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Abstract. In this work we consider the general question: for a given algebraic

formal power series with coefficients in a finite field, what kind of regularity

(if any) can be expected for the partial quotients of the above power series in
continued fraction expansion? Such a question is natural, since by a theorem

of Christol, the coefficients of an algebraic power series over a finite field form

an automatic sequence. Certain algebraic continued fractions are such that
the sequence of the leading coefficients of the partial quotients is automatic.

Here we give a rather general family of such sequences. Moreover, inspired by
these examples, we give two criteria on automatic sequences, which allow us

to obtain two new families of automatic sequences in an arbitrary finite field.

1. Introduction

For a given algebraic power series over a finite field, by a theorem of Christol, it
is well known that the coefficients of the power series in question form an automatic
sequence (see Theorem 1 below). Then one can ask what kind of regularity can be
expected for the partial quotients of the above power series in continued fraction
expansion. This question was put forward at first by Mendès France, initiated by
Allouche [1], Allouche et al. [2], and continued by Mkaouar [20] and Yao [21]. Until
now there are only examples and counterexamples, but not any general result.

The present work is a continuation of our article [18] in which we have approached
the question from another point of view: consider the leading coefficients of the
partial quotients instead of the partial quotients themselves. To know more about
the motivation and the history, the reader may consult the introduction of [18] and
the references therein.

Let Fq be the finite field containing q elements, with q = ps where p is a prime
number and s is an integer such that s > 1. We denote by F(q) the field of power
series in 1/T , with coefficients in Fq, where T is a formal indeterminate. Hence, an
element in F(q) can be written as α =

∑
k6k0

u(k)T k, with k0 ∈ Z and u(k) ∈ Fq
for all integers k such that k 6 k0. These fields of power series are analogues of
the field of real numbers. As in the real case, it is well known that the sequence
of coefficients of this power series α, (u(k))k6k0 , is ultimately periodic if and only
if α is rational, i.e., α ∈ Fq(T ). Moreover and remarkably, due to the rigidity of
the positive characteristic case, this sequence of coefficients, for all elements in F(q)
which are algebraic over Fq(T ), belongs to a class of particular sequences introduced
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by computer scientists. The theorem below can be found in the work [8] of Christol
(see also the article [9] of Christol, Kamae, Mendès France, and Rauzy).

Theorem 1 (Christol). Let α in F(q) with q = ps. Let
(
u(k)

)
k6k0

be the sequence

of digits of α and v(n) = u(−n) for all integers n > 0. Then α is algebraic over
Fq(T ) if and only if the following set of subsequences of (v(n))n>0

K(v) =
{(
v(pin+ j)

)
n>0
| i > 0, 0 6 j < p

i
}

is a finite set.

The sequences having the finiteness property stated in this theorem are called
p-automatic sequences. A full account on this topic and a very complete list of
references can be found in the book [3] of Allouche and Shallit.

Concerning algebraic elements in F(q), a particular subset needs to be considered.
An irrational element α in F(q) is called hyperquadratic, if αr+1, αr, α, and 1 are
linked over Fq(T ), where r = pt, and t is an integer such that t > 0. The subset
of all these elements, noted H(q), contains not only the quadratic (r = 1) and the
cubic power series (r = p and note that the vector space over Fq(T ) generated
by all the αj ’s with j > 0 has dimension equal to 3), but also algebraic elements
of arbitrarily large degree. For various reasons, H(q) could be regarded as the
analogue of the subset of quadratic real numbers, particularly when considering
the continued fraction algorithm. See [7] for more information on this notion.

An irrational element α in F(q) can be expanded as an infinite continued fraction
α = [a1, a2, . . . , an, . . .], where the partial quotients an are polynomials in Fq[T ],
all of positive degree, except perhaps for the first one. The explicit description
of continued fractions for algebraic power series over a finite field goes back to
Baum and Sweet [5, 6], and was carried on ten years later by Mills and Robbins
[19]. It happens that this continued fraction expansion can be explicitly given for
various elements in H(q). This is certainly the case for quadratic power series,
where the sequence of partial quotients is simply ultimately periodic (as it is for
quadratic real numbers). It was first observed by Mills and Robbins [19] that other
hyperquadratic elements have also partial quotients of bounded degrees with an
explicit continued fraction expansion, as for example the famous cubic over F2

introduced by Baum and Sweet [5]. Some of these examples, belonging to H(p)
with p > 5, are such that an = λnT , for all integers n > 1, with λn ∈ F∗p.
Then Allouche [1] showed that for each example given in [19], with p > 5, the
corresponding sequence of partial quotients is automatic. Another case in H(3)
(also given in [19]), having an = λnT + µn, with λn, µn ∈ F∗3 for all integers n > 1,
was treated by Allouche et al. in [2]. Recently we have investigated the existence
of such hyperquadratic power series, having partial quotients of degree 1, in the
largest setting with odd characteristic (see [17] and particularly the comments in
the last section). However, concerning the cubic power series introduced by Baum
and Sweet in [5], Mkaouar [20] showed that the sequence of partial quotients (which
takes only finitely many values) is not automatic (see also [21]). Besides, we know
that most of the elements in H(q) have partial quotients of unbounded degrees
(see for example the introduction in [18]). Hence, it appears that the link between
automaticity and the sequence of partial quotients is not so straight.

With each infinite continued fraction in F(q), we can associate a sequence in F∗q
as follows: if α = [a1, a2, . . . , an, . . .] with an ∈ Fq[T ], then for all integers n > 1, we
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define u(n) as the leading coefficient of the polynomial an. For several examples in
H(q), we have observed that this sequence

(
u(n)

)
n>1

is automatic. Indeed, a first

observation in this area is the results of Allouche [1] cited above. Very recently we
have described in [18] three other families of hyperquadratic continued fractions and
have shown that the associated sequences as indicated above are automatic. For an
algebraic (even hyperquadratic) power series, the possibility of describing explic-
itly the continued fraction expansion and consequently the sequence

(
u(n)

)
n>1

is

sometimes a rather difficult problem. In the next section we shall begin with such
a description given recently by the first author in [15] in characteristic 2. We show
that the corresponding sequences belong to a large family of automatic sequences
in an arbitrary finite field, by giving the explicit algebraic equation satisfied by the
generating function attached to each such sequence. In a third section, we give two
criteria on automaticity, which generalize [18, Theorem 2] and [4, Theorem 2.2] re-
spectively. In Section 4, we apply the first criterion to present other recurrent and
automatic sequences with values in an arbitrary finite field, more general than the
preceding ones obtained in Section 2. In a last section, we use both criteria to study
other particular sequences in a finite field of odd characteristic. These sequences
are also related to hyperquadratic continued fractions, and were introduced by the
first author several years ago.

