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Abstract

This article is a companion paper of a previous work [6] where we have developed the numerical analysis
of a variational model first introduced by L. Rudin, S. Osher and E. Fatemi [22] and revisited by Y. Meyer
[18] for removing the noise and capturing textures in an image. The basic idea in this model is to decompose
an image f into two components (u+v) and then to search for (u,v) as a minimizer of an energy functional.
The first component u belongs to BV and contains geometrical informations while the second one v is sought
in a space G which contains signals with large oscillations, i.e. noise and textures. In [18] Y. Meyer carried
out his study in the whole R? and his approach is rather built on harmonic analysis tools. We place ourselves
in the case of a bounded set  of R? which is the proper setting for image processing and our approach is
based upon functional analysis arguments. We define in this context the space G, give some of its properties
and then study in this continuous setting the energy functional which allows us to recover the components u
and v. We present some numerical experiments to show the relevance of the model for image decomposition
and for image denoising.
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1. Introduction
1.1 Rudin-Osher-Fatemi model

Image restoration is an important and challenging inverse problem in image analysis. The problem consists in
reconstructing an image u from a degraded data f. The most common model linking u to f is the following
one: f = Ru+n , where R is a linear operator typically modeling blur and 7 is the noise. Energy minimization
has demonstrated to be a powerful approach to tackle this kind of problem (see [4] and references therein for
instance). Here we examine a pure denoising situation, i.e. R is the identity operator. The underlying energy is
generally composed of two terms: a fidelity term to the data and a regularizing-cost function. One of the most
effective method is the total variation minimization as proposed in [22]. This model relies on the assumption
that BV (), the space of functions with bounded variation, is a good space to study images (even if it is known
that such an assumption is too restrictive [2]). In [22], the authors decompose an image f into a component
u belonging to BV (2) and a component v in L?(Q2). In this model v is supposed to be the noise. In such an

approach, they minimize:
1
inf Du| + o+ lvll7 1.1
(w,0) EBV(Q) X L2(Q)/ f=utv (/ ul + 2)\”U|L2(Q)) (1.1)



where f |Dul| stands for the total variation of u. In practice, they compute a numerical solution of the Euler-
Lagrange equation associated to (1.1). The mathematical study of (1.1) has been done in [11].

In [18], Y. Meyer shows some limitations of the model proposed in [22]. In particular, if f is the characteristic
function of a bounded domain with a C*°-boundary, then f is not preserved by the Rudin-Osher-Fatemi model
(contrary to what should be expected).

1.2 Meyer model

In [18], Y. Meyer suggests a new decomposition. He proposes the following model:

inf D 2 1.2
(u,0)EBV (R X G(R2) / f=urtv (/' ul +alllew )) (1-2)

where the Banach space G(R?) contains signals with large oscillations, and thus in particular textures and noise.
We give here the definition of G(R?).

Definition 1.1. G(R?) is the Banach space composed of distributions f which can be written

f=0191 + Oago = div (g) (1.3)

with g1 and gy in L>°(R?). The space G(R?) is endowed with the following norm:

lvllems) = inf{gm<R2> = esssup lg(x)| /v=div(g), g = (91.92),

g1 € L(R?), g2 € L=(R?),|g(2)| = v/(lga > + |92|2)(w)} (1.4)

BV (R?) has no simple dual space (see [3]). However, as shown by Y. Meyer [18], G(R?) is the dual space
of the closure in BV (R?) of the Schwartz class. So it is very related to the dual space of BV (R?). This is a
motivation to decompose a function f on BV (R?) + G(R?). This is also why the divergence operator naturally
appears in the definition of G(R?), since the gradient and the divergence operators are dual operators.

A function belonging to G may have large oscillations and nevertheless have a small norm. Thus the norm
on G is well-adapted to capture the oscillations of a function in an energy minimization method.

In [18], the author works on the whole R?. This is not the proper setting for image processing (it skips
the problem of boundary conditions). We intend here to give a definition of G for a bounded domain Q C R2.
Moreover, [18] gives no way to compute numerically a solution of (1.2). To fill this gap, some numerical models
have been proposed in the literature [24, 21, 6]. We review below some of them.

1.3 Vese-Osher model

L. Vese and S. Osher were the first authors to numerically tackle Meyer program [24]. They actually solve the
problem:
inf Du| + A f —u—vl3 + plv 1.5
sl o ([P0 NS = 0= ol + bl ) (15)
where Q is a bounded open set. To compute their solution, they replace the term |[v|lcq) by ||V 9i + 95l»
(where v = div (g1,92)). Then they formally derive the Euler-Lagrange equations from (1.5). For numerical
reasons, the authors use the value p = 1 (they claim they made experiments for p = 1...10, and that they
did not see any visual difference). They report good numerical results. See also [21] for another related model
concerning the case A = +o00 and p = 2.

1.4 Aujol-Aubert-Blanc-Féraud-Chambolle model

Inspired from the work by A. Chambolle [10], the authors of [6, 5] propose a relevant approach to solve Meyer
problem. They consider the following functional defined on L2(2) x L%(Q):

JolDul + &1 —u =0l if (u,0) € BV(Q) x G,(2)

1.6
+o00 otherwise (1.6)

Fy ,(u,v) = {



where G,(Q) = {v € G() / vl < 1} And the problem to solve is:

inf F 1.
L2 @)X L) e (14,0) (L7)

The authors of [6] present their model in a discrete framework. They carry out a complete mathematical anal-
ysis of their discrete model, showing how it approximately solves Meyer problem.

