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Contrast Minimization General Settings

X1, . . . ,Xn, . . . i.i.d. from an unknown distribution.

s a function of interest linked to this distribution.

The contrast minimization approach relies on an empirical contrast
γn, depending on X1, . . . ,Xn and such that

t 7→ E[γn(t)]

reaches a minimum value at t = s.

In any model S , s is estimated by the empirical contrast minimizer

ŝ ∈ argmin
t∈S

γn(t).

Its quality is measured by the corresponding natural loss function `:

∀t ∈ S , `(s, t) = E[γn(t)]− E[γn(s)].

J.-P. Baudry September 3, 2010 3 / 20



Contrast Minimization: Maximum Likelihood

Contrast minimization generalizes maximum likelihood estimation:

s is the density of the sample distribution itself.

For any density t, γn(t) = − 1
n

∑n
i=1 log t(Xi ).

In any model S , the minimum contrast estimator is the standard MLE:

ŝ = argmin
t∈S

{
−1

n

n∑
i=1

log t(Xi )
}
.

The corresponding loss function is the Kullback-Leibler divergence:

`(s, t) = E
[
−1

n

n∑
i=1

log t(Xi )

]
− E

[
−1

n

n∑
i=1

log s(Xi )

]
= dKL(s, t) ≥ 0,

which is uniquely minimized at t = s.
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Contrast Minimization: Other Contrasts

Examples of least-squares constrasts.

• Regression


Yi = s(Xi ) + εi , i = 1, . . . , n

γn(t) = − 1
n

∑n
i=1

(
Yi − t(Xi )

)2

`(s, t) = 1
n

∑n
i=1 E

[
(t − s)2(Xi )

]
≥ 0

• Gaussian white noise


dY (n)(x) = s(x)dx + 1√

n
dW (x),

with W a brownian motion

γn(t) = ‖t‖2 − 2
∫

t(x)dY (n)(x)

`(s, t) = ‖t − s‖2
2 ≥ 0

• Density Estimation


X1, . . . ,Xn i.i.d. with density s

γn(t) = ‖t‖2 − 2
n

∑n
i=1 t(Xi )

`(s, t) = ‖t − s‖2
2 ≥ 0
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Model Selection

Model chosen based on the data:

(Sm)m∈M a model collection.

Estimator in model Sm: ŝm ∈ argmint∈Sm γn(t).

Ideal choice: Model m(s) minimizing the risk E
[
`(s, ŝm)

]
. ŝm(s) is not

an estimator of s, but is a benchmark for model selection procedures.
It is the oracle.

Aim: ŝm̂ such that E
[
`(s, ŝm̂)

]
is as close as possible to E

[
`(s, ŝm(s))

]
.

A bias-variance trade-off has to be reached: Model chosen by
minimizing a penalized criterion

m̂ = argmin
m∈M

{
γn(ŝm) + pen(m)︸ ︷︷ ︸

crit(m)

}
.
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Model Selection: Ideal Penalty
Let us denote

ŝD = argmin
{ŝm:m∈M,Dim(m)=D}

γn(ŝm).

sD = argmin
t∈

⋃
Dim(m)=D

Sm

E
[
γn(t)

]
.

crit(D) = γn(ŝD) + pen(D)
(
−γn(s)

)
= γn(sD)− γn(s)︸ ︷︷ ︸

≈`(s,sD)

−
(
γn(sD)− γn(ŝD)︸ ︷︷ ︸

v̂D

)
+ pen(D)

→ With the ideal penalty

penid(D) = v̂D + `(s, ŝD)− `(s, sD)︸ ︷︷ ︸
`(sD ,ŝD)

,

critid(D) ≈ `(s, ŝD) selects the oracle.
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Model Selection: Penalized Criteria

Recall: penid(D) = v̂D + `(sD , ŝD).

Asymptotic approach:

Akaike’s AIC (73), density estimation with log-likelihood contrast:

`(sD , ŝD) ≈ v̂D ≈
D

2n
.

penAIC (D) =
1

n
D

Mallows’ Cp (73), least-square regression:

penCp(D) = 2
σ2

n
D

The models dimension and the number of models are bounded, and
n→∞.
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Model Selection: Penalized Criteria

Recall: penid(D) = v̂D + `(sD , ŝD).

Nonasymptotic approach:

Models, models dimension and number of models may depend on n.

Example: Change Points Detection. Regression by piecewise constant
functions with endpoints to be chosen on the grid

{ j
n : 0 ≤ j ≤ n

}
.

Birgé & Massart (97, 01, 07) and others get nonasymptotic bounds on
v̂D + `(sD , ŝD) through concentration results on empirical processes.

