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Abstract. This paper is devoted to the study of the cut-off resolvent of a semiclassical
“black box” operator P . We estimate the norm of ϕ(P − z)−1ϕ, for any ϕ ∈ C∞

0 (Rn), by
the norm of 1Ca,b(P − z)−11Ca,b where Ca,b = {x ∈ Rn; a < |x| < b} and a � 1. For z
in the unphysical sheet with −Mh| ln h| ≤ Im z ≤ 0, we prove that this estimate holds with

a constant h
| Im z|e

C| Im z|/h. We also study the resonant states u of the operator P and we

obtain bounds for ‖ϕu‖ by ‖1Ca,bu‖. These results hold without any assumption on the
trapped set nor any assumption on the multiplicity of the resonances.

1. Introduction

In this paper, we prove estimates on the meromorphic extension across the real axis of the
cut-off resolvent of P , a semiclassical operator of “black box” type. This abstract framework,
introduced by Sjöstrand and Zworski [25] and described below, allows one to develop the
theory of resonances for many kinds of perturbations (potentials, obstacles, metrics, . . . ).
In particular, the results stated below hold for arbitrary dimension n ≥ 1 and without any
restriction on the geometry of the trapped set.

More precisely, we will estimate the norm of the cut-off resolvent ϕ(P − z)−1ϕ, for any
ϕ ∈ C∞

0 (Rn), by the norm of 1Ca,b
(P − z)−11Ca,b

where

Ca,b = {x ∈ Rn; a < |x| < b}.

Notice that, on the real axis, there is a big contrast between the behavior of these two norms.
Indeed, the resolvent truncated on rings Ca,b, with 1 � a < b, is always bounded above by
Ch−1. On the other hand, the norm of the resolvent, truncated near the projection on Rn of
the trapped set, depends on the geometry of this set and can be much larger than h−1. For
scattering outside a bounded obstacle K ⊂ Rn, with n ≥ 3 odd, a similar question has been
investigated by Stoyanov and the second author [19]. Using the scattering theory of Lax and
Phillips [15], they have proved that the cut-off resolvent can be bounded by the norm of the
scattering matrix (we refer to Section 6 for more details).

In scattering theory, it is natural to consider the resolvent of P truncated in rings Ca,b far
away from the origin. Indeed, the operator 1Ca,b

(P − z)−11Ca,b
appears in the representation

of the scattering amplitude for compact perturbations. More precisely, assume that P is a
compactly supported perturbation of −h2∆ and denote by S(z;h) = I+K(z;h) the associated
scattering matrix at energy z. By definition, the scattering amplitude a(z, ω, ω′;h) is the
distribution kernel of K(z;h). The standard formula (see for instance, Zworski and the
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second author [20]) gives

(1.1) a(z, ω, ω′;h) = c(z;h)
〈
ei
√
z〈x,ω〉/h, [h2∆, χ1](P − z)−1[h2∆, χ2]ei

√
z〈x,ω′〉/h

〉
,

where χ1, χ2 ∈ C∞
0 (Rn) are cut-off functions, ω, ω′ ∈ Sn−1 and

c(z, h) = iπ(2πh)−nz
n−2

2 .

Moreover, we can take the functions χ1, χ2 equal to 1 on arbitrary large compact sets con-
taining the perturbation, and the scattering amplitude is independent of this choice. Thus
the estimatation of 1Ca,b

(P − z)−11Ca,b
with 1 � a < b is essential for the estimations of the

scattering amplitude and for the norm of the Hilbert–Schmidt operator K(z;h).
We now give the precise assumptions on the semiclassical “black box” operator P . This

was introduced by Sjöstrand and Zworski [25] (see also Sjöstrand [22, 23, 24] in the long range
case). Let H be a complex Hilbert space with an orthogonal decomposition

H = HR0 ⊕ L2(Rn \B(R0)),

with n ≥ 1, R0 > 0 and B(R) = {x ∈ Rn; |x| < R}. In the sequel, we will identify
u ∈ L2(Rn \ B(R0)) with 0 ⊕ u ∈ H. We consider a self-adjoint semiclassical operator
P : H −→ H with domain D independent of h ∈]0, 1]. We assume that

1Rn\B(R0)D = H2(Rn \B(R0)),

and conversely that any u ∈ H2(Rn \ B(R0)), which vanishes near ∂B(R0), is an element of
D. To treat the contribution of P in HR0 , we suppose that

1B(R0)(P + i)−1 is compact.

We also assume that, for all u ∈ D, we have

1Rn\B(R0)Pu = Q(u|Rn\B(R0)),

where Q is a self-adjoint semiclassical differential operator on L2(Rn)

(1.2) Q =
∑
|α|≤2

aα(x;h)(hDx)α.

We suppose that the aα’s are bounded in C∞
b (Rn) (the space of smooth functions which are

bounded with all their derivatives) when h varies, and that aα(x;h) = aα(x) is independent
of h for |α| = 2. We further assume that Q is elliptic:

(1.3)
∑
|α|=2

aα(x)ξα & ξ2,

and a long range perturbation of the Laplacian:

(1.4)
∑
|α|≤2

aα(x;h)ξα −→ ξ2,

as |x| → +∞ uniformly with respect to h. Finally, we assume that

(1.5) aα(x;h) = a0
α(x) + ha1

α(x;h),

where a0
α, a

1
α ∈ C∞

b (Rn) uniformly with respect to h. We denote by

(1.6) q(x, ξ) =
∑
|α|≤2

a0
α(x)ξα,
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the semiclassical principal symbol of Q.
To define the resonances, we assume that the coefficients aα(x;h) extend holomorphically

in x to the region

(1.7) Υ =
{
x ∈ Cn; | Imx| ≤ δ|Rex| and |Rex| ≥ R1

}
,

for some δ > 0 and R1 > R0, and that the relevant parts of (1.2)–(1.5) remain valid in
Υ. Under these assumptions, it is possible to define the resonances by complex distortion
following the approach of Sjöstrand [23] (see also Aguilar and Combes [1], Hunziker [14],
Hellfer and Martinez [12] and Sjöstrand and Zworski [25] for more references concerning the
definition of the resonances by complex scaling). Let Γθ be a maximally totally real manifold
which coincides with Rn along B(R1) and with eiθRn outside a compact set, and which
satisfies some additional assumptions described in [23, Section 3]. For 0 ≤ θ ≤ θ0 with θ0 > 0
small enough, the operator

Pθ = P |Γθ
,

is well defined on D. Moreover, the spectrum of Pθ in

(1.8) Λθ = {z ∈ C; −2θ < arg z ≤ 0},
is discrete and independent of θ and of the choice of Γθ (in the sense that Pθ and Pθ′ have
the same eigenvalues with the same multiplicity in Λθ ∩ Λθ′). By definition, the resonances
of P are the eigenvalues of Pθ0 in Λθ0 .

