Existence of Gibbsian point processes with geometry-dependent interactions

D. Dereudre, R. Drouilhet and H.-O. Georgii

Plan

(1) Motivation and Introduction

(2) Stationary Gibbs state

(3) Existence of Gibbs state (classical tools)
(4) Existence of Gibbsian point processes with geometry-dependent interactions

Motivation

Gibbs framework

- Classical framework in \mathbb{R}^{d} : Point process with (pairwise) interaction on the complete graph (ex: Ruelle class of superstable model, Lennard-jones model, ...).

Motivation

Gibbs framework

- Classical framework in \mathbb{R}^{d} : Point process with (pairwise) interaction on the complete graph (ex: Ruelle class of superstable model, Lennard-jones model,...).
- Classical framework in \mathbb{Z}^{d} : Lattice field with (pairwise) interaction on the nearest-neighbour graph (Ising model, Potts model,...)

Motivation

Gibbs framework

- Classical framework in \mathbb{R}^{d} : Point process with (pairwise) interaction on the complete graph (ex: Ruelle class of superstable model, Lennard-jones model, ...).
- Classical framework in \mathbb{Z}^{d} : Lattice field with (pairwise) interaction on the nearest-neighbour graph (Ising model, Potts model,...)
- New framework in \mathbb{R}^{d} : Point process with (pairwise) interaction on the nearest-neighbour graph such the Delaunay graph (for example). Introduced by Baddeley-Moller in some bounded domain.

Motivation

Gibbs framework

- Classical framework in \mathbb{R}^{d} : Point process with (pairwise) interaction on the complete graph (ex: Ruelle class of superstable model, Lennard-jones model,...).
- Classical framework in \mathbb{Z}^{d} : Lattice field with (pairwise) interaction on the nearest-neighbour graph (Ising model, Potts model,...)
- New framework in \mathbb{R}^{d} : Point process with (pairwise) interaction on the nearest-neighbour graph such the Delaunay graph (for example). Introduced by Baddeley-Moller in some bounded domain.
- Problem: Existence of such kind of model defined as a stationary point process in \mathbb{R}^{d}.

Point process without interaction

Poisson process with intensity 0.0016 (mean $=400$ points in the domain)
number of points $=392$

Point process with classical interaction

Multi-Strauss point process
number of points $=358$

Point process with Delaunay neighbour interaction
Delaunay Multi-Strauss point process
number of points=371

Point process with Delaunay neighbour interaction
The Voronoï diagram
number of points=371

Point process with Delaunay neighbour interaction
The Voronoï diagram and its dual graph
number of points=371

Point process with Delaunay neighbour interaction
This is the Delaunay graph
number of points=371

Point process with Delaunay neighbour interaction

No other points in any circle circumscribing a Delaunay triangle
number of points=371

Point processes: definition and notation

Notation

- $\Delta \Subset \mathbb{R}^{d}$ and $\Lambda \Subset \mathbb{R}^{d}$ means Δ and Λ are bounded Borelian sets.
- Let $\Lambda \subset \mathbb{R}^{d}$ and $\varphi \in \Omega, \varphi_{\Lambda}:=\varphi \cap \Lambda \in \Omega_{\Lambda}$
- Useful notation: sum over all configurations φ in Λ

$$
\oint_{\Lambda} d \varphi g(\varphi):=\sum_{n=0}^{+\infty} \frac{1}{n!} \int_{\Lambda} \cdots \int_{\Lambda} d x_{1} \cdots d x_{n} g\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)
$$

- Poisson measure $\Pi_{\Lambda}: \int_{\Omega_{\Lambda}} \Pi_{\Lambda}(d \varphi) g(\varphi):=e^{-|\Lambda|} \oint_{\Lambda} d \varphi g(\varphi)$

Point process in some domain $\Lambda \subset \mathbb{R}^{d}$

A point process in Λ is a random variable Φ_{Λ} with values in Ω_{Λ} equipped with the smallest σ-field which make measurable all the maps $i_{\Delta}: \varphi \in \Omega_{\Lambda} \rightarrow\left|\varphi_{\Delta}\right|$ with $\Delta \subset \Lambda \in \mathcal{B}_{b}$.

Point processes: definition and notation

Notation

- $\Delta \Subset \mathbb{R}^{d}$ and $\Lambda \Subset \mathbb{R}^{d}$ means Δ and Λ are bounded Borelian sets.
- Let $\Lambda \subset \mathbb{R}^{d}$ and $\varphi \in \Omega, \varphi_{\Lambda}:=\varphi \cap \Lambda \in \Omega_{\Lambda}$
- Useful notation: sum over all configurations φ in $\Lambda(z \in \mathbb{R})$

$$
\oint_{\Lambda}^{z} d \varphi g(\varphi):=\sum_{n=0}^{+\infty} \frac{z^{n}}{n!} \int_{\Lambda} \cdots \int_{\Lambda} d x_{1} \cdots d x_{n} g\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)
$$

- Poisson measure $\Pi_{\Lambda}^{z}: \int_{\Omega_{\Lambda}} \Pi_{\Lambda}^{z}(d \varphi) g(\varphi):=e^{-z|\Lambda|} \oint_{\Lambda}^{z} d \varphi g(\varphi)$

Point process in some domain $\Lambda \subset \mathbb{R}^{d}$

A point process in Λ is a random variable Φ_{Λ} with values in Ω_{Λ} equipped with the smallest σ-field which make measurable all the maps $i_{\Delta}: \varphi \in \Omega_{\Lambda} \rightarrow\left|\varphi_{\Delta}\right|$ with $\Delta \subset \Lambda \in \mathcal{B}_{b}$.