They derive “optimal” penalties typically such that

pen(D) = κD

or pen(D) = κD
(

2 + log
(
n
D

))
(Lebarbier, 05)

But κ is unknown and may depend on s, the sample distribution...
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Slope Heuristics: Data-driven Penalty Calibration

Recall: crit(D) ≈ γn(ŝD)− γn(sD)︸ ︷︷ ︸
`(s,sD )−v̂D

+pen(D)

→ With the penalty (α > 0)

penα(D) = αv̂D

= ακminD, (for example)

critα(D) = `(s, sD) + (α− 1)v̂D selects models among the most
complex iff α < 1.

“penmin = v̂D is a minimal penalty”.

→ Deduce the optimal penalty (v̂D ≈ `(sD , ŝD))

penopt = 2× penmin

= 2ακminD. (for example)

(Birgé & Massart, 07 ; Arlot & Massart, 09)
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Slope Heuristics: Data-driven Penalty Calibration

Illustration: the “Bubbles” Dataset
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1000-sample of a 21-component Gaussian mixture.

Model Sm: (spherical) Gaussian mixture model with m components.

∀t ∈ Sm, γn(t) = −
∑n

i=1 log t(Xi ).

Penalty shape: pen(D) = κD (Maugis & Michel, 09).
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capushe
(Baudry, Maugis, Michel, 10)
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Slope Heuristics: Dimension Jump
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Slope Heuristics: Dimension Jump

Thresholding the jump
(Arlot & Massart, 09)
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Slope Heuristics: Data-driven Slope Estimation

γn(ŝD)− γn(s) = γn(ŝD)− γn(sD) + γn(sD)− γn(s)

≈ −v̂D + E
[
γn(sD)− γn(s)

]
.

γn(ŝD) ≈ γn(s) + `(s, sD)− v̂D

≈ γn(s) + `(s, sD)− κminD. (for example)
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Slope Heuristics: Data-driven Slope Estimation

Recall: γn(ŝD) ≈ γn(s) + `(s, sD)− κminD.
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Slope Heuristics: Data-driven Slope Estimation

Comparing robust and simple regression
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“Bubbles” Experiment: Results

m̂ 3–4 15–18 19 20 21 22 23 24 25 ≥ 35 Risk ratio

Or. 1 76 15 3 3 2 1
AIC 100 2.59
BIC 3 6 23 57 9 1 1 1.17
DDSE 3 7 59 20 6 3 2 1.06
DJ 6 3 7 59 18 2 3 2 1.49

Table: Number of times a model m is selected among the 100 simulations by
AIC, BIC, the data-driven slope estimation method (DDSE) and the dimension
jump method (DJ). The last column is the ratio between the risk of the selected
estimator and the oracle risk.
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Slope Heuristics: Validation Step

Transcriptome Dataset

Dataset studied by Maugis, Celeux, Martin-Magniette (07).

n = 1020 genes described in 20 experiments (data in R20).

Gaussian mixture models with equal component covariance matrices
are considered.

The model collection (Sm)1≤m≤20 was first considered.
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Slope Heuristics: Validation Step

Transcriptome Dataset

Dataset studied by Maugis, Celeux, Martin-Magniette (07).
n = 1020 genes described in 20 experiments (data in R20).
Gaussian mixture models with equal component covariance matrices
are considered.
The model collection (Sm)1≤m≤60 has been eventually considered.
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Conclusion and Perspectives

Slope Heuristics:

Theoretically justified in some frameworks: Gaussian least squares
homoscedastic regression, fixed design (Birgé & Massart, 07); General
heteroscedastic regression, random design, with histograms (Arlot &
Massart, 09); Density estimation (Lerasle, 09); Gaussian random
Markov field (Verzelen, 09)...

Encouraging applications in various frameworks without theoretical
justification: Estimation of oil reserves (Lepez, 02); Change point
detection (Lebarbier, 05); Genomics (Villers, 07); Variable selection
and clustering with Gaussian mixture models (Maugis & Michel, 10);
Graph selection for computational geometry (Caillerie & Michel, 09);
Model-based clustering (Baudry, 09)...

Theoretical and practical works are in progress: Arlot & Bach, 09;
Boucheron & Massart, 10...
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Thank you for attention!
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“Bubbles” Experiment: Results

Selected number Mmax 3 4 15–18 19 20 21 22 23 24 25 ≥ 35 Risk
of components m̂ ratio

Oracle 40, 50 1 76 15 3 3 2 1
AIC 40, 50 100 2.59
BIC 40, 50 3 6 23 57 9 1 1 1.17
DDSE 50 3 7 59 20 6 3 2 1.06
DDSE 40 1 3 7 61 18 4 4 2 1.09
DJ 50 4 2 3 7 59 18 2 3 2 1.49
DJ 40 28 2 2 4 51 10 2 1 3.27

Table: Number of times a model m is selected among the 100 simulations by
AIC, BIC, the data-driven slope estimation method (DDSE) and the dimension
jump method (DJ). The last column is the ratio between the risk of the selected
estimator by each method and the oracle risk.
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