Existence of Gibbsian point processes with geometry-dependent interactions

D. Dereudre, R. Drouilhet and H.-O. Georgii

## Plan

### 1 Motivation and Introduction

- 2 Stationary Gibbs state
- 3 Existence of Gibbs state (classical tools)

Existence of Gibbsian point processes with geometry-dependent interactions

- Classical framework in R<sup>d</sup>: Point process with (pairwise) interaction on the complete graph (ex: Ruelle class of superstable model, Lennard-jones model,...).
- Classical framework in Z<sup>d</sup>: Lattice field with (pairwise) interaction on the nearest-neighbour graph (Ising model, Potts model,...)
- New framework in R<sup>d</sup>: Point process with (pairwise) interaction on the nearest-neighbour graph such the Delaunay graph (for example). Introduced by Baddeley-Moller in some bounded domain.
- Problem. Existence of such kind of model defined as a stationary point process in R<sup>d</sup>.

- Classical framework in R<sup>d</sup>: Point process with (pairwise) interaction on the complete graph (ex: Ruelle class of superstable model, Lennard-jones model,...).
- Classical framework in  $\mathbb{Z}^d$ : Lattice field with (pairwise) interaction on the nearest-neighbour graph (Ising model, Potts model,...)
- New framework in  $\mathbb{R}^d$ : Point process with (pairwise) interaction on the nearest-neighbour graph such the Delaunay graph (for example). Introduced by Baddeley-Moller in some bounded domain.
- Problem. Existence of such kind of model defined as a stationary point process in R<sup>d</sup>.

- Classical framework in R<sup>d</sup>: Point process with (pairwise) interaction on the complete graph (ex: Ruelle class of superstable model, Lennard-jones model,...).
- Classical framework in  $\mathbb{Z}^d$ : Lattice field with (pairwise) interaction on the nearest-neighbour graph (Ising model, Potts model,...)
- New framework in  $\mathbb{R}^d$ : Point process with (pairwise) interaction on the nearest-neighbour graph such the Delaunay graph (for example). Introduced by Baddeley-Moller in some bounded domain.
- **Problem.** Existence of such kind of model defined as a stationary point process in  $\mathbb{R}^d$ .

- Classical framework in R<sup>d</sup>: Point process with (pairwise) interaction on the complete graph (ex: Ruelle class of superstable model, Lennard-jones model,...).
- Classical framework in  $\mathbb{Z}^d$ : Lattice field with (pairwise) interaction on the nearest-neighbour graph (Ising model, Potts model,...)
- New framework in  $\mathbb{R}^d$ : Point process with (pairwise) interaction on the nearest-neighbour graph such the Delaunay graph (for example). Introduced by Baddeley-Moller in some bounded domain.
- **Problem:** Existence of such kind of model defined as a stationary point process in  $\mathbb{R}^d$ .

### Point process without interaction

Poisson process with intensity 0.0016 (mean=400 points in the domain)



# Point process with classical interaction Multi-Strauss point process



# Point process with Delaunay neighbour interaction Delaunay Multi-Strauss point process



## Point process with Delaunay neighbour interaction The Voronoï diagram



# Point process with Delaunay neighbour interaction The Voronoï diagram and its dual graph



# Point process with Delaunay neighbour interaction This is the Delaunay graph



# Point process with Delaunay neighbour interaction No other points in any circle circumscribing a Delaunay triangle



## Point processes: definition and notation

#### Notation

- $\Delta \Subset \mathbb{R}^d$  and  $\Lambda \Subset \mathbb{R}^d$  means  $\Delta$  and  $\Lambda$  are bounded Borelian sets.
- Let  $\Lambda \subset \mathbb{R}^d$  and  $\varphi \in \Omega$ ,  $\varphi_\Lambda := \varphi \cap \Lambda \in \Omega_\Lambda$
- Useful notation: sum over all configurations  $\varphi$  in  $\Lambda$

$$\oint_{\Lambda} d\varphi \, g(\varphi) := \sum_{n=0}^{+\infty} \frac{1}{n!} \int_{\Lambda} \cdots \int_{\Lambda} dx_1 \cdots dx_n \, g\left(\{x_1, \cdots, x_n\}\right)$$
Poisson measure  $\Pi_{\Lambda}$ : 
$$\int_{\Omega_{\Lambda}} \Pi_{\Lambda}(d\varphi) g(\varphi) := e^{-|\Lambda|} \oint_{\Lambda} d\varphi g(\varphi)$$

