}\right)=h_{1}^{-1} h_{2}^{-1} h_{3} h_{2} h_{1}^{2} h_{2}^{2} h_{1} h_{3} \\
\psi_{c}\left(b m_{4} b^{-1}\right)=h_{2} h_{1}^{-3} h_{2}^{-1}, & \psi_{c}\left(b m_{8} b^{-1}\right)=h_{2} h_{1}^{-1} h_{2}^{-1} h_{1}
\end{array}
$$

In the same way, we obtain a presentation (20) for $\Pi \cap b^{-1} \bar{\Gamma}_{c} b$, with generators $u_{i}=$ $E_{1} \cdots E_{i-1} D_{i} E_{i-1}^{-1} \cdots E_{1}^{-1}$ and $v_{i}=E_{1} \cdots E_{i-1} E_{i} E_{i-1}^{-1} \cdots E_{1}^{-1}$ for

$$
\begin{array}{ll}
D_{1}=m_{3}, & E_{1}=m_{8}^{-1} m_{4} m_{5} m_{7}^{-1} m_{2}, \\
D_{2}=m_{1} m_{5}^{-1} m_{7} m_{4}^{-1} m_{1}^{-1} m_{6}, & E_{2}=m_{2}^{-1}, \\
D_{3}=m_{1} m_{5}^{-1}, & E_{3}=m_{7} m_{4}^{-1} m_{1}^{-1} m_{4}, \\
D_{4}=m_{1}, & E_{4}=m_{4}^{-1} .
\end{array}
$$

We want to find out how these curves $\varphi_{M}\left(\Pi_{M} \backslash M\right)=\varphi(M)$ self-intersect. See Lemma 26.
Lemma 29. Suppose that M is a mirror of type A, and that there is a $\pi \in \Pi$ such that $\pi(M)=M_{c}$ or M_{-c}, respectively such that $\pi(M)=b\left(M_{c}\right)$ or $b^{-1}\left(M_{c}\right)$. There are exactly 9 (respectively 3) distinct $\Pi_{M} \xi \in \Pi_{M} \backslash M$ such that $\xi \in M$ is in the $\bar{\Gamma}$-orbit of O. There are exactly 54 (respectively 18) distinct $\Pi_{M} \xi \in \Pi_{M} \backslash M$ such that $\xi \in M$ is in the $\bar{\Gamma}$-orbit of P.

Proof. Write $M=g\left(M_{c}\right)$. Suppose first that there is a $\pi \in \Pi$ such that $\pi(M)=M_{\beta}$ for $\beta=c$ or $-c$. Then by Proposition 14, we have $\Pi_{M}=g \Pi_{c} g^{-1}$ and so the number of distinct $\Pi_{M} \xi$, with $\xi \in M$ in the $\bar{\Gamma}$-orbit of O (respectively of P) is the same as the number of distinct $\Pi_{c} \xi$, with $\xi \in M_{c}$ in the $\bar{\Gamma}$-orbit of O (respectively of P). So we may suppose that $M=M_{c}$. If $\xi \in M_{c}$ is in the $\bar{\Gamma}$-orbit of O then writing $\xi=g . O$, we have $O \in g^{-1}\left(M_{c}\right)$. By Lemma 17, the distinct mirrors of type A containing O are the $k_{\alpha}\left(M_{c}\right), \alpha \in\left\{c_{+++}, \ldots, c_{---}\right\}$. So $g^{-1}\left(M_{c}\right)=k\left(M_{c}\right)$ for some $k \in K$. Hence $\xi=g . O=(g k) . O=h . O$ for some $h \in \bar{\Gamma}_{c}$. By (29) (where now $\left.G=\Pi_{c}\right) \Pi_{c} \xi$ is one of the 9 elements $\Pi_{c}\left(t_{i} . O\right), i=1, \ldots, 9$, and these are evidently distinct.

If $\xi \in M_{c}$ is in the $\bar{\Gamma}$-orbit of P, then using the fact that the four distinct mirrors of type A containing P are the $r_{\nu}\left(M_{c}\right), \nu=1,2,3,4$, where $r_{\nu} \in \bar{\Gamma}_{P}$ are given in Lemma 14, we similarly find that $\xi=h(P)$ for some $h \in \bar{\Gamma}_{c}$. This time the group $\bar{\Gamma}_{P} \cap \mathrm{~T}_{c}$ has order 6, and acts freely on any transversal of Π_{c} in $\bar{\Gamma}_{c}$. So there are $54=324 / 6$ elements s_{1}, \ldots, s_{54} of $\bar{\Gamma}_{c}$ such that $\bar{\Gamma}_{c}$ is the disjoint union of the double cosets $\Pi_{c} s_{i}\left(\bar{\Gamma}_{P} \cap \bar{\Gamma}_{c}\right)$. So $\xi=h . P$, with $h \in \bar{\Gamma}_{c}$, implies that $\Pi_{c} \xi$ is one of the 54 elements $\Pi_{c}\left(s_{i} . P\right)$ of $\Pi_{c} \backslash M_{c}$, and these are evidently distinct.

If instead there is a $\pi \in \Pi$ such that $\pi(M)=b^{\mu}\left(M_{c}\right)$ for $\mu=1$ or -1 , we may suppose that $M=b^{\mu}\left(M_{c}\right)$. Then $\Pi_{c} \subset b^{-\mu} \Pi_{M} b^{\mu} \subset \bar{\Gamma}_{c}$, and Π_{c} is of index 3 in $\tilde{\Pi}_{c}=b^{-\mu} \Pi_{M} b^{\mu}$. So $\tilde{\Pi}_{c}$ has index 108 in $\bar{\Gamma}_{c}$. Since $\tilde{\Pi}_{c}$ is torsion-free, the group $K_{c}=K \cap \bar{\Gamma}_{c}$ acts freely on any transversal of $\tilde{\Pi}_{c}$ in $\bar{\Gamma}_{c}$, and so we can find $3=108 / 36$ elements $u_{1}, u_{2}, u_{3} \in \bar{\Gamma}_{c}$ such that

$$
\bar{\Gamma}_{c}=\bigcup_{i=1}^{3} \tilde{\Pi}_{c} u_{i} K_{c}, \quad \text { a disjoint union. }
$$

So if $\xi \in M$ is in the $\bar{\Gamma}$-orbit of O, we find that $\xi=b^{\mu} h . O$ for some $h \in \bar{\Gamma}_{c}$ and then that $\Pi_{M} \xi$ is one of the three elements $\Pi_{M}\left(b^{\mu} u_{i} . O\right)$. Similarly, we can write Π_{c} as the union of $18=108 / 6$ double cosets $\tilde{\Pi}_{c} v_{i}\left(\bar{\Gamma}_{P} \cap K_{c}\right)$, and if $\xi \in M$ is in the $\bar{\Gamma}$-orbit of P, then we can write $\xi=\left(b^{\mu} h\right) . P$ for some $h \in \bar{\Gamma}_{c}$, and $\Pi_{M} \xi$ is one of the points $\Pi_{M}\left(b^{\mu} v_{i} . P\right)$.

We now calculate for mirrors M of type A, the numbers $n_{\nu}(M), \nu=0,1,-1$, as well as the numbers

$$
m_{i}(M)=\sharp\left\{\Pi_{M} \xi \in \Pi_{M} \backslash M: \varphi_{M}\left(\Pi_{M} \xi\right)=\Pi\left(k_{i} . P\right)\right\}
$$

for $i=1, \ldots, 36$. Here the $k_{i} \in K$ are as in (12) and (13). If M and M^{\prime} are two such mirrors, and if $M^{\prime}=\pi(M)$ for some $\pi \in \Pi$, then $n_{\nu}\left(M^{\prime}\right)=n_{\nu}(M)$ and $m_{i}\left(M^{\prime}\right)=m_{i}(M)$ for each ν and i, and so by Proposition 14(a), we need only do the calculation for the four mirrors $M_{c}, M_{-c}, b\left(M_{c}\right)$ and $b^{-1}\left(M_{c}\right)$.

