Creating Graphics from Scratch

Case Studies

Till Tantau

Institute for Theoretical Computer Science
University Lübeck
gтем Midterm Meeting 2008

Outline

Figure 1: Commutative Diagram
The Figure and a Critique
Step 1: The Nodes
Step 2: The Edges
Step 3: Finishing Touches
Figure 2: A Pie Chart
The Figure and a Critique
Detail 1: Elliptical Arcs
Detail 2: Perpendicular Lines
Detail 3: Shadings
Figure 3: A Construction From Euclid's Elements
The Figure
Step 1: The Line $A B$
Step 2: The Circles
Step 3: The Intersection of the Circles
Step 4: Finishing Touches

A Page From a gtem Publication with a Figure.

DIRICHLETS THEOREM FOR POLYNOMIAL RINGS
particular D is regular over M. Also $\Delta \cap A=\Delta \cap \nu(A)=1$, so $D E=D \hat{N}=\hat{N} E$.

Choose a Galois ring cover \hat{S} / R of $\hat{N E} / M(y)$ [FJ05, Definition 6.1.3 and Remark 6.1.5] such that $y \in R$ and $x \in \hat{S}$. Let $U=\hat{S} \cap D$. The ring extension U / R corresponds to a dominating separable rational $\operatorname{map} \operatorname{Spec}(U) \rightarrow \operatorname{Spec}(R)$. Since the quotient field of R is a rational function field, $\operatorname{Spec}(R)$ is an open subvariety of an affine space. Therefore, by the definition of PAC extensions we have an M-epimorphism $\varphi: U \rightarrow M$ with $\alpha=\varphi(y) \in F$. The field D is regular over M and $D \hat{N}=\hat{N E}$, hence $\hat{S}=U \otimes_{M} \hat{N}$ [FJ05, Lemma 2.5.10]. Extend φ to an \hat{N}-epimorphism $\varphi: \hat{S} \rightarrow \hat{N}$. Then, φ induces a homomorphism $\varphi^{*}: \operatorname{Gal}(M) \rightarrow \operatorname{Gal}(\hat{N E} / D)$ which satisfies $\operatorname{res}_{\hat{N} E, \dot{N}^{\circ}} \circ \varphi^{*}=\operatorname{res}_{M_{n} \dot{N}}$, where M_{s} is a separable closure of M [FJ05, Lemma 6.1.4]. Let ψ be the restriction of φ to $S=\hat{S} \cap E$. The equality $D E=\hat{N} E$ implies that \hat{S} is a subring of the quotient field of $S U$. Since $\psi(\hat{S})=\hat{N}$ and $\psi(U)=M$ it follows that $\psi(S)=\hat{N}$ and $\psi^{*}=\operatorname{res}_{\hat{N E, E}} \circ \varphi^{*}$. From the commutative diagram

it follows that $\left(\psi^{*}\right)^{-1}\left(\nu\left(A_{0}\right)\right)=\operatorname{res}_{M_{*}}^{-1}(\operatorname{Gal}(\hat{N} / N))=\operatorname{Gal}(N)$. Consequently, the residue field of $E^{\prime}(x)$ under ψ is N. Also $E^{\prime} \subseteq D$ implies that the residue field of E^{\prime} is M. Consequently, $N=M(\beta)$, where $\beta=\psi(x)$ is a root of $f(X, \alpha)$. Finally, since $[N: M]=n$, the polynomial $f(X, \alpha)$ is irreducible over M

To complete the proof we need to find infinitely many $\alpha \in F$ as above. This is done by the 'Rabinovich trick', that is, we replace R by the localization of R at $\prod_{i=1}^{n}\left(y-\alpha_{i}\right)$ (see [JR94, Remark $1.2(\mathrm{c})]$).

Corollary 2. Let M / F be a PAC extension, let $f(X, y) \in M[X, y]$ be a polynomial of degree n in X, and let N / M be a separable extension of degree n. Assume that the Galois

Closeup of the Figure

Critique

Closeups Of the Problematic Areas.

Arrow tip does not match text and is at wrong position

Line has bumps

Step 1: Creating the Nodes. Basic Idea

To (re)create the figure in TikZ, we start with the nodes, which are created using the node command.

Syntax of the Node Creation Command

- Start with \node.
- Then comes a sequences of options.
- Options are given in square brackets, with two exceptions: We can say at (coordinate) to specify a special place, where the node should go.
We can say (name) to assign a name to a node.
- The node ends with some text in curly braces.

Step 1: Creating the Nodes.

A Simple Placement

$\operatorname{Gal}(M)$

Δ
 $\operatorname{Gal}(\hat{N} / M)$

$$
\left(E / E^{\prime}\right)
$$

```
\begin{tikzpicture}
    \node (EE) at (0,0) {$(E/E')$};
    \node (Delta) at (0,1.5) {$\Delta$};
    \node (GalNM) at (3,1.5) {$\mathrm{Gal}(\hat N/M) $};
    \node (GalM) at (3,3) {$\mathrm{Gal} (M) $};
\end{tikzpicture}
```


Step 1: Aligning the Nodes Basic Idea.