#### Point process in some domain $\Lambda \subset \mathbb{R}^d$

A point process in  $\Lambda$  is a random variable  $\Phi_{\Lambda}$  with values in  $\Omega_{\Lambda}$  equipped with the smallest  $\sigma$ -field which make measurable all the maps  $i_{\Delta}: \varphi \in \Omega_{\Lambda} \rightarrow |\varphi_{\Delta}|$  with  $\Delta \subset \Lambda \in \mathcal{B}_b$ .

## Point processes: definition and notation

#### Notation

- $\Delta \Subset \mathbb{R}^d$  and  $\Lambda \Subset \mathbb{R}^d$  means  $\Delta$  and  $\Lambda$  are bounded Borelian sets.
- Let  $\Lambda \subset \mathbb{R}^d$  and  $\varphi \in \Omega$ ,  $\varphi_\Lambda := \varphi \cap \Lambda \in \Omega_\Lambda$
- Useful notation: sum over all configurations  $\varphi$  in  $\Lambda$  ( $z \in \mathbb{R}$ )

$$\oint_{\Lambda}^{z} d\varphi g(\varphi) := \sum_{n=0}^{+\infty} \frac{z^{n}}{n!} \int_{\Lambda} \cdots \int_{\Lambda} dx_{1} \cdots dx_{n} g\left(\{x_{1}, \cdots, x_{n}\}\right)$$
  

$$\Rightarrow \text{ Poisson measure } \Pi_{\Lambda}^{z} : \int_{\Omega_{\Lambda}} \Pi_{\Lambda}^{z} (d\varphi) g(\varphi) := e^{-z|\Lambda|} \oint_{\Lambda}^{z} d\varphi g(\varphi)$$

### Point process in some domain $\Lambda \subset \mathbb{R}^d$

A point process in  $\Lambda$  is a random variable  $\Phi_{\Lambda}$  with values in  $\Omega_{\Lambda}$  equipped with the smallest  $\sigma$ -field which make measurable all the maps  $i_{\Delta}: \varphi \in \Omega_{\Lambda} \rightarrow |\varphi_{\Delta}|$  with  $\Delta \subset \Lambda \in \mathcal{B}_{b}$ .



D. Dereudre, R. Drouilhet and H.-O. Georgii

Gibbs Distribution in A  

$$P_{\Lambda}(F) = Z_{\Lambda}^{-1} \oint_{\Lambda} d\varphi \mathbb{1}_{F}(\varphi) e^{-V(\varphi)}$$

$$V(\varphi) = \theta_{1} |\varphi| + \sum_{\xi \in G_{2}(\varphi)} g_{2}(\xi).$$

Small 425 (0.7%), Medium 19 (0%), Large 63459 (99.3%)

 $g_{2}(\xi) = \theta_{2}\mathbb{1}_{[d_{1},d_{2}[}(\|\xi\|) + \theta_{3}\mathbb{1}_{[d_{2},d_{3}[}(\|\xi\|))$ with  $\theta_{2} = 2, \theta_{3} = 4$   $\mathbf{d} = (0, 20, 80)$ 

Small 280 (26.1%), Medium 41 (3.8%), Large 750 (70%)



D. Dereudre, <u>R. Drouilhet</u> and H.-O. Georgii

## Plan

### 1 Motivation and Introduction

### 2 Stationary Gibbs state

3 Existence of Gibbs state (classical tools)

Existence of Gibbsian point processes with geometry-dependent interactions

### Gibbs Point Process in bounded domain A



(Stationary) Gibbs Point Process in  $\Lambda = \mathbb{R}^d$ 



## Objective

### Stationary Gibbs states

The set  $\mathcal{G}_s(V)$  of stationary Gibbs state is nonempty, that is, there exists a translation invariant probability measure P such that:

$$\underbrace{PP_{\Delta} = P}_{\text{D.L.R. equation}} \iff \underbrace{P(F|\mathcal{F}_{\Delta^c}) = P_{\Delta}(F|\cdot) P_{\text{-a.s}}}_{P = \text{distribution of } \Phi}$$