Proposition 16. For mirrors M of type A, the numbers $n_{\nu}(M)$ are as follows:

M	$n_{0}(M)$	$n_{1}(M)$	$n_{-1}(M)$
M_{c}	4	3	2
M_{-c}	4	3	2
$b\left(M_{c}\right)$	0	1	2
$b^{-1}\left(M_{c}\right)$	0	1	2

The numbers $m_{i}=m_{i}(M)$ are as follows:

M	$m_{1} \ldots, m_{12}$	m_{13}, \ldots, m_{18}	m_{19}, \ldots, m_{24}	m_{25}, \ldots, m_{36}
M_{c}	2	0	3	1
M_{-c}	2	3	0	1
$b\left(M_{c}\right)$	0	0	1	1
$b^{-1}\left(M_{c}\right)$	0	1	0	1

Proof. Using (26), we read off the numbers $n_{\nu}(M)$ by counting the elements in cells of the next three tables: It is easy to check that distinct elements π_{1}, π_{2} in the same cell of this table satisfy $\pi_{2} \pi_{1}^{-1} \notin \bar{\Gamma}_{M}$, and so belong to different Π_{M}-cosets.

The next three tables list, for $\mu=0,1$ and -1 , respectively, Π_{M}-coset representatives $\pi \in \Pi$ such that $\pi\left(b^{\mu} . O\right) \in M^{\prime}$ for each $M^{\prime} \in\left\{M_{c}, M_{-c}, b\left(M_{c}\right), b^{-1}\left(M_{c}\right)\right\}$.

M_{c}	1, $a_{1} a_{3}^{-1}, a_{1} a_{3}^{-1} a_{1} a_{3}, \quad a_{1}^{-1} a_{2}^{-2} a_{1}^{-1}$
M_{-c}	$1, \quad a_{2}^{2}, \quad a_{2}^{2} a_{1}^{-1} a_{3}^{-1}, a_{3}^{-1} a_{1} a_{2}^{2}$
$b\left(M_{c}\right)$	-
$b^{-1}\left(M_{c}\right)$	-

M_{c}	$a_{1}^{-1} a_{2}^{-2}, \quad a_{3}^{-3}, \quad a_{1}^{-1} a_{2}^{-1} a_{1} a_{3} a_{2}^{-1}$
M_{-c}	$a_{2} a_{1}^{-1} a_{2}^{-1}, \quad a_{2} a_{1}^{-1} a_{2}^{-3}, \quad a_{1}^{-1} a_{2}^{-1} a_{3}^{-2} a_{1}^{2} a_{2}^{-1}$
$b\left(M_{c}\right)$	1
$b^{-1}\left(M_{c}\right)$	$a_{3} a_{1} a_{2}^{-1}$

M_{c}	$a_{1}^{-1} a_{2}^{-1}, a_{1}^{-1} a_{2}^{-3}$
M_{-c}	$a_{1}^{-2} a_{3}^{-3} a_{2}^{-1}, a_{2} a_{1}^{-2} a_{3}^{-3}$
$b\left(M_{c}\right)$	$a_{3}^{3} a_{1} a_{2}^{-1}, a_{2} a_{1}^{-2} a_{3}^{-1} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}$
$b^{-1}\left(M_{c}\right)$	$1, a_{2}^{2} a_{1} a_{3}$

For these three tables, there are in total 9 elements given in the first row, 9 in the second row, 3 in the third row and 3 in the fourth row. So it follows from Lemma 29 that the tables give complete lists of coset representatives.

For $i=1, \ldots, 36, m_{i}(M)=\sharp\left\{\Pi_{M} \pi \in \Pi_{M} \backslash \Pi:\left(\pi k_{i}\right) . P \in M\right\}$, which is proved as was (26). If $k_{j}=k_{i} j^{4}$, then $m_{j}(M)=m_{i}(M)$ for each $M \in\left\{M_{c}, M_{-c}, b\left(M_{c}\right), b^{-1}\left(M_{c}\right)\right\}$. For if $M=M_{c}$ or M_{-c} and $\left(\pi k_{i}\right) \cdot P \in M$, then $\left(\left(j^{4} \pi j^{-4}\right)\left(k_{i} j^{4}\right)\right) \cdot P=\left(j^{4} \pi k_{i}\right) \cdot P \in j^{4}(M)=M$. If also $\left(\pi^{\prime} k_{i}\right) . P \in M$, then $\pi^{\prime} \pi^{-1} \in \Pi_{M}$ if and only if $\left(j^{4} \pi^{\prime} j^{-4}\right)\left(j^{4} \pi j^{-4}\right)^{-1} \in \Pi_{M}$ because j^{4} normalizes Π_{M} in these cases. To see that $m_{j}(M)=m_{i}(M)$ when $k_{j}=k_{i} j^{4}$ and $M=b^{\mu}\left(M_{c}\right)$ for $\mu=1,-1$, notice first that for $\mu=0,1,-1$,

$$
\begin{equation*}
b^{\mu} j^{4} b^{-\mu} j^{-4}=\pi_{\mu} \in \Pi, \text { for } \pi_{0}=1, \pi_{1}=\zeta^{-4} a_{2} a_{1}^{-2} a_{3}^{-3} a_{1}^{-1} \text { and } \pi_{-1}=a_{2}^{2} a_{1} a_{3} a_{1}^{-1} \tag{32}
\end{equation*}
$$

If $\left(\pi k_{i}\right) \cdot P \in b^{\mu}\left(M_{c}\right)$, then

$$
\left.\left(\left(\pi_{\mu} j^{4} \pi j^{-4}\right)\left(k_{i} j^{4}\right)\right) \cdot P=\pi_{\mu} j^{4}\left(\left(\pi k_{i}\right) \cdot P\right)\right) \in \pi_{\mu} j^{4}\left(b^{\mu}\left(M_{c}\right)\right)=b^{\mu} j^{4}\left(M_{c}\right)=b^{\mu}\left(M_{c}\right)
$$

If also $\left(\pi^{\prime} k_{i}\right) \cdot P \in M=b^{\mu}\left(M_{c}\right)$, then $\pi^{\prime} \pi^{-1} \in \Pi_{M}$ if and only if $\left(\pi_{\mu} j^{4} \pi^{\prime} j^{-4}\right)\left(\pi_{\mu} j^{4} \pi j^{-4}\right)^{-1}$ is in Π_{M}, because we see from $b^{\mu} j^{4}=\pi_{\mu} j^{4} b^{\mu}$ that $\pi_{\mu} j^{4}$ normalizes Π_{M}. So $\pi \mapsto \pi_{\mu} j^{4} \pi j^{-4}$ induces a bijection between the two sets we are counting.

So writing $k_{i}=k_{\nu}^{\prime} j^{4 \alpha}$, with the k_{ν}^{\prime} as in (13), the numbers $m_{i}(M)$ depend only on ν, and can be read off by counting the elements π in the cells of the following tables:

k_{ν}^{\prime}	M_{c}	M_{-c}
v	$a_{1}^{-1} a_{2}^{-2} a_{1}^{-1}, \quad a_{1}^{-1} a_{2}^{-3}$	$a_{2} a_{1}^{-1} a_{2}^{-1}, \quad a_{1}^{-1} a_{3}^{-3} a_{2}$
v^{2}	$a_{1}^{-1} a_{2}^{-1}, \quad a_{1}^{-1} a_{2}^{-2}$	1, $\quad a_{1}^{-1} a_{3}^{-3} a_{2}$
$v u v^{-1}$	$a_{1} a_{3}^{-1} a_{1} a_{3}, \quad a_{1}^{-1} a_{2}^{-3}$	$a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{2}, \quad a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{2} a_{1}^{-1} a_{2}^{-1}$
$v u^{-1} v^{2} u$	$a_{1}^{-1} a_{2}, \quad a_{1} a_{3}^{-1} a_{2}^{-1}$	$a_{2} a_{1}^{-1} a_{2}^{-1}, \quad a_{2}^{2} a_{1}^{-1} a_{3}^{-1}$
v^{-1}	-	$a_{3}^{-1} a_{1} a_{2}^{2}, \quad a_{1}^{-1} a_{3}^{-3} a_{2}, \quad a_{2} a_{1}^{-1} a_{2}^{-3}$
$u v^{2}$	-	$a_{3}^{-1}, \quad a_{2}^{2}, \quad a_{1}^{-1} a_{2}^{-1} a_{3}^{-3}$
j	1, $a_{1}^{-1} a_{2}^{-3}, \quad a_{2}^{-3} a_{3}^{2}$	-
j^{2}	1, $\quad a_{1} a_{3}^{-1} a_{1} a_{3} a_{2}^{-1}, \quad a_{1}^{-1} a_{2}^{-2} a_{1}^{-2} a_{2}^{-1}$	-
1	1	$a_{1}^{-1} a_{3}^{-3} a_{2}$
j^{3}	1	$a_{1}^{-1} a_{2}^{-1}$
$u v$	$a_{1} a_{3}^{-1} a_{2}^{-1} a_{1} a_{3}^{-1}$	$a_{3}^{-1} a_{1} a_{2}^{2}$
$u^{-1} v^{-1}$	$a_{1}^{-1} a_{2}^{-2} a_{1}^{-1}$	$a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{2}$