The aim of this paper is to carry out the mathematical analysis of (1.2) and (1.7) in a continuous setting.
This will clarify a few facts about Meyer ideas developed in [18]. We first need to give the proper definition of
G(2) when  is a bounded domain of R?. This will be done in Section 2, where we fix notations, define G(2),
and then give some properties, explaining in particular why this space is so interesting to model signals with
strong oscillations. Thanks to these preliminaries, we solve Meyer problem in Section 3, showing the existence
of a solution for (1.2). In Section 4, we carry out the mathematical analysis of (1.7) in the continuous framework
we have introduced. This proves the relevance of the numerical algorithm developed in [6]. We end this paper
by showing some numerical results on images.

2. A space for modeling oscillating patterns in bounded domains
2.1 Preliminaries

Throughout our study, we will use the following classical distributional spaces. Q C R" will denote an open
bounded set of RN .

e D(Q) = C(Q) is the set of functions in C*°(Q) with compact support in Q. We denote by D'(Q2) the

dual space of D(2), i.e. the space of distributions on Q. D(€2) is the set of restriction to 2 of functions in
DRN) = C=(RV).

e W™P(Q)) denotes the space of functions in LP(Q) whose distributional derivatives D*u are in LP((Q),
p€[l,+00), m>1,meN, |a] <m. W) () denotes the space of functions in W™ ?(Q2) with compact
support in 2. For further details on these spaces, we refer the reader to [1, 14].

e BV(Q) is the subspace of functions u € L!(Q) such that the following quantity is finite:

J(u) = sup { | utaldiv (@))d/ € C22 (@ BN, €l < 1} (2.1)

BV () endowed with the norm ||u|| gy = ||u|| 1 +J(u) is a Banach space. If u € BV (Q), the distributional
derivative Du is a bounded Radon measure and (2.1) corresponds to the total variation |Dul|(€2).

For Q C R?, we have [3]: BV(Q) C L%*(Q). For further details on BV (), we refer the reader to [3].

2.2 Definition and properties of G(2)

In all the sequel, we denote by Q a bounded connected open set of R? with a Lipschitz boundary. We adapt
Definition 1.1 concerning the space G to the case of {2. We are going to consider a subspace of the Banach space

1,1 ! 1,1
W10 (Q) = (WO’ (Q)) (the dual space of W (Q)).
Definition 2.1. G(Q) is the subspace of W ~1:>°() defined by:
GQ) ={veL*Q) /v=divE, £ € L™(Q,R?), &N =0on 00} (2.2)
On G(9), the following norm is defined:

||UHG(Q) = inf {H{HL@O(QYR2) /U = lef 5 gN =0 on 89} (23)

Remark: In Definition 2.1, since divé € L2(Q) and € € L>°(2,R?), we can define £&.N on 99 (in this case,
E€.N € H-'/2(0Q), see [23, 17| for further details).



The next lemma was stated in [18]. Using approximations with C° () functions [3], the proof is straightfor-
ward:

Lemma 2.1. Let u € BV(Q) and v € G(Q). Then: [,uv < J(u)||v|c) (where J(u) is defined by (2.1)).
We have the following simple characterization of G(2):

Proposition 2.1.

GQ) = {v € 12(Q) / /Qv _ 0} (2.4)

Proof: Let us denote by H(Q) the right-hand side of (2.4). We split the proof into two steps.

Step 1: Let v be in G(2). Then from(2.2) it is immediate that [,v =0, i.e. v € H(Q).

Step 2: Let v be in H(Q). Then from [7] (Theorem 3’) (see also [8]), there exists £ € C°(Q,R?) N W12(Q, R?)
such that v = div¢ and € = 0 on 99Q. In particular, we have £ € L°°(Q2,R?) and £.N = 0 on 99). Thus v € G(Q).

]
Remark: Let us stress here how powerful the result in [8, 7] is. It deals with the limit case v in LI(Q2), ¢ = 2,
when the dimension of the space is N = 2. The classical method for tackling the equation divé = v with
&N =0 on 0N consists in solving the problem Au = v with % = 0 on 012, and in setting £ = Vu. If v isin
L4(Q2) with ¢ > 2 this problem admits a unique solution (up to a constant) in W?29(Q). Moreover, thanks to

standard Sobolev embeddings (see [14, 15]), £ = Vu belongs to L>°(2,R?). If ¢ = 2, the result is not true and
the classical approach does not work. So the result by Bourgain and Brezis is very sharp.

We next introduce a family of convex subsets of G(Q2). These convex sets will be useful for approximating
Meyer problem.

Definition 2.2. Let G,(Q2) the family of subsets defined by (u > 0):
Gu(Q) = {v e G(Q) / vllaw) < 1} (2.5)

Lemma 2.2. G, () is closed for the L*(Q)-strong topology.