Gibbs Distribution in Λ

$$
\begin{aligned}
& P_{\Lambda}(F)=Z_{\Lambda}^{-1} \oint_{\Lambda} d \varphi \mathbb{1}_{F}(\varphi) e^{-V(\varphi)} \\
& V(\varphi)=\theta_{1}|\varphi|+\sum_{\xi \in G_{2}(\varphi)} g_{2}(\xi) .
\end{aligned}
$$

$g_{2}(\xi)=\theta_{2} \mathbb{I}_{\left[d_{1}, d_{2}\right.}(\|\xi\|)+\theta_{3} \mathbb{I}_{\left[d_{2}, d_{3}\right.}(\|\xi\|)$
with

$$
\begin{aligned}
& \theta_{2}=2, \theta_{3}=4 \\
& \mathbf{d}=(0,20,80)
\end{aligned}
$$

number of points =371

Gibbs Distribution in Λ

$$
\begin{aligned}
& P_{\Lambda}(F)=Z_{\Lambda}^{-1} \oint_{\Lambda} d \varphi \mathbb{1}_{F}(\varphi) e^{-V(\varphi)} \\
& V(\varphi)=\theta_{1}|\varphi|+\sum_{\xi \in G_{2}(\varphi)} g_{2}(\xi) .
\end{aligned}
$$

Small 425 (0.7\%), Medium 19 (0\%), Large 63459 (99.3\%)

$g_{2}(\xi)=\theta_{2} \mathbb{I}_{\left[d_{1}, d_{2}\right.}(\|\xi\|)+\theta_{3} \mathbb{I}\left[d_{2}, d_{3}(\|\xi\|)\right.$
with

$$
\begin{aligned}
& \theta_{2}=2, \theta_{3}=4 \\
& \mathbf{d}=(0,20,80)
\end{aligned}
$$

Small 280 (26.1\%), Medium 41 (3.8\%), Large 750 (70\%)

Plan

(1) Motivation and Introduction

(2) Stationary Gibbs state

(3) Existence of Gibbs state (classical tools)
(4) Existence of Gibbsian point processes with geometry-dependent interactions

Gibbs Point Process in bounded domain Λ

Global distribution: $P_{\Lambda}(F)=\oint_{\Lambda} d \varphi \mathbb{f}_{\Phi_{\Lambda}}(\varphi) \mathbb{1}_{F}(\varphi)$	
$\text { Gibbs: } \frac{\exp (-\mathrm{V}(\varphi))}{\oint_{\Lambda} \mathrm{d} \varphi \exp (-\mathrm{V}(\varphi))}$	Poisson: \qquad
Marginal distribution: $P_{\wedge, \Delta}\left(F_{\Delta}\right)=\oint_{\Delta} d \varphi f_{\Phi_{\Delta}}(\varphi) \mathbb{1}_{F_{\Delta}}(\varphi)$$\quad$ with $f_{\Phi_{\Delta}}(\varphi)=\oint_{\Lambda \Delta} d \varphi^{0} f^{\prime}\left(\varphi \cup \varphi^{0}\right)$ with $\mathrm{f}_{\Phi_{\Delta}}(\varphi)=\oint_{\Lambda \backslash \Delta} \mathrm{d} \varphi^{0} \mathrm{f}_{\Phi_{\Lambda}}\left(\varphi \cup \varphi^{0}\right)$	
Gibbs: generally not explicit	Poisson: $\frac{1}{\exp (z\|\Delta\|)}$
Conditional distribution: $P_{\Lambda, \Delta}\left(F_{\Delta} \mid \varphi^{\circ}\right)=\oint_{\Delta} d \varphi f_{\Phi_{\Delta}}^{\Phi_{\Lambda \Delta \Delta}=\varphi^{\circ}}(\varphi) \mathbb{1}_{F_{\Delta}}(\varphi)$ with $f_{\Phi_{\Delta}}^{\Phi_{\Lambda \Delta \Delta}=\varphi^{0}}(\varphi)=\frac{f_{\Phi_{\Lambda}}\left(\varphi \cup \varphi^{\circ}\right)}{f \Phi_{\Lambda \backslash \Delta\left(\varphi^{\circ}\right)}}$	
Gibbs: $\frac{\exp \left(-\mathrm{V}\left(\varphi \mid \varphi^{0}\right)\right)}{\oint_{\Delta} \mathrm{d} \varphi \exp \left(-\mathrm{V}\left(\varphi \mid \varphi^{0}\right)\right)}$	Poisson: $\frac{1}{\exp (\mathrm{z}\|\Delta\|)}$
where $\mathrm{V}\left(\varphi \mid \varphi^{\circ}\right):=V\left(\varphi \cup \varphi^{\circ}\right)-V\left(\varphi^{\circ}\right)$ (energy to insert φ in φ°).	