As a matter of fact, the resolvent

(P − z)−1 : Hcomp −→ Dloc,

admits a meromorphic continuation from the upper complex half-plane {Im z > 0} to Λθ0 and
the poles of this extension are the resonances. Moreover, if a cut-off function ϕ ∈ C∞

0 (Rn) is
supported in the set where Γθ coincides with Rn, then

(1.9) ϕ(P − z)−1ϕ = ϕ(Pθ − z)−1ϕ.

We refer to Helffer and Martinez [12] for the equivalence of various definitions of the reso-
nances.

For two functions f, g, we will use the notation f ≺ g if g = 1 in a neighborhood of the
support of f . Since we work with operators of “black box” type, the different cut-off functions
appearing in the sequel will be assumed to be constant near B(R0). In the following, ‖ · ‖ will
denote the norm of the Hilbert space H and the operator norm on H. Finally, (P − z)−1 will
designate the meromorphic extension of the resolvent from the upper half-plane to Λθ0 (and
not the inverse of P − z). Our first theorem yields a link between the cut-off resolvents with
two cut-off functions χ and an arbitrary cut-off ϕ.

Theorem 1.1. Let [E0, E1] ⊂]0,+∞[. There exists a0 > R0 such that, for all M > 0 and
χ, ϕ ∈ C∞

0 (Rn) with 1B(a0) ≺ χ, there exists C > 0 such that∥∥ϕ(P − z)−1ϕ
∥∥ ≤ CeC| Im z|/h∥∥χ(P − z)−1χ

∥∥,
for z ∈ [E0, E1]− i[0,Mh| lnh|] not a resonance and h small enough.

On the real axis, such a result was essentially obtained by Robert and Tamura [21, Page
437] (see also Bruneau and the second author [4, Proposition 3] for trapping situations) to
prove the well-known resolvent estimate in non-trapping semiclassical situations. The next
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theorem is our main result. We obtain an estimate of ϕ(P − z)−1ϕ by the norm of the cut-off
resolvent 1Ca,b

(P − z)−11Ca,b
.

Theorem 1.2. Let [E0, E1] ⊂]0,+∞[. There exists a0 > R0 such that, for all a0 < a < b,
M > 0 and ϕ ∈ C∞

0 (Rn), there exists C > 0 such that∥∥ϕ(P − z)−1ϕ
∥∥ ≤ C

h

| Im z|
eC| Im z|/h∥∥1Ca,b

(P − z)−11Ca,b

∥∥,
for z ∈ [E0, E1]− i[0,Mh| lnh|] not a resonance and h small enough.

In particular, both Theorem 1.1 and Theorem 1.2 hold for any a0 large enough. The above
theorem gives no information on the real axis due to the factor | Im z|−1 in the right hand
side. This is in agreement with already known results, which say that the behavior of the
resolvent truncated near the trapped set can be very different from its behavior truncated in
rings far away from the origin. Indeed, under some additional assumptions on the operator
P , Burq [6] and Cardoso and Vodev [8] have proved that

sup
z∈[E0,E1]

∥∥1Ca,b
(P − z)−11Ca,b

∥∥ . h−1,

without hypothesis on the trapped set. On the other hand,

sup
z∈[E0,E1]

∥∥ϕ(P − z)−1ϕ
∥∥,

can be of order h−1 in the non-trapping case (see Robert and Tamura [21]) or greater than
eε/h, with ε > 0, as in the well in an island situation (see e.g. Helffer and Sjöstrand [13] or
Nakamura, Stefanov and Zworski [17]). For Im z = −Ah, our result implies the following

Corollary 1.3. Under the assumptions and notations of Theorem 1.2 and for A > 0, we have∥∥ϕ(P − z)−1ϕ
∥∥ .

∥∥1Ca,b
(P − z)−11Ca,b

∥∥,
for z ∈ [E0, E1]− iAh not a resonance.

In particular, if in addition ϕ does not vanish near B(a0), the norms of the operators
ϕ(P − z)−1ϕ and 1Ca,b

(P − z)−11Ca,b
are equivalent for z ∈ [E0, E1]− iAh not a resonance.

The term eC| Im z|/h appearing in Theorem 1.1 and Theorem 1.2 cannot be removed in
general. To show this, it is enough to consider the distribution kernel of (−h2∆ − z)−1 in
dimension n = 1 which is given by

iei
√
z|x−y|/h

2h
√
z

.

Note also that the constant C > 0 in the term eC| Im z|/h depends necessarily on a, b, ϕ.

Remark 1.4. If P has no resonance in [E0 − ε, E1 + ε] − i[0, Ah], ε > 0, and if the norm
of 1Ca,b

(P − z)−11Ca,b
is controlled in [E0 − ε, E1 + ε] − iAh, one can exploit Corollary 1.3

combined with a priori bounds on the cut-off resolvent (see e.g. Burq and Zworski [7]) and
the semiclassical maximum principle (see Tang and Zworski [27]) to establish a bound of the
cut-off resolvent ϕ(P − z)−1ϕ without | Im z|−1 in the band [E0, E1]− i[0, Ah].

In the proof of the previous results, we will use the following lower bound which can have
an independent interest.
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Proposition 1.5. Let [E0, E1] ⊂]0,+∞[. There exists a0 > R0 such that, for all ϕ ∈ C∞
0 (Rn)

satisfying suppϕ ∩B(a0)c 6= ∅, there exists C > 0 such that∥∥ϕ(P − z)−1ϕ
∥∥ ≥ Ch−1e−| Im z|/h,

for z ∈ ([E0, E1]− i[0, 1]) ∩ Λθ0/2 not a resonance and h small enough.

The second question we deal with in this paper is that of estimating resonant states. Let
z be a resonance of P . Then, from the general theory of resonances, we can write, for λ in a
neighborhood of z,

(1.10) (P − λ)−1 =
ΠN

(z − λ)N
+ · · ·+ Π1

z − λ
+A(λ),

as operators from Hcomp to Dloc, where A(λ) is an operator-valued function holomorphic near
z and the Πj ’s are finite rank operators satisfying Im Πj ⊂ Im Π1 and Π1 6= 0.

Definition 1.6. A resonant state u is an element of Im Π1 which satisfies (P − z)u = 0.

In particular, resonant states are in Dloc but, in general, they are not in H. In the same
spirit as in Theorem 1.2, we obtain the following

Theorem 1.7. Let [E0, E1] ⊂]0,+∞[. There exists a0 > R0 such that, for all a0 < a < b,
M > 0 and ϕ ∈ C∞

0 (Rn), there exists C > 0 such that

(1.11) ‖ϕu‖ ≤ C

√
h

| Im z|
eC| Im z|/h∥∥1Ca,b

u
∥∥,

for any resonant state u associated to a resonance z ∈ [E0, E1] − i[0,Mh| lnh|] and h small
enough.

Thus, this theorem gives a lower bound of the resonant states on the ring Ca,b. In a
certain sense, it can be seen as an effective unique continuation result for the resonant states.
However, we not consider the behavior at infinity of the resonant states.

Remark 1.8. i) Note that, under some assumptions and for resonances satisfying | Im z| . h,
Stefanov [26] and Michel and the first author [3] have shown that∥∥1Ca,b

u
∥∥ .