#### General sketch of the proof

- Find  $(P_n)_n$  such that  $(\mathbf{E}_n)$ :  $P_n P_{\Delta}^n = P_n$  where  $P_{\Delta}^n \xrightarrow[n \to +\infty]{} P_{\Delta}$ .
- **[GC]** Gibbs Candidate: P is an accumulation point of  $(P_n)_n$  by relative compactness argument.
- **[GP]** Gibbs Property: Prove D.L.R., i.e.  $(\mathbf{E}_n)$  when  $n \to +\infty$ .

## Plan

### 1 Motivation and Introduction

- 2 Stationary Gibbs state
- 3 Existence of Gibbs state (classical tools)

Existence of Gibbsian point processes with geometry-dependent interactions

Existence of stationary Gibbs models (classical tools)

Restriction to models satisfying:

• [L] Local property:  $V(\varphi_{\Lambda}|\varphi^{o}_{\Lambda^{c}}) = V(\varphi_{\Lambda}|\varphi^{o}_{\widetilde{\Lambda}\setminus\Lambda})$  with  $\widetilde{\Lambda} \in \mathbb{R}^{d}$ 

An interaction function  $g_2$  acting on some graph  $\mathcal{G}(\varphi)$  is said to be based on  $\mathcal{G}'(\varphi)(\subset \mathcal{G}(\varphi))$  if  $g_2(\xi) = g'_2(\xi)\mathbf{1}_{\mathcal{G}'(\varphi)}(\xi)$ 

Assumptions for [L] •  $G_2(\varphi) = \mathcal{P}_2(\varphi)$ : [Range on  $g_2$ ] (i.e  $g_2(d) = 0$  when  $d \ge R$ ) ( $\Leftrightarrow$  [ $g_2$  based on  $\mathcal{P}_{2,R}^{loc}(\varphi)$ ] with  $\mathcal{P}_{2,R}^{loc}(\varphi)$ ] := { $\xi \in \mathcal{P}_2(\varphi) : ||\xi|| < R$ }) •  $G_2(\varphi) = Del_2(\varphi)$ : [ $g_2$  based on  $Del_{2,R}^{loc}(\varphi)$ ] with  $Del_{2,R}^{loc}(\varphi) = \bigcup_{\psi \in Del_{3,R}^{loc}(\varphi)} \mathcal{P}_2(\psi)$ where R > 0,  $r(\psi)$  the radius of the circumscribed circle of some triangle  $\psi$  and  $Del_{3,R}^{loc}(\varphi) = \{\psi \in Del_3(\varphi), r(\psi) \le R\}$ .

# Existence of stationary Gibbs models (classical tools)

Existence of stationary Gibbs state

**Q** ([Superstability] and [L]) ⇒ (G<sub>s</sub>(V) ≠ Ø) **Q** (([HC] or [I]) and [L]) ⇒ ([LS] and [L]) ⇒ (G<sub>s</sub>(V) ≠ Ø)

with

- [LS] Local Stability:  $V(\varphi_{\Lambda}|\varphi^{o}_{\Lambda^{c}}) \geq -K|\varphi_{\Lambda}|$
- [HC] Hard-Core:  $V(\varphi_{\Lambda}|\varphi^{o}_{\Lambda^{c}}) = +\infty \Leftarrow (\exists \xi \in \varphi_{\Lambda} : ||\xi|| < \delta)$
- [I] Inhibition:  $V(\varphi_{\Lambda}|\varphi^{o}_{\Lambda^{c}}) \geq 0$

### Application via [Superstability]

- G<sub>2</sub>(φ) = P<sub>2</sub>(φ): tailor-made for this case with g<sub>2</sub> not necessarily nonnegative (but g<sub>2</sub>(0) > 0)!
- G<sub>2</sub>(φ) = Del<sub>2</sub>(φ): [Superstability] never true when d = 2 (idem when d > 2 ???).

