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A Page From a gtem Publication with a Figure.
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particular D is regular over M . Also ∆ ∩ A = ∆ ∩ ν(A) = 1, so DE = DN̂ = N̂E.

N̂ N̂(y) N̂E ′ N̂E

M M(y) E ′

D!!!!

!!!

E

Choose a Galois ring cover Ŝ/R of N̂E/M(y) [FJ05, Definition 6.1.3 and Remark 6.1.5]

such that y ∈ R and x ∈ Ŝ. Let U = Ŝ ∩ D. The ring extension U/R corresponds to a

dominating separable rational map Spec(U) → Spec(R). Since the quotient field of R is a

rational function field, Spec(R) is an open subvariety of an affine space. Therefore, by the

definition of PAC extensions we have an M-epimorphism ϕ : U → M with α = ϕ(y) ∈ F .

The field D is regular over M and DN̂ = N̂E, hence Ŝ = U ⊗M N̂ [FJ05, Lemma

2.5.10]. Extend ϕ to an N̂ -epimorphism ϕ : Ŝ → N̂ . Then, ϕ induces a homomorphism

ϕ∗ : Gal(M) → Gal(N̂E/D) which satisfies resN̂E,N̂ ◦ϕ∗ = resMs,N̂ , where Ms is a separable

closure of M [FJ05, Lemma 6.1.4]. Let ψ be the restriction of ϕ to S = Ŝ∩E. The equality

DE = N̂E implies that Ŝ is a subring of the quotient field of SU . Since ψ(Ŝ) = N̂ and

ψ(U) = M it follows that ψ(S) = N̂ and ψ∗ = resN̂E,E ◦ ϕ∗. From the commutative

diagram

Gal(M)
ϕ∗

!!""""""""""""""
ψ∗

""

res
##

∆
res $$

res

##

Gal(N̂/M)

Gal(E/E ′)
ν−1

%%"""""""""""

it follows that (ψ∗)−1(ν(A0)) = res−1

Ms,N̂
(Gal(N̂/N)) = Gal(N). Consequently, the residue

field of E ′(x) under ψ is N . Also E ′ ⊆ D implies that the residue field of E ′ is M .

Consequently, N = M(β), where β = ψ(x) is a root of f(X, α). Finally, since [N : M ] = n,

the polynomial f(X, α) is irreducible over M .

To complete the proof we need to find infinitely many α ∈ F as above. This is done by

the ‘Rabinovich trick’, that is, we replace R by the localization of R at
∏n

i=1(y − αi) (see

[JR94, Remark 1.2(c)]). !

Corollary 2. Let M/F be a PAC extension, let f(X, y) ∈ M [X, y] be a polynomial of

degree n in X, and let N/M be a separable extension of degree n. Assume that the Galois

Bary-Soroker Lior
Dirichlet’s Theorem For
Polynomial Rings
arXiv:math/0612801v2



Closeup of the Figure
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particular D is regular over M . Also ∆ ∩ A = ∆ ∩ ν(A) = 1, so DE = DN̂ = N̂E.

N̂ N̂(y) N̂E ′ N̂E

M M(y) E ′

D!!!!

!!!

E

Choose a Galois ring cover Ŝ/R of N̂E/M(y) [FJ05, Definition 6.1.3 and Remark 6.1.5]

such that y ∈ R and x ∈ Ŝ. Let U = Ŝ ∩ D. The ring extension U/R corresponds to a

dominating separable rational map Spec(U) → Spec(R). Since the quotient field of R is a

rational function field, Spec(R) is an open subvariety of an affine space. Therefore, by the

definition of PAC extensions we have an M-epimorphism ϕ : U → M with α = ϕ(y) ∈ F .