(Stationary) Gibbs Point Process in $\Lambda=\mathbb{R}^{d}$

Global distribution: $P(F)=\oint_{\Lambda} d \varphi f_{\Phi_{\Lambda}}(\varphi) \mathbb{1}_{F}(\varphi)$	
Gibbs: $\frac{\exp (-\mathrm{V}(\varphi))}{\oint_{\Lambda} \mathrm{d} \varphi \exp (-\mathrm{V}(\varphi))}$	Poisson: $\frac{1}{\exp (z\|\Lambda\|)}$
Marginal distribution: $P_{\Delta}\left(F_{\Delta}\right)=\oint_{\Delta} d \varphi f_{\Phi_{\Delta}}(\varphi) \mathbb{1}_{F_{\Delta}}(\varphi)$ with $f_{\Phi_{\Delta}}(\varphi)=\oint_{\Lambda \backslash \Delta} d \varphi^{\circ} f_{\Phi_{\Lambda}}\left(\varphi \cup \varphi^{o}\right)$	
Gibbs: generally not explicit	Poisson: $\frac{1}{\exp (z\|\Delta\|)}$
$\begin{gathered} \text { Conditional distribution: } P_{\Delta}\left(F_{\Delta} \mid \varphi^{0}\right)=\oint_{\Delta} d \varphi f_{\Phi_{\Delta}}^{\Phi_{\Lambda \backslash \Delta}=\varphi^{o}}(\varphi) \mathbb{1}_{F_{\Delta}}(\varphi) \\ \text { with } f_{\Phi_{\Delta}}^{\Phi_{\Lambda \backslash \Delta}=\varphi^{\circ}}(\varphi)=\frac{f_{\varphi_{\Lambda}}\left(\varphi \cup \varphi^{\circ}\right)}{f \Phi_{\Lambda \backslash \Delta}\left(\varphi^{\circ}\right)} \end{gathered}$	
Gibbs: $\frac{\exp \left(-\mathrm{V}\left(\varphi \mid \varphi^{0}\right)\right)}{\oint_{\Delta} \mathrm{d} \varphi \exp \left(-\mathrm{V}\left(\varphi \mid \varphi^{0}\right)\right)}$	Poisson: $\frac{1}{\exp (\mathrm{z}\|\Delta\|)}$
where $\mathbf{V}\left(\varphi \mid \varphi^{\circ}\right):=\lim _{\wedge \rightarrow \mathbb{R}^{d}} V\left(\varphi \cup \varphi^{\circ} \wedge\right)-V\left(\varphi^{\circ} \wedge\right)$	

Objective

Stationary Gibbs states

The set $\mathcal{G}_{s}(V)$ of stationary Gibbs state is nonempty, that is, there exists a translation invariant probability measure P such that:

$$
\underbrace{P P_{\Delta}=P}_{\text {D.L.R. equation }} \Longleftrightarrow \underbrace{P\left(F \mid \mathcal{F}_{\Delta^{c}}\right)=P_{\Delta}(F \mid \cdot) P \text { a.s }}_{\begin{array}{c}
P=\text { distribution of } \Phi \\
\\
P_{\Delta}\left(\cdot \mid \varphi^{\circ}\right)=\text { distribution of } \Phi \text { given } \varphi_{\Delta^{c}}^{\circ}
\end{array}}
$$

General sketch of the proof

- Find $\left(P_{n}\right)_{n}$ such that $\left(\mathbf{E}_{\mathbf{n}}\right): P_{n} P_{\Delta}^{n}=P_{n}$ where $P_{\Delta}^{n} \underset{n \rightarrow+\infty}{\longrightarrow} P_{\Delta}$.
- [GC] Gibbs Candidate: P is an accumulation point of $\left(P_{n}\right)_{n}$ by relative compactness argument.
- [GP] Gibbs Property: Prove D.L.R., i.e. $\left(\mathbf{E}_{\mathbf{n}}\right)$ when $n \rightarrow+\infty$.

Plan

(1) Motivation and Introduction
(2) Stationary Gibbs state
(3) Existence of Gibbs state (classical tools)
(4) Existence of Gibbsian point processes with geometry-dependent interactions

Existence of stationary Gibbs models (classical tools)

Restriction to models satisfying:

- [L] Local property: $V\left(\varphi_{\wedge} \mid \varphi_{\Lambda^{c}}^{\circ}\right)=V\left(\varphi_{\wedge} \mid \varphi_{\tilde{\Lambda} \backslash \Lambda}^{\circ}\right)$ with $\widetilde{\Lambda} \Subset \mathbb{R}^{d}$ An interaction function g_{2} acting on some graph $\mathcal{G}(\varphi)$ is said to be based on $\mathcal{G}^{\prime}(\varphi)(\subset \mathcal{G}(\varphi))$ if $g_{2}(\xi)=g_{2}^{\prime}(\xi) \mathbf{1}_{\mathcal{G}^{\prime}(\varphi)}(\xi)$

Assumptions for [L]