√
| Im z|
h

∥∥1B(b)u
∥∥.

Thus, the estimate given in Theorem 1.7 is sharp in this case.

ii) Note also that one can use the known results concerning the resonant states to refine
Theorem 1.7. For instance, it is known that the resonant states are outgoing. This means
that they vanish microlocally in the incoming region

Γ−(Re z) =
{
(x, ξ) ∈ q−1(Re z); exp(tHq)(x, ξ) →∞ as t→ −∞

}
.

We refer to Michel and the first author [3] for a precise result. Thus, it can be possible,
under some assumptions, to replace u by Ψu in the right hand side of (1.11) where Ψ is a
pseudodifferential operator which microlocalizes near the complement of the incoming region.

iii) For Schrödinger operators P = −h2∆ + V (x) and for simple resonances, Theorem 1.7
can be deduced from Theorem 1.2. Indeed, letting the spectral parameter go to z in Theorem
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1.2, we get ∥∥ϕΠ1ϕ
∥∥ ≤ C

h

| Im z|
eC| Im z|/h∥∥1Ca,b

Π11Ca,b

∥∥.
Therefore (1.11) follows since, for Schrödinger operators, we can write Π1 = cu〈ū, ·〉 for some
c ∈ C \ {0}.
iv) Theorem 1.7 shows that the resonant states associated to resonances at distance h from

the real axis cannot be localized near the trapped set to first order. More precisely, let u(h)
be a family of resonant states, with ‖u(h)‖B(b) = 1, whose corresponding resonances z(h)
verify h/A ≤ − Im z(h) ≤ Ah. Then, every semiclassical measure µ associated to u(h) has
the property

(1.12) µ(Ca,b × Rn) > 0.

Note that, for differential operators (i.e. P = Q), one could obtain (1.12) by using the
propagation properties of the semiclassical measures associated to the resonant states (see
e.g. Theorem 4 of Nonnenmacher and Zworski [18]).

Example 1.9. The estimates given in Theorem 1.7 and Remark 1.8 i) are already known in
the well in an island situation. In dimension n = 1 and at the bottom of the well, Helffer
and Sjöstrand [13, Proposition 11.1] (see also Harrell and Simon [11]) have proved that the
imaginary part of the first resonance satisfies

Im z = −(α+ o(1))h1/2e−2S0/h,

where S0 > 0 is the Agmon distance between the well and the sea and α 6= 0 is explicit. On
the other hand, the resonant state u (normalized on B(b)) verifies∥∥1B(b)u

∥∥ = 1 and
∥∥1Ca,b

u
∥∥ = (β + o(1))h−1/4e−S0/h,

with β 6= 0. This is in agreement with Theorem 1.7 and Remark 1.8 i).
Note that the well in an island situation in the multidimensional case has been treated

in [13, Theorem 10.12]. We also refer to Fujiié, Lahmar-Benbernou and Martinez [10] for
potentials which are only C∞ in a compact set. In all these works, the authors prove precise
asymptotics of the resonant states and they obtain the imaginary part of the resonances by
a formula similar to (5.2) which is used in the proof of Theorem 1.7.

Example 1.10. The resonant states have also been computed for barrier-top resonances. In
[2, Theorem 4.1], Fujiié, Ramond, Zerzeri and the first author have proved that, for simple
resonances with | Im z| . h, the resonant states u are classical Lagrangian distributions whose
Lagrangian manifold Λ+ is the stable outgoing Lagrangian manifold at the critical point.
Moreover, the principal symbol of u does not vanish almost everywhere on Λ+.

In particular, since the spatial projection of Λ+ is the whole space Rn, we get

‖ϕu‖ .
∥∥1Ca,b

u
∥∥ . ‖ϕu‖,

for all 0 6= ϕ ∈ C∞
0 (Rn). On the other hand, in this context, the imaginary part of a resonance

satisfies Im z = −λh + o(h) where λ 6= 0 is given by the eigenvalues of the Hessian of the
potential at its maximum. This is in agreement with Theorem 1.7 and Remark 1.8 i).

By our arguments, we can also study the generalized resonant states.

Definition 1.11. A generalized resonant state u is an element of Im Π1. The order of u is
the smallest integer J ≥ 1 such that (P − z)Ju = 0.
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Note that, using the notations of (1.10), the order of a generalized resonant state is bounded
by N because (P − z)ΠN = 0 and (P − z)Πj = Πj+1 for 1 ≤ j ≤ N − 1. As a consequence
of Theorem 1.7, we have the following result on the generalized resonant states of bounded
order.

Proposition 1.12. Let [E0, E1] ⊂]0,+∞[. There exists a0 > R0 such that, for all a0 < a < b,
M > 0, J ∈ N \ {0} and ϕ ∈ C∞

0 (Rn), there exists C > 0 such that

‖ϕu‖ ≤ C

√
h

| Im z|
eC| Im z|/h

J−1∑
j=0

1
| Im z|j

∥∥1Ca,b
(P − z)ju

∥∥,
for any generalized resonant state u of order less than J associated to a resonance z ∈
[E0, E1]− i[0,Mh| lnh|] and h small enough.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1 by
constructing an auxiliary non-trapping operator which coincides with P at infinity. Section
3 is devoted to the proof of Theorem 1.2. The main idea is to exploit the formula

〈χ(P − z)u, χu〉 − 〈χu, χ(P − z)u〉 =
〈
[χ2, P ]u, u

〉
− 2i Im z‖χu‖2,

which is generally used to compute imaginary parts of resonances (see e.g. Helffer and
Sjöstrand [13, Page 155]). Proposition 1.5 is proved in Section 4 by building a well-chosen
quasimode. The estimates concerning the resonant states are obtained in Section 5 using
ideas similar to those of Section 3. In Section 6, we apply our results to the case of obsta-
cle scattering and we make the link with the work of Stoyanov and the second author [19].
Finally, we give some basic properties of the generalized resonant states in Appendix A.

2. Proof of Theorem 1.1

First, we construct a non-trapping operator by planing Q in a large compact set. This
idea has been used by Robert and Tamura [21] (see also Bruneau and the second author [4]
for trapping situations) to estimate the weighted resolvent on the real axis in non-trapping
situations. Secondly, we recall the standard estimate of the cut-off resolvent associated to
this new auxiliary operator. Let τ, ν ∈ C∞(Rn; [0, 1]) be such that

1B(1/2) ≺ τ ≺ 1B(1),

and τ2 + ν2 = 1 on Rn. For a > 0, we define

Ra = ν
(x
a

)
Qν

(x
a

)
− τ

(x
a

)
h2∆τ

(x
a

)
,

a differential operator of order 2 whose semiclassical principal symbol is

ra(x, ξ) = q(x, ξ)ν2
(x
a

)
+ ξ2τ2

(x
a

)
.