Proof of Lemma 2.2 Let (v,) be a sequence in G,(f) such that there exists © € L*(Q) with v, —
0 in L?(Q)-strong. We have v, = div{,, with &, such that [|&,]|L=re) < p# and &,.N = 0 on 9. As

1€ )l oo (2,r2) < i, there exists £ € L>(Q,R?) such that, up to an extraction: &, — & in L=(Q,R?) weak *

and Hé”LOQ(Q,Rz) <pe
Moreover if ¢ € D(Q): [, vnpdr = [, divE,dde = — [, £, VP dr. Thus as n — +oo, we get:

/Qfxbdx:—/Q§V¢dx:/ﬂdiv§¢dx— aﬂg.Nqb (2.6)

By choosing first a test function in C2°(£2), we deduce from (2.6) that & = div£ in D’(€2), and since © € L2(Q),
the equality holds in L?(Q2). Then for a general ¢ € D(f), it comes {.N = 0 on 99 (in H~/2(09)).

The next result is a straightforward consequence of Lemma 2.2.

Corollary 2.1. The indicator function of G,() is Isc (lower-semicontinuous) for the L*(2)-strong topology
(and for the L*(Q)-weak topology since G, is convez).



Remarks:
1. Let us denote by K (1) the closure in L?(Q) of the set:

{div¢, €€ CP(QR?), [|¢]lp~@re) < 1} (2.7)
Using Lemma 2.2 and some results in [23], one can prove that K(Q) = G1(Q).
Moreover, one can also show in the same way that G(Q) is the closure in L?(Q) of the set:

{dive, €€ C2(Q,R?) } (2.8)

2. From the proof of Lemma 2.2, one easily deduces that ||.|¢ is lower semi continuous (lsc).

We also have the following result:

Lemma 2.3. Ifv € G(Q), then there exists ¢ € L>=(Q,R?) with v = div& and £&.N = 0 on 99, and such that
[vlle = €]l (or2)-

Proof: Let v € G(Q2). Let us consider a sequence &, € L°°(Q2,R?) with v = div§, and &,.N = 0 on
99, and such that [|&,| L) — ||v|la. There exists £ € L>(Q,R?) such that, up to an extraction, &, —
¢in L>=°(Q,R?) weak *. Then, as in the proof of Lemma 2.2, we can show that £&.N = 0 on 0 and that
v=div&.

Main property: The following lemma is due to Y. Meyer [18]. But it was stated in the case of Q = R?, and
the proof relied upon harmonic analysis tools. Thanks to our definition of G(2), we formulate it in the case
when (Q is bounded. Our proof relies upon functional analysis arguments.

Lemma 2.4. Let Q2 be a Lipschitz bounded open set, and let f, , n > 1 be a sequence of functions in
L1(Q) N G(Q) with the following two properties:

1. There exists ¢ > 2 and C > 0 such that || f,| o) < C.

2. The sequence f, converges to 0 in the distributional sense (i.e. in D'(f2)).

Then || fn|lc converges to 0 when n goes to infinity.

This result explains why the norm in G(f2) is a good norm to tackle signals with strong oscillations. It will
be easier with this norm to capture such signals in a minimization process than with a classical L?-norm.

Remark: Hypotheses 1. and 2. are equivalent to the simpler one: there exists ¢ > 2 such that f, — 0 in
L(Q)-weak.

Proof of Lemma 2.4: Let us consider a sequence f, € L1(Q) [ G(R) satisfying assumption 1. and let us
define the Neumann problem:

Auy = frn in Q

{ 2uy () on 00 (2.9)

We recall that as f, € G(Q), we also have [, fndx = 0. We know (see [16, 20, 12]) that problem (2.9)

admits a solution u,, € W24(2). From [20, 19], we also know that there exists a constant B > 0 such that:

|unllw2a) < Bl fallLa)- And as we assume that || f||Leq) < C, we get:
|tn llw2.aq) < BC (2.10)

Since ¢ > 2 and 2 bounded, we know (see [1]) that there exists § € (0,1) such that W?24(f2) is compactly
embedded in C1?(Q). We denote by g, = Vu,. We have ||g,|w1ra) < |[unllwza@) < BC. And it is also
standard that W17(Q)? is compactly embedded in C%(Q2)2.

Hence, up to an extraction, we get that there exists v and g € C%% such that u, — u and g, — g (for
the C%Y topology). It is then standard to pass to the limit in (2.9) to deduce that g, — 0 uniformly (we
recall that g, = Vu,,). The previous reasonning being true for any subsequence extracted from w,,, we conclude
that the whole sequence Vu,, is such that Vu, — 0 as n — +oo in L*(Q, R?)-strong, i.e. g, = Vu, — 0 in
L (2, R?)-strong. Since f,, = div g,,, we easily deduce that | f.||q — 0.



3. Study of Meyer problem

Thanks to Section 2, we are now in position to carry out the mathematical study of Meyer problem [18].
Let f € L1(Q) (with g > 2). We recall that the considered problem is:

J(u) + 3.1
(u,v)GBV(Q;QG(Q)/f:u+U( () +allvllow) (3.1)

where J(u) is the total variation |Du| defined by (2.1).

Remark: Since f is an image, we know that f € L>°(Q). Thus it is not restrictive to suppose g > 2.
Before considering problem (3.1), we first need to show that we can always decompose a function f € L7(Q)
into two components (u,v) € BV (Q2) x G(£2).