k_{ν}^{\prime}	$b\left(M_{c}\right)$	$b^{-1}\left(M_{c}\right)$
v	-	-
v^{2}	-	-
$v u v^{-1}$	-	-
$v u^{-1} v^{2} u$	-	-
v^{-1}	-	$a_{2}^{2} a_{1} a_{3}$
$u v^{2}$	-	1

k_{ν}^{\prime}	$b\left(M_{c}\right)$	$b^{-1}\left(M_{c}\right)$
j	$a_{3}^{3} a_{1}$	-
j^{2}	$a_{3}^{3} a_{1} a_{3}^{2}$	-
1	1	1
j^{3}	$a_{2} a_{1}^{-2} a_{3}^{-1} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-1}$	a_{3}
$u v$	$a_{3}^{3} a_{1}$	1
$u^{-1} v^{-1}$	1	$a_{3} a_{1}$

Notice that writing $k_{i}=k_{\nu}^{\prime} j^{4 \alpha}$, the numbers of coset representatives given are 2 (for $\nu=1, \ldots, 4$) , 0 (for $\nu=5,6$), 3 (for $\nu=7,8$), and 1 for $\nu=9, \ldots, 12$, adding up to 18 for each given $\alpha \in\{0,1,2\}$, and thus adding up to 54 in total. So by Lemma 29, the table is complete. Similarly for $M=M_{-c}$, the numbers given add up to 54 . On the other hand, for $M=b\left(M_{c}\right)$, the numbers of coset representatives given are 0 (for $\nu=1, \ldots, 6$) and 1 (for $\nu=7, \ldots, 12$), adding up to 6 for each given $\alpha \in\{0,1,2\}$, and thus adding up to 18 in total. Again by Lemma 29, the table is complete. Similarly for $M=b^{-1}\left(M_{c}\right)$.

Let us make a few remarks about the above numbers $n_{\nu}(M)$ and $m_{i}(M)$:
(a) From $n_{0}(M)=0$ for $M=b\left(M_{c}\right)$ and $b^{-1}\left(M_{c}\right)$, we see that the mirrors M of type A for which $\Pi_{M} \backslash M$ is a surface of genus 10 are just the M for which the point ΠO is in the image of φ_{M}.
(b) The numbers $n_{\nu}(M)$ alone are not sufficient to distinguish the cases for which there is a $\pi \in \Pi$ such that $\pi(M)=M_{c}$ and $\pi(M)=M_{-c}$, nor between the cases $\pi(M)=b\left(M_{c}\right)$ and $\pi(M)=b^{-1}\left(M_{c}\right)$. The numbers $m_{i}(M)$ do make these distinctions.
(c) We can refine Lemma 26 as follows: For $i=25, \ldots, 36$, we have $m_{i}(M)=1$ for each mirror of type A and so these points $x=\Pi\left(k_{i} . P\right)$ of X are all in the image of φ_{M}, but there is no self-intersecting of the curves there. For the M for which there is a $\pi(M)=M_{c}$ or $\pi(M)=M_{-c}$, only 30 of the points $x=\Pi\left(k_{i} . P\right)$ are in the image of φ_{M}, and selfintersecting happens at only 18 of them. For the M for which there is a $\pi(M)=b\left(M_{c}\right)$ or $\pi(M)=b^{-1}\left(M_{c}\right)$, only 18 of the points $x=\Pi\left(k_{i} . P\right)$ are in the image of φ_{M}, and selfintersecting happens at none of them. In fact, for these M, self-intersections happen only at $x=\Pi\left(b^{-1} . O\right)$.

Lemma 30. The normal closure N_{c} of Π_{c} in Π has index 84 in Π, and is normal in $\bar{\Gamma}$. For any mirror M such that there is $a \pi \in \Pi$ so that $\pi(M)=M_{c}$ or M_{-c}, the normal closure N_{M} of Π_{M} in Π is equal to N_{c}.

Proof. Consider the generators g_{1}, \ldots, g_{20} of Π_{c} given in Proposition 13. The 140 elements $g_{j}, a_{i} g_{j} a_{i}^{-1}$, and $a_{i}^{-1} g_{j} a_{i}$, for $j=1, \ldots, 20$ and $i=1,2,3$, must lie in any normal subgroup of Π containing Π_{c}. If L is the subgroup that they generate, then the Magma Index command shows that L has index $72576=84 \times 864$ in $\bar{\Gamma}$, and the IsNormal command shows that L is normal in $\bar{\Gamma}$. It is then clear that this L must equal N_{c}.

By Proposition 14, in proving the second statement, we may assume that $M=M_{-c}$. Magma verifies that $k_{-c} g_{j} k_{-c}^{-1}, a_{i} k_{-c} g_{j} k_{-c}^{-1} a_{i}^{-1}$ and $a_{i}^{-1} k_{-c} g_{j} k_{-c}^{-1} a_{i}$, for $j=1, \ldots, 20$ and $i=1,2,3$, generate a normal subgroup of $\bar{\Gamma}$ of index 84×864. The result follows.
Lemma 31. If M is a mirror and if there is a $\pi \in \Pi$ such that $\pi(M)=b\left(M_{c}\right)$ or $b^{-1}\left(M_{c}\right)$, then the normal closure in Π of Π_{M} is of index 4 in Π, and is independent of M. It is not normal in $\bar{\Gamma}$.

Proof. We need only consider the cases $M=b\left(M_{c}\right)$ and $M=b^{-1}\left(M_{c}\right)$.
(a) For $M=b\left(M_{c}\right)$, consider the following 8 elements x_{i} of Π. Magma verifies that $\left\langle x_{1}, \ldots, x_{8}\right\rangle$ is a normal subgroup of Π of index 4 .

$$
\begin{array}{ll}
x_{1}=a_{3}^{3} a_{1}^{2} a_{2}^{-1} a_{3} a_{1} a_{2}^{2} a_{1}^{-1} a_{3}^{-1} j^{8} a_{2} a_{1}^{-1} a_{3}^{-1} j^{4}, & x_{5}=a_{3} a_{1} a_{2}^{-2} a_{3}^{2}, \\
x_{2}=a_{3} a_{1}^{-1} a_{3}^{-3} a_{2}^{2} a_{1} a_{2}^{-2} a_{1}^{-1} a_{3} a_{1} a_{3}^{-1}, & x_{6}=a_{1}^{-1} a_{2}^{-2} a_{3}^{3} a_{1}^{2}, \\
x_{3}=a_{1} a_{2}^{-2} a_{3}^{3}, & x_{7}=j^{8} a_{1}^{-1} a_{2}^{-1} j^{4} a_{1}^{-1}, \\
x_{4}=a_{2}^{-2} a_{3}^{3} a_{1}, & x_{8}=a_{3} a_{2}^{-2} a_{3}^{3} a_{1} a_{3}^{-1} .
\end{array}
$$

For the following 8 elements y_{i} of Π, one may verify using Lemma 19 that each $b^{-1} y_{i}^{-1} x_{i} y_{i} b$ is in $\bar{\Gamma}_{c}$.

$$
\begin{array}{ll}
y_{1}=a_{1} a_{2}^{-1} a_{3} a_{2}^{-3}, \quad y_{3}=a_{1}^{2} a_{3}^{2} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}, y_{5}=a_{3} a_{1}^{2} a_{3}^{2} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}, & y_{7}=a_{1} a_{2}^{-2} a_{3} a_{2}^{-3}, \\
y_{2}=a_{3} a_{1} a_{2}^{-1} a_{3} a_{2}^{-3}, y_{4}=a_{1} a_{3}^{2} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}, y_{6}=a_{3}^{2} a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}, & y_{8}=a_{3}^{-1} a_{1}^{-1} a_{3}^{-3} a_{2}^{2} .
\end{array}
$$