In particular, ξ2/C−C ≤ ra ≤ Cξ2 +C uniformly for a > 0. Moreover, using the assumption
(1.4), a direct computation yields

{ra, x · ξ} = {ξ2, x · ξ}+
{

(q − ξ2)ν2
(x
a

)
, x · ξ

}
= 2ξ2 + oa→+∞(〈ξ〉2) = 2ra + oa→+∞(〈ξ〉2) ≥ E0/2 > 0,(2.1)

for ra(x, ξ) ∈ [E0/2, 2E1] and a > a0 with a0 > R0 sufficiently large. This implies that, for
a > a0, the symbol ra(x, ξ) is non-trapping on r−1

a (E) for all energies E lying in the interval
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[E0/2, 2E1]. Then, we can apply a result of Nakamura, Stefanov and Zworski [17] (see also
Martinez [16]) which yields the following resolvent estimate.

Lemma 2.1. For all j ∈ N, s ∈ R, M > 0 and ϕ ∈ C∞
0 (Rn), there exists C > 0 such that

∥∥ϕ(Ra − z)−jϕ
∥∥
Hs

h→Hs+2
h

≤ C
eC| Im z|/h

hj
,

for z ∈ [E0, E1]− i[0,Mh| lnh|] and h small enough. Here,

Hs
h(Rn) =

{
u ∈ S ′(Rn); 〈hDx〉su ∈ L2(Rn)

}
,

is the semiclassical Sobolev space equipped with the norm ‖u‖Hs
h

= ‖〈hDx〉su‖L2 .

Proof. Since the operator Ra is non-trapping on the energies in [E0/2, 2E1], we have∥∥ϕ(Ra − z)−1ϕ
∥∥
L2→L2 ≤ C

eC| Im z|/h

h
,

for z ∈ [E0, E1]− i[0,Mh| lnh|] +B(h). This estimate follows from Proposition 3.1 of Naka-
mura, Stefanov and Zworski [17] and (1.9) for Im z ≤ 0 and from the usual Mourre theory
(see e.g. Vasy and Zworski [28]) for Im z > 0. In particular, for z ∈ [E0, E1]− i[0,Mh| lnh|],
it yields ∥∥ϕ(Ra − λ)−1ϕ

∥∥
L2→L2 ≤ C

eC| Im z|/h

h
,

for all λ ∈ z +B(h). Then, the Cauchy formula implies

ϕ(Ra − z)−jϕ =
1

(j − 1)!
∂j−1
z ϕ(Ra − z)−1ϕ =

1
2iπ

∮
z+∂B(h)

ϕ(Ra − λ)−1ϕ
dλ

(λ− z)j
,

and then

(2.2)
∥∥ϕ(Ra − z)−jϕ

∥∥
L2→L2 ≤ C

eC| Im z|/h

hj
.

It remains to bound this operator fromHs
h toHs+2

h . Since Ra is an elliptic differential operator
of order 2, we have

‖u‖H2k
h
'

∥∥(Ra + i)ku
∥∥
L2 ,

for all k ∈ Z. Thus, performing multiple commutations between Ra + i and ϕ(Ra − λ)−jϕ
and using (2.2), a standard argument gives∥∥ϕ(Ra − z)−jϕ

∥∥
H2k

h →H2k+2
h

≤ Ck
eC| Im z|/h

hj
,

for all k ∈ Z. And the lemma follows from an interpolation argument. �

We now prove Theorem 1.1. Assume that 1B(a) ≺ χ with a > a0 where a0 > R0 is given
by Proposition 1.5 and Lemma 2.1. Let χ1, χ2 ∈ C∞

0 (Rn) be such that

(2.3) 1B(a) ≺ χ1 ≺ χ2 ≺ χ.
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In particular, P (1 − χ•) = Ra(1 − χ•). For Im z > 0 and then for z ∈ Λθ0 by meromorphic
extension, we can write

ϕ(P − z)−1ϕ = ϕ1Rn\B(R0)(Ra − z)−1(1− χ1)ϕ+ ϕχ1(P − z)−1χ2ϕ

+ ϕχ1(P − z)−1[P, χ2](Ra − z)−11Rn\B(R0)ϕ

− ϕ1Rn\B(R0)(Ra − z)−1[P, χ1](P − z)−1χ2ϕ

− ϕ1Rn\B(R0)(Ra − z)−1[P, χ1](P − z)−1[P, χ2](Ra − z)−11Rn\B(R0)ϕ.(2.4)

To prove this identity for Im z > 0, the cut-off function ϕ can be omitted and it is enough
to expand the commutator [P, χ2] and then the commutator [P, χ1], and to use the formula
[P, χ•] = (P − z)(χ• − 1) − (χ• − 1)(P − z). The properties of the χ•’s given in (2.3) imply
that

(2.5) [P, χ•] = χ(x)〈h∇〉hO(1)χ(x),

where the O(1) denotes an operator bounded uniformly in h on L2(Rn). Combining Lemma
2.1, (2.4) and (2.5) (with its adjoint), we finally obtain∥∥ϕ(P − z)−1ϕ

∥∥ .
∥∥ϕ(Ra − z)−1ϕ

∥∥ +
∥∥χ(P − z)−1χ

∥∥
+ h

∥∥χ(P − z)−1χ
∥∥∥∥χ(Ra − z)−1ϕ

∥∥
L2→H1

h

+ h
∥∥χ(P − z)−1χ

∥∥∥∥ϕ(Ra − z)−1χ
∥∥
H−1

h →L2

+ h2
∥∥χ(P − z)−1χ

∥∥∥∥ϕ(Ra − z)−1χ
∥∥
H−1

h →L2

∥∥χ(Ra − z)−1ϕ
∥∥
L2→H1

h

.
eC| Im z|/h

h
+

∥∥χ(P − z)−1χ
∥∥(

1 + e2C| Im z|/h
)
.(2.6)

To complete the proof of Theorem 1.1, it is enough to use Proposition 1.5.

3. Proof of Theorem 1.2

We will first estimate χ1(P − z)−1χ1 for a particular cut-off function χ1 adapted to the
ring Ca,b and then apply Theorem 1.1 to estimate ϕ(P − z)−1ϕ for all ϕ ∈ C∞

0 (Rn). Let
χ1, χ2, χ3, χ4 ∈ C∞

0 (Rn) be such that 1B(a) ≺ χ1 ≺ χ2 ≺ χ3 ≺ χ4 ≺ 1B(b). We also consider
ψ1, ψ2, ψ3, ψ4 ∈ C∞

0 (Rn) such that ∇χ1 ≺ ψ1 ≺ ψ2 ≺ χ21Ca,b
, ∇χ3 ≺ ψ3 ≺ ψ4 ≺ χ41Ca,b

and
χ2ψ4 = 0. We begin with the following estimates.

Lemma 3.1. For f ∈ Hcomp and z ∈ Λθ0 with | Im z| ≤ 1, we have∥∥χ3(P − z)−1f
∥∥2

.
1

| Im z|2
‖χ4f‖2 +

h

| Im z|
∥∥ψ4(P − z)−1f

∥∥2
,(3.1) ∥∥χ1(P − z)−1∗f

∥∥2
.