- $G_{2}(\varphi)=\mathcal{P}_{2}(\varphi)$: [Range on g_{2}] (i.e $g_{2}(d)=0$ when $d \geq R$) $\left(\Leftrightarrow\left[g_{2}\right.\right.$ based on $\left.\mathcal{P}_{2, R}^{\text {loc }}(\varphi)\right]$ with $\left.\left.\mathcal{P}_{2, R}^{\text {loc }}(\varphi)\right]:=\left\{\xi \in \mathcal{P}_{2}(\varphi):\|\xi\|<R\right\}\right)$
- $G_{2}(\varphi)=\operatorname{Del}_{2}(\varphi):\left[g_{2}\right.$ based on $\operatorname{Del}_{2, R}^{\text {loc }}(\varphi)$] with

$$
\operatorname{De}_{2, R}^{\mathrm{loc}}(\varphi)=\bigcup_{\psi \in \operatorname{Del}_{3, R}^{\mathrm{loc}}(\varphi)} \mathcal{P}_{2}(\psi)
$$

where $R>0, r(\psi)$ the radius of the circumscribed circle of some triangle ψ and $\operatorname{Del}_{3, R}^{\text {loc }}(\varphi)=\left\{\psi \in \operatorname{Del}_{3}(\varphi), r(\psi) \leq R\right\}$.

Existence of stationary Gibbs models (classical tools)

Existence of stationary Gibbs state

(1) $\left([\right.$ Superstability] and $[\mathrm{L}]) \Rightarrow\left(\mathcal{G}_{s}(V) \neq \emptyset\right)$
(2) $(([\mathbf{H C}]$ or $[\mathbf{I}])$ and $[\mathbf{L}]) \Rightarrow([\mathbf{L S}]$ and $[\mathbf{L}]) \Rightarrow\left(\mathcal{G}_{s}(V) \neq \emptyset\right)$
with

- [LS] Local Stability: $V\left(\varphi_{\wedge} \mid \varphi_{\wedge c}^{o}\right) \geq-K\left|\varphi_{\wedge}\right|$
- [HC] Hard-Core: $V\left(\varphi_{\wedge} \mid \varphi_{\wedge c}^{\circ}\right)=+\infty \Leftarrow\left(\exists \xi \in \varphi_{\wedge}:\|\xi\|<\delta\right)$
- [I] Inhibition: $V\left(\varphi_{\wedge} \mid \varphi_{\wedge^{c}}^{o}\right) \geq 0$

Application via [Superstability]

- $G_{2}(\varphi)=\mathcal{P}_{2}(\varphi)$: tailor-made for this case with g_{2} not necessarily nonnegative (but $\left.g_{2}(0)>0\right)$!
- $G_{2}(\varphi)=\operatorname{Del}_{2}(\varphi)$: [Superstability] never true when $d=2$ (idem when $d>2$???).

Existence of stationary Gibbs models (classical tools)

Application via [LS]

- $G_{2}(\varphi)=\mathcal{P}_{2}(\varphi)$:
(1) [Hard-Core on g_{2}] and [Range on g_{2}]
(2) [Inhibition on $g_{2}\left(g_{2} \geq 0\right)$]) and [Range on g_{2}]
- $G_{2}(\varphi)=\operatorname{Del}_{2}(\varphi)$: (Bertin, Billiot, Drouilhet)
(1) [Hard-Core on g_{2}] and [g_{2} based on $\operatorname{Del}_{2, R}^{\text {loc }}(\varphi)$]
(2) [g_{2} based on $D e l_{2, \beta}^{\beta_{0}}(\varphi)$] and [Range on g_{2}] with

$$
\left.\operatorname{De}\right|_{2, \beta} ^{\beta_{0}}(\varphi)=\bigcup_{\left.\psi \in \operatorname{De}\right|_{3, \beta} ^{\beta_{0}}(\varphi)} \mathcal{P}_{2}(\psi)
$$

where $\beta_{0} \in[0, \pi / 3[, \beta(\psi)$ the smallest angle of a triangle ψ and $\operatorname{Del}_{3, \beta}^{\beta_{0}}(\varphi)=\left\{\psi \in \operatorname{Del}_{3}(\varphi), \beta(\psi)>\beta_{0}\right\}$.

Local Stability (complete versus Delaunay graph)

Pointwise local energy $\left(G_{2}(\varphi)=\mathcal{P}_{2}(\varphi)\right.$):
$V(\mathbf{0} \mid \varphi):=V(\mathbf{0} \cup \varphi)-V(\varphi)$

Local Stability (complete versus Delaunay graph)

Pointwise local energy $\left(G_{2}(\varphi)=\mathcal{P}_{2}(\varphi)\right.$):
$V(\mathbf{0} \mid \varphi):=V(\mathbf{0} \cup \varphi)-V(\varphi)$

Local Stability (complete versus Delaunay graph)