Lemma 3.1. Let f € LY(Q) (with ¢ > 2). Then there exists u € BV (Q) and v € G(Q) such that f = u + v.

Proof: Let us choose u = ﬁ Jofandv=f—u=f— |—§12‘ Jo, f- We therefore have v € BV (Q) (since () is
bounded), and v € L*(€2). Moreover, since [, v = 0 we deduce from Proposition 2.4 that v € G(Q).

We now show that problem (3.1) admits at least one solution.

Proposition 8.1. Let f € L4(Q) (with g > 2). Then there exists t € BV (Q) and © € G(Q) such that f = 4+,
and:

J(@) + ofjtlle = (J(u) + allv]le) (3-2)

inf
(u,)EBV(Q)XG(Q)/f=ut+v

Proof: Let us first remark that the functional to minimize in (3.1) is convex with respect to its two variables.
Moreover, the infimum in (3.1) is finite (thanks to Lemma 3.1).
Now, let (uy,v,) be a minimizing sequence for (3.1) We thus have for some constant C

J(up) < C and |Jvn|c < C (3.3)

From Poincaré inequality (see [3]), there exists a constant B > 0 such that: [lu, — [, unllz2(0) < BJ(uy).
Thus from (3.3), we get [lu, — [, unl|L2(0) < BC. But as u, + v, = f, we have:

/Q i + ~/E,UZ — /Q ! (3.4)
)

=0 since v, € G(§2

Hence u,, is bounded in L?(2). From (3.3), we deduce that u, is bounded in BV(Q). Thus there exists
4 € BV (Q) such that u, — 4 in BV () weak *. And as u, + v, = f, we deduce that v, is also bounded in
L?(2). Therefore, there exists © € L?(2) such that, up to an extraction, v,, — 9 in L?()) weak.

To conclude, there remains to prove that (i, ) is a minimizer of .J(u) + a|v||g(q)- And this last point comes
from the fact that J is lower semi-continuous (Isc) with respect to the BV weak * topology [3], and from the
fact that ||.||¢ is lsc with respect to the L?-weak topology.

Remark: The uniqueness of a solution for Meyer problem is an open question.

4. An algorithm to solve Meyer problem

In Section 3, we proved the existence of a solution to Meyer problem. We now want to give an algorithm to
compute a solution.



4.1 Total variation minimization as a projection

Recently, a projection algorithm to solve Rudin-Osher-Fatemi model [22] has been proposed in [10]. Precisely,
the problem studied in [10] is:

. 1 2
TN ORIV A (1)

In [10], the following result is shown (in fact, the author in [10] considers the discrete case, but as he mentions,
the continuous case is similar). It relies on standard convex analysis arguments [13].

Proposition 4.1. The solution of (4.1) is given by: u = f — Pg,(o)(f) , where Pg, ) is the orthogonal
projector on G ().

Remark: Pg, (o) is well defined since G (1) is a closed convex set of L*(£2).

4.2 Solving Meyer problem as a projection

We now study the algorithm presented in [6] in the continuous setting (whereas in [6], the authors carried out
their analysis in a discrete framework).
Let us introduce the following functional defined on L?(Q) x L?(Q):

Fuutun) = { 00T 3 vl () € BV X Gl (12
' +00 otherwise
We can rewrite F) ,, in the following way:
1
By p(u,v) = J(u) + ﬁ”f —Uu— U||2L2(Q) +xa,. (V) (4.3)

with the convention that J(u) = +oc0 if u € L*(2)\BV (Q), and where x ¢, (o) is the indicator function of G, ().
The problem we want to solve is:

inf F 44
L2 @)X L2(Q) n(14,0) (44)

4.3 Existence and uniqueness

We show here that problem (4.4) admits a unique solution.

Proposition 4.2. Let f € L*(Q). There ezists a unique couple (i, 0) which minimizes F ,(u,v) on L*(Q) x
L?(Q).

Proof: We split the proof into two steps.
Step 1 (Uniqueness): The proof is the same as in [6]. We just put it here for the sake of completeness.

To get the uniqueness, we first remark that F' is strictly convex on BV (Q) x G,(Q2), as the sum of a
convex function and of a strictly convex function, except in the direction (u, —u) . Hence it suffices to check
that if (4, 0) is a minimizer of F then for ¢ # 0, (4 + t4,0 — t4) is not a minimizer of F (indeed, since F
is convex, we can restrict ourselves to small perturbations, and we will assume that |¢t| < 1). The result is
obvious if & — ta € L*(Q)\G,(2). Let us show that if o — ti € G,,(2) then the result is still true. Indeed, if
0 —ti € G,(Q), we have:

F(a+th, o —ta) = F(a,0) + (|1 + ¢ — 1)J(a) (4.5)

By contradiction, let us assume that there exists £ < 1, £ # 0 such that ¢ — ¢4 € G,(Q) and
F(4+ ta, o — ta) < F(a,) (4.6)

As (@, 0) minimizes F, (4.6) is an equality. From (4.5), we deduce that (|1+# —1).J(@) = 0. And as { # {~2,0},
we get that J(4) = 0. There exists therefore v € R such that @ = 7 a.e. (we suppose €2 connected).