1
| Im z|2

‖χ2f‖2 +
h

| Im z|
∥∥ψ2(P − z)−1∗f

∥∥2
.(3.2)

Proof. For u ∈ Dloc, we have

〈χ3(P − z)u, χ3u〉 − 〈χ3u, χ3(P − z)u〉 = 〈[χ2
3, P ]u, u〉 − 2i Im z‖χ3u‖2.

Taking u = (P − z)−1f yields

| Im z|
∥∥χ3(P − z)−1f

∥∥2
.

∥∥χ3(P − z)−1f
∥∥‖χ3f‖

+
∥∥[χ2

3, P ](P − z)−1f
∥∥∥∥ψ4(P − z)−1f

∥∥.(3.3)
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Moreover, combining (2.5), the ellipticity of P and the properties of the support of the cut-off
functions, we obtain

[χ2
3, P ](P − z)−1f = [χ2

3, P ](P + i)−1(P + i)ψ3(P − z)−1f

= [χ2
3, P ](P + i)−1

(
ψ3(P + i) + [P,ψ3]

)
(P − z)−1f

= [χ2
3, P ](P + i)−1ψ3f

+ [χ2
3, P ](P + i)−1

(
(i+ z)ψ3 + [P,ψ3]

)
(P − z)−1f

= O(h)‖χ4f‖+O(h)
∥∥ψ4(P − z)−1f

∥∥.(3.4)

Combining (3.3) and (3.4), we obtain

| Im z|
∥∥χ3(P − z)−1f

∥∥2 ≤ | Im z|
2

∥∥χ3(P − z)−1f
∥∥2 +

C

| Im z|
‖χ3f‖2

+ Ch‖χ4f‖2 + Ch
∥∥ψ4(P − z)−1f

∥∥2

.
1

| Im z|
‖χ4f‖2 + h

∥∥ψ4(P − z)−1f
∥∥2
.

This implies (3.1). The estimate for the adjoint operator (3.2) can be proved by the same
argument using (P − z)−1∗ = (P − z̄)−1. �

We can now prove Theorem 1.2. Recall that, for simplicity, we use the notation ‖ · ‖ for
the norm of the space H and the operator norm on H. To be more precise, in the rest of this
section ‖ · ‖ denotes the norm of H only when f or u appears in the expression. From (3.1),
we can write∥∥χ1(P − z)−1χ1f

∥∥2 ≤
∥∥χ3(P − z)−1χ1f

∥∥2

.
1

| Im z|2
‖χ4χ1f‖2 +

h

| Im z|
∥∥ψ4(P − z)−1χ1f

∥∥2

≤ 1
| Im z|2

‖f‖2 +
h

| Im z|
∥∥χ1(P − z)−1∗ψ4

∥∥2‖f‖2.

Using now (3.2) and χ2ψ4 = 0, we get∥∥χ1(P − z)−1χ1f
∥∥2

.
1

| Im z|2
‖f‖2 +

h

| Im z|
‖f‖2 sup

‖u‖=1

∥∥χ1(P − z)−1∗ψ4u
∥∥2

.
1

| Im z|2
‖f‖2 +

h

| Im z|
‖f‖2 sup

‖u‖=1

( 1
| Im z|2

‖χ2ψ4u‖2

+
h

| Im z|
∥∥ψ2(P − z)−1∗ψ4u

∥∥2
)

=
1

| Im z|2
‖f‖2 +

h2

| Im z|2
∥∥ψ4(P − z)−1ψ2

∥∥2‖f‖2.

Combining with ψ• ≺ 1Ca,b
yields∥∥χ1(P − z)−1χ1

∥∥ .
1

| Im z|
+

h

| Im z|
∥∥1Ca,b

(P − z)−11Ca,b

∥∥.
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We now apply Theorem 1.1 and assume that a ≥ a0. Since 1B(a0) ≺ χ1, Theorem 1.1 together
with the previous estimate gives

(3.5)
∥∥ϕ(P − z)−1ϕ

∥∥ .
h

| Im z|
eC| Im z|/h(∥∥1Ca,b

(P − z)−11Ca,b

∥∥ + h−1
)
.

To conclude the proof of Theorem 1.2, it is enough to apply Proposition 1.5.

4. Proof of Proposition 1.5

To prove this result, we construct a quasimode of order h. Since the semiclassical principal
symbol q(x, ξ) of Q converges to ξ2 at infinity, there exists a0 > R0 such that, for all |x| ≥ a0,
we have q(x, 0) ≤ E0/2. Let now ϕ ∈ C∞

0 (Rn) and |x0| ≥ a0 be such that ϕ(x0) 6= 0.
Using q(x0, 0) < E0 and the form of q(x0, ·) given in (1.6), one can construct ξ0(λ) ∈ C∞

such that q(x0, ξ0(λ)) = λ and ∂ξ1q(x0, ξ0(λ)) 6= 0 for all λ ∈ [E0, E1]. Solving the Hamilton–
Jacobi equation by the usual method (see e.g. Dimassi and Sjöstrand [9, Theorem 1.5]),
there exists a phase function ψ(x, λ) ∈ C∞ defined for x in a neighborhood of x0 and for
λ ∈ [E0, E1], and such that

q(x,∇xψ(x, λ)) = λ,

for all λ ∈ [E0, E1]. Let now
u(x, z) = χ(x)eiψ(x,Re z)/h,

where 0 6= χ ∈ C∞
0 (Rn) is supported in the intersection of W = {x; |ϕ(x)| ≥ |ϕ(x0)|/2} and

the set where ψ is defined.
Let Pθ be the operator P distorted outside the support of ϕ by a fixed angle 0 < θ ≤ θ0

large enough. A standard computation by the method of stationary phase gives

(Pθ − z)u = (P − z)u = (Q− z)u

= (Op(q)− Re z)u+ hQ1u− i Im z u

=
(
q(x,∇xψ(x,Re z))− Re z

)
u+O(h+ | Im z|)

= O(h+ | Im z|).(4.1)

where Op(q) is any semiclassical quantization of q and Q1 is a h-differential operator of order
two with coefficients uniformly bounded with respect to h. Using that (Pθ − z)u = (Q− z)u
is supported in W , we so can write

(Pθ − z)u = ϕv,

where

(4.2) ‖v(x, z)‖ . h+ | Im z|.

Then, using that (Pθ − z)−1 is invertible and the equality (1.9), we get

ϕu = ϕ(Pθ − z)−1ϕv = ϕ(P − z)−1ϕv.

Finally, combining the previous equation with (4.2) and ‖ϕu‖ & 1, we obtain∥∥ϕ(P − z)−1ϕ
∥∥ &

1
h+ | Im z|

≥ h−1e−| Im z|/h,

and the proposition follows.
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5. Estimates for the resonant states

In this part, we prove the estimates for the (generalized) resonant states given is Section 1.

Proof of Theorem 1.7. Choose cut-off functions χ, χ̃ ∈ C∞
0 (Rn) so that

(5.1) 1B(a) ≺ χ ≺ 1B(b) and ∇χ ≺ χ̃ ≺ 1Ca,b
.