So each $y_{i}^{-1} x_{i} y_{i}$ is in $\Pi_{M}=\Pi \cap b \bar{\Gamma}_{c} b^{-1}$, so that each x_{i} is in the normal closure of Π_{M}. This proves the result for $M=b\left(M_{c}\right)$.
(b) For $M=b^{-1}\left(M_{c}\right)$, consider the following 7 elements x_{i} of Π. Magma verifies that $\left\langle x_{1}, \ldots, x_{7}\right\rangle$ is a normal subgroup of Π of index 4 , and equals the normal closure calculated in (a):

$$
\begin{array}{ll}
x_{1}=a_{3}^{-1} a_{1}^{-1} a_{2} a_{3}^{-1} a_{1}^{-1} a_{2} a_{1}^{-1} a_{3}^{-3}, & x_{5}=j^{8} a_{2} a_{1} j^{4} a_{3}^{-3}, \\
x_{2}=a_{3}^{-1} a_{1}^{-1} a_{2} a_{1}^{-1} a_{3}^{-4} a_{1}^{-1} a_{2}, & x_{6}=j^{8} a_{3} a_{1} j^{4} a_{1} a_{3}^{-2} a_{1}^{-1}, \\
x_{3}=a_{1}^{-1} j^{4} a_{2}^{3} a_{3}^{-1} a_{1}^{-1} j^{8}, & x_{7}=j^{8} a_{1} a_{3} a_{1}^{-1} a_{3} a_{2}^{-1} j^{8} a_{1}^{-1} j^{4} a_{3}^{3} a_{1} a_{2}^{2} j^{4} . \\
x_{4}=j^{4} a_{2}^{3} a_{3}^{-1} a_{1}^{-1} j^{8} a_{1}^{-1}, &
\end{array}
$$

For the following 7 elements y_{i} of Π, one may verify using Lemma 19 that each $b y_{i}^{-1} x_{i} y_{i} b^{-1}$ is in $\bar{\Gamma}_{c}$.

$$
\begin{array}{lll}
y_{1}=a_{1}^{-1} a_{3}^{-3} a_{1}^{-1} a_{3}^{-1}, & y_{3}=a_{1}^{-1} a_{3}^{-3} a_{1}^{-1} a_{3}^{-1}, & y_{5}=a_{1}^{-1} a_{3}^{-1}, \quad y_{7}=a_{1} a_{3}^{-1} a_{1}^{-1} a_{2}^{-1} a_{3}^{3} a_{1}^{2} . \\
y_{2}=a_{1} a_{3} a_{2}^{-3} a_{3}^{2}, & y_{4}=a_{3}^{-3} a_{1}^{-1} a_{3}^{-1}, & y_{6}=a_{3}^{-1},
\end{array}
$$

So each $y_{i}^{-1} x_{i} y_{i}$ is in $\Pi_{M}=\Pi \cap b^{-1} \bar{\Gamma}_{c} b$, so that each x_{i} is in the normal closure of Π_{M}. This proves the result for $M=b^{-1}\left(M_{c}\right)$.

We conclude this section with some calculations involving the abelianization map which will are needed in Section 2.4.

Proposition 17. If M is a mirror of type A, and $\Pi_{M} \backslash M$ has genus 10, then the image under f of Π_{M} is $\left\{(m, n) \in \mathbb{Z}^{2}: m-n\right.$ is divisible by 6 and n is divisible by 2$\}$. If $\Pi_{M} \backslash M$ has genus 4, the image of Π_{M} is $\left\{(m, n) \in \mathbb{Z}^{2}: m, n\right.$ are divisible by 2$\}$. The images under f of the generators u_{i} and v_{i} for $M=M_{c}, M_{-c}, b\left(M_{c}\right)$ and $b^{-1}\left(M_{c}\right)$ are given below.

Proof. For $M=M_{c}$, in the notation of the proof of Proposition 13, $f\left(u_{i}\right)=f\left(D_{i}\right)$ and $f\left(v_{i}\right)=f\left(E_{i}\right)$ for $i=1, \ldots, 10$, and so it is routine to calculate these from the given expressions for D_{i} and E_{i}, and from this we read off $f\left(\Pi_{c}\right)$. We find that

$$
\begin{aligned}
& f\left(u_{1}\right)=(4,-2), f\left(u_{2}\right)=(2,-4), f\left(u_{3}\right)=(2,-4), \quad f\left(u_{4}\right)=(2,-4), f\left(u_{5}\right)=(-6,6), \\
& f\left(v_{1}\right)=(4,-2), f\left(v_{2}\right)=(-6,6), f\left(v_{3}\right)=(-2,-2), f\left(v_{4}\right)=(2,-4), f\left(v_{5}\right)=(2,2),
\end{aligned}
$$

and that

$$
\begin{aligned}
& f\left(u_{6}\right)=(-2,-2), \quad f\left(u_{7}\right)=(-4,2), \quad f\left(u_{8}\right)=(-8,4), \quad f\left(u_{9}\right)=(-6,0), f\left(u_{10}\right)=(-2,4) \\
& f\left(v_{6}\right)=(-4,2), \quad f\left(v_{7}\right)=(-2,-2), \quad f\left(v_{8}\right)=(8,2), \quad f\left(v_{9}\right)=(2,2), \quad f\left(v_{10}\right)=(6,-6)
\end{aligned}
$$

For $M=M_{-c}, \Pi_{M}$ has generators $g_{i}^{\prime}=k_{-c} g_{i} k_{-c}^{-1}$, which satisfy the same relation (28) as do the g_{i} 's. So we get generators u_{i} and v_{i} for these groups by defining elements D_{i} and E_{i} as in the proof of Proposition 13, with the g_{i} 's there replaced by g_{i}^{\prime} 's, then defining $u_{i}=E_{1} \cdots E_{i-1} D_{i} E_{i-1}^{-1} \cdots E_{1}^{-1}$ and $v_{i}=E_{1} \cdots E_{i-1} E_{i} E_{i-1}^{-1} \cdots E_{1}^{-1}$ for $i=1, \ldots, 10$. To calculate these $f\left(u_{i}\right)$ and $f\left(v_{i}\right)^{\prime}$'s, we need to express the g_{i}^{\prime} 's in terms of the generators of Π. We find that

$$
\begin{aligned}
g_{1}^{\prime} & =j^{4} a_{1}^{-1} a_{3}^{-3} a_{2}^{2} j^{4} a_{2}^{-2} a_{3}^{3} a_{1} j^{4}, & g_{9}^{\prime} & =\zeta^{-2} j^{8} a_{1}^{-1} a_{2}^{-1} a_{3}^{-2} a_{1}^{-1} j^{8} a_{2}^{-2} a_{1}^{-1} j^{8}, \\
g_{3}^{\prime} & =\zeta^{2} j^{8} a_{2}^{2} a_{3}^{2} j^{4}, & g_{12}^{\prime} & =j^{4} a_{1}^{-1} a_{3}^{-3} a_{2}^{2} j^{8} a_{1}^{-1} j^{4} a_{2} a_{1}^{-1} a_{3} j^{8}, \\
g_{5}^{\prime} & =\zeta^{-4} j^{8} a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{2} j^{8} a_{1}^{-1} a_{3}^{-3} j^{8} a_{2} a_{1}, & g_{15}^{\prime} & =\zeta^{4} j^{8} a_{2} a_{1} a_{3} a_{1}^{-1} j^{4} a_{1}^{-1} a_{3}^{-3} a_{1}^{-2} a_{3}^{-3}, \\
g_{7}^{\prime} & =\zeta^{-3} j^{8} a_{1} a_{2}^{2} a_{1}^{-1} a_{2}^{-1} j^{8} a_{3}^{-1} a_{1}^{-1} a_{2} a_{1} a_{2}^{-1} j^{8}, & g_{17}^{\prime} & =\zeta^{-2} j^{8} a_{1}^{-1} a_{2}^{-1} j^{4} a_{1}^{-1} a_{3}^{-3} j^{8} a_{1} a_{2}^{-1} a_{3}^{3} a_{1} j^{4},
\end{aligned}
$$

and

$$
g_{19}^{\prime}=\zeta^{-2} j^{4} a_{1} a_{2} a_{1}^{-2} a_{3}^{-2} j^{4} a_{2} a_{1}^{-1} a_{2}^{-1} j^{8} a_{2}^{2} a_{1}^{-1} a_{2}^{-1} j^{8} a_{2}^{-1}
$$