1. If v = 0, then @ = 0. Thus (4 + ti, 9 — ta) = (4, 0).

2. If v # 0, then ¥ — t0 cannot belong to G, (f2) since its mean is not 0 (see (2.4)). This contradicts our
assumption.



Step 2 (Existence): Let (uy,v,) a minimizing sequence for F ,(u,v) , i.e.:

B (ttn vn) = L@@ Froulwo) @1
It is clear that v, € G, and:
J(up) < C and ||f = up — vall72(q) < C (4.8)
Since v, € G, we get that v, = div&,, with &, such that ||£,[|z~r2) < and &,.N = 0 on 9.
We also have:
/ Up Uy = / updivé, < sup / up,divé < p sup / Updiv e (4.9)
Q Q ceqL () Ja teG1(Q) Ja
Hence (using (4.8)):
/ UpVp < pd (uy) < C (4.10)
Q

From (4.8) and (4.10), we deduce that u,, and v,, are bounded in L?((2). Thanks to (4.8), and since u,, and v,
are bounded in L?((), we get that there exists (i, 9) such that, up to an extraction: u, — @ in BV (Q) weak *,
and v, — 9 in L?(Q2) weak.

From Lemma 2.2, we know that xg, () is L2-weakly lsc, where:

0if v e Gu(Q)

XG"(Q)(U) - { 400 otherwise (4.11)
Since the total variation is Isc for the BV weak * topology, we obtain:
it Py = i () + 51 = v =l + X))
> 0+ g5 f i~ 0l3agm) + X6 0)(0)
i.e. (4,0) is a minimizer of F) ,(u,v) on L*(Q) x L*(Q2).
[ ]

4.4 Characterization of the minimizer (4, ?)

The following result gives a characterization of the minimizer of F) ,. We will use it in the next subsection to
show the convergence of our algorithm.

Proposition 4.3. (4,0) is a minimizer of F ,(u,v) if and only if:

U= f—19—Pg,o(f—10)
{ b= Pg,@(f —1) (412)

Proof: We split the proof into two steps:

Step 1 (Necessary condition):Let (u,?) be a minimizer of F) ,(u,v). The fact that @ = f — 0 — Pg, (o)(f —?)
comes from Proposition 4.1. The proof of & = Pg, (q)(f — @) is even simpler: since ¥ is a minimizer of F/(i, .),
we have for all v in L*(Q): F) (4, 0) < F (4, v) , which implies: & minimizes 55 || f — @ — 0|72 o) + Xa,. @) (v)
for all v € L?(Q2). And this precisely means that © = Pg,q)(f — ).

Step 2 (Sufficient condition): Let (a,0) verifying (4.12). We therefore have:

{ 0€d+9— f+AJ() (4.13)

Oea+v—f+ AZ’)XG“(Q)(@)

The first line of (4.13) comes from the fact that & = f — 9 — Pg, (o)(f — 9) (see [10] and [6]), and the second
one from the fact that o = Pg, (o) (f — @). We can rewrite (4.13):

f—a—0d .
{ foid €@ (4.14)
x o € xa, @) (?)




which means:

J(u) > J (@ — 4, 1=4=0
('LL) o (U) + ('LL u, A f)%Q(AQ)XLz(Q) (415)
> ~ R k)
X6, (@) () Z X6, (@) (0) + (v =0, L2(Q)x L2(2)
We add the two lines in (4.15), and we obtain:
5 . . f—da—% Cf—d—1
u) +XGM(Q)(U) > J(u)+XG“(Q)('U)+ u—u,f + v—v,f (4.16)
We then add || f — v||%2(9) to the two sides of (4.16), and we get:
. 1 N 2
Fxu(u,v) = Fxu(a,9) - —/\ — 0= 0|72 + Hf —[72(0)

(e o)

To conclude, there remains to show that:

>/

1f = u—olZagqy = I == 0l 2aoy + 2 (w0 f— i~ )+ 2 (0 — 0, f—a— ) 20 (417)

Let us denote by L(u,v) = ||f — u — v]|72q)- Since L is convex, we have:

oL
> L(a, 0 — Q== (@, — b, — (i1, _
L(u,v) > L(4,0) + (u U (u,v)) + (v e (u,v)) (4.18)
And (4.18) is just (4.17) which we wanted to show.

The conclusions of Proposition 4.3 naturally lead to the following algorithm for computing the minimizer
(@, ). This algorithm was developed and applied in [6].

Algorithm:
1. Initialization:
Ug = Vg = 0 (419)
2. Iterations:
Upy1l = PGM(Q) (f —un) (4.20)
Unt1 = f — Vnt1 — Poy @) (f — Vnt1) (4.21)
3. Stopping test: we stop if
max (|11 — Unl, |[Vnt1 — vnl|) <€ (4.22)

Corollary 4.1. The sequence (un,vy,) (defined by (4.19)-(4.22)) is bounded in BV () xG,(Q). If in addition v,
is bounded in L*+°(Q) for some § > 0, then (u,,v,) converges to (i, ) € BV () x G,(Q) (for the BV (Q)—weak
* x L?(Q2)-weak topology) the unique minimizer of F ,,(u,v).