Existence of stationary Gibbs models (classical tools)

### Application via [LS]

G<sub>2</sub>(φ) = P<sub>2</sub>(φ):
[Hard-Core on g<sub>2</sub>] and [Range on g<sub>2</sub>]
[Inhibition on g<sub>2</sub> (g<sub>2</sub> ≥ 0)]) and [Range on g<sub>2</sub>]
G<sub>2</sub>(φ) = Del<sub>2</sub>(φ): (Bertin, Billiot, Drouilhet)
[Hard-Core on g<sub>2</sub>] and [g<sub>2</sub> based on Del<sup>loc</sup><sub>2,R</sub>(φ)]
[g<sub>2</sub> based on Del<sup>β<sub>0</sub></sup><sub>2,β</sub>(φ)] and [Range on g<sub>2</sub>] with Del<sup>β<sub>0</sub></sup><sub>2,β</sub>(φ) = ⋃<sub>ψ∈Del<sup>β<sub>0</sub></sup><sub>3,β</sub>(φ)P<sub>2</sub>(ψ) where β<sub>0</sub> ∈ [0, π/3[, β(ψ) the smallest angle of a triangle ψ and Del<sup>β<sub>0</sub></sup><sub>3,β</sub>(φ) = {ψ ∈ Del<sub>3</sub>(φ), β(ψ) > β<sub>0</sub>}.
</sub>

Pointwise local energy  $(G_2(\varphi) = \mathcal{P}_2(\varphi))$ :  $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi)$ 



Pointwise local energy  $(G_2(\varphi) = \mathcal{P}_2(\varphi))$ :  $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi)$ 



Pointwise local energy  $(G_2(\varphi) = \mathcal{P}_2(\varphi))$ :  $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi) = V^+(\mathbf{0}|\varphi) - V^-(\mathbf{0}|\varphi)$ 



Pointwise local energy  $(G_2(\varphi) = \mathcal{P}_2(\varphi))$ :  $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi) = V^+(\mathbf{0}|\varphi)$ 



Pointwise local energy  $(G_2(\varphi) = Del_2(\varphi))$ :  $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi)$ 



Pointwise local energy  $(G_2(\varphi) = Del_2(\varphi))$ :  $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi)$ 



Pointwise local energy  $(G_2(\varphi) = Del_2(\varphi))$ :  $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi) = V^+(\mathbf{0}|\varphi) - V^-(\mathbf{0}|\varphi)$ 



Existence of stationary Gibbs models (via entropic tools) Existence of stationary Gibbs state (entropic tools of H.-O. Georgii)  $\left(([\mathbf{GC}-\mathbf{GE}] \text{ and } [\mathbf{L}]\right) \Rightarrow \left([\mathbf{GC}-\mathbf{IM}] \text{ and } [\mathbf{L}]\right) \Rightarrow \left(\mathcal{G}_{\mathfrak{s}}(V) \neq \emptyset\right)$ with

[GC-IM]: there exists φ<sup>o</sup> ∈ Ω such that I(P<sub>Λ</sub>(·|φ<sup>o</sup>); π<sup>z</sup><sub>Λ</sub>) ≤ c|Λ| where I(P; Q) denotes the relative entropy of P and Q.
[GC-GE] (⇒ [GC-IM]): there exists φ<sup>o</sup> ∈ Ω such that V(φ<sub>Λ</sub>|φ<sup>o</sup><sub>Λ<sup>c</sup></sub>) > -c<sub>0</sub>|Λ|, uniformly on φ<sub>Λ</sub> ∈ Ω<sub>Λ</sub>

#### Application

G<sub>2</sub>(φ) = P<sub>2</sub>(φ): (Georgii, Haggström) [Superstability] (⇒ [GC-GE]) and [Range on g<sub>2</sub>]
G<sub>2</sub>(φ) = Del<sub>2</sub>(φ): (Bertin, Billiot, Drouilhet) [Inhibition (g<sub>2</sub> ≥ 0)] and [g<sub>2</sub> based on Del<sup>loc</sup><sub>2,R</sub>(φ)] (Choosing φ<sup>o</sup> = Ø, V(φ<sub>Λ</sub>|φ<sup>o</sup><sub>Λc</sub>) = V(φ<sub>Λ</sub>) ≥ 0 ⇒ [GC-GE]).

