However, this condition is not sufficient to close the system and determine the velocity.

Description of the movement

In order to close the system and compute the velocity, we have to make an additional assumption: the movement is considered as fluid or visco-elastic.

For the simulations presented here, we have used a Darcy-type law:

$$
\mathbf{v}=-k \nabla \Pi
$$

where the potential Π can be computed thanks to the expression of the divergence of the velocity.

RESULTS

We recover the parameters of the mathematical model adapted for a particular patient. Here is the case of a male patient, 79 years old; a poorly differentiated thyroid carcinoma was discovered in 2005 with iodine refractory synchronous lung metastases. From 2005 a continuous follow up with thoracic CT and serum thyroglobulin was done. Because of a synchronous prostatic cancer the patient could not be included in the Vandetanib or Sorafenib phase III trials.

From the two initial images, we obtain the parameters that fit the best the two images. The parametrized model can then be used for prognosis.

First test case

Fig 1. Evolution of an untreated lung metastatic nodule from thyroid carcinoma.

Fig 2. Results of a prediction of the evolution of the nodule based on the mathematical model.

Fig 3. In addition to computing the volume of the tumour, the model can be used to predict the localization of the tumour (plotted in red).

Hence, given two images of the patient, we are able to recover the volume, shape and localization of the tumor at later times with a reasonnable accuracy.

In the next test case, two different lung nodules belonging to a 68 years old male patient with a kidney metastatic cancer are identified using the same procedure. While not concerning lung metastases from thyroid cancer, it allows us to validate the procedure on a quicker evolution.

Fig 4. Evolution of an untreated lung metastatic nodule.

Fig 5. Results of a prediction of the evolution of the nodule based on the mathematical model.

SECOND NODULE

Fig 6. Evolution of an untreated thyroidal nodule in the lung.

Fig 7. Results of a prediction of the evolution of the nodule based on the mathematical model

CONCLUSIONS

For oncologists the development of such tools is of interest in therapy planning (and in the evaluation of an antitumoral treatment). For example a slowly evolving tumour prediction could reinforce the decision to wait without specific treatment. In the opposite case the simulation can support the decision to start a radiofrequency thermal ablation (for example) or a molecular targeted therapy.

We plan to extend our numerical tool to other cancer types (brain, liver,...) and to take advantage of functional imaging (TEPscan, MRI) in order to increase the reliability of the procedure.

REFERENCES

Equipe Projet MC2 INRIA Bordeaux Sud-Ouest http://www.math.u-bordeaux1.fr/MAB/mc2/

Institut Bergonié
http://www.bergonie.org