Proof: For the reader convenience, we split the proofs into several steps. Our aim is to pass to the limit in:

Vnt1 = Pa, ) (f — un) 4.23
{ Un+1:f_'Un—&-l_PGA(Q)(f_'UnJ,-l) ( ’ )

Step 1: By definition of the sequence (u,,v,), we have F) ,(un,vn) > Fx u(Un, Unt1) = Fxp(Untt, Ungt)-
Since a decreasing bounded from below sequence in R is convergent, we deduce that there exists m > 0 such
that

hrf Fy u(tun,vp) = hrf Fy u(un, vpt1) = hm Fy u(Ung1, V1) =m (4.24)



which in particular implies that

lm  (F) u(tn,vn) = F) u(tn, vng1)) =0 (4.25)

n—-+4oo

Moreover since the sequence F) ,(uy, vy, ) is bounded we get that J(u,,) and || f —u, — v, ||%2(Q) are also bounded.

We then deduce as in the proof of Proposition 4.2 that v,, (respectively wu,,) is bounded in L?(Q) (respectively
in BV(Q)).
Step 2: We now want to show that:

nkffoo [[vn — Un+1||%2(9) =0 (4.26)

WHm [, = tnt1ll72() = 0 (4.27)
and

lirf (J(un) — J(tun+1)) =0 (4.28)

To prove (4.26), we examine the difference:

F)\yﬂ(umvn) - Fkaﬂ(umvrﬁl) = (”f — Up — vnH2L2(Q) - Hf — Up — vn+1||%2(ﬂ)>

(a2 = lonsallfay = 20 = tin, v = va41))  (4.29)

where (.,.) denotes the L?(f2) scalar-product. Let us recall that if K is a closed convex subset of L?(2), then
u = Pk (g) if and only if we have (see [9] for instance):

(9—u,v—u) <0, VwekK (4.30)

1
2)
1
2)

Here we have v,,41 = Pg,(o)(f — un). Hence, using (4.30), we get
(f —tUp — Vnt1,0 — Vpg1) <0 Vo€ Gu(Q) (4.31)

If we choose, v = vy, this implies: (f — up — Vnt1, V0 — Vpt1) <0, 1. (f — tUn, U — Unt1) < (Unt1,Un — Ung1)-
Using this last inequality in (4.29), we get:

1
Fyu(tn, vn) = Fypu(tn, vng1) > I\ (anﬂiz(ﬂ) - ||Un+1\|%2(n) = 2(Uny1,0n — Un+1)>
1
2 5”% — Uny1ll72q) (4.32)

And by passing to the limit as n — 400, we obtain (4.26). We get (4.27) in the same way, by using that
Wnt+1 = Po, (f — Vny1) (With w, = f — u, — wy,) and (4.26).

We then obtain (4.28) by considering the difference F ,,(wn, Vnt1) — Fx pu(Unt1, Vnt1-
Step 3: From Step 1, we know that v, is bounded in L?(£2). Thus there exists an extraction ¢ and © € L?(£2)
such that vy(,) — 0 in L?(Q)-weak. Let us now consider the subsequence vy(,)+1- Since it is bounded in L?(Q),
we know that there exists an extraction ¢ and v such that v,y )41 — 0 in L?(Q)-weak. But from (4.26), we
deduce that © = 9. Therefore, we have up to a subsequence that v,, and v, ; — ¢ in L?*(2) weak.

Using (4.27), we can show in the same way that up to a subsequence u,, and u,+1 — @ in BV (Q2)-weak *
Step 4: We are now in position to pass to the limit in (4.23). Let us first focus on the equation: v,41 =
Pa, @) (f — un). This equality holds if and only if: (f —up — vny1,v —vpt1) <0, Yo € GL(Q) , ie.

(.0 = 0s1) = (tns0) + (s V1) = (0, 001) + o[22y <0, Yo € Gu(Q) (4.33)

When n — +o0, we have (f,v — vpy1) — (f,v —0), (un,v) — (4,v) and (v,vp41) — (v,0). Moreover,
we also have li_m||vn+1\|%2(ﬂ) > HU||%2(Q). There remains just to check what happens for (u,,v,y1). By
assumption, we have that v, is bounded in L2*°(Q). Therefore, we can assume that up to a subsequence
Unt1 — 0 in L?*(Q) weak. Let us set 1 < p < 2 such that  + 515 = 1. By the compact embedding of BV (2)
into LP(Q) [3], we get that u,, — @ for the LP(2)-strong topology. Thus we have (u,, v, 1) — (4, D).

Therefore all the terms pass to the limit in (4.33), and we obtain: (f -4 —0,v—0) <0, Yv € G,(Q2) which
means U = PGH(Q) (f — ﬁ)

And we can show in the same way that @ = f — 0 — Pg, )(f — 0).

We conclude the proof thanks to Proposition 4.3.
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4.5 Study of the Limit problem when A — 0

Let us consider the following problem:

inf J(u) + v 4.34
(u,0)EBV (Q)xG(Q)/ f=u+v ( ) XG“( ) ( )

In the next proposition, we show that problem (4.34) is the limit problem we get when A — 0 in (4.4).