Let u be a resonant state associated to a resonance z ∈ [E0, E1] − i[0,Mh| lnh|]. We first
estimate χu. Since u ∈ Dloc and (P − z)u = 0, we have

0 = 〈χ(P − z)u, χu〉 − 〈χu, χ(P − z)u〉
=

〈
[χ2, P ]u, u

〉
− 2i Im z‖χu‖2.(5.2)

Thus we obtain

(5.3) ‖χu‖2 ≤ 1
2| Im z|

∣∣〈[χ2, P ]χ̃u, χ̃u
〉∣∣.

To estimate the action of [χ2, P ] on χ̃u, we write

[χ2, P ]χ̃u = [χ2, P ](P + i)−1(P + i)χ̃u

= [χ2, P ](P + i)−1
(
χ̃(P + i)u+ [P, χ̃]u

)
= [χ2, P ](P + i)−1

(
χ̃(z + i)1Ca,b

u+ [P, χ̃]1Ca,b
u
)
.(5.4)

The operator [χ2, P ](P + i)−1χ̃ : L2 → L2 is bounded by O(h), while the operator

[χ2, P ](P + i)−1[P, χ̃] : L2 → L2,

is bounded by O(h2). Thus, combining (5.3) and (5.4), we deduce

(5.5) ‖χu‖ ≤ C

√
h

| Im z|
∥∥1Ca,b

u
∥∥.

We now estimate ϕu for all ϕ ∈ C∞
0 (Rn). Let Pθ (resp. Ra,θ) be a complex distortion of

P (resp. of Ra which is defined in Section 2) by a fixed angle 0 < θ ≤ θ0. We also assume
that the scaling occurs only outside of suppϕ ∪ B(b). Then, from Lemma A.5, there exists
uθ ∈ D such that (Pθ − z)uθ = 0,

(5.6) 1B(b)uθ = 1B(b)u and ϕuθ = ϕu.

On the other hand, the definition of Ra and 1B(a) ≺ χ imply Ra,θ(1− χ) = Pθ(1− χ). Thus,
we can write

(Ra,θ − z)(1− χ)uθ = (Pθ − z)(1− χ)uθ = −[P, χ]uθ.

This yields
(1− χ)uθ = −(1− χ̂)(Ra,θ − z)−1[P, χ]uθ,

where χ̂ ∈ C∞
0 (Rn), with 1B(R0) ≺ χ̂ ≺ χ, is an artificial cut-off function used to identify

(1− χ̂)H and (1− χ̂)L2. Finally, we get

ϕu = ϕuθ = ϕχuθ − ϕ(1− χ̂)(Ra,θ − z)−1[P, χ]uθ
= ϕχu− (1− χ̂)ϕ(Ra − z)−1χ̃[P, χ]1Ca,b

u.(5.7)
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To complete the proof of Theorem 1.7, it is enough to use (5.5) and∥∥(1− χ̂)ϕ(Ra − z)−1χ̃[P, χ]
∥∥
H→H .

∥∥ϕ(Ra − z)−1χ̃
∥∥
H−1

h →L2

∥∥[P, χ]
∥∥
L2→H−1

h

.
eC| Im z|/h

h
× h ≤ C

√
h

| Im z|
eC| Im z|/h,

which follows from Lemma 2.1. �

Proof of Proposition 1.12. We will prove this result by induction over the order J of the
generalized resonant state u. For J = 1, Proposition 1.12 is a direct consequence of Theorem
1.7. Now assume that Proposition 1.12 holds true for generalized resonant states of order less
than J − 1 for some J ≥ 2. Let u be a generalized resonant state of order J . Following the
analysis of (5.2), we have

〈χ(P − z)u, χu〉 − 〈χu, χ(P − z)u〉 =
〈
[χ2, P ]u, u

〉
− 2i Im z‖χu‖2,

which implies

‖χu‖2 ≤ 1
2| Im z|

∣∣〈[χ2, P ]u, u
〉∣∣ +

1
| Im z|

‖χu‖
∥∥χ(P − z)u

∥∥
≤ 1

2| Im z|
∣∣〈[χ2, P ]u, u

〉∣∣ +
1
2
‖χu‖2 +

1
2| Im z|2

∥∥χ(P − z)u
∥∥2

≤ 1
| Im z|

∣∣〈[χ2, P ]χ̃u, χ̃u
〉∣∣ +

1
| Im z|2

∥∥χ(P − z)u
∥∥2
.(5.8)

As in (5.4), we can write

[χ2, P ]χ̃u = [χ2, P ](P + i)−1(P + i)χ̃u

= [χ2, P ](P + i)−1χ̃(P − z)u

+ [χ2, P ](P + i)−1
(
χ̃(z + i)1Ca,b

u+ [P, χ̃]1Ca,b
u
)
,

which yields ∥∥[χ2, P ]χ̃u
∥∥ . h

∥∥1Ca,b
(P − z)u

∥∥ + h
∥∥1Ca,b

u
∥∥.

Then, (5.8) becomes

‖χu‖ .

√
h

| Im z|
∥∥1Ca,b

u
∥∥ +

√
h

| Im z|
∥∥1Ca,b

(P − z)u
∥∥ +

1
| Im z|

∥∥χ(P − z)u
∥∥.

Now we remark that (P −z)u ∈ Π1 is a generalized resonant state whose order is J−1. Then,
applying the recurrence assumption, the previous equation gives

(5.9) ‖χu‖ .

√
h

| Im z|
eC| Im z|/h

J−1∑
j=0

1
| Im z|j

∥∥1Ca,b
(P − z)ju

∥∥.
Next will now obtain a formula similar to (5.7) to control ϕu for ϕ ∈ C∞

0 (Rn). As in (5.6),
let Pθ (resp. Ra,θ) be a complex distortion of P (resp. Ra) by a fixed angle 0 < θ ≤ θ0.
Assume also that the scaling occurs only outside of suppϕ ∪ B(b). Then, from Lemma A.5,
there exists uθ ∈ DJ such that (Pθ − z)Juθ = 0,

1B(b)uθ = 1B(b)u and ϕuθ = ϕu.
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We also have Ra,θ(1− χ) = Pθ(1− χ). A direct computation gives

(Ra,θ − z)J(1− χ)uθ = (Pθ − z)J(1− χ)uθ = −
J−1∑
j=0

(
adJ−jP χ

)
(P − z)ju,

where ad0
P χ = χ and adj+1

P χ = [P, adjP χ]. Thus, mimicking the proof of (5.7), we get

ϕu = ϕχu− (1− χ̂)ϕ(Ra − z)−J χ̃
J−1∑
j=0

(
adJ−jP χ

)
1Ca,b

(P − z)ju.

Using (5.9), Lemma 2.1 and ‖ adjP χ‖Hs
h→Hs−j

h
= O(hj), the previous equation gives

‖ϕu‖ .

√
h

| Im z|
eC| Im z|/h

J−1∑
j=0

1
| Im z|j

∥∥1Ca,b
(P − z)ju

∥∥ + eC| Im z|/h
J−1∑
j=0

1
hj

∥∥1Ca,b
(P − z)ju

∥∥
.