Pointwise local energy $\left(G_{2}(\varphi)=\mathcal{P}_{2}(\varphi)\right.$):
$V(\mathbf{0} \mid \varphi):=V(\mathbf{0} \cup \varphi)-V(\varphi)=V^{+}(\mathbf{0} \mid \varphi)-V^{-}(\mathbf{0} \mid \varphi)$
where

$$
\begin{aligned}
& V^{+}(\mathbf{0} \mid \varphi)=\sum_{\substack{\xi^{+} \in \mathcal{G}_{2}\left(\mathbf{0}(\varphi) \\
\xi^{+} \notin G_{2}(\varphi)\right.}} g_{2}\left(\xi^{+}\right) \\
& V^{-}(\mathbf{0} \mid \varphi)=\sum_{\substack{\xi^{-} \in G_{2}(\varphi) \\
\xi^{-} \notin G_{2}(\mathbf{O} \cup \varphi)}} g_{2}\left(\xi^{-}\right)
\end{aligned}
$$

Local Stability (complete versus Delaunay graph)

Pointwise local energy $\left(G_{2}(\varphi)=\mathcal{P}_{2}(\varphi)\right.$):
$V(\mathbf{0} \mid \varphi):=V(\mathbf{0} \cup \varphi)-V(\varphi)=V^{+}(\mathbf{0} \mid \varphi)$
where

$$
\begin{aligned}
V^{+}(\mathbf{0} \mid \varphi)= & \sum_{\substack{\xi^{+} \in G_{2}(\mathbf{0} \cup \varphi) \\
\xi^{+} \notin G_{2}(\varphi)}} g_{2}\left(\xi^{+}\right) \\
V^{-}(\mathbf{0} \mid \varphi)= & \sum_{\substack{\xi^{-} \in G_{2}(\varphi) \\
\xi-\notin G_{2}(\mathbf{0} \cup \varphi)}} g_{2}\left(\xi^{-}\right)=0 \\
\text { since } & G_{2}(\varphi) \subset G_{2}(\mathbf{0} \cup \varphi)
\end{aligned}
$$

Local Stability (complete versus Delaunay graph)

Pointwise local energy $\left(G_{2}(\varphi)=\operatorname{Del}_{2}(\varphi)\right)$:
$V(\mathbf{0} \mid \varphi):=V(\mathbf{0} \cup \varphi)-V(\varphi)$

Local Stability (complete versus Delaunay graph)

Pointwise local energy $\left(G_{2}(\varphi)=\operatorname{Del}_{2}(\varphi)\right)$:
$V(\mathbf{0} \mid \varphi):=V(\mathbf{0} \cup \varphi)-V(\varphi)$

Local Stability (complete versus Delaunay graph)

Pointwise local energy ($G_{2}(\varphi)=\operatorname{Del}_{2}(\varphi)$):
$V(\mathbf{0} \mid \varphi):=V(\mathbf{0} \cup \varphi)-V(\varphi)=V^{+}(\mathbf{0} \mid \varphi)-V^{-}(\mathbf{0} \mid \varphi)$

where

$$
V^{+}(\mathbf{0} \mid \varphi)=\sum_{\substack{\xi^{+} \in G_{2}(\mathbf{0} \cup \varphi) \\ \xi \notin \notin G_{2}(\varphi)}} g_{2}\left(\xi^{+}\right)
$$

$$
V^{-}(0 \mid \varphi)=\quad \sum \quad g_{2}\left(\xi^{-}\right) \neq 0
$$

since

$$
G_{2}(\varphi) \nsubseteq G_{2}(0 \cup \varphi)
$$

Existence of stationary Gibbs models (via entropic tools)

Existence of stationary Gibbs state (entropic tools of H.-O. Georgii)

$$
\left(([\mathbf{G C}-\mathbf{G E}] \text { and }[\mathrm{L}]) \Rightarrow([\mathbf{G C}-\mathbf{I M}] \text { and }[\mathrm{L}]) \Rightarrow\left(\mathcal{G}_{s}(V) \neq \emptyset\right)\right.
$$

with

- [GC-IM]: there exists $\varphi^{0} \in \Omega$ such that

$$
I\left(P_{\Lambda}\left(\cdot \mid \varphi^{o}\right) ; \pi_{\Lambda}^{z}\right) \leq c|\Lambda|
$$

where $I(P ; Q)$ denotes the relative entropy of P and Q.

- [GC-GE] $\left(\Rightarrow\right.$ [GC-IM]): there exists $\varphi^{\circ} \in \Omega$ such that

$$
V\left(\varphi_{\Lambda} \mid \varphi_{\Lambda c}^{o}\right)>-c_{0}|\Lambda|, \text { uniformly on } \varphi_{\Lambda} \in \Omega_{\Lambda}
$$

Application

- $G_{2}(\varphi)=\mathcal{P}_{2}(\varphi):($ Georgii, Haggström $)$
[Superstability] (\Rightarrow [GC-GE]) and [Range on g_{2}]
- $G_{2}(\varphi)=\operatorname{Del}_{2}(\varphi):($ Bertin, Billiot, Drouilhet)
[Inhibition $\left(g_{2} \geq 0\right)$] and [g_{2} based on $\operatorname{Del}_{2, R}^{\text {loc }}(\varphi)$] (Choosing $\varphi^{\circ}=\emptyset, V\left(\varphi_{\wedge} \mid \varphi_{\wedge^{c}}^{\circ}\right)=V\left(\varphi_{\wedge}\right) \geq 0 \Rightarrow$ [GC-GE]).