and $g_{\nu+1}^{\prime}=j^{4} g_{\nu}^{\prime} j^{-4}$ for $\nu \in\{1,3,5,7,9,10,12,13,15,17,19\}$.
It is then routine to calculate the $f\left(u_{i}\right)$ and $f\left(v_{i}\right)$, and we obtain

$$
\begin{aligned}
& f\left(u_{1}\right)=(-4,8), \quad f\left(u_{2}\right)=(-8,4), \quad f\left(u_{3}\right)=(-6,6), \quad f\left(u_{4}\right)=(-4,2), \quad f\left(u_{5}\right)=(-8,4), \\
& f\left(v_{1}\right)=(8,-4), \quad f\left(v_{2}\right)=(2,2), \quad f\left(v_{3}\right)=(4,-8), \quad f\left(v_{4}\right)=(2,2), \quad f\left(v_{5}\right)=(2,2)
\end{aligned}
$$

and

$$
\begin{aligned}
& f\left(u_{6}\right)=(-6,0), \quad f\left(u_{7}\right)=(-4,-4), \quad f\left(u_{8}\right)=(-6,0), \quad f\left(u_{9}\right)=(-4,-4), \quad f\left(u_{10}\right)=(-4,2), \\
& f\left(v_{6}\right)=(-6,6), \quad f\left(v_{7}\right)=(2,-4), \quad f\left(v_{8}\right)=(6,0), \quad f\left(v_{9}\right)=(-2,4), \quad f\left(v_{10}\right)=(4,-2) .
\end{aligned}
$$

For $M=b\left(M_{c}\right)$ and $M=b^{-1}\left(M_{c}\right)$, generators u_{i} and v_{i} were given in the proof of Proposition 15. For $M=b\left(M_{c}\right)$ we read off

$$
\begin{array}{lll}
f\left(u_{1}\right)=(0,-2), & f\left(u_{2}\right)=(-4,0), & f\left(u_{3}\right)=(-4,2),
\end{array} \quad f\left(u_{4}\right)=(2,0), ~ 子\left(v_{1}\right)=(4,0), \quad f\left(v_{4}\right)=(0,-2), ~ f\left(v_{3}\right)=(4,0), \quad f\left(v_{2}\right)=(0,2), \quad f\left(v_{1}\right)=(-2,0)
$$

and for $M=b^{-1}\left(M_{c}\right)$, we read off

$$
\begin{array}{lll}
f\left(u_{1}\right)=(2,0), & f\left(u_{2}\right)=(4,0), & f\left(u_{3}\right)=(0,0),
\end{array} f\left(u_{4}\right)=(0,2), ~ 子 ~ f\left(v_{1}\right)=(-2,4), \quad f\left(v_{2}\right)=(-2,2), \quad f\left(v_{3}\right)=(2,-2), \quad f\left(v_{4}\right)=(-4,2) .
$$

A.4. The points of X coming from the $\bar{\Gamma}$-orbit of ξ_{12}. Recall that the point $\xi_{12} \in X$ was defined in (14). It is the point of $B_{\mathbb{C}}^{2}$ fixed by $\gamma_{12}=b v$. By Proposition 8 , it belongs to exactly one mirror of type A (namely $g\left(M_{c}\right)$ for $g=b u$, since $(u b) u(u b)^{-1}=b=(b v)^{4}=\gamma_{12}^{4}$ fixes ξ_{12}), and exactly one mirror of type B (namely M_{0}).

Proposition 18. There are exactly 72 distinct points $\Pi \xi$ in X such that ξ is in the $\bar{\Gamma}$-orbit of ξ_{12}. The set of these points may be partitioned into three subsets of size 24, consisting of the points in the images of M_{0}, M_{1} and M_{∞}, respectively. For $\alpha=0,1, \infty$, the set of 24 points belonging to the image of M_{α} is partitioned into sets of n_{1}, n_{2}, n_{3} and n_{4} points in the images of $M_{c}, M_{-c}, b\left(M_{c}\right)$ and $b^{-1}\left(M_{c}\right)$, respectively, where
(a) for $\alpha=0,\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(6,6,6,6)$,
(b) for $\alpha=1$, $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(9,9,3,3)$,
(c) for $\alpha=\infty,\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(12,12,0,0)$.

Proof. Recall that $T=\left\{b^{\mu} k: \mu \in\{0,1,-1\}\right.$ and $\left.k \in K\right\}$ is a set of representatives for the set of 864 distinct cosets $\Pi g, g \in \bar{\Gamma}$. Since Π is torsion-free, the group $\left\langle\gamma_{12}\right\rangle$ acts freely on T, and so we can find $72=864 / 12$ elements s_{1}, \ldots, s_{72} of T such that $\bar{\Gamma}=\bigcup_{i=1}^{72} \Pi s_{i}\left\langle\gamma_{12}\right\rangle$, a disjoint union. Because $\bar{\Gamma}_{\xi_{12}}=\left\langle\gamma_{12}\right\rangle$, as we saw in Lemma 15, the points $\Pi\left(s_{i} . \xi_{12}\right) \in X$ are distinct, and consist of the $\Pi \xi$ in X such that ξ is in the $\bar{\Gamma}$-orbit of ξ_{12}. Magma verifies that we can take s_{1}, \ldots, s_{72} to be the elements $s_{\nu}^{\prime}, s_{\nu}^{\prime} j^{4}$ and $s_{\nu}^{\prime} j^{8}$, where $s_{1}^{\prime}, \ldots, s_{24}^{\prime}$ are the elements in the first column of the table below. Since $\left|\mathcal{M}_{A}\left(\xi_{12}\right)\right|=1=\left|\mathcal{M}_{B}\left(\xi_{12}\right)\right|$ by Proposition 8 , each $\Pi\left(s_{i} \cdot \xi_{12}\right)$ belongs to the image of exactly one of M_{0}, M_{1} and M_{∞}, and to the image of exactly one of $M_{c}, M_{-c}, b\left(M_{c}\right)$ and $b^{-1}\left(M_{c}\right)$. For each i, we can find $\pi, \pi^{\prime} \in \Pi$ so that $\pi s_{i} \xi_{12} \in M$ and $\pi^{\prime} s_{i} \xi_{12} \in M^{\prime}$, where $M \in\left\{M_{0}, M_{1}, M_{\infty}\right\}$ and $M^{\prime} \in\left\{M_{c}, M_{-c}, b\left(M_{c}\right), b^{-1}\left(M_{c}\right)\right\}$.

If $\pi \in \Pi$, $s_{i}=b^{\mu} k$, and $\pi s_{i} \xi_{12} \in M_{\alpha}$, where $\mu \in\{0,1,-1\}, k \in K$, and $\alpha \in$ $\{0,1, \infty, c,-c\}$, then with $\pi_{\mu} \in \Pi$ as in (32),

$$
s_{i} j^{4} \xi_{12}=b^{\mu} j^{4} k \xi_{12}=\pi_{\mu} j^{4} b^{\mu} k \xi_{12}=\pi_{\mu} j^{4} \pi^{-1}\left(\pi b^{\mu} k \xi_{12}\right) \in \pi_{\mu} j^{4} \pi^{-1}\left(M_{\alpha}\right)=\pi_{\mu} j^{4} \pi^{-1} j^{-4}\left(M_{\alpha}\right),
$$

so that $\tilde{\pi} s_{i} j^{4} \xi_{12} \in M_{\alpha}$ for $\tilde{\pi}=j^{4} \pi j^{-4} \pi_{\mu}^{-1}$. Similarly, if $\pi s_{i} \xi_{12} \in b^{\nu}\left(M_{c}\right)$, then

$$
\pi_{\mu} j^{4} \pi^{-1}\left(\pi b^{\mu} k \xi_{12}\right) \in \pi_{\mu} j^{4} \pi^{-1}\left(b^{\nu}\left(M_{c}\right)\right)=\pi_{\mu} j^{4} \pi^{-1} b^{\nu} j^{-4}\left(M_{c}\right)=\pi_{\mu} j^{4} \pi^{-1} \pi_{-\nu} j^{-4} b^{\nu}\left(M_{c}\right)
$$

shows that $\tilde{\pi} s_{i} j^{4} \xi_{12} \in b^{\nu}\left(M_{c}\right)$ for $\tilde{\pi}=j^{4} \pi_{-\nu}^{-1} \pi j^{-4} \pi_{\mu}^{-1}$.
So it is enough to find, for $\nu=1, \ldots, 24, \pi, \pi^{\prime} \in \Pi$ so that $\pi s_{\nu}^{\prime} \xi_{12} \in M$ and $\pi^{\prime} s_{\nu}^{\prime} \xi_{12} \in M^{\prime}$, where $M \in\left\{M_{0}, M_{1}, M_{\infty}\right\}$ and $M^{\prime} \in\left\{M_{c}, M_{-c}, b\left(M_{c}\right), b^{-1}\left(M_{c}\right)\right\}$. Suitable π, π^{\prime} are listed in the next table.