# Existence of Gibbs models (local graph and non hereditary)

Gibbs property via local property of the graph (D. Dereudre)

- Remark: a nearest-neigbour type graph is local and, for a.s. any φ<sup>o</sup>, there exists Λ(φ<sup>o</sup>) ∈ ℝ<sup>d</sup>: V(0|φ<sup>o</sup>) = V(0|φ<sup>o</sup><sub>Λ(φ<sup>o</sup>)</sub>) which is clearly less restrictive than [L]!
- No longer [L] is required and consequently the following models exist:

**()**  $[g_2 \text{ based on } Del_2(\varphi)]$  and  $[\text{Hard-Core on } g_2]$ **(a)**  $[g_2 \text{ based on } Del_{\mathcal{B}_{\beta}}^{\beta_0}(\varphi)]$ 

Non hereditary extension (D. Dereudre)

Hereditary property:

 $V(arphi) < +\infty \Rightarrow V(\psi) < +\infty$  whenever  $\psi \in arphi$  is usually required

- Existence of non hereditary Delaunay models is first considered.
- Example: Rigid models such that  $g_2(d) = +\infty$  for d > D.

# Existence of Gibbs models (local graph and non hereditary)

Gibbs property via local property of the graph (D. Dereudre)

- Remark: a nearest-neigbour type graph is local and, for a.s. any φ<sup>o</sup>, there exists Λ(φ<sup>o</sup>) ∈ ℝ<sup>d</sup>: V(0|φ<sup>o</sup>) = V(0|φ<sup>o</sup><sub>Λ(φ<sup>o</sup>)</sub>) which is clearly less restrictive than [L]!
- No longer [L] is required and consequently the following models exist:

• [ $g_2$  based on  $Del_2(\varphi)$ ] and [Hard-Core on  $g_2$ ] • [ $g_2$  based on  $Del_{2,\beta}^{\beta_0}(\varphi)$ ]

#### Non hereditary extension (D. Dereudre)

Hereditary property:

 $V(arphi) < +\infty \Rightarrow V(\psi) < +\infty$  whenever  $\psi \in arphi$  is usually required

- Existence of non hereditary Delaunay models is first considered.
- Example: Rigid models such that  $g_2(d) = +\infty$  for d > D.

# Existence of Gibbs models (local graph and non hereditary)

Gibbs property via local property of the graph (D. Dereudre)

- Remark: a nearest-neigbour type graph is local and, for a.s. any φ<sup>o</sup>, there exists Λ(φ<sup>o</sup>) ∈ ℝ<sup>d</sup>: V(0|φ<sup>o</sup>) = V(0|φ<sup>o</sup><sub>Λ(φ<sup>o</sup>)</sub>) which is clearly less restrictive than [L]!
- No longer [L] is required and consequently the following models exist:

• [ $g_2$  based on  $Del_2(\varphi)$ ] and [Hard-Core on  $g_2$ ] • [ $g_2$  based on  $Del_{2,\beta}^{\beta_0}(\varphi)$ ]

Non hereditary extension (D. Dereudre)

Hereditary property:

 $V(arphi) < +\infty \Rightarrow V(\psi) < +\infty$  whenever  $\psi \subset arphi$  is usually required

- Existence of non hereditary Delaunay models is first considered.
- **Example**: Rigid models such that  $g_2(d) = +\infty$  for d > D.

# Plan

# 1 Motivation and Introduction

- 2 Stationary Gibbs state
- 3 Existence of Gibbs state (classical tools)

Existence of Gibbsian point processes with geometry-dependent interactions

# Goals

- Thanks to the entropic tools, replacement of [Superstability] or [LS] by Stability [S]: V(φ<sub>Λ</sub>) ≥ −K|φ<sub>Λ</sub>|
- Extension to general nearest-neighbour graph (not only the Delaunay graph)
- Locality of the graph instead of the local property.
- Non-hereditary case considered.
- In the Delaunay case, consider the interaction function  $g_2$  of the form:



# New contribution (Dereudre, Drouilhet and Georgii)

# Definition

- Hypergraph structure: measurable subset  $\mathcal{E}$  of  $\Omega_f \times \Omega$  such that  $\eta \subset \omega$  for all  $(\eta, \omega) \in \mathcal{E}$ .
- Hyperedge of  $\omega$ :  $\eta \in \mathcal{E}(\omega) \Leftrightarrow (\eta, \omega) \in \mathcal{E}$ .
- Hyperedge potential: measurable function  $\varphi$  from  $\mathcal{E}$  to  $\mathbb{R} \cup \{\infty\}$ .
- Hyperedge potential  $\varphi$  is called *shift-invariant* if

 $(\vartheta_x\eta,\vartheta_x\omega)\in\mathcal{E} \text{ and } \varphi(\vartheta_x\eta,\vartheta_x\omega)=\varphi(\eta,\omega), \forall (\eta,\omega)\in\mathcal{E}, \ x\in\mathbb{R}^d.$ 

• Finite horizon property for  $\varphi$  if for each  $(\eta, \omega) \in \mathcal{E}$  there exists some  $\Delta \Subset \mathbb{R}^d$  such that

 $(\eta, \tilde{\omega}) \in \mathcal{E}$  and  $\varphi(\eta, \tilde{\omega}) = \varphi(\eta, \omega)$  when  $\tilde{\omega} = \omega$  on  $\Delta$ . (1)

## Hamiltonian

$$H_{\Lambda,\omega}(\zeta) := \sum_{\eta \in \mathcal{E}_{\Lambda}(\zeta \cup \omega_{\Lambda^{c}})} \varphi(\eta, \zeta \cup \omega_{\Lambda^{c}}) \quad \text{for } \zeta \in \Omega_{\Lambda}$$
(2)

where

$$\mathcal{E}_{\Lambda}(\omega) = ig\{\eta \in \mathcal{E}(\omega) : \varphi(\eta, \zeta \cup \omega_{\Lambda^c}) 
eq \varphi(\eta, \omega) ext{ for some } \zeta \in \Omega_{\Lambda}ig\}.$$
 (3)

which is the set of hyperedges  $\eta$  in a configuration  $\omega$  for which either  $\eta$  itself or  $\varphi(\eta, \omega)$  depends on the points of  $\omega$  in  $\Lambda$ .

### Remark on the conditional density function

$$\frac{\exp(-V(\zeta|\omega_{\Lambda^c}))}{\oint_{\Lambda} d\zeta \exp(-V(\zeta|\omega_{\Lambda^c}))} = \frac{\exp(-H_{\Lambda,\omega}(\zeta))}{\oint_{\Lambda} d\zeta \exp(-H_{\Lambda,\omega}(\zeta))}$$

## Definition

- $\Omega_{cr}^{\Lambda}$  consists of the set of configuration  $\omega \in \Omega$  which confines the range of  $\varphi$  from  $\Lambda$ : there exists a set  $\partial \Lambda(\omega) \Subset \mathbb{R}^d$  such that  $\varphi(\eta, \zeta \cup \tilde{\omega}_{\Lambda^c}) = \varphi(\eta, \zeta \cup \omega_{\Lambda^c})$  whenever  $\tilde{\omega} = \omega$  on  $\partial \Lambda(\omega)$ ,  $\zeta \in \Omega_{\Lambda}$  and  $\eta \in \mathcal{E}_{\Lambda}(\zeta \cup \omega_{\Lambda^c})$ .
- $\partial \Lambda(\omega) := \Lambda^r \setminus \Lambda$  with  $\Lambda^r$  is the closed *r*-neighborhood of  $\Lambda$  and  $r := r_{\Lambda,\omega}$  is chosen as small as possible.

• 
$$\partial_{\Lambda}\omega = \omega_{\partial\Lambda(\omega)}$$
.