√
h

| Im z|
eC| Im z|/h

J−1∑
j=0

1
| Im z|j

∥∥1Ca,b
(P − z)ju

∥∥,
since h−1 . | Im z|−1e| Im z|/h. Thus Proposition 1.12 holds for generalized resonant states of
order J and the proof is complete. �

6. Scattering by obstacles

Let K ⊂ {x ∈ Rn; |x| ≤ R0}, n ≥ 2, be a bounded domain with smooth boundary
such that Ω = Rn \ K is connected. Let −∆D be the Dirichlet Laplacian in Ω which is a
self-adjoint operator on H = L2(Ω) with domain D = H1

0 (Ω) ∩ H2(Ω). For Imλ > 0 the
resolvent (−∆D − λ2)−1 is a bounded operator from H to D and, for all ϕ ∈ C∞

0 (Ω), the
cut-off resolvent ϕ(−∆D − λ2)−1ϕ admits a meromorphic continuation in C for n odd and in
C \ iR− for n even. For non-trapping perturbations, we have an estimate∥∥ϕ(−∆D − λ2)−1ϕ

∥∥ . 〈λ〉−1,

for λ ∈ R, |λ| ≥ 1, while for trapping perturbations and λ ∈ R, |λ| ≥ 1 this cut-off resolvent
is bounded by eC|λ| (see Burq [5]).

Since we will use the Lax–Phillips theory [15], we consider in Ω the wave equation

(6.1) ∂2
t u−∆Du = 0,

with Dirichlet boundary condition on ∂Ω. Let HD(Ω) be the closure of C∞
0 (Ω) for the norm

‖∇ · ‖L2(Ω). We introduce the energy space H = HD(Ω) ⊕ L2(Ω) and the unitary group
e−itG : H −→ H with generator −iG, where

G = i

(
0 I

∆D 0

)
,

is a self-adjoint operator on H (see Lax and Phillips [15]). As usual, the solutions of (6.1)
are given by

(6.2)
(
u(t)
∂tu(t)

)
= e−itG

(
u(0)
∂tu(0)

)
.
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To apply the results for semiclassical operators established in Section 1, we consider the
scaling λ =

√
z
h and write

(6.3) (−∆D − λ2)−1 = h2(P − z)−1,

where P = −h2∆D satisfies the general assumptions of Section 1. We want to estimate the
cut-off resolvent of −∆D in the region

S =
{
λ ∈ C; Reλ ≥ 1 and 0 ≥ Imλ ≥ −M ln(Reλ)

}
.

It is then enough to consider the situation

λ ∈ Sh =
[
h−1, 2h−1

]
− i

[
0,M(| lnh|+ ln 2)

]
,

since the union of Sh over 0 < h ≤ 1 covers S. For λ ∈ Sh, we have
√
z ∈ [1, 2]− i

[
0, hM(| lnh|+ ln 2)

]
,

and finally
z ∈ [1/2, 4]− i[0, 5Mh| lnh|],

for h small enough. Applying Theorem 1.2 in this region to the operator P and using the
relation (6.3), we obtain, for λ ∈ Sh with h small enough,∥∥ϕ(−∆D − λ2)−1ϕ

∥∥ =
∥∥h2ϕ(P − z)−1ϕ

∥∥
≤ C

h

| Im z|
eC| Im z|/h∥∥h21Ca,b

(P − z)−11Ca,b

∥∥
≤ C

eC| Imλ|

| Imλ|
∥∥1Ca,b

(−∆D − λ2)−11Ca,b

∥∥,
since | Im z|/h behaves like | Imλ| in Sh. Note also that such relation holds true in any
compact set (with a constant C depending on the compact set). This follows from Corollary
A.3 near the resonances and from the fact that 1Ca,b

(−∆D − λ2)−11Ca,b
does not vanish

(because χ = (−∆D − λ2)−1(−∆D − λ2)χ) away from the resonances. Summing up, we have
proved the following

Theorem 6.1. There exists a0 > R0 such that, for all a0 < a < b, M > 0 and ϕ ∈ C∞
0 (Rn),

there exists C > 0 such that

(6.4)
∥∥ϕ(−∆D − λ2)−1ϕ

∥∥ ≤ C
eC| Imλ|

| Imλ|
∥∥1Ca,b

(−∆D − λ2)−11Ca,b

∥∥,
for λ not resonance with Reλ ≥ 1 and 0 ≥ Imλ ≥ −M ln(Reλ).

For n ≥ 3, n odd, there is a link between the cut-off resolvent ϕ(−∆D − λ2)−1ϕ and
the contraction semigroup Zρ(t) = P ρ+e

−itGP ρ− = etB
ρ

: H −→ H, t ≥ 0, with generator Bρ,
introduced by Lax and Phillips [15]. Here, P ρ± are the orthogonal projections on the orthogonal
complements of the Lax–Phillips spaces Dρ

±, ρ > R0. The spectrum of iBρ coincides with the
resonances and is then independent on the choice of ρ > R0. Given ϕ ∈ C∞

0 (Ω), we may fix
ρ > R0 so that ϕP ρ± = ϕ = P ρ±ϕ. In the sequel, we drop the indexes ρ in the notations and
write B,P± instead of Bρ, P ρ±. For Imλ > 0, we have

−ϕ(B + iλ)−1ϕ =
∫ ∞

0
eiλtϕP+e

−itGP−ϕdt = −iϕ(G− λ)−1ϕ,
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and, by analytic continuation, this equality holds true for λ not resonance with Imλ ≤ 0.
Moreover, one can see that∥∥ϕ(G− λ)−1ϕ

∥∥
H→H

≤ C
∥∥ϕλ(−∆D − λ2)−1ϕ

∥∥
L2(Ω)→L2(Ω)

,

for λ not resonance with |λ| ≥ 1. Thus (6.4) implies

(6.5)
∥∥ϕ(B + iλ)−1ϕ

∥∥
H→H

≤ C
|λ|

| Imλ|
eC| Imλ|∥∥1Ca,b

(−∆D − λ2)−11Ca,b

∥∥
L2(Ω)→L2(Ω)

.

Note that, in odd dimension n ≥ 3, it is possible to estimate the cut-off resolvent in term of
scattering quantities. This was done by Stoyanov and the second author in [19] using the Lax–
Phillips theory. More precisely, consider the scattering matrix S(λ) = I+K(λ) : L2(Sn−1) −→
L2(Sn−1), associated to the Dirichlet problem for the wave equation in Ω given in (6.1). This
operator is defined for Imλ ≥ 0 and it is unitary for λ ∈ R. The operator K(λ) is a Hilbert–
Schmidt operator with kernel a(λ, ω, ω′), called scattering amplitude. The scattering matrix
S(λ) (as the scattering amplitude a(λ, ω, ω′)) has a meromorphic continuation from Imλ ≥ 0
to the half plane Imλ < 0 and the poles coincide with the resonances. Of course, the form
of the scattering operator S(λ) depends on the outgoing and incoming representations of the
energy space H (see [15]) and to have the formula (1.1) for the scattering amplitude we must
have an appropriate outgoing/incoming representation.