The field D is regular over M and DN̂ = N̂E, hence Ŝ = U ⊗M N̂ [FJ05, Lemma

2.5.10]. Extend ϕ to an N̂ -epimorphism ϕ : Ŝ → N̂ . Then, ϕ induces a homomorphism

ϕ∗ : Gal(M) → Gal(N̂E/D) which satisfies resN̂E,N̂ ◦ϕ∗ = resMs,N̂ , where Ms is a separable

closure of M [FJ05, Lemma 6.1.4]. Let ψ be the restriction of ϕ to S = Ŝ∩E. The equality

DE = N̂E implies that Ŝ is a subring of the quotient field of SU . Since ψ(Ŝ) = N̂ and

ψ(U) = M it follows that ψ(S) = N̂ and ψ∗ = resN̂E,E ◦ ϕ∗. From the commutative

diagram

Gal(M)
ϕ∗

!!""""""""""""""
ψ∗

""

res
##

∆
res $$

res

##

Gal(N̂/M)

Gal(E/E ′)
ν−1

%%"""""""""""

it follows that (ψ∗)−1(ν(A0)) = res−1

Ms,N̂
(Gal(N̂/N)) = Gal(N). Consequently, the residue

field of E ′(x) under ψ is N . Also E ′ ⊆ D implies that the residue field of E ′ is M .

Consequently, N = M(β), where β = ψ(x) is a root of f(X, α). Finally, since [N : M ] = n,

the polynomial f(X, α) is irreducible over M .

To complete the proof we need to find infinitely many α ∈ F as above. This is done by

the ‘Rabinovich trick’, that is, we replace R by the localization of R at
∏n

i=1(y − αi) (see

[JR94, Remark 1.2(c)]). !

Corollary 2. Let M/F be a PAC extension, let f(X, y) ∈ M [X, y] be a polynomial of

degree n in X, and let N/M be a separable extension of degree n. Assume that the Galois



Critique
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particular D is regular over M . Also ∆ ∩ A = ∆ ∩ ν(A) = 1, so DE = DN̂ = N̂E.

N̂ N̂(y) N̂E ′ N̂E

M M(y) E ′

D!!!!

!!!

E

Choose a Galois ring cover Ŝ/R of N̂E/M(y) [FJ05, Definition 6.1.3 and Remark 6.1.5]

such that y ∈ R and x ∈ Ŝ. Let U = Ŝ ∩ D. The ring extension U/R corresponds to a

dominating separable rational map Spec(U) → Spec(R). Since the quotient field of R is a

rational function field, Spec(R) is an open subvariety of an affine space. Therefore, by the

definition of PAC extensions we have an M-epimorphism ϕ : U → M with α = ϕ(y) ∈ F .

The field D is regular over M and DN̂ = N̂E, hence Ŝ = U ⊗M N̂ [FJ05, Lemma

2.5.10]. Extend ϕ to an N̂ -epimorphism ϕ : Ŝ → N̂ . Then, ϕ induces a homomorphism

ϕ∗ : Gal(M) → Gal(N̂E/D) which satisfies resN̂E,N̂ ◦ϕ∗ = resMs,N̂ , where Ms is a separable

closure of M [FJ05, Lemma 6.1.4]. Let ψ be the restriction of ϕ to S = Ŝ∩E. The equality

DE = N̂E implies that Ŝ is a subring of the quotient field of SU . Since ψ(Ŝ) = N̂ and

ψ(U) = M it follows that ψ(S) = N̂ and ψ∗ = resN̂E,E ◦ ϕ∗. From the commutative

diagram

Gal(M)
ϕ∗

!!""""""""""""""
ψ∗

""

res
##

∆
res $$

res

##

Gal(N̂/M)

Gal(E/E ′)
ν−1

%%"""""""""""

it follows that (ψ∗)−1(ν(A0)) = res−1

Ms,N̂
(Gal(N̂/N)) = Gal(N). Consequently, the residue

field of E ′(x) under ψ is N . Also E ′ ⊆ D implies that the residue field of E ′ is M .

Consequently, N = M(β), where β = ψ(x) is a root of f(X, α). Finally, since [N : M ] = n,

the polynomial f(X, α) is irreducible over M .

To complete the proof we need to find infinitely many α ∈ F as above. This is done by

the ‘Rabinovich trick’, that is, we replace R by the localization of R at
∏n

i=1(y − αi) (see

[JR94, Remark 1.2(c)]). !