For  $\omega \in \Omega^{\Lambda}_{\mathrm{cr}}$  we have

$$\mathcal{H}_{\Lambda,\omega}(\zeta) := \sum_{\eta \in \mathcal{E}_{\Lambda}(\zeta \cup \omega_{\Lambda^c})} \varphi(\eta, \zeta \cup \omega_{\Lambda^c}) = \sum_{\eta \in \mathcal{E}_{\Lambda}(\zeta \cup \partial_{\Lambda}\omega)} \varphi(\eta, \zeta \cup \partial_{\Lambda}\omega), \quad (4)$$

and this sum extends over a finite set.

### **(R)** The range condition

There exist constants  $\ell_R$ ,  $n_R \in \mathbb{N}$  and  $\delta_R < \infty$  such that for all  $(\eta, \omega) \in \mathcal{E}$ one can find a horizon  $\Delta$  as in (1) satisfying the following: For every  $x, y \in \Delta$ , there exist  $\ell$  open balls  $B_1, \ldots, B_\ell$  (with  $\ell \leq \ell_R$ ) such that

- the set  $\bigcup_{i=1}^{\ell} \overline{B}_i$  is connected and contains x and y, and
- for each *i*, either diam  $B_i \leq \delta_R$  or  $N_{B_i}(\omega) \leq n_R$ .

#### Proposition

Under (**R**), for each  $\Lambda \Subset \mathbb{R}^d$  there exists a set  $\hat{\Omega}^{\Lambda}_{cr} \in \mathcal{F}_{\Lambda^c}$  such that  $\hat{\Omega}^{\Lambda}_{cr} \subset \Omega^{\Lambda}_{cr}$  and  $P(\hat{\Omega}^{\Lambda}_{cr}) = 1$  for all  $P \in \mathscr{P}_{\Theta}$  with  $P(\{\emptyset\}) = 0$ .

# (S) Stability.

The hyperedge potential  $\varphi$  is called *stable* if there exists a constant  $c_S \ge 0$  such that

$$H_{\Lambda,\omega}(\zeta) \ge -c_S \ \#(\zeta \cup \partial_\Lambda \omega) \tag{5}$$

for all  $\Lambda \Subset \mathbb{R}^d$ ,  $\zeta \in \Omega_\Lambda$  and  $\omega \in \Omega^{\Lambda}_{cr}$ .

• Periodic partition of  $\mathbb{R}^d$  into parallelotopes

$$C(k) := \{ \mathsf{M} x \in \mathbb{R}^d : x - k \in [-1/2, 1/2[^d] \}.$$

with  $k \in \mathbb{Z}^d$  and  $M \in \mathbb{R}^{d \times d}$  be an invertible  $d \times d$  matrix. For brevity, C = C(0).

• Let  $\Gamma$  be a measurable subset of  $\Omega_C \setminus \{\emptyset\}$  and

$$\overline{\mathsf{\Gamma}} = \Big\{ \omega \in \Omega : artheta_{\mathsf{M}k}(\omega_{\mathcal{C}(k)}) \in \mathsf{\Gamma} \; \; ext{for all} \; k \in \mathbb{Z}^d \Big\}$$

the set of all pseudo-periodic configurations.

(6)

### **(U)** Upper regularity.

M and  $\Gamma$  can be chosen so that the following holds.

(U1) Uniform confinement:  $\overline{\Gamma} \subset \Omega^{\Lambda}_{cr}$  for all  $\Lambda \Subset \mathbb{R}^d$ , and

$$r_{\Gamma} := \sup_{\Lambda \Subset \mathbb{R}^d} \sup_{\omega \in \overline{\Gamma}} r_{\Lambda,\omega} < \infty.$$

(U2) Uniform summability:  $c_{\Gamma}^{+} := \sup_{\omega \in \overline{\Gamma}} \sum_{\eta \in \mathcal{E}(\omega): \eta \cap C \neq \emptyset} \frac{\varphi^{+}(\eta, \omega)}{\#(\hat{\eta})} < \infty,$ 

where 
$$\hat{\eta} := \{k \in \mathbb{Z}^d : \eta \cap C(k) \neq \emptyset\}.$$

(U3) Strong non-rigidity:  $e^{z|C|} \prod_{C}^{z}(\Gamma) > e^{c_{\Gamma}}$ where  $c_{\Gamma}$  is defined as in (U2) with  $\varphi$  in place of  $\varphi^{+}$ .