Existence of Gibbs models (local graph and non hereditary)

Gibbs property via local property of the graph (D. Dereudre)

- Remark: a nearest-neigbour type graph is local and, for a.s. any φ°, there exists $\Lambda\left(\varphi^{\circ}\right) \Subset \mathbb{R}^{d}: V\left(0 \mid \varphi^{o}\right)=V\left(0 \mid \varphi_{\Lambda\left(\varphi^{\circ}\right)}^{\circ}\right)$ which is clearly less restrictive than [L]!

Existence of Gibbs models (local graph and non hereditary)

Gibbs property via local property of the graph (D. Dereudre)

- Remark: a nearest-neigbour type graph is local and, for a.s. any φ°, there exists $\Lambda\left(\varphi^{o}\right) \Subset \mathbb{R}^{d}: V\left(0 \mid \varphi^{o}\right)=V\left(0 \mid \varphi_{\Lambda\left(\varphi^{\circ}\right)}^{o}\right)$ which is clearly less restrictive than [L]!
- No longer [L] is required and consequently the following models exist:
(1) [g_{2} based on $\operatorname{Del}_{2}(\varphi)$] and [Hard-Core on g_{2}]
(2) [g_{2} based on $D e e_{2, \beta}^{\beta_{0}}(\varphi)$]

Existence of Gibbs models (local graph and non hereditary)

Gibbs property via local property of the graph (D. Dereudre)

- Remark: a nearest-neigbour type graph is local and, for a.s. any φ°, there exists $\Lambda\left(\varphi^{\circ}\right) \Subset \mathbb{R}^{d}: V\left(0 \mid \varphi^{o}\right)=V\left(0 \mid \varphi_{\Lambda\left(\varphi^{\circ}\right)}^{0}\right)$ which is clearly less restrictive than [L]!
- No longer [L] is required and consequently the following models exist:
(1) [g_{2} based on $\operatorname{Det}_{2}(\varphi)$] and [Hard-Core on g_{2}]
(2) [g_{2} based on $D e e_{2, \beta}^{\beta_{0}}(\varphi)$]

Non hereditary extension (D. Dereudre)

- Hereditary property:

$$
V(\varphi)<+\infty \Rightarrow V(\psi)<+\infty \text { whenever } \psi \subset \varphi \text { is usually required }
$$

- Existence of non hereditary Delaunay models is first considered.
- Example: Rigid models such that $g_{2}(d)=+\infty$ for $d>D$.

Plan

(1) Motivation and Introduction
(2) Stationary Gibbs state
(3) Existence of Gibbs state (classical tools)

4 Existence of Gibbsian point processes with geometry-dependent interactions

Goals

- Thanks to the entropic tools, replacement of [Superstability] or [LS] by Stability [S]: $V\left(\varphi_{\wedge}\right) \geq-K\left|\varphi_{\Lambda}\right|$
- Extension to general nearest-neighbour graph (not only the Delaunay graph)
- Locality of the graph instead of the local property.
- Non-hereditary case considered.
- In the Delaunay case, consider the interaction function g_{2} of the form:

New contribution (Dereudre, Drouilhet and Georgii)

Definition

- Hypergraph structure: measurable subset \mathcal{E} of $\Omega_{f} \times \Omega$ such that $\eta \subset \omega$ for all $(\eta, \omega) \in \mathcal{E}$.
- Hyperedge of $\omega: \eta \in \mathcal{E}(\omega) \Leftrightarrow(\eta, \omega) \in \mathcal{E}$.
- Hyperedge potential: measurable function φ from \mathcal{E} to $\mathbb{R} \cup\{\infty\}$.
- Hyperedge potential φ is called shift-invariant if

$$
\left(\vartheta_{x} \eta, \vartheta_{x} \omega\right) \in \mathcal{E} \text { and } \varphi\left(\vartheta_{x} \eta, \vartheta_{x} \omega\right)=\varphi(\eta, \omega), \forall(\eta, \omega) \in \mathcal{E}, x \in \mathbb{R}^{d} .
$$

- Finite horizon property for φ if for each $(\eta, \omega) \in \mathcal{E}$ there exists some $\Delta \Subset \mathbb{R}^{d}$ such that

$$
\begin{equation*}
(\eta, \tilde{\omega}) \in \mathcal{E} \text { and } \varphi(\eta, \tilde{\omega})=\varphi(\eta, \omega) \text { when } \tilde{\omega}=\omega \text { on } \Delta . \tag{1}
\end{equation*}
$$

Hamiltonian

$$
\begin{equation*}
H_{\Lambda, \omega}(\zeta):=\sum_{\eta \in \mathcal{E}_{\Lambda}\left(\zeta \cup \omega_{\Lambda c}\right)} \varphi\left(\eta, \zeta \cup \omega_{\Lambda c}\right) \quad \text { for } \zeta \in \Omega_{\Lambda} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{E}_{\Lambda}(\omega)=\left\{\eta \in \mathcal{E}(\omega): \varphi\left(\eta, \zeta \cup \omega_{\Lambda^{c}}\right) \neq \varphi(\eta, \omega) \text { for some } \zeta \in \Omega_{\Lambda}\right\} . \tag{3}
\end{equation*}
$$

which is the set of hyperedges η in a configuration ω for which either η itself or $\varphi(\eta, \omega)$ depends on the points of ω in Λ.