s_{ν}^{\prime}	π	M^{2}	π^{\prime}	M^{\prime}
j^{2}	1	M_{0}	$a_{1}^{-1} a_{2}^{-2} a_{1}^{-2} a_{2}^{-1}$	M_{c}
$u j$	$a_{1}^{-1} a_{2}^{-1} a_{1}$	M_{0}	$a_{2}^{-3} a_{3}^{2}$	M_{c}
1	1	M_{0}	$a_{1}^{-1} a_{3}^{-3} a_{2}$	M_{-c}
$u j^{3}$	$a_{1}^{-1} a_{2}^{-1} a_{1}$	M_{0}	$a_{1}^{-1} a_{2}^{-1}$	M_{-c}
j	1	M_{0}	$a_{3}^{3} a_{1}$	$b\left(M_{c}\right)$
$u j^{2}$	$a_{1}^{-1} a_{2}^{-1} a_{1}$	M_{0}	$a_{3}^{3} a_{1} a_{3}^{2}$	$b\left(M_{c}\right)$
j^{3}	1	M_{0}	a_{3}	$b^{-1}\left(M_{c}\right)$
u	$a_{1}^{-1} a_{2}^{-1} a_{1}$	M_{0}	1	$b^{-1}\left(M_{c}\right)$
$v^{-1} u j$	1	M_{1}	$a_{1} a_{3}^{-1} a_{2}^{-1} a_{1} a_{3}^{-1}$	M_{c}
$v^{-1} u j^{3}$	1	M_{1}	$a_{1} a_{3}^{-1} a_{1} a_{3} a_{2} a_{3}^{-1}$	M_{c}
$b u$	$a_{1}^{-1} a_{3}^{-3}$	M_{1}	1	M_{c}
$v^{-1} u j^{2}$	1	M_{1}	a_{3}^{-1}	M_{-c}
$b u j$	$a_{1}^{-1} a_{3}^{-3}$	M_{1}	$a_{1}^{-1} a_{2}^{-1} a_{1} a_{2}^{2}$	M_{-c}
$b v u j$	$a_{3}^{3} a_{1}^{2} a_{2}^{-1}$	M_{1}	a_{2}	M_{-c}
$b v^{-1} u j$	a_{2}^{-2}	M_{1}	$a_{2}^{3} a_{3}^{-1} a_{1}^{-1} a_{3}^{-3}$	$b\left(M_{c}\right)$
$v^{-1} u$	1	M_{1}	$a_{2}^{2} a_{1} a_{3}$	$b^{-1}\left(M_{c}\right)$
$v u^{-1} j$	a_{2}^{-1}	M_{∞}	$a_{1}^{-1} a_{2}^{-1}$	M_{c}
$v u^{-1} j^{2}$	a_{2}^{-1}	M_{∞}	$a_{1}^{-1} a_{2}^{-2} a_{1}^{-1} a_{2}$	M_{c}
$u v^{-1} u j$	1	M_{∞}	$a_{3} a_{2}^{-3} a_{3}^{3} a_{1}$	M_{c}
$b^{-1} v u j^{2}$	$a_{3}^{-1} a_{1}^{-1} a_{2}^{-2}$	M_{∞}	$a_{1} a_{3}^{-1} a_{1} a_{3} a_{2}^{-2}$	M_{c}
$v u^{-1}$	a_{2}^{-1}	M_{∞}	$a_{2} a_{1}^{-1} a_{2}^{-1}$	M_{-c}
$v u^{-1} j^{3}$	a_{2}^{-1}	M_{∞}	$a_{2}^{2} a_{1}^{-1} a_{3} a_{1}$	M_{-c}
$u v^{-1} u$	1	M_{∞}	$a_{1} a_{2} a_{1}^{-2} a_{3}^{-3} a_{2} a_{1}$	M_{-c}
$b v u^{-1} v^{2} u j$	$a_{2}^{-1} a_{1} a_{2}^{-1}$	M_{∞}	$a_{2} a_{1}^{-1} a_{2}^{-2}$	M_{-c}

For each pair (M, M^{\prime}) we can read off from this table the i such that $\pi s_{i} \xi_{12} \in M$ and $\pi^{\prime} s_{i} \xi_{12} \in M^{\prime}$ for some $\pi, \pi^{\prime} \in \Pi$.
A.5. The fixed points of the automorphisms of X. As we saw in $\S 1$, the normalizer of Π in $\bar{\Gamma}$ contains Π as a subgroup of index 3 , and is generated by Π and j^{4}. Denote by σ the automorphisms of $B_{\mathbb{C}}^{2}$ and of X induced by j^{4}. If $\xi=\left(z_{1}, z_{2}\right) \in B_{\mathbb{C}}^{2}$, then $\sigma(\xi)=\left(\omega z_{1}, \omega z_{2}\right)$.

Lemma 32. The automorphism σ of X has exactly 9 fixed points. These are the three points $\Pi b^{\mu} O, \mu=0,1,-1$, and six points $\Pi h_{i} \xi_{3}, i=1, \ldots, 6$, where ξ_{3}, as in (14), is the fixed point of $\gamma_{3}=b u v$.
Proof. If $\Pi \xi$ is fixed by σ, then $\Pi j^{4} \xi=\Pi \xi$, and so $\pi j^{4} \xi=\xi$ for some $\pi \in \Pi$. This implies that πj^{4} has finite order. It cannot be trivial, since Π is torsion free. So there is an element t, in the list of representative nontrivial elements of finite order in $\bar{\Gamma}$ given in Proposition 7, or the inverse of one of these, such that $\pi j^{4}=g t g^{-1}$ for some $g \in \bar{\Gamma}$. Thus $g t g^{-1} j^{-4} \in \Pi$. Since the elements $b^{\mu} k, \mu=0,1,-1$ and $k \in K$, form a set of coset representatives for Π in $\bar{\Gamma}$, and since j^{4} normalizes Π, we can assume that $g=b^{\mu} k$ for some μ and k.

So we search through the finite set of elements $b^{\mu} k t k^{-1} b^{-\mu} j^{-4}$, checking which are in Π (by the remark below, we need only consider the cases $t=j^{4}, t=b u v$ and $t=(b u v)^{-1}$). We find that $b^{\mu} k t k^{-1} b^{-\mu} j^{-4} \in \Pi$ only happens for $t=j^{4}$ and $t=b u v$. When $t=j^{4}$, we have $b^{\mu} k t k^{-1} b^{-\mu} j^{-4}=b^{\mu} j^{4} b^{-\mu} j^{-4}$, independent of k. We find that these three elements are in Π. Explicitly, $b^{\mu} j^{4} b^{-\mu} j^{-4}=\pi_{\mu}$ for π_{μ} given in (32). and these equations mean that the three points $\Pi\left(b^{\mu} . O\right)$ are fixed by σ.

For $t=b u v$, we find that $b^{\mu} k t k^{-1} b^{-\mu} j^{-4} \in \Pi$ for only 18 pairs (μ, k). This means that σ fixes $\Pi\left(b^{\mu} k . \xi_{3}\right)$ for these $18(\mu, k)$'s. If (μ, k) satisfies $b^{\mu} k t k^{-1} b^{-\mu} j^{-4} \in \Pi$, then so does
($\mu, k j^{4}$), since we can write $b^{\mu} j^{4}=\pi_{\mu} j^{4} b^{\mu}$ for some $\pi_{\mu} \in \Pi$, as we have just seen. Moreover, $\Pi\left(b^{\mu} k j^{4} . \xi_{3}\right)=\Pi\left(b^{\mu} k . \xi_{3}\right)$, since $k j^{4}=j^{4} k$ and so

$$
\Pi\left(b^{\mu} k j^{4} \cdot \xi_{3}\right)=\Pi\left(\pi_{\mu} j^{4} b^{\mu} k . \xi_{3}\right)=\Pi\left(j^{4} b^{\mu} k . \xi_{3}\right)=\sigma\left(\Pi\left(b^{\mu} k . \xi_{3}\right)\right)=\Pi\left(b^{\mu} k . \xi_{3}\right)
$$

So we need only consider six of the (μ, k) 's, and correspondingly setting

$$
\begin{array}{lll}
h_{1}=b^{-1} v u j^{3}, & h_{2}=u^{-1} v j, & h_{3}=b u v^{2} j^{2} \\
h_{4}=b^{-1} v^{2} u j^{3}, & h_{5}=v j^{2}, & h_{6}=b v u^{-1} v
\end{array}
$$

we have $h_{i}($ buv $) h_{i}^{-1} j^{-4}=\pi_{i}^{\prime} \in \Pi$ for $i=1, \ldots, 6$; explicitly,

$$
\begin{array}{lll}
\pi_{1}^{\prime}=\zeta^{4} a_{2}^{2} a_{1} a_{3}^{3}, & \pi_{2}^{\prime}=j^{8} a_{1} j^{4}, & \pi_{3}^{\prime}=\zeta^{2} j^{8} a_{1} a_{2}^{3} j^{4} a_{2} a_{1} a_{2}^{-2} a_{1}^{-1} \\
\pi_{4}^{\prime}=\zeta^{-5} a_{3}^{3} a_{1}^{2} a_{3}^{3}, & \pi_{5}^{\prime}=\zeta^{-1} j^{4} a_{1}^{-1} a_{2}^{-1} j^{8}, & \pi_{6}^{\prime}=\zeta a_{2} a_{1}^{-1}
\end{array}
$$

These six points $\Pi h_{i} \xi_{3}$ are distinct, as we see by checking that $\left(b^{\mu^{\prime}} k^{\prime}\right)(b u v)^{\epsilon}\left(b^{\mu} k\right)^{-1}$ is not in Π for $\epsilon=0,1,2$ when $\left(\mu^{\prime}, k^{\prime}\right)$ and (μ, k) are distinct pairs in the above list.
Remark 6. If $\pi \in \Pi$, then $\pi^{\prime}=\left(\pi j^{4}\right)^{3}=(\pi)\left(j^{4} \pi j^{8}\right)\left(j^{8} \pi j^{4}\right)$ is also in Π. Since the possible orders of the elements of $\bar{\Gamma}$ are the divisors of 24, if πj^{4} has finite order, then $1=\left(\pi j^{4}\right)^{24}=\left(\pi^{\prime}\right)^{8}$, so π^{\prime} must be 1 , so that $\left(\pi j^{4}\right)^{3}$ must be 1 . Obviously, $\pi j^{4} \neq 1$, and so πj^{4} must have order 3. Write $\pi j^{4}=g t g^{-1}$ for some $g \in \bar{\Gamma}$, where $t^{3}=1$ and t or t^{-1} is in the table in Proposition 7. We know from (32) that for each $\mu \in\{0,1,-1\}$, there is a $\pi_{\mu} \in \Pi$ such that $b^{\mu} j^{4} b^{-\mu} j^{-4}=\pi_{\mu}$. Using this and writing $g=\pi^{\prime} b^{\mu} k$, where $\pi^{\prime} \in \Pi$, $\mu \in\{0,1,-1\}$, and $k \in K$, we get

$$
\begin{aligned}
\pi j^{4}=\pi^{\prime} b^{\mu} k t k^{-1} b^{-\mu} \pi^{\prime-1} & =\pi^{\prime} b^{\mu} k t k^{-1}\left(j^{-4} b^{-\mu} \pi_{\mu} j^{4}\right) \pi^{\prime-1} \\
& =\pi^{\prime}\left(b^{\mu} k\right)\left(t j^{-4}\right)\left(b^{\mu} k\right)^{-1}\left(\pi_{\mu} j^{4} \pi^{\prime-1} j^{-4}\right) j^{4}
\end{aligned}
$$

So $\left(b^{\mu} k\right)\left(t j^{-4}\right)\left(b^{\mu} k\right)^{-1}$ is in Π, and therefore either $t=j^{4}$ or $t j^{-4}$ has infinite order. In particular, apart from $t=j^{4}$, our t cannot be in K, and so must be buv or $(\text { buv })^{-1}$.
Lemma 33. In the notation of Lemma 32, the six points $\Pi h_{i} \xi_{3}$ are of type $\frac{1}{3}(1,2)$, while the three points $\Pi b^{\mu} O$ are of type $\frac{1}{3}(1,1)$.
Proof. If $\gamma \in \bar{\Gamma}$, then writing $\gamma \cdot\left(z_{1}, z_{2}\right)=\left(w_{1}, w_{2}\right)$, a routine calculation shows that

$$
\left(\begin{array}{ll}
\frac{\partial w_{1}}{\partial z_{1}} & \frac{\partial w_{2}}{\partial z_{1}} \\
\frac{\partial w_{1}}{\partial z_{2}} & \frac{\partial w_{2}}{\partial z_{2}}
\end{array}\right)
$$

evaluated at $\xi=\left(z_{1}, z_{2}\right)$, equals

$$
\frac{\zeta^{2} /(r-1)}{\left(\gamma_{31} \kappa z_{1}+\gamma_{32} \kappa z_{2}+\gamma_{33}\right)^{2}}\left(\begin{array}{cc}
\kappa z_{2} \bar{\gamma}_{23}+(r-1) \bar{\gamma}_{22} & -\left(\kappa z_{2} \bar{\gamma}_{13}+(r-1) \bar{\gamma}_{12}\right) \\
-\left(\kappa z_{1} \bar{\gamma}_{23}+(r-1) \bar{\gamma}_{21}\right) & \kappa z_{1} \bar{\gamma}_{13}+(r-1) \bar{\gamma}_{11}
\end{array}\right)
$$

where $\kappa=\sqrt{r-1}$. Taking $\gamma=h_{i} \gamma_{3} h_{i}^{-1}$ and $\xi=\xi_{3}=\left(c_{1} / \kappa, c_{2} / \kappa\right)$ as given in (14), we find that this matrix has eigenvalues $e^{ \pm 2 \pi i / 3}$. If instead we take $\gamma=b^{\mu} j^{4} b^{-\mu}$, and $\xi=b^{\mu} O$, for $\mu=0,1,-1$, we find that the matrix is $e^{2 \pi i / 3} I$.

Proposition 19. With the notation of $\S 5.4$, three of the nine fixed points of σ are mapped by α to each of p_{0}, p_{1} and p_{-1}. Moreover, $\alpha(\Pi b O)=\alpha\left(\Pi b^{-1} O\right)=\alpha(\Pi O), \alpha\left(\Pi h_{1} \xi_{3}\right)=$ $\alpha\left(\Pi h_{2} \xi_{3}\right)=\alpha\left(\Pi h_{3} \xi_{3}\right)$ and $\alpha\left(\Pi h_{4} \xi_{3}\right)=\alpha\left(\Pi h_{5} \xi_{3}\right)=\alpha\left(\Pi h_{6} \xi_{3}\right)$.
Proof. Writing $\alpha(\Pi \xi)=\alpha_{0}(\xi)+\Lambda$, as before, where $\alpha_{0}(O)=0$, we proved in Lemma 10 that

$$
\alpha_{0}\left(j^{4} \xi\right)=\omega \alpha_{0}(\xi) \quad \text { for all } \xi \in B_{\mathbb{C}}^{2}
$$

Now $b j^{4} b^{-1}=\pi_{1} j^{4}$ for π_{1} as in (32), and $f\left(\pi_{1}\right)=(-2,-5)$, so by Lemma 10 and Proposition 4,

$$
\alpha_{0}\left(b j^{4} b^{-1} \xi\right)=\alpha_{0}\left(\pi_{1} j^{4} \xi\right)=\alpha_{0}\left(j^{4} \xi\right)-2+5 \omega=\omega \alpha_{0}(\xi)-2+5 \omega
$$