Proposition 4.4. Let us assume f € L?(S2), and that there exists (4,0) € BV (Q) x G, (Q) such that f = 4+7,
then:

1. There ezists (4,0) € BV (2) x G,(2) solution of (4.34).

2. Moreover, if (i,0) is unique, and if (ux,vy) denotes the solution of problem (4.4), then (uy,vy) converges
to (4,0) € BV(Q) x G,(R?) as A goes to 0.

Proof: As we assume the existence of (@, ?), the infimum in (4.34) is finite. Using Lemma 2.2, the proof of
the first point is then straightforward. Let us now focus on the second one. The existence and uniqueness of
(ua, vy) is given by Proposition 4.2. Since (uy,vy) is the solution of problem (4.4), we have vy € G, and:
Fy.u(ux,vz) < Fy p,(@,0) , which means (since ¢+ 0 = f)

Fy p(ux,vn) < J(4) (4.35)
And the left-hand side of (4.35) is given by:
1 1
By pu(unva) = J(un) + 51l = ux = oallZage) + xa, (00) = T(ua) + 55 I1F = wx = oallfe ) (4.36)
Hence 1
T + 53 lIf = ux = vallfa () < J(@) (4.37)
which implies
If = ux —wal* < 20J(a) (4.38)

We then show as in the proof of Proposition 4.2 that if A € [0;1], [Jux||L2() and thus |Jvy||L2(q) are bounded
by a constant C' > 0 which does not depend on A.

Consider a sequence ()\,,) which goes to 0 as n — 4o00. Then, up to an extraction, there exists (ug,v) €
BV () x G,,(Q) such that (uy,,vy,) converges to (ug,vo) in L?*(2) weak. By passing to the limit in (4.38), we
get: ”f — Uug — 1)0||L2(Q) = 0, i.e. f = up + vp.

To conclude the proof of the proposition, there remains to show that (ug,vg) is a solution of problem (4.34).
We first notice that as for all A € [0,1], |lvall¢ < p, so we get thanks to Lemma 2.2 that vy € G,,. And from
(4.37), we have for all A > 0: J(uy) < J(@). Hence ug € BV(Q) (since J(up) < limJ(uy) < J(@)).

Let (u,v) € BV(Q) x G,(f2) such that f = u + v. We have:

Y

v 1 9
I+ x6, (2) + g5 1 —u =l

U, 1
Hun) 43, (22 ) 4 g1 = o, = o P

> J(ux,) +xa, (U;">

By passing to the limit as A — 0, we obtain: J(u) + xq, (%) > J(uo) + xa, (%) Hence (ug,vp) is a

solution of problem (4.34). And as we have assumed that problem (4.34) has a unique solution, we deduce that
(uo,v0) = (G, D), i.e. (ug,vo) is the solution of problem (4.34).
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4.6 Link between the limit problem and Meyer problem
We now want to show the link between (4.34) and (3.1).

Proposition 4.5. Let us fix « > 0 in problem (3.1). Let (i,0) a solution of problem (3.1). We fix u = |||l
in (4.34). Then:

o (ii,0) is also a solution of problem (4.34).
e Conversely, any solution (4,0) of (4.84) (with u = ||9||c) is a solution of (3.1). Moreover, we have

[0l = p and J(u) = J(a).

Proof: The proof is exactly the same as in [6].
|

In fact, we can say more about the link between Meyer problem (3.1) and our limit problem (4.34). We
denote by
Ha(u,0) = J(w) + alvll (4.39)

Thus we can write Meyer problem as:

inf H,(u,v) (4.40)
(u,w)EBV(Q)XG(Q) / f=utv

« being fixed, let us denote by
Za = {Va, vq is a solution of the problem inf,cq (o) Ha(f —v,v) } (4.41)

So = {||lvallc, va is a solution of the problem inf,cq (o) Ha(f —v,v) } (4.42)

We know that Z,, and S, are not empty thanks to Proposition 3.1. We consider the two multi-valued maps
Y : Ry — P(G(R)) (resp. T : Ry — P(Ry)) such that Y («) = Z,, (resp. T(«) = S,), where P(G(2)) (resp.
P(R.)) stands for the set of subsets of G(2) (resp. R4).

We want to show a kind of reciprocal result to Proposition 4.5, i.e. that, for a certain range of u, there exists
a such that p € T'(«). The following result holds:

Proposition 4.6.
1. T is a nonincreasing multi-valued map.
2.Y(0)={f—f} and T(0) = ||f — fllg (where f stands for the mean value of f over ().
3. If « goes to +oo, then T'(vy) goes to {a}, where a is defined by:

a=inf{||v]¢ / f—veBV(Q), ve GQ)} (4.43)
Remark: If f € BV (), then a = 0.

Proof: We successively show the three points of the proposition.