Remark on the conditional density function

$$
\frac{\exp \left(-V\left(\zeta \mid \omega_{\Lambda c}\right)\right)}{\oint_{\Lambda} d \zeta \exp \left(-V\left(\zeta \mid \omega_{\Lambda^{c}}\right)\right)}=\frac{\exp \left(-H_{\Lambda, \omega}(\zeta)\right)}{\oint_{\Lambda} d \zeta \exp \left(-H_{\Lambda, \omega}(\zeta)\right)}
$$

Definition

- $\Omega_{\mathrm{cr}}^{\Lambda}$ consists of the set of configuration $\omega \in \Omega$ which confines the range of φ from Λ : there exists a set $\partial \Lambda(\omega) \Subset \mathbb{R}^{d}$ such that $\varphi\left(\eta, \zeta \cup \tilde{\omega}_{\Lambda^{c}}\right)=\varphi\left(\eta, \zeta \cup \omega_{\Lambda^{c}}\right)$ whenever $\tilde{\omega}=\omega$ on $\partial \wedge(\omega)$, $\zeta \in \Omega_{\Lambda}$ and $\eta \in \mathcal{E}_{\Lambda}\left(\zeta \cup \omega_{\Lambda c}\right)$.
- $\partial \Lambda(\omega):=\Lambda^{r} \backslash \Lambda$ with Λ^{r} is the closed r-neighborhood of Λ and $r:=r_{\Lambda . \omega}$ is chosen as small as possible.
- $\partial_{\wedge} \omega=\omega_{\partial \Lambda(\omega)}$.

For $\omega \in \Omega_{\text {cr }}^{\wedge}$ we have

$$
\begin{equation*}
H_{\Lambda, \omega}(\zeta):=\sum_{\eta \in \mathcal{E}_{\Lambda}\left(\zeta \cup \omega_{\wedge c}\right)} \varphi\left(\eta, \zeta \cup \omega_{\Lambda c}\right)=\sum_{\eta \in \mathcal{E}_{\wedge}\left(\zeta \cup \partial_{\Lambda} \omega\right)} \varphi\left(\eta, \zeta \cup \partial_{\wedge} \omega\right), \tag{4}
\end{equation*}
$$

and this sum extends over a finite set.

(R) The range condition

There exist constants $\ell_{R}, n_{R} \in \mathbb{N}$ and $\delta_{R}<\infty$ such that for all $(\eta, \omega) \in \mathcal{E}$ one can find a horizon Δ as in (1) satisfying the following:
For every $x, y \in \Delta$, there exist ℓ open balls B_{1}, \ldots, B_{ℓ} (with $\ell \leq \ell_{R}$) such that

- the set $\cup_{i=1}^{\ell} \bar{B}_{i}$ is connected and contains x and y, and
- for each i, either $\operatorname{diam} B_{i} \leq \delta_{R}$ or $N_{B_{i}}(\omega) \leq n_{R}$.

Proposition

Under $\mathbf{(R)}$, for each $\Lambda \Subset \mathbb{R}^{d}$ there exists a set $\hat{\Omega}_{\mathrm{cr}}^{\Lambda} \in \mathcal{F}_{\wedge c}$ such that $\hat{\Omega}_{\mathrm{cr}}^{\wedge} \subset \Omega_{\mathrm{cr}}^{\wedge}$ and $P\left(\hat{\Omega}_{\mathrm{cr}}^{\wedge}\right)=1$ for all $P \in \mathscr{P}_{\Theta}$ with $P(\{\emptyset\})=0$.

(S) Stability.

The hyperedge potential φ is called stable if there exists a constant $c_{S} \geq 0$ such that

$$
\begin{equation*}
H_{\Lambda, \omega}(\zeta) \geq-c_{S} \#\left(\zeta \cup \partial_{\wedge} \omega\right) \tag{5}
\end{equation*}
$$

for all $\Lambda \Subset \mathbb{R}^{d}, \zeta \in \Omega_{\Lambda}$ and $\omega \in \Omega_{\text {cr }}^{\Lambda}$.

- Periodic partition of \mathbb{R}^{d} into parallelotopes

$$
\begin{equation*}
C(k):=\left\{M x \in \mathbb{R}^{d}: x-k \in\left[-1 / 2,1 / 2\left[^{d}\right\}\right.\right. \tag{6}
\end{equation*}
$$

with $k \in \mathbb{Z}^{d}$ and $\mathrm{M} \in \mathbb{R}^{d \times d}$ be an invertible $d \times d$ matrix.
For brevity, $C=C(0)$.

- Let Γ be a measurable subset of $\Omega_{C} \backslash\{\emptyset\}$ and

$$
\begin{equation*}
\bar{\Gamma}=\left\{\omega \in \Omega: \vartheta_{\mathrm{M} k}\left(\omega_{C(k)}\right) \in \Gamma \text { for all } k \in \mathbb{Z}^{d}\right\} \tag{7}
\end{equation*}
$$

the set of all pseudo-periodic configurations.

(U) Upper regularity.