Corollary 2. Let M/F be a PAC extension, let f(X, y) ∈ M [X, y] be a polynomial of

degree n in X, and let N/M be a separable extension of degree n. Assume that the Galois
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Closeups Of the Problematic Areas.
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particular D is regular over M . Also ∆ ∩ A = ∆ ∩ ν(A) = 1, so DE = DN̂ = N̂E.

N̂ N̂(y) N̂E ′ N̂E

M M(y) E ′

D!!!!

!!!

E

Choose a Galois ring cover Ŝ/R of N̂E/M(y) [FJ05, Definition 6.1.3 and Remark 6.1.5]

such that y ∈ R and x ∈ Ŝ. Let U = Ŝ ∩ D. The ring extension U/R corresponds to a

dominating separable rational map Spec(U) → Spec(R). Since the quotient field of R is a

rational function field, Spec(R) is an open subvariety of an affine space. Therefore, by the

definition of PAC extensions we have an M-epimorphism ϕ : U → M with α = ϕ(y) ∈ F .

The field D is regular over M and DN̂ = N̂E, hence Ŝ = U ⊗M N̂ [FJ05, Lemma

2.5.10]. Extend ϕ to an N̂ -epimorphism ϕ : Ŝ → N̂ . Then, ϕ induces a homomorphism

ϕ∗ : Gal(M) → Gal(N̂E/D) which satisfies resN̂E,N̂ ◦ϕ∗ = resMs,N̂ , where Ms is a separable

closure of M [FJ05, Lemma 6.1.4]. Let ψ be the restriction of ϕ to S = Ŝ∩E. The equality

DE = N̂E implies that Ŝ is a subring of the quotient field of SU . Since ψ(Ŝ) = N̂ and

ψ(U) = M it follows that ψ(S) = N̂ and ψ∗ = resN̂E,E ◦ ϕ∗. From the commutative

diagram

Gal(M)
ϕ∗

!!""""""""""""""
ψ∗

""

res
##

∆
res $$

res

##

Gal(N̂/M)

Gal(E/E ′)
ν−1

%%"""""""""""

it follows that (ψ∗)−1(ν(A0)) = res−1

Ms,N̂
(Gal(N̂/N)) = Gal(N). Consequently, the residue

field of E ′(x) under ψ is N . Also E ′ ⊆ D implies that the residue field of E ′ is M .

Consequently, N = M(β), where β = ψ(x) is a root of f(X, α). Finally, since [N : M ] = n,

the polynomial f(X, α) is irreducible over M .

To complete the proof we need to find infinitely many α ∈ F as above. This is done by

the ‘Rabinovich trick’, that is, we replace R by the localization of R at
∏n

i=1(y − αi) (see

[JR94, Remark 1.2(c)]). !

Corollary 2. Let M/F be a PAC extension, let f(X, y) ∈ M [X, y] be a polynomial of

degree n in X, and let N/M be a separable extension of degree n. Assume that the Galois
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particular D is regular over M . Also ∆ ∩ A = ∆ ∩ ν(A) = 1, so DE = DN̂ = N̂E.

N̂ N̂(y) N̂E ′ N̂E

M M(y) E ′

D!!!!

!!!

E

Choose a Galois ring cover Ŝ/R of N̂E/M(y) [FJ05, Definition 6.1.3 and Remark 6.1.5]

such that y ∈ R and x ∈ Ŝ. Let U = Ŝ ∩ D. The ring extension U/R corresponds to a

dominating separable rational map Spec(U) → Spec(R). Since the quotient field of R is a

rational function field, Spec(R) is an open subvariety of an affine space. Therefore, by the

definition of PAC extensions we have an M-epimorphism ϕ : U → M with α = ϕ(y) ∈ F .