By using the link between ‖(B+ iλ)−1‖H→H and the inner representation of the scattering
operator S1(λ) established in [15, Chapter IV], it is proved in [19, Section 4] that

(6.6) ‖(B + iλ)−1‖H→H ≤ 3
2
eβ| Imλ|

| Imλ|
‖S(λ)‖L2(Sn−1)→L2(Sn−1),

for some β ≥ 0 given by the inner representation of the scattering operator. Using that the
Hilbert–Schmidt norm of an operator is the L2 norm of its kernel, the last estimate yields

(6.7) ‖(B + iλ)−1‖H→H ≤ 3
2
eβ| Imλ|

| Imλ|

(( ∫
Sn−1×Sn−1

∣∣a(λ, ω′, ω)
∣∣2dω dω′)1/2

+ 1
)
.

Now, we can handle the integral over Sn−1 × Sn−1 using the representation (1.1) with h = 1,
z = λ2 and P = −∆D. Choosing the functions χj ∈ C∞

0 (Ω), j = 1, 2 so that ∇χj ≺ 1Ca,b
,

the formula (1.1) and the estimate (6.7) give an analog of (6.5) with a possible polynomial
loss in 〈λ〉.

Appendix A. Properties of the generalized resonant states

In this part, we collect some basic properties of the generalized resonant states. Being for
the most part in the folklore of the theory of resonances, we only give them for a reason of
completeness.

Let z ∈ Λθ0 be a resonance of P . Since (P − λ)−1 : Hcomp −→ Dloc is an operator-valued
meromorphic function, we can write, for λ in a neighborhood of z,

(P − λ)−1 =
ΠN

(z − λ)N
+ · · ·+ Π1

z − λ
+A(λ),

as operators from Hcomp to Dloc, where A(λ) is holomorphic near z and the Πj ’s are finite
rank operators. Let Pθ be a complex distortion by an angle arctan

( | Im z|
|Re z|

)
< θ ≤ θ0. Then,



SEMICLASSICAL ESTIMATES OF THE CUT-OFF RESOLVENT 17

for λ in a neighborhood of z, we have

(Pθ − λ)−1 =
Πθ
Nθ

(z − λ)Nθ
+ · · ·+ Πθ

1

z − λ
+A(λ),

as operators from H to D, where A(λ) is holomorphic near z and the Πθ
j ’s are finite rank

operators. Moreover, if the distortion occurs outside of the support of ϕ ∈ C∞
0 (Rn), it follows

from (1.9) that

(A.1) ϕΠjϕ = ϕΠθ
jϕ,

for all j ≥ 1.

Lemma A.1. Let ϕ ∈ C∞
0 (Rn) be such that 1B(R1) ≺ ϕ. Then, the multiplication by ϕ is

injective on Im Πj (resp. Im Πθ
j) for all 1 ≤ j ≤ N (resp. 1 ≤ j ≤ Nθ).

Proof. Let uθ ∈ Im Πθ
j be such that ϕuθ = 0. Using (Pθ− z)Πθ

Nθ
= 0 and (Pθ− z)Πθ

k = Πθ
k+1,

we get
(Pθ − z)(Pθ − z)Nθ−1uθ = (Pθ − z)Nθuθ = 0.

From Lemma 3.1 of Sjöstrand and Zworski [25], we deduce that (Pθ − z)Nθ−1uθ is (outside
of B(R1)) the restriction to Γθ of a holomorphic function in Υ. On the other hand, (Pθ −
z)Nθ−1uθ = 0 on the support of ϕ since ϕuθ = 0. Therefore,

(Pθ − z)(Pθ − z)Nθ−2uθ = (Pθ − z)Nθ−1uθ = 0.

Then, performing an induction argument, we get uθ = 0. The fact that the multiplication by
ϕ is injective on Im Πj is similar. �

Remark A.2. Using (P − λ)−1∗ = (P − λ̄)−1 (resp. (Pθ − λ)−1∗ = (P−θ − λ̄)−1), we can
prove the same way that Im Πjϕ = Im Πj (resp. Im Πθ

jϕ = Im Πθ
j).

Combining (A.1), Lemma A.1 and Remark A.2, we get

Corollary A.3. Let ϕ ∈ C∞
0 (Rn) be such that 1B(R1) ≺ ϕ and such that the distortion

occurs outside of the support of ϕ. Then, we have N = Nθ and, for all 1 ≤ j ≤ N ,

RankΠj = RankϕΠjϕ = RankϕΠθ
jϕ = Rank Πθ

j .

In particular,

(A.2) ImϕΠj = ImϕΠjϕ = ImϕΠθ
jϕ = ImϕΠθ

j .

Lemma A.4. For all 1 ≤ j ≤ N , we have Im Πj ⊂ Im Π1 and Im Πθ
j ⊂ Im Πθ

1.

Proof. Since the resolvent of Pθ acts from L2(Rn) to itself, a standard argument gives Im Πθ
j ⊂

Im Πθ
1. Consider now u ∈ Im Πj . Let ϕ ∈ C∞

0 (Rn) be such that 1B(R1) ≺ ϕ and Pϑ be a
complex distortion outside the support of ϕ. Then, from (A.2), there exists uϑ ∈ Im Πϑ

j such
that ϕu = ϕuϑ. Therefore, using Im Πϑ

j ⊂ Im Πϑ
1 together with (A.2), there exists uϕ ∈ Im Π1

such that
ϕu = ϕuϕ.

Let now ψ ∈ C∞
0 (Rn) be such that ϕ ≺ ψ. From the previous construction, ϕuψ = ϕψuψ =

ϕψu = ϕu = ϕuϕ and uϕ − uψ ∈ Im Π1. Then, Lemma A.1 implies uϕ = uψ. In other words,
for all ψ ∈ C∞

0 (Rn), we have
ψu = ψuϕ.
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This implies u = uϕ ∈ Im Π1. �

Lemma A.5. Let ϕ ∈ C∞
0 (Rn) be such that 1B(R1) ≺ ϕ and such that the distortion occurs

outside of the support of ϕ. Then, for all u ∈ Im Π1, there exists a unique uθ ∈ Im Πθ
1 such

that ϕu = ϕuθ. Moreover, (P − z)Ju = 0 if and only if (Pθ − z)Juθ = 0.

Proof. Let u ∈ Im Π1. From (A.2), there exists uθ ∈ Im Πθ
j such that ϕu = ϕuθ. Thanks to

Lemma A.1, this uθ is unique. Lemma A.4, (P − z)Πj = Πj+1 and (Pθ − z)Πθ
j = Πθ

j+1 imply
(P − z)Ju ∈ Im Π1 and (Pθ − z)Juθ ∈ Im Πθ

1. Then, from Lemma A.1, (P − z)Ju = 0 iff
ϕ(P − z)Ju = ϕ(Pθ − z)Juθ = 0 iff (Pθ − z)Juθ = 0. �
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