M and Γ can be chosen so that the following holds.
(U1) Uniform confinement: $\bar{\Gamma} \subset \Omega_{\text {cr }}^{\Lambda}$ for all $\Lambda \Subset \mathbb{R}^{d}$, and

$$
r_{\Gamma}:=\sup _{\Lambda \in \mathbb{R}^{d}} \sup _{\omega \in \bar{\Gamma}} r_{\Lambda, \omega}<\infty .
$$

(U2) Uniform summability: $c_{\Gamma}^{+}:=\sup _{\omega \in \bar{\Gamma}} \sum_{\eta \in \mathcal{E}(\omega): \eta \cap C \neq \emptyset} \frac{\varphi^{+}(\eta, \omega)}{\#(\hat{\eta})}<\infty$, where $\hat{\eta}:=\left\{k \in \mathbb{Z}^{d}: \eta \cap C(k) \neq \emptyset\right\}$.
(U3) Strong non-rigidity: $e^{z|C|} \Pi_{C}^{z}(\Gamma)>e^{c_{\Gamma}}$ where c_{Γ} is defined as in (U2) with φ in place of φ^{+}.

Theorem

For every hypergraph structure \mathcal{E}, hyperedge potential φ and activity $z>0$ satisfying (S), (R) and (U) there exists at least one Gibbs measure $P \in \mathscr{G}_{\Theta}(\varphi, z)$.
(Û) Alternative upper regularity.
M and Γ can be chosen so that the following holds.
(Û1) Lower density bound: There exist constants $a, b>0$ such that $\#(\zeta) \geq a|\Lambda|-b$ whenever $\zeta \in \Omega_{f}$ is such that $H_{\Lambda, \omega}(\zeta)<\infty$ for some $\zeta \subset \Lambda \Subset \mathbb{R}^{d}$ and some $\omega \in \bar{\Gamma}$.
$(\mathrm{U} 2)=(\mathrm{U} 2)$ Uniform summability.
(Û3) Weak non-rigidity: $\Pi_{C}^{z}(\Gamma)>0$.

Theorem

A Gibbs measure $P \in \mathscr{G}_{\Theta}(\varphi, z)$ exists also under the hypotheses (S), (R) and (U).

Simplified upper regularity.

Same as (U) and (U) but with Γ chosen as:

$$
\Gamma^{A}=\left\{\zeta \in \Omega_{C}: \zeta=\{x\} \text { for some } x \in A\right\} .
$$

Examples

Polynomially increasing Delaunay edge interactions

Let $d=2$ and φ be a edge potential on $D e l_{2}$ which is bounded below such that

$$
\phi(\ell) \leq \kappa_{0}+\kappa_{1} \ell^{\alpha} \quad \text { for some constants } \kappa_{0} \geq 0, \kappa_{1} \geq 0 \text { and } \alpha>0
$$

Then there exists at least one Gibbs measure for φ and every activity

$$
z>\left(1+2 \varrho_{0}\right) e^{3 \kappa_{0}}\left(3 \alpha e^{2} \kappa_{1} / 2\right)^{1 / \alpha} /\left(\pi \varrho_{0}^{2}\right)
$$

Long Delaunay edge exclusion.

Let $d=2$ and φ be a pure edge potential on $D e l_{2}$ which is bounded below and such that there are constants $0 \leq \ell_{0}<\ell_{1} \leq \ell_{2}$:

$$
\sup _{\ell_{0} \leq \ell \leq \ell_{1}} \phi(\ell)<\infty \quad \text { and } \quad \phi(\ell)=\infty \text { if } \ell>\ell_{2} .
$$

Then there exists at least one Gibbs measure for φ and every $z>0$.

Examples

Many other examples

- Polynomially increasing Delaunay triangle interactions
- Shape-dependent Delaunay triangle interactions
- Many-body interactions of finite range
- Forced-clustering k-nearest neighbor interactions
- Voronoi cell interactions
- Adjacent Voronoi cell interactions

Example 1:

gd<-EBGibbs (${ }^{2} 2+$ Del2 $(12<1600$, theta=2) $)$
run (gd)

Example 2:

gdm<-EBGibbs (~2+Del2(12<1600, theta=2), mark=EBMark(m=int (1, 1:3))) run(gdm,vcCol=m)

Example 3:

gd2<-EBGibbs (~1+Del2 (12<=400,400<l2 \& l2<=6400, theta=c $(2,4))$) run(gd2)

Example 3 (bis):

PieceWise<-function (x, b) (b[-length (b)] <= x) \& (x < b[-1]) gd2<-EBGibbs(~1+Del2(PieceWise(1, c $(0,20,80))$, theta=c $(2,4))$) run(gd2)

Example 4:

```
ga2<-EBGibbs (~1+All2 (12<=400,400<l2 \& l2<=6400, theta=c \((2,4)))\)
run(ga2)
```


Example 5:

gd3<-EBGibbs (~2+Del2 (l<=40, theta=2) + Del3 (sa>=pi/4, theta2=-2)) run(gd3,type=c("dv", "de"), dvArgs=list (cex=.5, col="red"))

Example 6:

gvm<-EBGibbs (~ (-50) +Del1 ((a-aire[v\$m]) ^2, aire=c $(100,1000)$), mark=EBMark(m=int (1,1:2)))
run(gvm, vcCol=m, dvCol=m, dvCex=.5)