In particular, taking $\xi=b O$, we have $\alpha_{0}(b O)=\omega \alpha_{0}(b O)-2+5 \omega$, so that

$$
\alpha_{0}(b O)=\frac{2+\omega}{3}(-2+5 \omega)=\omega-3 \in \Lambda .
$$

Hence $\alpha(\Pi b . O)=\alpha(\Pi O)=p_{0}$.
Similarly, $b^{-1} j^{4} b=\pi_{-1} j^{4}$ for π_{-1} as in (32), and $f\left(\pi_{-1}\right)=(-5,1)$, so that

$$
\alpha_{0}\left(b^{-1} j^{4} b \xi\right)=\alpha_{0}\left(\pi_{-1} j^{4} \xi\right)=\alpha_{0}\left(j^{4} \xi\right)+\theta\left(f\left(\pi_{-1}\right)\right)=\omega \alpha_{0}(\xi)-5-\omega .
$$

So taking $\xi=b^{-1} O$, we have $\alpha_{0}\left(b^{-1} O\right)=\omega \alpha_{0}\left(b^{-1} O\right)-5-\omega$, so that

$$
\alpha_{0}\left(b^{-1} O\right)=\frac{2+\omega}{3}(-5-\omega)=-3-2 \omega \in \Lambda .
$$

Hence $\alpha\left(\Pi b^{-1} . O\right)=\alpha(\Pi O)=p_{0}$ too.
Recall now that $h_{i}(b u v) h_{i}^{-1} j^{-4}=\pi_{i}^{\prime} \in \Pi$ for $i=1, \ldots, 6$, and so

$$
\alpha_{0}\left(h_{i}(b u v) h_{i}^{-1} \xi\right)=\alpha_{0}\left(\pi_{i}^{\prime} j^{4} \xi\right)=\alpha_{0}\left(j^{4} \xi\right)+\theta\left(f\left(\pi_{i}^{\prime}\right)\right)=\omega \alpha_{0}(\xi)+\theta\left(f\left(\pi_{i}^{\prime}\right)\right) .
$$

In particular, taking $\xi=h_{i} \xi_{3}$, we get $\alpha_{0}\left(h_{i} \xi_{3}\right)=\omega \alpha_{0}\left(h_{i} \xi_{3}\right)+\theta\left(f\left(\pi_{i}^{\prime}\right)\right)$, so that

$$
\alpha_{0}\left(h_{i} \xi_{3}\right)=\frac{2+\omega}{3} \theta\left(f\left(\pi_{i}^{\prime}\right)\right)
$$

Calculating

$$
\begin{aligned}
& f\left(\pi_{1}^{\prime}\right)=(-6,2), \quad f\left(\pi_{2}^{\prime}\right)=(-4,1), \quad f\left(\pi_{3}^{\prime}\right)=(1,-6), \\
& f\left(\pi_{4}^{\prime}\right)=(-4,0), \quad f\left(\pi_{5}^{\prime}\right)=(-4,3), \quad f\left(\pi_{6}^{\prime}\right)=(-3,-2),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \theta\left(f\left(\pi_{1}^{\prime}\right)\right)=-6-2 \omega \equiv 1-(1-\omega) \\
& \theta\left(f\left(\pi_{4}^{\prime}\right)\right)=-4 \quad \equiv-1 \\
& \theta\left(f\left(\pi_{2}^{\prime}\right)\right)=-4-\omega \equiv 1+(1-\omega) \quad \text { and } \quad \theta\left(f\left(\pi_{5}^{\prime}\right)\right)=-4-3 \omega \equiv-1 \\
& \theta\left(f\left(\pi_{3}^{\prime}\right)\right)=1+6 \omega \quad \theta 1 \quad \theta\left(f\left(\pi_{6}^{\prime}\right)\right)=-3+2 \omega \equiv-1+(1-\omega),
\end{aligned}
$$

where the congruences are modulo 3 . Hence $\alpha\left(\Pi h_{i} \xi_{3}\right)=\frac{2+\omega}{3}+\Lambda$ for $i=1,2,3$ and $\alpha\left(\Pi h_{i} \xi_{3}\right)=-\frac{2+\omega}{3}+\Lambda$ for $i=4,5,6$.

References

[AGV] Arnold, V.I, Gusein-Zade, S.M., Varchenko, A.N., Singularities of differentiable maps. Volume 1. Classification of critical points, caustics and wave fronts. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2012
[BHPV] Barth, W. P., Hulek, K., Peters, Chris A. M., Van de Ven, A., Compact complex surfaces. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 4. Springer-Verlag, Berlin, 2004.
[Be] Beauville, A., Complex algebraic surfaces. Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid. Second edition. London Mathematical Society Student Texts, 34. Cambridge University Press, Cambridge, 1996.
[BG] Buchweitz, R.-O., Greuel, G.-M., The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (1980), 241-281.
[CS1] Cartwright, D., Steger, T., Enumeration of the 50 fake projective planes, C. R. Acad. Sci. Paris, Ser. 1, 348 (2010), 11-13, see also weblink provided, http://www.maths.usyd.edu.au/u/donaldc/fakeprojectiveplanes/.
[CS2] Cartwright, D., Steger, T., Finding generators and relations for groups acting on the hyperbolic ball, preprint.
[DM1] Deligne, P., Mostow, G. D., Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5-89.
[DM2] Deligne, P., Mostow, G. D., Commensurabilities among lattices in PU(1,n). Annals of Mathematics Studies, 132. Princeton University Press, Princeton, NJ, 1993.
[Der1] Deraux, M., A negatively curved Kähler threefold not covered by the ball, Invent. Math. 160 (2005), 501-525.
[Der2] Deraux, M., Forgetful maps between Deligne-Mostow ball quotients, Geom. Dedicata 150 (2011), 377-389
[GH] Griffiths, P., Harris, J., Principles of algebraic geometry, John Wiley \& Sons, Inc., 1978.
[GPP] Gurjar, R., Paul, S., Purnaprajna, B. P., On the fundamental group of hyperelliptic fibrations and some applications. Invent. Math. 186 (2011), 237-254.
[K] Keum, J., Toward a geometric construction of fake projective planes, Rend. Lincei Mat. Appl. 23 (2012), 137-155.
[Li] Livné, R., On certain covers of the universal elliptic curve, Ph. D. Thesis, Harvard University, 1981
[Mo1] Mostow, G. D, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), 171-276.
[Mo2] Mostow, G. D, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 91-106.
[NZM] Niven, I., Zuckermann H. S., Montgomery, H. L, An Introduction to the Theory of Numbers, (Fifth Edition), Wiley, 1991.
[N] Nori, M., Zariski's conjecture and related problems, Ann. Sci. Ec. Norm. Super. 4 (1983), 305-344.
[Pa] Parker, J. R., Complex hyperbolic lattices, Contemp. Math. 501 (2009), 1-42.
[PY] Prasad, G., Yeung, S-K., Fake projective planes, Inv. Math. 168 (2007), 321-370; Addendum, Invent. Math. 182 (2010), 213-227.
[R] Rémy, B., Covolume des groupes S-arithémiques et faux plans projectifs, [d'après Mumford, Prasad, Klingler, Yeung, Prasad-Yeung], Séminaire Bourbaki, 60ème année, 2007-2008, $n^{\circ} 984$.
[Sa] Sauter, J. K., Jr, Isomorphisms among monodromy groups and applications to lattices in PU(1, 2), Pacific J. Math. 146 (1990), 331-384.
[ST] Shephard, G. C., Todd, J. A., Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274-304.
[T] Toledo, D., Maps between complex hyperbolic surfaces, Special volume dedicated to the memory of Hanna Miriam Sandler (1960-1999), Geom. Dedicata 97 (2003), 115-128.
[U] Ueno, K., Classification theory of algebraic varieties and compact complex surfaces, Lecture Notes in Mathematics, 439, Springer-Verlag, Berlin, 1975.
[X] Xiao, G., Surfaces fibrées en courbes de genre deux, Lecture Notes in Mathematics, 1137, SpringerVerlag, Berlin, 1985.
[Y1] Yeung, S.-K., Classification of fake projective planes, Handbook of Geometric Analysis, Vol II, Higher Education Press, Beijing, 2010, 391-431.
[Y2] Yeung, S.-K., Classification of surfaces of general type with Euler number 3, Journ. für die reine und ang. math., 679(2013), 1-22, corrected version, http://www.math.purdue.edu/~yeung/.
(Donald I. Cartwright) University of Sydney, Sydney NSW 2006 Australia
E-mail address: donald.cartwright@sydney.edu.au
(Vincent Koziarz) Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France
E-mail address: vkoziarz@math.u-bordeaux1.fr
(Sai-Kee Yeung) Purdue University, West Lafayette, IN 47907, USA
E-mail address: yeung@math.purdue.edu