The field D is regular over M and DN̂ = N̂E, hence Ŝ = U ⊗M N̂ [FJ05, Lemma

2.5.10]. Extend ϕ to an N̂ -epimorphism ϕ : Ŝ → N̂ . Then, ϕ induces a homomorphism

ϕ∗ : Gal(M) → Gal(N̂E/D) which satisfies resN̂E,N̂ ◦ϕ∗ = resMs,N̂ , where Ms is a separable

closure of M [FJ05, Lemma 6.1.4]. Let ψ be the restriction of ϕ to S = Ŝ∩E. The equality

DE = N̂E implies that Ŝ is a subring of the quotient field of SU . Since ψ(Ŝ) = N̂ and

ψ(U) = M it follows that ψ(S) = N̂ and ψ∗ = resN̂E,E ◦ ϕ∗. From the commutative

diagram

Gal(M)
ϕ∗

!!""""""""""""""
ψ∗

""

res
##

∆
res $$

res

##

Gal(N̂/M)

Gal(E/E ′)
ν−1

%%"""""""""""

it follows that (ψ∗)−1(ν(A0)) = res−1

Ms,N̂
(Gal(N̂/N)) = Gal(N). Consequently, the residue

field of E ′(x) under ψ is N . Also E ′ ⊆ D implies that the residue field of E ′ is M .

Consequently, N = M(β), where β = ψ(x) is a root of f(X, α). Finally, since [N : M ] = n,

the polynomial f(X, α) is irreducible over M .

To complete the proof we need to find infinitely many α ∈ F as above. This is done by

the ‘Rabinovich trick’, that is, we replace R by the localization of R at
∏n

i=1(y − αi) (see

[JR94, Remark 1.2(c)]). !

Corollary 2. Let M/F be a PAC extension, let f(X, y) ∈ M [X, y] be a polynomial of

degree n in X, and let N/M be a separable extension of degree n. Assume that the Galois
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Step 1: Creating the Nodes.
Basic Idea

To (re)create the figure in TikZ, we start with the nodes, which are created
using the node command.

Syntax of the Node Creation Command
I Start with \node.
I Then comes a sequences of options.
I Options are given in square brackets, with two exceptions:

We can say at (coordinate) to specify a special place, where the
node should go.
We can say (name) to assign a name to a node.

I The node ends with some text in curly braces.



Step 1: Creating the Nodes.
A Simple Placement

(E/E′)

∆ Gal(N̂/M)

Gal(M)

\begin{tikzpicture}

\node (EE) at (0,0) {$(E/E’)$};

\node (Delta) at (0,1.5) {$\Delta$};

\node (GalNM) at (3,1.5) {$\mathrm{Gal}(\hat N/M)$};

\node (GalM) at (3,3) {$\mathrm{Gal}(M)$};

\end{tikzpicture}



Step 1: Aligning the Nodes
Basic Idea.

The Problem
Providing “hard-wired” coordinates like (3,1.5) is problematic:

I When you read the code, it is hard to tell, where something will go.
I When you change something later, you may need to change many

such coordinates.
I It is hard to make sure that all spacings and alignments are correct.

Possible Solutions
I You can use options like right=of Delta to place a node relative to

some other node.
I You can use a TikZ-matrix. It works like a LATEX matrix, only inside a

picture.



Step 1: Aligning the Nodes.
Alignment Using a Matrix.

Gal(M)

∆ Gal(N̂/M)

(E/E′)

\matrix[column sep=1cm,row sep=1cm]

{

& \node (GalM) {$\Gal(M)$}; \\

\node (Delta) {$\Delta$};& \node (GalNM) {$\Gal(\hat N/M)$};\\

\node (EE) {$(E/E’)$};& \\

};



Step 1: Aligning the Nodes.
Simplified Version. . .

Gal(M)

∆ Gal(N̂/M)

(E/E′)

\matrix [column sep=1cm,row sep=1cm,matrix of math nodes] (fig)

{

& \mathrm{Gal}(M) \\

\Delta & \mathrm{Gal}(\hat N/M) \\

(E/E’) & \\

};

% Reference Gal(M) as (fig-1-2)



Step 1: Aligning the Nodes.
. . . With Alternate Naming of Nodes.