The Problem

Providing "hard-wired" coordinates like $(3,1.5)$ is problematic:

- When you read the code, it is hard to tell, where something will go.
- When you change something later, you may need to change many such coordinates.
- It is hard to make sure that all spacings and alignments are correct.

Possible Solutions

- You can use options like right=of Delta to place a node relative to some other node.
- You can use a TikZ-matrix. It works like a LTEX matrix, only inside a picture.

Step 1: Aligning the Nodes.
 Alignment Using a Matrix.

$\operatorname{Gal}(M)$

$$
\Delta \quad \operatorname{Gal}(\hat{N} / M)
$$

$\left(E / E^{\prime}\right)$

```
\matrix[column sep=1cm,row sep=1cm]
{
    & \node (GalM) {$\Gal(M) $};
    \node (Delta) {$\Delta$};& \node (GalNM) {$\Gal(\hat N/M) $};\\
    \node (EE) {$(E/E')$};&
};
```


Step 1: Aligning the Nodes.

Simplified Version...

$\operatorname{Gal}(M)$

Δ
 $\operatorname{Gal}(\hat{N} / M)$

$\left(E / E^{\prime}\right)$

```
\matrix [column sep=1cm,row sep=1cm,matrix of math nodes] (fig)
{
    & \mathrm{Gal} (M) 
};
% Reference Gal(M) as (fig-1-2)
```


Step 1: Aligning the Nodes.

... With Alternate Naming of Nodes.

$\operatorname{Gal}(M)$

$\Delta \quad \operatorname{Gal}(\hat{N} / M)$

$$
\left(E / E^{\prime}\right)
$$

```
\matrix [column sep=1cm,row sep=1cm,matrix of math nodes]
{
    |
};
% Reference Gal(M) as (M)
```


Step 2: Connecting the Nodes.

Simple Straight Line.


```
\matrix [column sep=1cm,row sep=1cm,matrix of math nodes]
{
```



```
};
\draw (M) edge [->] (Delta)
    edge [->] (NM)
    (Delta) edge [->] (NM)
    edge [->] (EE)
    (EE) edge [->] (NM);
```


Step 2: Connecting the Nodes.

The Curved, Dashed Line.


```
\draw (M) edge [->] (Delta)
    edge [->] (NM)
    edge [->,dashed,out=180,in=120] (EE)
    (Delta) edge [->] (NM)
    edge [->] (EE)
    (EE) edge [->] (NM);
```


Step 2: Connecting the Nodes.

Adding the Labels


```
\draw [auto=right]
    (M) edge [->] node {$\varphi^^$} (Delta)
    edge [->] node [swap] {res} (NM)
    edge [->,dashed,out=180,in=120]
        node {$\psi^*$}
        (EE)
    (Delta) edge [->] node {res} (NM)
        edge [->] node [swap] {res} (EE)
    (EE) edge [->] node {$\nu^{-1}$} (NM);
```


Step 3: Finishing Touches

- Adjust "looseness" of the curve and dash phase.
- Reduce distance of φ^{*}, ψ^{*} and ν^{-1} to the line.
- Make edge labels smaller (as in $A \xrightarrow{X} B$)

The Complete Code.

```
\begin{tikzpicture}
    \matrix [column sep=7mm,row sep=7mmm,matrix of math nodes]
    {
    M
    };
    \draw [auto=right,nodes={font=\scriptsize}]
    (M) edge [->] node [inner sep=0pt] {$\varphi^*$} (Delta)
    edge [->] node [swap] {res} (NM)
    edge [->,out=180,in=110,looseness=1.4,
                        dashed,dash phase=3pt]
                                node [inner sep=0pt] {$\psi^*$}
        (Delta) edge [->] node {res}
        edge [->] node [swap] {res}
        edge [->] node [inner sep=0pt] {$\nu^{-1}$} (NM);
\end{tikzpicture}
```


Comparison of Original and Reworked Figure.

A Figure From a Major German Newspaper.

Kohle ist am wichtigsten
 Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

This figure is a redrawing of a figure from "Die Zeit," June 4th, 2005.

Critique.

Kohle ist am wichtigsten
 Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

- Coloring is random and misleading.
- Pie slice sizes do not reflect percentages.
- Main message is lost since coal is split across page.

Detail 1: Pie Slices are Elliptic Arcs.

Kohle ist am wichtigsten

Energiemix bei der deutschen Stromerzeugung 2004
Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

$$
\begin{aligned}
\backslash f i l l[g r e e n!20!g r a y] \quad(0,0) & --(90: 1.2 \mathrm{~cm}) \\
& \text { arc }(90:-5: 3.2 \mathrm{~cm} \text { and } 1.2 \mathrm{~cm}) \\
& -- \text { cycle; }
\end{aligned}
$$

Detail 2: A Horizontal/Vertical Junction.

