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Contrast Minimization General Settings

X1,...,Xn,... ii.d. from an unknown distribution.

s a function of interest linked to this distribution.

The contrast minimization approach relies on an empirical contrast
~Yn, depending on Xi, ..., X, and such that

t = E[ya(t)]

reaches a minimum value at t = s.

In any model S, s is estimated by the empirical contrast minimizer

§ € argmin y,(t).
tes

Its quality is measured by the corresponding natural loss function £:

vteS, Ust) =E[ya(t)] = E[va(s)]-
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Contrast Minimization: Maximum Likelihood

Contrast minimization generalizes maximum likelihood estimation:

s is the density of the sample distribution itself.

For any density t, y,(t) = 1 74 log t(X;).

In any model S, the minimum contrast estimator is the standard MLE:

rgmm{—fZIogt }

teS

The corresponding loss function is the Kullback-Leibler divergence:

Us,t)=F [—,17 g log t(Xi)] —E [—,17 g log S(Xi)]
= dki(s,t) >0,

which is uniquely minimized at t = s.
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Contrast Minimization: Other Contrasts
Examples of least-squares constrasts.

Yi=s(Xi)+ei, i=1,...,n
e Regression { 7a(t) = —127 1 (Vi = (X)) )2
s, ) =130 IE[u—s)Z(x,)} 0

dY (M (x) = s(x)dx + \/LEdW(x),
with W a brownian motion

va(t) = [It]* =2 [ t(x)dY () (x)

Us,t)=t—s[3>0

e Gaussian white noise

X1,...,X, i.i.d. with density s
e Density Estimation { v,(t) = ||t]|? — 2 327, t(X;)

n
Us,t)=t—s|3>0
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Model Selection

Model chosen based on the data:

® (Sm)mem a model collection.

o Estimator in model Sy, 85, € argmin,cs vn(t).

o Ideal choice: Model m(s) minimizing the risk E[((s, §n)]. Sm(s) Is not
an estimator of s, but is a benchmark for model selection procedures.
It is the oracle.

o Aim: 34 such that E[{(s, 34)] is as close as possible to E[((s, 5,(s))]-
@ A bias-variance trade-off has to be reached: Model chosen by
minimizing a penalized criterion

i = argmin{yn(5m) + pen(m)}.
meM

crit(m)
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Model Selection: ldeal Penalty

Let us denote

Sp = argmin Yn(Sm)-
{&m:meM,Dim(m)=D}

sp = argmin E[y,(t)].
te U Sm
Dim(m)=D

crit(D) = yn(3p) + pen(D) (—vn(s))
= n(sp) — 7(s) — (yn(SD);’Yn(go)) +pen(D)
~L(s,sp) Up

— With the ideal penalty

penid(D) = OD +{(57§D) - K(s, SD2>

K(sngD)

critig(D) = (s, $p) selects the oracle.
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Model Selection: Penalized Criteria
Recall: pen,,(D) = Up + £(sp, 3p).
Asymptotic approach:
o Akaike's AIC (73), density estimation with log-likelihood contrast:

b
2n

A~

E(SD, §D) ~Vp =~

1
penyc(D) = ;D
e Mallows’ Cp (73), least-square regression:
2
o
D)=2—D
penCp( ) n

The models dimension and the number of models are bounded, and
n — oo.
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Model Selection: Penalized Criteria

Recall: pen(D) = Up + €(sp, 5p).

Nonasymptotic approach:

Models, models dimension and number of models may depend on n.
Example: Change Points Detection. Regression by piecewise constant
functions with endpoints to be chosen on the grid {JE 0S5 < n}.

Birgé & Massart (97, 01, 07) and others get nonasymptotic bounds on
Up + £(sp, 5p) through concentration results on empirical processes.

They derive “optimal” penalties typically such that
pen(D) = kD
or pen(D) = nD<2 + Iog(%)) (Lebarbier, 05)

But x is unknown and may depend on s, the sample distribution...
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Slope Heuristics: Data-driven Penalty Calibration

Recall: crit(D) = v4(5p) — vn(sp) + pen(D)
——— —

£(s,sp)—Vp

— With the penalty (a > 0)

pen, (D) = aip

— akminD, (for example)
crita (D) = €(s,sp) + (o — 1)Vp selects models among the most
complex iff o < 1.

pen,.,;;, = Vp is a minimal penalty”.

— Deduce the optimal penalty (Vp ~ ¢(sp,5p))

PeNgpr = 2 X pen i,
— e D. (for example)

(Birgé & Massart, 07 ; Arlot & Massart, 09)
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Slope Heuristics: Data-driven Penalty Calibration

lllustration: the “Bubbles” Dataset

1000-sample of a 21-component Gaussian mixture.