Gal(M)

∆ Gal(N̂/M)

(E/E′)

\matrix [column sep=1cm,row sep=1cm,matrix of math nodes]

{

& |(M)| \mathrm{Gal}(M) \\

|(Delta)| \Delta & |(NM)| \mathrm{Gal}(\hat N/M) \\

|(EE)| (E/E’) & \\

};

% Reference Gal(M) as (M)



Step 2: Connecting the Nodes.
Simple Straight Line.

Gal(M)

∆ Gal(N̂/M)

(E/E′)

\matrix [column sep=1cm,row sep=1cm,matrix of math nodes]

{

& |(M)| \Gal(M) \\

|(Delta)| \Delta & |(NM)| \Gal(\hat N/M) \\

|(EE)| (E/E’) & \\

};

\draw (M) edge [->] (Delta)

edge [->] (NM)

(Delta) edge [->] (NM)

edge [->] (EE)

(EE) edge [->] (NM);



Step 2: Connecting the Nodes.
The Curved, Dashed Line.

Gal(M)

∆ Gal(N̂/M)

(E/E′)

\draw (M) edge [->] (Delta)

edge [->] (NM)

edge [->,dashed,out=180,in=120] (EE)

(Delta) edge [->] (NM)

edge [->] (EE)

(EE) edge [->] (NM);



Step 2: Connecting the Nodes.
Adding the Labels

Gal(M)

∆ Gal(N̂/M)

(E/E′)

ϕ∗ resψ∗

res
res

ν−1

\draw [auto=right]

(M) edge [->] node {$\varphi^*$} (Delta)

edge [->] node [swap] {res} (NM)

edge [->,dashed,out=180,in=120]

node {$\psi^*$} (EE)

(Delta) edge [->] node {res} (NM)

edge [->] node [swap] {res} (EE)

(EE) edge [->] node {$\nu^{-1}$} (NM);



Step 3: Finishing Touches

Gal(M)

∆ Gal(N̂/M)

(E/E′)

ϕ∗ resψ∗

res

res
ν−1

I Adjust “looseness” of the curve and dash phase.
I Reduce distance of ϕ∗, ψ∗ and ν−1 to the line.
I Make edge labels smaller (as in A X−→ B)



The Complete Code.

\begin{tikzpicture}

\matrix [column sep=7mm,row sep=7mmm,matrix of math nodes]

{

& |(M)| \Gal(M) \\

|(Delta)| \Delta & |(NM)| \Gal(\hat N/M) \\

|(EE)| (E/E’) & \\

};

\draw [auto=right,nodes={font=\scriptsize}]

(M) edge [->] node [inner sep=0pt] {$\varphi^*$} (Delta)

edge [->] node [swap] {res} (NM)

edge [->,out=180,in=110,looseness=1.4,

dashed,dash phase=3pt]

node [inner sep=0pt] {$\psi^*$} (EE)

(Delta) edge [->] node {res} (NM)

edge [->] node [swap] {res} (EE)

(EE) edge [->] node [inner sep=0pt] {$\nu^{-1}$} (NM);

\end{tikzpicture}



Comparison of Original and Reworked Figure.
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particular D is regular over M . Also ∆ ∩ A = ∆ ∩ ν(A) = 1, so DE = DN̂ = N̂E.

N̂ N̂(y) N̂E ′ N̂E

M M(y) E ′

D!!!!

!!!

E

Choose a Galois ring cover Ŝ/R of N̂E/M(y) [FJ05, Definition 6.1.3 and Remark 6.1.5]

such that y ∈ R and x ∈ Ŝ. Let U = Ŝ ∩ D. The ring extension U/R corresponds to a

dominating separable rational map Spec(U) → Spec(R). Since the quotient field of R is a

rational function field, Spec(R) is an open subvariety of an affine space. Therefore, by the

definition of PAC extensions we have an M-epimorphism ϕ : U → M with α = ϕ(y) ∈ F .