2. Hyperquadratic continued fractions and automaticity

The starting point of the present work is a family of sequences, defined in a finite
field of characteristic 2, which are derived from an algebraic continued fraction
in power series fields. The proposition stated below is a simplified version of a
theorem proved recently by the first author in [15], improving an earlier result in
[16, Proposition 5, p. 556]. For the effective coefficients of the algebraic equation
appearing in this proposition, the reader may consult [15].

Proposition 1. Let q = 2s and r = 2t with s, t > 1 integers. Let ` > 1 be
an integer, and Λ`+2 = (λ1, λ2, . . . , λ`, ε1, ε2) ∈ (F∗q)`+2. We define the sequence
(λn)n>1 in F∗q recursively from the `-tuple (λ1, λ2, . . . , λ`) as follows: for m > 0,

(1)

{
λ`+rm+1 = (ε2/ε1)ε

(−1)m+1

2 λrm+1,

λ`+rm+i = (ε1/ε2)(−1)i for 2 6 i 6 r.

Then there exist (u, v, w, z) ∈ (Fq[T ])4 with uv 6= 0, depending on Λ`+2, such that
the continued fraction α = [λ1T, λ2T, . . . , λ`T, . . . , λnT, . . .] ∈ F(q), satisfies the
following algebraic equation

uαr+1 + vαr + wα+ z = 0.

We shall show that all the above sequences (λn)n>1 are 2-automatic. Here again,
this underlines the existence of a link between automaticity and certain algebraic
continued fractions, mentioned in the introduction. Indeed we are going to show
the automaticity, via Christol’s theorem, for a larger class of sequences with values
in a finite field, including in particular the above ones as special cases. Actually
the following result is slightly more precise than what we want: accidently we have
obtained a family of hyperquadratic power series in characteristic 2, for which the
power series defined by the leading coefficients of their partial quotients are also
hyperquadratic. For these new hyperquadratic power series, one can consider again
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the continued fraction expansion and the leading coefficients of partial quotients,
and then ask whether they form also an automatic sequence.

Theorem 2. Let ` > 1 be an integer, p a prime number, q = ps and r = pt with
s, t > 1 integers. Let k > 1 be an integer dividing r. Let (λ1, λ2, . . . , λ`) ∈ (Fq)`,
(α1, α2, . . . , αk) ∈ (F∗q)k, and (β1, β2, . . . , βr−1) ∈ (Fq)r−1. We define recursively
in Fq the sequence (λn)n>1 as follows: for all integers m > 0,

(2)

{
λ`+1+r(km+i) = αi+1λ

r
km+i+1, for 0 6 i < k,

λ`+1+rm+j = βj , for 1 6 j < r.

Set θ =
∑
n>1

λnT
−n. Then there exist ρ in F(q), and A,B,C in Fq(T ) with C 6= 0

such that θ = A + ρ and ρ = B + Cρr. Hence θ is hyperquadratic, thus algebraic
over Fq(T ). In particular, the sequence (λn)n>1 is p-automatic.

Remark. Note that the sequences in (1) correspond, in (2), to the case below:

p = 2, k = 2, α1 = ε−1
1 , α2 = ε2

2ε
−1
1 , and βj = (ε2/ε1)(−1)j (1 6 j 6 r − 1).

Proof. According to Christol’s theorem, the sequence (λn)n>1 is p-automatic if and
only if θ is algebraic over Fq(T ). In the following we shall only show that θ satisfies
an algebraic equation of hyperquadratic type as indicated in the statement.

Define below two subsets of positive integers:

E =
{
`+ rn+ 1 | n > 0

}
, and F =

{
`+ rn+ i | n > 0, 2 6 i 6 r

}
.

Then we have the partition N∗ =
{

1, . . . , `
}⋃

F
⋃

E. Put

ρ =
∑
n∈E

λnT
−n =

∑
m>0

λ`+1+rmT
−(`+1+rm), and ρ1 =

∑
n∈F

λnT
−n.

Then θ =
∑̀
m=1

λmT
−m + ρ1 + ρ, and by the recursive relations (2), we obtain

ρ1 =
∑

16j<r

∑
m>0

λ`+1+rm+jT
−(`+1+rm+j) =

∑
16j<r

∑
m>0

βjT
−(`+1+rm+j)

=
( ∑
m>0

T−rm
)( ∑

16j<r

βjT
−`−1−j

)
= (1− T−1)−r

∑
16j<r

βjT
−`−1−j ,

since we have
∑
m>0

T−m = (1− T−1)−1 in F(q). So we can write θ = A+ ρ, with

A =
∑̀
m=1

λmT
−m + (1− T−1)−r

∑
16j<r

βjT
−`−1−j ∈ Fq(T ).

To simplify the notation, we extend the finite sequence (αi)16i6k into a purely
periodic sequence of period length k, denoted by (αn)n>1. From the recursive
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relations (2), by noting that E =
{
`+ 1 + r(km+ i) | m > 0, 0 6 i < k

}
, we obtain

ρ =
∑

06i<k

∑
m>0

λ`+1+r(km+i)T
−(`+1+r(km+i))

=
∑

06i<k

∑
m>0

αi+1λ
r
km+i+1T

−(`+1+r(km+i))

=
∑

06i<k

∑
m>0

αkm+i+1λ
r
km+i+1T

−(`+1+r(km+i))

= T r−`−1
∑
n>1

αnλ
r
nT
−rn.

By using again the above partition of N∗, we deduce

T `+1−rρ =
∑̀
m=1

αmλ
r
mT
−rm +

∑
n∈E

αnλ
r
nT
−rn +

∑
n∈F

αnλ
r
nT
−rn.(3)

Since k divides r, we have α`+1+rm+j = α`+1+j by periodicity. By (2), we obtain∑
n∈F

αnλ
r
nT
−rn =

∑
16j<r

∑
m>0

α`+1+rm+jλ
r
`+1+rm+jT

−r(`+1+rm+j)(4)

=
∑

16j<r

∑
m>0

α`+1+jβ
r
jT
−r(`+1+rm+j)

=
( ∑
m>0

T−mr
2
)( ∑

16j<r

α`+1+jβ
r
jT
−r(`+1+j)

)
= (1− T−1)−r

2 ∑
16j<r

α`+1+jβ
r
jT
−r(`+1+j).

By periodicity again, we have α`+1+rm = α`+1, and thus∑
n∈E

αnλ
r
nT
−rn =

∑
m>0

α`+1+rmλ
r
`+1+rmT

−r(`+1+rm)(5)

= α`+1

∑
m>0

λr`+1+rmT
−r(`+1+rm)

= α`+1ρ
r.

Combining (3), (4), and (5), we obtain ρ = B + Cρr, with C = α`+1T
r−`−1 and

B = T r−`−1
( ∑̀
m=1

αmλ
r
mT
−rm + (1− T−1)−r

2 ∑
16j<r

α`+1+jβ
r
jT
−r(`+1+j)

)
.

Thus ρ and also θ are algebraic over Fq(T ), and the proof is complete. �

From a number-theoretic point of view, the sequences described in Proposition 1
are most important, for they are associated with an algebraic continued fraction.
Such an association is not relevant for the more general sequences discussed in
Theorem 2, as well as for others of a similar type, still more general, considered
in Section 4. Hence coming back to the sequences (λn)n>1 in a finite field of
characteristic 2, defined by the recursive relations (1), a natural question arises:
what can be said about the algebraic degree over Fq(T ) of the continued fraction
α = [λ1T, λ2T, . . . , λnT, ....]? By Proposition 1, this degree is in the range [2, r+1],
since α is irrational and satisfies an algebraic equation of degree r + 1. It is a
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classical fact that α is quadratic if and only if the sequence (λn)n>1 is ultimately
periodic. Thus α is quadratic if and only if θ (the generating function of the
sequence introduced in Theorem 2) is rational.

In the particular and simplest case r = 2, we are able to give a necessary and
sufficient condition to guarantee this rationality.

Proposition 2. Let (λn)n>1 be the sequence defined by the recursive formulas (1),
assuming that we have r = 2. Then this sequence is periodic (and purely periodic
of period length less or equal to 2) if and only if we have

λm = (ε1/ε2)ε
((−1)`−(−1)m)/2
2 for 1 6 m 6 `.

Proof. We shall apply Theorem 2 in the particular case p = 2, k = 2, and r = 2.
Hence θ = A+ ρ and ρ = B + Cρ2. Let V ∈ Fq(T ) be given. Then we have

V + ρ = V +B + CV 2 + C(V + ρ)2.

Setting ξ = C(V + ρ), and multiplying this last equality by C, we obtain

ξ = CV + CB + (CV )2 + ξ2 = U + ξ2,(6)

with U = CV + CB + (CV )2. Note that the sequence (αm)m>1 is 2-periodic, and

αm = (ε2/ε1)ε
(−1)m

2 for m > 1. Note also that α`+1α`+2β
2
1 = α1α2β

2
1 = 1,

C = α`+1T
1−`, and B = T 1−`

( ∑̀
m=1

αmλ
2
mT
−2m + α`+2β

2
1(1 + T )−4T−2`

)
.

By taking V = α−1
`+1T

1−`(T + 1)−2, we obtain directly

U = CV + CB + (CV )2 = T 2−2`
∑̀
m=1

(α`+1αmλ
2
m + 1)T−2m.

Put um = α`+1αmλ
2
m + 1 for all integers m (1 6 m 6 `). Then we can write

U = u1T
−2` + u2T

−2`−2 + · · ·+ u`T
−4`+2,

and we obtain ξ =
∑
m>0

U2m

by the formula (6). If U 6= 0, there exist arbitrarily long

blocks of zeros in the (1/T )-power series expansion of ξ, and then ξ is irrational.
So ξ ∈ Fq(T ) if and only if U = 0, i.e, for all integers m (1 6 m 6 `), we have

λ2
m = (α`+1αm)−1 = (ε1/ε2)2ε

(−1)`−(−1)m

2 ,

which implies in turn that the sequence (λn)n>1 is 2-periodic: ε1/ε2, ε1/ε
2
2, . . . or

ε1, ε1/ε2, . . . according to the parity of `. To conclude, it suffices to note that we
have θ = A+ V + C−1ξ, with A, V ∈ Fq(T ). �

Remark. The expressions θ = A+V +C−1ξ and ξ = U+ξ2 had been stated without
proof in [15]. Moreover we can also observe that θ is rational if and only if α is
quadratic, and this is equivalent to say α = [λ1T, λ2T, . . . , λ1T, λ2T, . . . ]. Hence,
if (λn)n>1 is not purely 2-periodic, then α is cubic over Fq(T ). Furthermore, if
we define ω(T ) = [T, T, . . . , T, . . . ] (which is the analogue in the formal case of the

golden ration (1 +
√

5)/2 = [1, 1, . . . , 1, . . . ]), then α is quadratic if and only if we
have α(T ) = (λ1/λ2)q/2ω((λ1λ2)q/2T ).
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3. Two criteria for automatic sequences

Motivated by the form of the sequences presented in Theorem 2 above and also by
[18, Theorem 2] and [4, Theorem 2.2], we shall give in this section two new criteria
for automatic sequences. Here we consider sequences of the form v =

(
v(n)

)
n>1

.

Let r > 2 be an integer. Equivalently, the sequence v is r-automatic if its r-kernel

Kr(v) =
{(
v(rin+ j)

)
n>1
| i > 0, 0 6 j < r

i
}

is a finite set (see Cobham [11, p. 170, Theorem 1], see also Eilenberg [12, p. 107,
Proposition 3.3]). For more details on automatic sequences, see the book [3] of
Allouche and Shallit. Recall that all ultimately periodic sequences are r-automatic
for all integers r > 2, adding or chopping off a prefix to a sequence does not
change its automaticity (see [3, p. 165]), the pointwise product of two r-automatic
sequences with values in a semigroup is r-automatic (see [3, Corollary 5.4.5, p. 166]),
a sequence is r-automatic if and only if it is rm-automatic for all integers m > 1
(see [3, Theorem 6.6.4, p. 187]), and that v is r-automatic if all the subsequences(
v(an+ b)

)
n>1

(0 6 b < a) are r-automatic, where a > 1 is a fixed integer (see [3,

Theorem 6.8.2, p. 190]). All these results will be used later in this work.
For all integers j, n (0 6 j < r and n > 1), define

(Tjv)(n) = v(rn+ j).

Then for all integers n, a (n, a > 1), and b (0 6 b < ra) in r-adic expansion

b =

a−1∑
l=0

blr
l (0 6 bl < r),

with the help of the operators Tj (0 6 j < r), we have

v(ran+ b) = (Tba−1
◦ Tba−2

◦ · · · ◦ Tb0v)(n).

In particular, we obtain that v is r-automatic if and only if all Tjv (0 6 j < r) are

r-automatic, for we have Kr(v) = {v} ∪
⋃r−1
j=0 Kr(Tjv).

The following criterion for automatic sequences generalizes Theorem 2 in [18].

Theorem 3. Let r > 2 be an integer. Let v =
(
v(n)

)
n>1

be a sequence in a finite

set A, and σ a bijection on A. Fix an integer i with 0 6 i < r. Then, for all integer
m > 0, we have the following statement:

(im) If (Tiv)(n + m) = σ
(
v(n)

)
for all integers n > 1, and Tjv is r-automatic

for all integers j (0 6 j < r and j 6= i), then v is r-automatic.

Proof. Since A is finite and σ is a bijection on A, there exists an integer l > 1 such
that σl = idA, the identity mapping on A. In the following we shall show (im) by
induction on m. For this, we need only show that under the conditions of (im), the
sequence Tiv is r-automatic.

If m = 0, then under the conditions of (i0), we have Tiv = σ(v), and then

Kr(Tiv) = {σa(Tiv) | 0 6 a < l} ∪
⋃

06b<l
06j<r,j 6=i

σb
(
Kr(Tjv)

)
,

so Kr(Tiv) is finite, as Tjv is r-automatic for all integers j (0 6 j < r) with j 6= i.

If m = 1, under the conditions of (i1), we have (Tiv)(n + 1) = σ
(
v(n)

)
for all

integers n > 1, and Tjv is r-automatic for all integers j (0 6 j < r) with j 6= i.
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Below we distinguish two cases:

Case I: 0 6 i 6 r − 2. Then for all integers n > 1, we have

(T0Tiv)(n+ 1) = (Tiv)(rn+ r) = σ
(
v(rn+ r − 1)

)
= σ

(
(Tr−1v)(n)

)
,

hence T0(Tiv) is r-automatic, since it is obtained from σ(Tr−1v) by adding a letter
before, and Tr−1v is r-automatic by hypothesis, for r − 1 6= i .

Let j be an integer such that 1 6 j < r. Then for all integers n > 1,

(TjTiv)(n) = (Tiv)(rn+ j) = σ
(
v(rn+ j − 1)

)
= σ

(
(Tj−1v)(n)

)
.

Hence if j 6= i + 1, then Tj(Tiv) is r-automatic, for j − 1 6= i, and thus Tj−1v is
k-automatic by hypothesis. Moreover for j = i + 1, we have Ti+1(Tiv) = σ(Tiv).
Note that Tj(Tiv) is r-automatic for all integers j (0 6 j < r) with j 6= i+ 1, hence
we can apply ((i+ 1)0) with Tiv, and we obtain that Tiv is r-automatic.

Case II: i = r − 1. Then for all integers j, n (1 6 j < r and n > 1), we have

(TjTr−1v)(n) = (Tr−1v)(rn+ j)

= σ
(
v(rn+ j − 1)

)
= σ

(
(Tj−1v)(n)

)
.

So Tj(Tr−1v) is r-automatic, for j − 1 6= i, and thus Tj−1v is r-automatic by
hypothesis. Moreover for all integers n > 1, we have

(T0Tr−1v)(n+ 1) = (Tr−1v)(rn+ r)

= σ
(
v(rn+ r − 1)

)
= σ

(
(Tr−1v)(n)

)
.

Since Tj(Tr−1v) is r-automatic for all integers j (1 6 j < r), we can apply (01)
proved above with Tr−1v, and we obtain that Tr−1v is r-automatic.

Now let m > 1 be an integer, and assume that (ij) holds for all integers i, j with
0 6 i < r and 0 6 j 6 m. We shall show that (im+1) holds for all integers i with
0 6 i < r. Namely, under the conditions that (Tiv)(n + m + 1) = σ

(
v(n)

)
for all

integers n > 1, and Tjv is r-automatic for all integers j (0 6 j < r) with j 6= i, we
shall show that Tiv is r-automatic. For this, we distinguish two cases below.

Write m = r[m/r] + a, with a an integer such that 0 6 a < r.

Case I: 0 6 i < r− a− 1. Let j be an integer such that 0 6 j < r. If j < a+ 1,
then for all integers n > 1, we have

(TjTiv)(n+ [m/r] + 1) = (Tiv)(rn+ r[m/r] + r + j)

= (Tiv)(rn+m+ r + j − a)

= σ
(
v(rn+ r + j − a− 1)

)
= σ

(
(Tr+j−a−1v)(n)

)
,

hence Tj(Tiv) is r-automatic, since it is obtained from σ(Tr+j−a−1v) by adding a
prefix of length [m/r] + 1, and the latter is r-automatic by hypothesis, for we have
j > 0 > i+ a+ 1− r. Assume j > a+ 1. Then for all integers n > 1, we have

(TjTiv)(n+ [m/r]) = (Tiv)(rn+ r[m/r] + j) = (Tiv)(rn+m+ j − a)

= σ
(
v(rn+ j − a− 1)

)
= σ

(
(Tj−a−1v)(n)

)
.

If j 6= i+ a+ 1, then Tj(Tiv) is r-automatic, since it is obtained from σ(Tj−a−1v)
by adding a prefix of length [m/r], and the latter is r-automatic by hypothesis, for
we have j − a− 1 6= i. If j = i+ a+ 1, then for all integers n > 1, we have

(TjTiv)(n+ [m/r]) = σ
(
(Tiv)(n)

)
.
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Note here that [m/r] 6 m and Tj(Tiv) is r-automatic for all integers j (0 6 j < r)
with j 6= i + a + 1, hence we can apply ((i + a + 1)[m/r]) with Tiv, and we obtain
at once that Tiv is r-automatic.

Case II: r − a− 1 6 i < r. Let j (0 6 j < r) be an integer. If j > a+ 1, then
for all integers n > 1, we have

(TjTiv)(n+ [m/r]) = (Tiv)(rn+ r[m/r] + j) = (Tiv)(rn+m+ j − a)

= σ
(
v(rn+ j − a− 1)

)
= σ

(
(Tj−a−1v)(n)

)
,

hence Tj(Tiv) is r-automatic, since it is obtained from σ(Tj−a−1v) by adding a
prefix of length [m/r], and the latter is r-automatic by hypothesis, for we have
i > r − a− 1 > j − a− 1. If j < a+ 1, then for all integers n > 1, we have

(TjTiv)(n+ [m/r] + 1) = (Tiv)(rn+ r[m/r] + r + j)

= (Tiv)(rn+m+ r + j − a)

= σ
(
v(rn+ r + j − a− 1)

)
= σ

(
(Tr+j−a−1v)(n)

)
.

If j 6= i+a+1−r, then Tj(Tiv) is r-automatic, since it is obtained from σ(Tr+j−a−1v)
by adding a prefix of length [m/r] + 1, and the latter is r-automatic by hypothesis,
for we have r + j − a− 1 6= i. If j = i+ a+ 1− r, then for all integers n > 1,

(TjTiv)(n+ [m/r] + 1) = σ
(
(Tiv)(n)

)
.

Now that [m/r] + 1 6 m and Tj(Tiv) is r-automatic for all integers j (0 6 j < r)
with j 6= i + a + 1 − r, hence we can apply ((i + a + 1 − r)[m/r]+1) with Tiv, and
we obtain that Tiv is r-automatic.

Finally we obtain that (im) holds for all integers i,m (0 6 i < r and m > 0). �

Remarks. 1) By the same argument as above, one can show that Theorem 3 holds
also for all integers m 6 0, thus for all m ∈ Z.

2) One can ask what’s the size of Kr(v), which cannot be obtained from the
inductive proof given above. In principle, this is not an easy task, and precisely for
this reason, one cannot deduce directly from Theorem 5, in the next section, the
algebraic equation of hyperquadratic type presented in Theorem 2.

Again, inspired by Theorem 2.2 obtained by Allouche and Shallit in [4], we give
below another criterion for automatic sequences which generalizes and improves
slightly the latter. This criterion will be needed in the last section. The proof is a
reformulation of that of Theorem 2.2 cited above, but with appropriate modifica-
tions and more details.

As above, let r > 2 be an integer, and v =
(
v(n)

)
n>1

a sequence with values in

a finite set A. Fix i, j, l ∈ Z (i > 0 and 0 6 j < ri). For all n > (1− j)r−i − l, put

v
(l)
i,j(n) = v

(
ri(n+ l) + j

)
.

If (1 − j)r−i − l > 1, then we define v
(l)
i,j(n) = a0 (1 6 n < (1 − j)r−i − l), with

a0 ∈ A an element fixed in advance. Let a, b be two integers such that a, b > 0. We

denote by Aa,b the set of all tensors (c
(l)
i,j)|l|6a,06i6b,06j<ri with c

(l)
i,j ∈ A, and by

Ma,b the set of all mappings from Aa,b to A. Both Aa,b and Ma,b are finite sets.
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Theorem 4. Let r > 2 be an integer, and v =
(
v(n)

)
n>1

be a sequence in a finite

set A. Assume that there exist integers a, b,N0 > 0 and fm ∈Ma,b (0 6 m < rb+1)
such that for all integers m,n (0 6 m < rb+1and n > N0), we have

(7) v(rb+1n+m) = v
(0)
b+1,m(n) = fm

((
v

(l)
i,j(n)

)
|l|6a,06i6b,06j<ri

)
.

Then the sequence v is r-automatic.

Proof. To conclude, it suffices to construct a finite set of sequences E containing v
such that if u ∈ E, then Tmu ∈ E, for all integers m (0 6 m < r).

Fix an integer N such that N > N0 + r(a + 1)/(r − 1). Let E be the set of all
sequences u = (u(n))n>1 with values in A such that for all integers n > N , we have

u(n) = f
((
v

(l)
i,j(n)

)
|l|6N,06i6b,06j<ri

)
,

where f ∈ MN,b. Since a < N , we can treat Ma,b as a subset of MN,b. From the
definition and the finiteness of A and MN,b, we know that E is finite. Moreover

v
(l)
i,j ∈ E (|l| 6 N, 0 6 i 6 b, 0 6 j < ri), and by using composition of mappings, we

need only to show Tmv
(l)
i,j ∈ E, for all integers m (0 6 m < r).

For all integers n > max((1− j)r−i − l, 1), we have

Tmv
(l)
i,j(n) = v

(l)
i,j(rn+m) = v

(
ri(rn+m+ l) + j

)
.

By the division algorithm, we can write

ri(m+ l) + j = ri+1x+ y,

with x, y ∈ Z and 0 6 y < ri+1 6 rb+1. Then we obtain

(8) Tmv
(l)
i,j(n) = v

(
ri+1(n+ x) + y

)
= v

(x)
i+1,y(n).

Note that ri+1x 6 ri+1x+ y = ri(m+ l) + j < ri(m+ l + 1), and

ri+1x = ri(m+ l) + j − y > ri(m+ l)− ri+1.

Hence x < (m+ l + 1)/r 6 (r +N)/r 6 N , and

x > (m+ l − r)/r > (m−N − r)/r > −(N + r)/r > −N,

for we have N > N0 + r(a+ 1)/(r − 1) > r/(r − 1). Consequently |x| 6 N .
We distinguish two cases below.

Case I: i < b. Then i+ 1 6 b, and by the relation (8), we obtain Tmv
(l)
i,j ∈ E.

Case II: i = b. By the condition (7), for all integers n > N , we have

Tmv
(l)
i,j(n) = v

(x)
b+1,y(n) = fy

((
v

(e+x)
c,d (n)

)
|e|6a,06c6b,06d<rc

)
.

To conclude, it suffices to show v
(e+x)
c,d ∈ E (|e| 6 a, 0 6 c 6 b, 0 6 d < rc), and

then apply composition of mappings. But N > r(a+ 1)/(r − 1), thus

e+ x > x− a > −(N + r)/r − a > −N,

and e+ x 6 x+ a < (r +N)/r + a 6 N . So |e+ x| 6 N , and then v
(e+x)
c,d ∈ E. �
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4. A first family of automatic sequences

As an application of Theorem 3, we have the following result which slightly
generalizes the part of Theorem 2 concerning the automaticity, leaving aside the
hyperquadratic equation given there. Again, note that in general the sequences
considered in this section are not related to algebraic continued fractions.

Theorem 5. Let ` > 1, r > 2, and k > 1 be integers such that k divides r. Let p
be a prime number and q = ps, with s > 1 an integer. Let

(
u(1), u(2), . . . , u(`)

)
be

given in F`q, and u =
(
u(n)

)
n>1

be the sequence in the finite field Fq such that for

all integers m, i (m > 0 and 0 6 i < k), we have

(9)

{
u
(
`+ 1 + r(km+ i)

)
= αi+1

(
u(km+ i+ 1)

)γ
,

u
(
`+ 1 + r(km+ i) + j

)
= βi,j , with 1 6 j < r,

where αi+1 (0 6 i < k) in F∗q , βi,j (1 6 j < r) in Fq are fixed elements, and γ > 1
is an integer coprime to q − 1. Then the sequence u is r-automatic.

Proof. For all integers i, n (0 6 i < r and n > 1), set ui(n) = u(rn + i), and we
need only show that all the ui (0 6 i < r) are r-automatic.

Write `+1 = ra+b, with a, b integers such that a > 0, 0 6 b < r. Then a+b > 1.
From the recursive relations (9), we deduce at once that all the uj (0 6 j < r) are
ultimately periodic except for j = b, and for all integers m, i (m > 0 and 0 6 i < k),

ub(km+ i+ a) = αi+1

(
u(km+ i+ 1)

)γ
.

Since all the ultimately periodic sequences are r-automatic, it remains for us to
show that the sequence ub is r-automatic.

Extend the finite sequence (αi)16i6k to be a purely periodic sequence of period
length k, denoted by (αn)n>0. Then for all integers n > 1, we have

ub(n− 1 + a) = αn
(
u(n)

)γ
,

from which, by noting that k divides r, we obtain, for all integers m > 1,{
ub(rm+ a+ b− 1) = αrm+b

(
ub(m)

)γ
= αb

(
ub(m)

)γ
,

ub(rm+ a+ j − 1) = αrm+j

(
uj(m)

)γ
= αj

(
uj(m)

)γ
(0 6 j < r, j 6= b).

Write a + b − 1 = rc + d, with c, d integers such that c > 0 and 0 6 d < r. Then
all the Tiub (0 6 i < r) are ultimately periodic (thus r-automatic) except for i = d,
for all the uj (0 6 j < r, j 6= b) are ultimately periodic. Moreover for all n > 1,

(Tdub)(m+ c) = ub(rm+ a+ b− 1) = αb
(
ub(m)

)γ
= σ

(
ub(m)

)
,

where σ(x) = αbx
γ , for all x ∈ Fq. Now that αb 6= 0 and γ is coprime to q− 1, thus

the mapping σ is bijective on Fq. To conclude, it suffices to apply Theorem 3 with
ub to obtain that ub is also r-automatic. �

Remark. In the above theorem, if r is a power of p and γ = r, then we can argue
similarly as for Theorem 2 to obtain the algebraic equation of hyperquadratic type,
and the automaticity follows directly from Christol’s theorem, as we have seen, so
Theorem 2 is slightly more precise than Theorem 5 in this case. If r is a power
of p but γ 6= r, then the generating function F of the sequence u is still algebraic
by Christol’s theorem, but the algebraic equation is not given and it may not be
as simple (hyperquadratic type) as it is in Theorem 2. Finally if r is not a power
of p, then r and p are multiplicatively independent and thus F may not be algebraic
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over Fq(T ). Indeed if F is not rational, then u is not ultimately periodic, hence
by a classical theorem of Cobham [10], it cannot be p-automatic, consequently F is
transcendental over Fq(T ) by Christol’s theorem.

5. A second family of automatic sequences

In this last section, we consider families of sequences in a finite field of odd
characteristic. They have been discussed by the first author in several papers, and
their origin can be found in [13]. As those introduced above in Proposition 1, they
are also derived from hyperquadratic continued fractions. Here, we shall consider
the more general setting, as it was presented in [14], and then show by Theorem 3
and Theorem 4 that they are automatic sequences.

Below we recall briefly the origin of these sequences and the way in which they
are built. For more details, the reader may consult [14, p. 252-257].

Let p be an odd prime number. Set q = ps and r = pt with s, t > 1 integers. Let
` > 1 be an integer and fix Λ`+2 = (λ1, λ2, . . . , λ`, ε1, ε2) ∈ (F∗q)`+2. We consider a
finite set E(r) of positive integers, defined as follows:

E(r) =
{
mpj + (pj − 1)/2 | 1 6 m 6 (p− 1)/2, 0 6 j 6 t− 1

}
.

Note that we have
{

1, . . . , (p− 1)/2
}
⊂ E(r) ⊂

{
1, . . . , (r − 1)/2

}
.

In the sequel, we fix an integer k ∈ E(r). Given Λ`+2 and k, we can build an
infinite continued fraction α in F(q) such that

α = [λ1T, λ2T, . . . , λ`T, a`+1, . . . , an, . . .], with an ∈ Fq[T ] (n > 1),

and there exist u, v, w, z ∈ Fq[T ], explicitly depending on Λ`+2 and k, satisfying

uαr+1 + vαr + wα+ z = 0.

If Λ`+2 and k satisfy a certain condition, then this continued fraction α is pre-
dictable, that is to say, the partial quotients can be fully described. In this case, the
sequence of partial quotients is based on a particular sequence (Am)m>1, depending
only on k and r, of monic polynomials in Fp[T ]. Indeed, we have an = λnAi(n) for

all integers n > 1, where λn ∈ F∗q and
(
i(n)

)
n>1

is a sequence in N, depending only

on k and `. Note in particular that we have Ai(j) = T , for 1 6 j 6 `.
Here, we are only interested in the sequence (λn)n>1, of the leading coefficients

of the partial quotients of α. This sequence can be described as follows.
At first, there exists a sequence (δn)n>1 in F∗q , defined by the initial values

δ1, δ2, . . . , δ` (depending on Λ`+2 and k) and by the recursive formulas

(10) δ(2k+1)n+`−2k+i = θiε
r(−1)n+i

1 δr(−1)i

n , for n > 1 and 0 6 i 6 2k,

where θi ∈ F∗p (0 6 i 6 2k) are constants depending only on k and i. Then the
sequence (λn)n>1 in F∗q is defined recursively from λ1, λ2, . . . , λ` by the formulas

(11)

{
λ(2k+1)n+`−2k = ε

(−1)n

1 λrn,

λ(2k+1)n+`−2k+i = θ′iε
(−1)n+i

1 δ
(−1)i

n , for n > 1 and 1 6 i 6 2k,

where θ′i ∈ F∗p (1 6 i 6 2k) are constants depending only on k and i.
Note that the case that k = (r− 1)/2 is remarkable: in this case Am = T for all

integers m > 1, therefore an = λnT for all integers n > 1 (while if k < (r − 1)/2,
the degree of Am tends to infinity with m). Due to this peculiarity, first examples
were given in 1986 by Mills and Robbins [19], in the particular case: r = q = p > 5,
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k = (p − 1)/2, and ` = 2. Shortly afterwards, Allouche [1] showed in 1988 that
the sequences of the partial quotients for these examples of Mills and Robbins are
p-automatic. Equivalently, this means that the sequence (λn)n>1 is p-automatic.

More generally, we have the following result.

Theorem 6. The sequences (λn)n>1 defined above are (2k + 1)-automatic.

Proof. To simplify the notation, set K = 2k + 1, and we proceed in two steps.
Step 1: we show that the sequence (δn)n>1 is K-automatic. For all integers

n > 1, put v(n) = δn+`+1. Then for all integers n, i (0 6 i 6 2k and n > `),

(12) v(Kn+i) = δKn+`+1+i = θiε
r(−1)n+1+i

1 δ
r(−1)i

n+1 = θiε
r(−1)n+1+i

1

(
v(n−`)

)r(−1)i

,

from which we deduce at once, for all integers n > `/2,

(13)

{
v(2Kn+ i) = θiε

r(−1)1+i

1

(
v(2n− `)

)r(−1)i

,

v(2Kn+K + i) = θiε
r(−1)i

1

(
v(2n+ 1− `)

)r(−1)i

.

For all integers n > 1, define v0(n) = v(2n), v1(n) = v(2n+ 1), and

V (n) =
(
v0(n), v1(n)

)
∈ (Fq)2.

For all integers i (0 6 i < K), with the help of the relations (13) and by distin-
guishing the parity of `, we can find a mapping fi : (Fq)2× (Fq)2 → (Fq)2 such that
for all integers n > `/2 + 1, we have

V (Kn+ i) = fi
(
V (n− [`/2]), V (n− [`/2]− 1)

)
.

Applying Theorem 4 with b = 0, we obtain that the sequence V is K-automatic,
thus both v0 and v1 are K-automatic, which implies in turn that v is K-automatic.
Consequently the sequence (δn)n>1 is K-automatic.

Step 2: we show that the sequence (λn)n>1 is K-automatic. For all integers
n > 1, define u(n) = λn+1, and it suffices to show that the sequence u =

(
u(n)

)
n>1

is K-automatic. By (11), for all integers n, i (n > 1 and 1 6 i 6 2k), we have

(14) u(Kn+ `+ i) = λ(2k+1)(n+1)+`−2k+i = θ′iε
(−1)n+1+i

1 δ
(−1)i

n+1 ,

from which we obtain directly that
(
u(Kn+`+i)

)
n>1

isK-automatic, for (δ
(−1)i

n+1 )n>1

is K-automatic by Step 1, and (θ′iε
(−1)n+1+i

1 )n>1 is periodic, thus K-automatic.
Similarly by (11), for all integers n > 1, we have

u(Kn+ `) = λ(2k+1)(n+1)+`−2k = ε
(−1)n+1

1 λrn+1 = ε
(−1)n+1

1

(
u(n)

)r
,

from which we deduce at once, for all integers n > 1,

(15)

{
u(2Kn+ `) = ε−1

1

(
u(2n)

)r
,

u(2Kn+K + `) = ε1

(
u(2n+ 1)

)r
.

For all integers n > 1, put u0(n) = u(2n) and u1(n) = u(2n+1). In the following
we distinguish two cases.

Case 1: ` = 2L with L > 1 an integer. For all integers n > 1, by (15), we have

(16)

{
u0(Kn+ L) = ε−1

1

(
u0(n)

)r
,

u1(Kn+ k + L) = ε1

(
u1(n)

)r
.
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Note also that for all integers n > 1, we have
u0(Kn+ L+ i) = u(2Kn+ `+ 2i), for 1 6 i 6 k,
u1(Kn+ L+ i) = u(2Kn+ `+ 2i+ 1), for 0 6 i < k,

u0(Kn+ k + L+ i) = u(K(2n+ 1) + `+ 2i− 1), for 1 6 i 6 k,
u1(Kn+ k + L+ i) = u(K(2n+ 1) + `+ 2i), for 1 6 i 6 k.

Hence all the
(
u0(Kn + L + i)

)
n>1

and
(
u1(Kn + L + j)

)
n>1

are K-automatic,

where i, j are integers such that 1 6 i 6 2k, 0 6 j 6 2k, and j 6= k. Below we show
that both u0 and u1 are K-automatic, which implies in turn that u is K-automatic.
By the way, for all sequences w =

(
w(n)

)
n>1

, we define (Tiw)(n) = w(Kn + i),

where i, n are integers such that 0 6 i < K and n > 1.
(1) We show that u0 is K-automatic. Write L = K[L/K] + a, with a an integer

such that 0 6 a < K. Let i be an integer such that 1 6 i 6 2k. Then

L+ i 6≡ K[L/K] + a (modK).

Now that all the
(
u0(Kn+L+ i)

)
n>1

(1 6 i 6 2k) are K-automatic, hence all the

Tmu0 (0 6 m 6 2k and m 6= a) are K-automatic, for adding a prefix to a sequence
does not change its automaticity. By (16), for all integers n > 1, we have

(Tau0)(n+ [L/K]) = u0(Kn+ L) = ε−1
1

(
u0(n)

)r
,

thus by Theorem 3, we obtain that u0 is K-automatic.
(2) We show that u1 is K-automatic. Write k + L = K[(k + L)/K] + b, with b

an integer such that 0 6 b < K. If 0 6 j 6 2k and j 6= k, then we have

L+ j 6≡ K[(k + L)/K] + b (modK).

Since all the
(
u1(Kn + L + j)

)
n>1

(0 6 j 6 2k and j 6= k) are K-automatic, we

obtain that all the Tiu1 (0 6 i 6 2k and i 6= b) are K-automatic, for the same
reason as above. Again by (16), for all integers n > 1, we have

u1

(
K(n+ [(k + m)/K]) + b

)
= ε1

(
u1(n)

)r
,

so u1 is K-automatic, by virtue of Theorem 3.
Case 2: ` = 2L+ 1 with L > 0 an integer. For all n > 1, by (15), we have{

u1(Kn+ L) = ε−1
1

(
u0(n)

)r
,

u0(Kn+ k + L+ 1) = ε1

(
u1(n)

)r
,

which implies that for all integers n > 1, we have

(17)

{
u1

(
K(Kn+ k + L+ 1) + L

)
= ε−1+r

1

(
u1(n)

)r2
,

u0

(
K(Kn+ L) + k + L+ 1

)
= ε1−r

1

(
u0(n)

)r2
.

Note also that for all integers n > 1, we have
u1(Kn+ L+ i) = u(2Kn+ `+ 2i), for 1 6 i 6 k,

u0(Kn+ L+ i+ 1) = u(2Kn+ `+ 2i+ 1), for 0 6 i < k,
u1(Kn+ k + L+ i) = u(K(2n+ 1) + `+ 2i− 1), for 1 6 i 6 k,

u0(Kn+ k + L+ i+ 1) = u(K(2n+ 1) + `+ 2i), for 1 6 i 6 k.

Hence all the
(
u0(Kn + L + i)

)
n>1

and
(
u1(Kn + L + j)

)
n>1

are K-automatic,

where i, j are integers such that 1 6 i 6 2k + 1, 1 6 j 6 2k, and i 6= k + 1.
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For all sequences w =
(
w(n)

)
n>1

, define (Tiw)(n) = w(K2n+ i), where i, n are

integers such that 0 6 i < K2 and n > 1. As above, we show below that both u0

and u1 are K-automatic.
(3) We show that u0 is K-automatic. Write KL+ k + L+ 1 = K2c+ d, where

c, d are integers such that 0 6 d < K2. If 1 6 i 6 2k + 1 and i 6= k + 1, then for
all integers m (0 6 m 6 2k), we have

Km+ L+ i 6≡ K2c+ d (modK).

But now all the
(
u0(K(Kn + m) + L + i)

)
n>1

(1 6 i 6 2k + 1 and i 6= k + 1) are

K-automatic, thus K2-automatic, then as above, all the Tju0 (0 6 j < K2 and
j 6= d) are K2-automatic. Note that by (17), for all integers n > 1, we have

(Tdu0)(n+ c) = u0(K2n+KL+ k + L+ 1) = ε1−r
1

(
u0(n)

)r2
,

hence by Theorem 3, we obtain that u0 is K2-automatic, and thus K-automatic.
(4) We show that u1 is K-automatic. Write K(k+L+ 1) +L = K2e+ f , where

e, f are integers such that 0 6 f < K2. Let j be an integer such that 1 6 j 6 2k.
Then for all integers m (0 6 m 6 2k), we have

Km+ L+ j 6≡ K2e+ f (modK).

Since all the
(
u1(Kn+L+j)

)
n>1

(1 6 j 6 2k) are K-automatic, we obtain that all

the Tiu1 (0 6 i < K2 and i 6= f) are K-automatic, for the same reason as above.
Again by (17), for all integers n > 1, we have

(Tfu1)(n+ e) = u1

(
K(Kn+ k + L+ 1) + L

)
= ε−1+r

1

(
u1(n)

)r2
,

so u1 is K2-automatic by virtue of Theorem 3, and then it is K-automatic. �
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