1. Let aa > a1 > 0. Let us pick vy, in Z,, and v,, in Z,,. Let us denote by uy, = f—vqa, and uq, = f—vq,-
Then, as v,, in Z,,, we have in particular: J(ua,) + a1]|va,ll¢ < J(Uay) + @1]|Va,|le. And as v,, in
Za,, we also have: J(uq,) + @2||Vaslla < J(Uay) + @2]|Va, |lg- Adding the two last inequalities, we get:
a1l[va, [|¢ + azllvas ¢ < @1|va, lg + @zl|va, [lc. And then

(2 —a1)  ([taslle = [lvasla) <0 (4.44)
——

>0 by hypothesis

Hence ||va, |l¢ < ||va, [, which proves the first point of the proposition.
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2. Let us now prove the second point of the proposition.
We have (see (4.39)) Ho(f —v,v) = J(f —v) > 0 for all v € G(Q). Choosing vg = f — f (thanks

to Proposition 2.1, vg € G(Q) since 7y = 0), we get Ho(f — vo,v0) = J(f —vo) = J(f) = 0. Hence
0 = inf,cq) Ho(f —v,v), and vg € Zy. Moreover, J(u) = 0 if and only if u = 4. Let v; be a solution
of inf,cqq) Ho(f —v,v). We thus have f —v; = f —v;. And as v; € G(Q2), we also have v; = 0. Then
f—vi=f—vi=f—-0 =f, ie v =uv. We conclude that {vo} = Z;. This shows the second point of
the proposition.

3. Let us now prove the third point of the proposition.
Let € > 0. From (4.43), there exists 0. € G(2) such that 4. = f — 0. € BV(Q) and:

a<|oefle <a+te (4.45)

Let us pick v, in Z,, and let us denote by u, = f — v,. By definition of Z,, we have for all (u,v) €
BV (Q) x G(2) such that f =u+v: J(ua) + ofjvalle < J(u) + al|v||¢. By choosing u = 4., and v = ¥,
we get:

J(ue) + al|valla < J(te) + a|te|le < J(Ge) + aa + ae (4.46)

(4.46) implies that ||va|l¢ < 2% + a + e. By passing to the limit o — 400, and using (4.45), we get:

[e%

a <liminf |va|lg <a+e (4.47)
a——+00
|

Remark: In fact, we have shown that T': R, — [a, || f — f||g]. In particular, T has uniformly bounded values:

L 7(0) = {llf = fllc}
2. If a > 0, then if v, € Y(«), we have -
[valle < IIf = flle (4.48)

Proposition 4.7. T is u.s.c. (upper semi continuous) (i.e. T has a closed graph and conver compact values).

Proof: We split the proof into two steps:

Stepl: Let o be in R;. By definition of S, one easily checks that T'(«) is convex and closed in R. Moreover
we have shown that T'(«) is uniformly bounded (see (4.48)). Therefore, T'(«) has compact values.

Step 2: Let us now consider a sequence (ay,v,, ) where o,, € Ry and v,, € Z,,. Assume that there exists
(a0, v9) In Ry x G(Q) such that (ap,v.,) — (@o,v9) as n goes to +oo. As v,, in Z,, , we have for all
(u,v) € X x G(N2) such that f =u+v: J(f —va,) + anl|va, |l < J(u) + apllv]|g- By passing to the limit as n
goes to oo (using the fact that J and ||.||¢ are Isc), we get: J(f —vo) + aollvolle < J(u) + agl|v]le. Hence v
belongs to Z,,, and therefore ||vg||¢ is in S,,. This shows that T has a closed graph.

Corollary 4.2. For all pu in (a,|f — f|lq), there exists o in R such that there exists (u,v) in X x G(Q) with
lvlle = 1 and solving Meyer problem (3.1).

Proof: This a consequence of Proposition 4.6, Proposition 4.7 and the next theorem (applied to the multi-
valued map T, = T — p) which we state without proof.

Theorem 4.1. Let us consider a multi-valued map L:

R — ]P’(R)
(O s [Lmin(a)a Lmax(a)]

Let us assume that L is such that:

1. L is u.s.c (upper semi-continuous).

13



o ..‘,' y
ﬁmy |

:fﬂff

Figure 1: Barbara image

2. There exists b € R (resp. ¢ € R) such that Ly, (b) <0 (resp. Lpmaz(c) > 0).
Then there exists d € [b, c] such that 0 € L(d).

Remarks:

1. Corollary 4.2 completes the result of Proposition 4.5. It closes the link between Meyer problem (3.1) and
our limit problem (4.34).

2. From the results of Subsections 4.5 and 4.6, we deduce that problem (4.4) is a good way to approximate
Meyer problem.

4.7 Numerical results

We show here examples of what we obtain with the algorithm (4.19)-(4.22) developed in [6]. Denoising an image,
or splitting an image into two components (a first one containing the structures, and a second one containing
the oscillatory part) are two difficult inverse problems. They are both well-solved by the algorithm (4.19)-(4.22),
as one can sees on the next two examples.

Image decomposition: we consider the Barbara image (see Figure 1). We first show the decomposition we
get for this image on Figure 2: it displays both the BV component and the G component of the original image.
Depending on the value we set for p, the textures present in Figure 1 are separated from the BV component
of the image. The larger p is, the more the G-component contains information. The parameter A controls the
L? norm of the residual f — v — v. The smaller it is set, the smaller the residual is. To tune the parameters,
one first set A to a small value. Then one chooses ;1 so that the G component contains the desired amount of
information.

Denoising: on Figure 3, we add a random Gaussian noise of variance ¢ = 30.0 to the Barbara image,
and we then perform the algorithm developed in [6]. As expected by our mathematical analysis, the oscillating
patterns of the original Barbara image are put into the G-component where their norms are less penalized.
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