The field D is regular over M and DN̂ = N̂E, hence Ŝ = U ⊗M N̂ [FJ05, Lemma

2.5.10]. Extend ϕ to an N̂ -epimorphism ϕ : Ŝ → N̂ . Then, ϕ induces a homomorphism

ϕ∗ : Gal(M) → Gal(N̂E/D) which satisfies resN̂E,N̂ ◦ϕ∗ = resMs,N̂ , where Ms is a separable

closure of M [FJ05, Lemma 6.1.4]. Let ψ be the restriction of ϕ to S = Ŝ∩E. The equality

DE = N̂E implies that Ŝ is a subring of the quotient field of SU . Since ψ(Ŝ) = N̂ and

ψ(U) = M it follows that ψ(S) = N̂ and ψ∗ = resN̂E,E ◦ ϕ∗. From the commutative

diagram

Gal(M)
ϕ∗

!!""""""""""""""
ψ∗

""

res
##

∆
res $$

res

##

Gal(N̂/M)

Gal(E/E ′)
ν−1

%%"""""""""""

it follows that (ψ∗)−1(ν(A0)) = res−1

Ms,N̂
(Gal(N̂/N)) = Gal(N). Consequently, the residue

field of E ′(x) under ψ is N . Also E ′ ⊆ D implies that the residue field of E ′ is M .

Consequently, N = M(β), where β = ψ(x) is a root of f(X, α). Finally, since [N : M ] = n,

the polynomial f(X, α) is irreducible over M .

To complete the proof we need to find infinitely many α ∈ F as above. This is done by

the ‘Rabinovich trick’, that is, we replace R by the localization of R at
∏n

i=1(y − αi) (see

[JR94, Remark 1.2(c)]). !

Corollary 2. Let M/F be a PAC extension, let f(X, y) ∈ M [X, y] be a polynomial of

degree n in X, and let N/M be a separable extension of degree n. Assume that the Galois

Gal(M)

∆ Gal(N̂/M)

(E/E′)

ϕ∗ resψ∗

res

res
ν−1



A Figure From a Major German Newspaper.
Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

9,4%

27,8%

25,6%22,3%

10,4%

Regenerative (53,7 kWh)/davon Wind 4,4% (25,0 kWh)

Kernenergie
(158,4 kWh)

Braunkohle (146,0 kWh)Steinkohle (127,1 kWh)

Erdgas (59,2 kWh)

Mineralölprodukte (9,2 kWh) 1,6%

Sonstige (16,5 kWh) 2,9%

This figure is a redrawing of a figure from “Die Zeit,” June 4th, 2005.



Critique.
Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

9,4%

27,8%

25,6%22,3%

10,4%

Regenerative (53,7 kWh)/davon Wind 4,4% (25,0 kWh)

Kernenergie
(158,4 kWh)

Braunkohle (146,0 kWh)Steinkohle (127,1 kWh)

Erdgas (59,2 kWh)

Mineralölprodukte (9,2 kWh) 1,6%

Sonstige (16,5 kWh) 2,9%

I Coloring is random and misleading.
I Pie slice sizes do not reflect percentages.
I Main message is lost since coal is split across page.



Detail 1: Pie Slices are Elliptic Arcs.
Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

9,4%

27,8%

25,6%22,3%

10,4%

Regenerative (53,7 kWh)/davon Wind 4,4% (25,0 kWh)

Kernenergie
(158,4 kWh)

Braunkohle (146,0 kWh)Steinkohle (127,1 kWh)

Erdgas (59,2 kWh)

Mineralölprodukte (9,2 kWh) 1,6%

Sonstige (16,5 kWh) 2,9%

\fill[green!20!gray] (0,0) -- (90:1.2cm)

arc (90:-5:3.2cm and 1.2cm)

-- cycle;



Detail 2: A Horizontal/Vertical Junction.
Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

9,4%

27,8%

25,6%22,3%

10,4%

Regenerative (53,7 kWh)/davon Wind 4,4% (25,0 kWh)

Kernenergie
(158,4 kWh)

Braunkohle (146,0 kWh)Steinkohle (127,1 kWh)

Erdgas (59,2 kWh)

Mineralölprodukte (9,2 kWh) 1,6%

Sonstige (16,5 kWh) 2,9%

\draw[very thick] (-22mm,7mm) |- (-80mm,14mm);



Detail 3: The Shading in the Pie Chart.
Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004
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\shade [left color=black,right color=black,middle color=white]

(0mm,-1.5mm) ellipse (3.2cm and 1.2cm);

\fill[green!20!gray] (0,0) -- (90:1.2cm)

arc (90:-5:3.2cm and 1.2cm)

-- cycle;



The Complete Figure.
Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004
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The complete figure can be constructed in this way.



A Geometrical Construction

A
B

D
E

C

Euclid of Alexandria
Proof of Proposition I
Elements, Book I



Step 1: The Line AB
A Simple Line

\begin{tikzpicture}

\coordinate (A) at (0,0);

\coordinate (B) at (1.25,0.25);

\draw[blue] (A) -- (B);

\end{tikzpicture}

I The \coordinate command is a shorthand for the \node command
with empty text.



Step 1: The Line AB
Adding Labels

A
B

\begin{tikzpicture}

\coordinate [label=left:\textcolor{blue}{$A$}]

(A) at (0,0);

\coordinate [label=right:\textcolor{blue}{$B$}]

(B) at (1.25,0.25);

\draw[blue] (A) -- (B);

\end{tikzpicture}

I The label option makes it easy to add some text around an another
node.

I Alternatively, one could explicitly create a node later on.



Step 1: The Line AB
Perturbed Positions

A
B

\usetikzlibrary{calc}

\begin{tikzpicture}

\coordinate [label=left:\textcolor{blue}{$A$}]

(A) at ($ (0,0) + .1*(rand,rand) $);

\coordinate [label=right:\textcolor{blue}{$B$}]

(B) at ($ (1.25,0.25) + .1*(rand,rand) $);

\draw[blue] (A) -- (B);

\end{tikzpicture}

I Between ($ and $) you can do some basic linear algebra on
coordinates.



Step 2: The Circles
Using the Let Operation

A
B

...

\draw (A) -- (B);

\draw let

\p1 = ($ (B) - (A) $)

in

(A) circle ({sqrt(\x1*\x1+\y1*\y1)})

(B) circle ({sqrt(\x1*\x1+\y1*\y1)});



Step 2: The Circles
Using the Through Library

A
B

D
E

\usetikzlibrary{through}

...

\draw (A) -- (B);

\node at (A) [draw,circle through=(B),label=left:$D$] {};

\node at (B) [draw,circle through=(A),label=right:$E$] {};



Step 3: The Intersection of the Circles

A
B

D
E

C

\usetikzlibrary{intersections}

...

\draw (A) -- (B);

\node at (A) [name path=D,draw,circle through=(B),label=...] {};

\node at (B) [name path=E,draw,circle through=(A),label=...] {};

\node [name intersections={of=D and E, by=C}]

at (C) [above] {$C$};

\draw [red] (A) -- (C) (B) -- (C);



Step 4: Finishing Touches

A
B

D
E

C

I Add transparent circles at the points A, B, and C.
I Fill triangle, but on the background layer.



The Complete Code
\begin{tikzpicture}[thick,

help lines/.style={semithick,draw=black!50}]

\coordinate [label=left:\textcolor{blue}{$A$}]

(A) at ($ (0,0) + .1*(rand,rand) $);

\coordinate [label=right:\textcolor{blue}{$B$}]

(B) at ($ (1.25,0.25) + .1*(rand,rand) $);

\draw [blue] (A) -- (B);

\node at (A) [circle through=(B),name path=D,

help lines,draw,label=left:$D$] {};

\node at (B) [circle through=(A),name path=E,

help lines,draw,label=right:$E$] {};

\node [name intersections={of=D and E, by=C}]

at (C) [above] {$C$};

\draw [red] (A) -- (C) (B) -- (C);

\foreach \point in {A,B,C}

\fill [black,opacity=.5] (\point) circle (2pt);

\begin{pgfonlayer}{background}

\fill[orange!80] (A) -- (C) -- (B) -- cycle;

\end{pgfonlayer}

\end{tikzpicture}
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