Kohle ist am wichtigsten

Energiemix bei der deutschen Stromerzeugung 2004
Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

\draw[very thick] (-22mm,7mm) |- (-80mm, 14mm);

Detail 3: The Shading in the Pie Chart.

Kohle ist am wichtigsten

Energiemix bei der deutschen Stromerzeugung 2004
Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)


```
\shade [left color=black,right color=black,middle color=white]
    ( \(0 \mathrm{~mm},-1.5 \mathrm{~mm}\) ) ellipse ( 3.2 cm and 1.2 cm );
```

\fill[green!20!gray] $(0,0)$-- $(90: 1.2 \mathrm{~cm})$
$\operatorname{arc}(90:-5: 3.2 \mathrm{~cm}$ and 1.2 cm$)$
-- cycle;

The Complete Figure.

Kohle ist am wichtigsten
 Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

The complete figure can be constructed in this way.

A Geometrical Construction

Euclid of Alexandria Proof of Proposition I Elements, Book I

Step 1: The Line $A B$
 A Simple Line

```
\begin{tikzpicture}
    \coordinate (A) at (0,0);
    \coordinate (B) at (1.25,0.25);
    \draw[blue] (A) -- (B);
\end{tikzpicture}
```

- The \coordinate command is a shorthand for the \node command with empty text.

Step 1: The Line $A B$

Adding Labels

```
        A—B
\begin{tikzpicture}
    \coordinate [label=left:\textcolor{blue}{$A$}]
        (A) at (0,0);
    \coordinate [label=right:\textcolor{blue}{$B$}]
        (B) at (1.25,0.25);
    \draw[blue] (A) -- (B);
\end{tikzpicture}
```

- The label option makes it easy to add some text around an another node.
- Alternatively, one could explicitly create a node later on.

Step 1: The Line $A B$

Perturbed Positions

```
        A~B
\usetikzlibrary{calc}
\begin{tikzpicture}
    \coordinate [label=left:\textcolor{blue}{$A$}]
    (A) at ($ (0,0) + .1*(rand,rand) $);
    \coordinate [label=right:\textcolor{blue}{$B$}]
        (B) at ($ (1.25,0.25) + .1*(rand,rand) $);
    \draw[blue] (A) -- (B);
\end{tikzpicture}
```

- Between (\$ and \$) you can do some basic linear algebra on coordinates.

Step 2: The Circles

Using the Let Operation

\draw (A) -- (B);
\draw let

$$
\begin{aligned}
& \begin{array}{l}
\backslash p 1
\end{array} \quad=(\$(B)-(A) \$) \\
& \text { in } \\
& \begin{aligned}
&(A) \text { circle }(\{\operatorname{sqrt}(\backslash x 1 * \backslash x 1+\backslash y 1 * \backslash y 1)\}) \\
& \text { (B) circle }(\{\operatorname{sqrt}(\backslash x 1 * \backslash x 1+\backslash y 1 * \backslash y 1)\}) ;
\end{aligned}
\end{aligned}
$$

Step 2: The Circles

Using the Through Library

\usetikzlibrary\{through\}
\draw (A) -- (B) ;
\node at (A) [draw, circle through=(B), label=left:\$D\$] \{\};
\node at (B) [draw, circle through=(A), label=right:\$E\$] \{\};

Step 3: The Intersection of the Circles

\usetikzlibrary\{intersections \}
...
\draw (A) -- (B);
\node at (A) [name path=D,draw, circle through=(B), label=...] \{\};
\node at (B) [name path=E,draw, circle through=(A), label=...] \{\};
\node [name intersections=\{of=D and $E, b y=C\}]$
at (C) [above] \{\$C\$\};
\draw [red] (A) -- (C) (B) -- (C);

Step 4: Finishing Touches

- Add transparent circles at the points A, B, and C.
- Fill triangle, but on the background layer.

The Complete Code

```
\begin{tikzpicture}[thick,
            help lines/.style={semithick,draw=black!50}]
    \coordinate [label=left:\textcolor{blue}{$A$}]
    (A) at ($ (0,0) + .1*(rand,rand) $);
    \coordinate [label=right:\textcolor{blue}{$B$}]
    (B) at ($ (1.25,0.25) + .1*(rand,rand) $);
\draw [blue] (A) -- (B);
\node at (A) [circle through=(B), name path=D,
    help lines,draw,label=left:$D$] {};
\node at (B) [circle through=(A), name path=E,
    help lines,draw,label=right:$E$] {};
\node [name intersections={of=D and E, by=C}]
    at (C) [above] {$C$};
\draw [red] (A) -- (C) (B) -- (C);
\foreach \point in {A,B,C}
    \fill [black,opacity=.5] (\point) circle (2pt);
    \begin{pgfonlayer} {background}
    \fill[orange!80] (A) -- (C) -- (B) -- cycle;
    \end{pgfonlayer}
\end{tikzpicture}
```