@ Model S;,: (spherical) Gaussian mixture model with m components.

o Vt € Sy, yn(t) = — Y i log t(Xi).
@ Penalty shape: pen(D) = kD (Maugis & Michel, 09).
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CAPUSHE
(Baudry, Maugis, Michel, 10)

T his graphical user interface is devoted to the penalfty calibration
using the sfope heuristic method proposed by Birge and Massart
{2006). ft contains the data-driven slope estimation method
proposed in Baudny et al. (2070) and affows to compare it with the
dimension jump procedure.

Data File ‘ | Help ‘

=1 Column names at first line

kMumber of lines at the end of the data file for
0 the validation step

Import Data ‘ | Cancel ‘
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Seleeted complexity (Model)

Slope Heuristics: Dimension Jump

Dimension Jump
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Slope Heuristics: Dimension Jump

Dimension Jump.
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Thresholding the jump
(Arlot & Massart, 09)
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Slope Heuristics: Data-driven Slope Estimation

1n(80) = ¥n(s) = 7 (50) = ¥n(sD) + (D) = Yn(s)

~ b + E[vn(sp) — Va(s)]-

Yn(8D) ~ Yn(s) + £(s,sp) — Vp
~ vn(s) + 4(s,sp) — KminD. (for example)

0 iO éO ?;0 4‘0 50
D
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Slope Heuristics: Data-driven Slope Estimation

Recall: v,(3p) & vn(s) + £(s, sp) — KminD.

imation Mothod (DDSE)
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Slope Heuristics: Data-driven Slope Estimation

(87.234%)

Comparing robust and simple regression
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“Bubbles” Experiment: Results

m 3-4115-18 19 20 21 22 23 24 25| > 35 | Risk ratio
Or. 1 76 15 3 3 2 1
AlIC 100 2.59
BIC 3 6 23 57 9 1 1 1.17
DDSE 3 7 59 20 6 3 2 1.06
DJ 6 3 7 59 18 2 3 2 1.49

Table: Number of times a model m is selected among the 100 simulations by
AIC, BIC, the data-driven slope estimation method (DDSE) and the dimension
jump method (DJ). The last column is the ratio between the risk of the selected
estimator and the oracle risk.
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Slope Heuristics: Validation Step

Transcriptome Dataset

Dataset studied by Maugis, Celeux, Martin-Magniette (07).

o
@ n = 1020 genes described in 20 experiments (data in R??).
@ Gaussian mixture models with equal component covariance matrices

are considered.
@ The model collection (Sp)1<m<20 was first considered.

[—
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Slope Heuristics: Validation Step
Transcriptome Dataset

Dataset studied by Maugis, Celeux, Martin-Magniette (07).

n = 1020 genes described in 20 experiments (data in R?).
Gaussian mixture models with equal component covariance matrices
are considered.

@ The model collection (Sp,)1<m<20 Was first considered.
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Slope Heuristics: Validation Step
Transcriptome Dataset

Dataset studied by Maugis, Celeux, Martin-Magniette (07).

°
@ n = 1020 genes described in 20 experiments (data in R??).
@ Gaussian mixture models with equal component covariance matrices

are considered.
@ The model collection (Sp)1<m<60 has been eventually considered.

TTiitiiii1
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Conclusion and Perspectives

Slope Heuristics:

o Theoretically justified in some frameworks: Gaussian least squares
homoscedastic regression, fixed design (Birgé & Massart, 07); General
heteroscedastic regression, random design, with histograms (Arlot &
Massart, 09); Density estimation (Lerasle, 09); Gaussian random
Markov field (Verzelen, 09)...

o Encouraging applications in various frameworks without theoretical
Justification: Estimation of oil reserves (Lepez, 02); Change point
detection (Lebarbier, 05); Genomics (Villers, 07); Variable selection
and clustering with Gaussian mixture models (Maugis & Michel, 10);
Graph selection for computational geometry (Caillerie & Michel, 09);
Model-based clustering (Baudry, 09)...

@ Theoretical and practical works are in progress: Arlot & Bach, 09;
Boucheron & Massart, 10...
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Thank you for attention!
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“Bubbles” Experiment: Results

d number M. 3 4 15-18 19 20 21 22 23 24 25 > 35
yonents Mm
40, 50 1 76 15 3 3 2
40, 50 100
40, 50 3 6 23 57 9 1 1
50 3 7 59 20 6 3 2
40 1 3 7 61 18 4 4 2
50 4 2 3 7 59 18 2 3 2
40 28 2 2 4 51 10 2 1

Table: Number of times a model m is selected among the 100 simulations by
AIC, BIC, the data-driven slope estimation method (DDSE) and the dimension
jump method (DJ). The last column is the ratio between the risk of the selected
estimator by each method and the oracle risk.
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