#### Theorem

For every hypergraph structure  $\mathcal{E}$ , hyperedge potential  $\varphi$  and activity z > 0 satisfying (S), (R) and (U) there exists at least one Gibbs measure  $P \in \mathscr{G}_{\Theta}(\varphi, z)$ .

# (Û) Alternative upper regularity.

M and  $\Gamma$  can be chosen so that the following holds.

(Ü1) Lower density bound: There exist constants a, b > 0 such that  $\#(\zeta) \ge a|\Lambda| - b$  whenever  $\zeta \in \Omega_f$  is such that  $H_{\Lambda,\omega}(\zeta) < \infty$  for some  $\zeta \subset \Lambda \Subset \mathbb{R}^d$  and some  $\omega \in \overline{\Gamma}$ .

 $(\hat{U}2) = (U2)$  Uniform summability.

(Û3) Weak non-rigidity:  $\prod_{C}^{z}(\Gamma) > 0$ .

#### Theorem

A Gibbs measure  $P \in \mathscr{G}_{\Theta}(\varphi, z)$  exists also under the hypotheses (S), (R) and  $(\hat{\mathbf{U}})$ .

#### Simplified upper regularity.

Same as (U) and ( $\hat{U}$ ) but with  $\Gamma$  chosen as:

$$\Gamma^{\mathcal{A}} = ig\{\zeta \in \Omega_{\mathcal{C}}: \zeta = \{x\} ext{ for some } x \in \mathcal{A}ig\}.$$

# Examples

## Polynomially increasing Delaunay edge interactions

Let d = 2 and  $\varphi$  be a edge potential on  $\mathit{Del}_2$  which is bounded below such that

 $\phi(\ell) \leq \kappa_0 + \kappa_1 \ell^{lpha}$  for some constants  $\kappa_0 \geq 0$ ,  $\kappa_1 \geq 0$  and lpha > 0.

Then there exists at least one Gibbs measure for  $\varphi$  and every activity

$$z > (1+2\varrho_0)e^{3\kappa_0}(3\alpha e^2\kappa_1/2)^{1/lpha}/(\pi \varrho_0^2).$$

Long Delaunay edge exclusion.

Let d = 2 and  $\varphi$  be a pure edge potential on  $Del_2$  which is bounded below and such that there are constants  $0 \le \ell_0 < \ell_1 \le \ell_2$ :

$$\sup_{\ell_0 \leq \ell \leq \ell_1} \phi(\ell) < \infty \quad \text{and} \quad \phi(\ell) = \infty \; \text{ if } \ell > \ell_2.$$

Then there exists at least one Gibbs measure for  $\varphi$  and every z > 0.

# Examples

## Many other examples

- Polynomially increasing Delaunay triangle interactions
- Shape-dependent Delaunay triangle interactions
- Many-body interactions of finite range
- Forced-clustering k-nearest neighbor interactions
- Voronoi cell interactions
- Adjacent Voronoi cell interactions

# Example 1:

```
gd<-EBGibbs(~2+Del2(12<1600,theta=2))
run(gd)
```



- ロ > ・ 個 > ・ 差 > ・ 差 ・ の へ ()・

## Example 2:

gdm<-EBGibbs(~2+Del2(l2<1600,theta=2),mark=EBMark(m=int(1,1:3)))
run(gdm,vcCol=m)</pre>



# Example 3:

gd2<-EBGibbs(~1+Del2(12<=400,400<12 & 12<=6400,theta=c(2,4))) run(gd2)



Example 3 (bis):

PieceWise<-function(x,b) (b[-length(b)] <= x) & (x < b[-1])
gd2<-EBGibbs(~1+Del2(PieceWise(1,c(0,20,80)),theta=c(2,4)))
run(gd2)</pre>



# Example 4:

ga2<-EBGibbs(~1+All2(l2<=400,400<l2 & l2<=6400,theta=c(2,4)))
run(ga2)</pre>



### Example 5:

gd3<-EBGibbs(~2+Del2(1<=40,theta=2)+Del3(sa>=pi/4,theta2=-2))
run(gd3,type=c("dv","de"),dvArgs=list(cex=.5,col="red"))



## Example 6:

