B. Allombert

IMB CNRS/Université Bordeaux 1

10/12/2013

Lignes directrices

Introduction

Markoff forms

Mirror forms Some examples

Continued fraction expansion

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Matrices

Introduction

Let *f* an integral indefinite binary quadratic form. Three important invariants of *f* are the discriminant Disc(f), the minimum $\min(f)$ of *f* over $\mathbb{Z}^2 \setminus \{(0,0)\}$ and the ratio $\text{Spec}(f) = \text{Disc}(f) / \min(f)^2$.

(日) (日) (日) (日) (日) (日) (日)

Markoff triples

An ordered Markoff triple is a triple $0 < m_1 \le m_2 \le m$ of integers that satisfy the equation

$$m_1^2 + m_2^2 + m^2 = 3m_1m_2m . (1)$$

The first Markoff triples are (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34)The components of a Markoff triples are called Markoff numbers : 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610

・ロト・西ト・西ト・西ト・日・ シック

Markoff forms

To such triple is associated k and I such that $k = \pm m1/m2$ (mod m), $0 < k \le m/2$ and $k^2 + 1 = Im$. and a quadratic form

$$f_m(X, Y) = mX^2 + (3m - 2k)XY + (l - 3k)Y^2 .$$
 (2)

(日) (日) (日) (日) (日) (日) (日)

Such form is called a Markoff form, has discriminant $\text{Disc}(f) = 9m^2 - 4$ and minimium $\min(f) = m$ so $\text{Disc}(f) = 9\min(f)^2 - 4$.

Mirror forms

Varnavides introduced two family of forms which have the property that

$$\operatorname{Disc}(f) = 9 \min(f)^2 + 4 \tag{3}$$

and are linked to the equation

$$x^2 + y^2 = 3xyz + z^2$$
 (4)

(ロ) (同) (三) (三) (三) (○) (○)

Such forms also appear in Perrine in the (2, 0, 1)-Markoff theory.

In this talk we show that they are special cases of a more general construction.

We introduce a family of polynomials $U_n(X)$ defined by induction :

l

$$U_{-1} = 0$$
 (5)

$$U_0 = X \tag{6}$$

$$U_{n+2} = 3XU_{n+1} - U_n$$
 (7)

For all $n \ge -1$, the triple (U_n, U_{n+1}, X) satisfies Varnavides equation

$$U_n^2 + U_{n+1}^2 = 3XU_nU_{n+1} + X^2$$

and furthermore $U_n(0) = 0$.

If *m* is a Markoff number, Equation (4) has a unique fundamental solution (0, m, m), and the triples $(U_n(m), U_{n+1}(m), m)$ give all the solutions up to ordering and sign.

Remark

This not true if m is not a Markoff number, for example when m = 10, (1, 33, 10) and (0, 10, 10) are two fundamental solutions of (4).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let (m_1, m_2, m) be a Markoff triple and (k, l) be as above. Set

$$u = U_n(m) \tag{8}$$

$$v = U_{n-1}(m) \tag{9}$$

$$A_n = mu \tag{10}$$

$$B_n = (3m-2k)u-2v \tag{11}$$

$$C_n = (I-3k)u - 2u/m + 2kv/m$$
 (12)

and we define the mirror form $g_{m,n}$ by

$$g_{m,n}(X,Y) = A_n X^2 + B_n X Y + C_n Y^2$$
, (13)

the condition $U_n(0) = 0$ ensuring the integrality of C_n .

From the identity $k^2 + 1 = Im$ and Varnavides equation $u^2 + v^2 = 3muv + m^2$, it follows that

Disc
$$g_{m,n} = (9U_n(m)^2 + 4)m^2$$
 (14)

and

$$IA_n + kB_n + mC_n = 0 \quad . \tag{15}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The goal of this talk is to establish the following result : Theorem The minimum of $g_{m,n}$ is equal to $U_n(m)m$, so

$$Disc g_{m,n} = 9 \min(g_{m,n})^2 + 4m^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lignes directrices

Introduction

Markoff forms

Mirror forms Some examples

Continued fraction expansion

Matrices

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Some examples

The "antisymmetric Markoff forms" of Varnavides and the (2, 0, 1)-Markoff theory of Perrine are the mirror forms associated to the Markoff triple (1, 1, 1) and (1, 1, 2). Varnavides paper establishes Theorem 1 for theses triples. In the sequel, we shall assume $m \le 5$ to avoid this two cases. For each Markoff form f_m , we remark that the first term of our family is

$$g_{m,0}(X,Y) = mf_m(X,Y) - 2Y^2$$

which has discriminant $(9m^2 + 4)m^2$ and minimum m^2 .

Continued fraction expansion

It is classical to associate a periodic continued fraction expansion to Markoff forms, or indeed any integral indefinite binary quadratic form.

In this section we give a formula for the period of the mirror forms in term of the period of the Markoff form.

We recall that the period of a form associated to a non-singular Markoff triple can always be written as $[2, a_1, a_2, ..., a_n, 1, 1, 2]$ with $a_i \in \{1, 2\}$. We shall see that mirror forms share this property.

(日) (日) (日) (日) (日) (日) (日)

Continued fraction expansion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Given two sequences $(a_i)_{i=1}^p$ and $(b_i)_{i=1}^q$ we define the sequence

$$a \wedge b = [a_1, a_2, \dots, a_p, 2, 2, 1, 1, b_q, b_{q-1}, \dots, b_1]$$
 (16)

which is a sequence of length p + q + 4. Let (m_1, m_2, m) a Markoff triple, and $[2, a_1, a_2, ..., a_p, 1, 1, 2]$ the period of the form f_m . We denote by $h_{m,n}$ the primitive form whose period is given by the sequence

$$S_{m,n} = [2, c_{n,1}, c_{n,2}, \dots, c_{n,r_n}, 1, 1, 2]$$
 (17)

where c_n and r_n are defined inductively by :

$$c_0 = a \wedge a \tag{18}$$

$$r_0 = 2p + 4$$
 (19)

$$c_{i+1} = c_0 \wedge c_i \tag{20}$$

$$r_{i+1} = r_0 + r_i + 4$$
 (21)

Theorem

The period of the form $g_{m,n}$ is given by the sequence $S_{m,n}$, i.e, $g_{m,n}$ and $h_{m,n}$ are proportional.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

This will be a consequence of Lemma 5 in the next section.

Matrices

Continued fraction expansion are associated to matrix factorization in the group $SL_2(\mathbb{Z})$. We denote by V_i the matrices $V_i = \begin{pmatrix} 0 & 1 \\ 1 & i \end{pmatrix}$ and by T the matrix $T = \begin{pmatrix} 0 & -1 \\ 1 & 3 \end{pmatrix}$. We recall the following lemma :

Lemma

Let $[p_1, ..., p_r]$ be the period of an reduced integral indefinite binary quadratic form *f*. We denote by M_f the matrix $M_f = \prod_{k=1}^r V_{p_i}$. There exists some rational number λ such that

$$f(X, Y) = \lambda(-Y, X)M(X, Y)$$
(22)

In particular, for the Markoff form f_m , we have the identity $M_{f_m} = \begin{pmatrix} I & k \\ k & m \end{pmatrix} T.$

Matrices

Lemma

Let (m_1, m_2, m) be a Markoff triple. The matrices $M_{m,n}$ of the forms $h_{m,n}$ statisfy

$$M_{m,0} = M_{f_m} T^{-1} M_{f_m}^t T$$
 (23)

(日) (日) (日) (日) (日) (日) (日)

$$M_{m,n+1} = M_{m,0}T^{-1}M_{m,n}^{t}T$$
 (24)

Démonstration.

This follows directly from the definitions by noting that the matrices V_i are symmetrical and that $T = V_2^{-1} V_1^2 V_2$.

Lemma

Let $m_1 \leq m_2 \leq m$ be a non singular Markoff triple, and set

$$u = U_n(m) \tag{25}$$

$$v = U_{n-1}(m) \tag{26}$$

$$D_n = \frac{3u}{m}(ku+v) \tag{27}$$

then the matrix $M_{m,n}$ of the form $h_{m,n}$ satisfy the equation

$$M_{m,n} = \begin{pmatrix} 1+D_n & -\frac{3u}{m}C_n \\ \frac{3u}{m}A_n & 9u^2+1-D_n \end{pmatrix}$$
(28)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Démonstration.

This follows from Lemma 3 and the properties of *U* by a direct but extremly tedious computation best left to PARI/GP. It is easy to prove the lemma for n = 0. To prove the induction, replace A_n , B_n , C_n and D_n by their expression as rational functions of u, v, m, k, l, then compare the product $M_{m,0}T^{-1}M_{m,n}^tT$ with the first expression where (u, v) is substitued by (3mu - v, u), and finally reduce using the equations $k^2 + 1 = Im$ and $u^2 + v^2 = 3muv + m^2$.

(日) (日) (日) (日) (日) (日) (日)

Lemma

Let (m_1, m_2, m) be a Markoff triple. The matrix $M_{m,n}$ of the form $h_{m,n}$ statisfies the equation

$$\frac{3}{m}U_{n}g_{m,n}(X,Y) = (-Y,X)M_{m,n}(X,Y)$$
(29)

Démonstration.

This follows from Lemma 4 and the equality

$$D_n = \frac{9}{2}u^2 - \frac{3u}{2m}B_n$$
 (30)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem The minimum of $g_{m,n}$ is equal to $U_{n+1}(m)m$, so

$$\operatorname{Disc} g_{m,n} = 9\min(g_{m,n})^2 + 4m^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Démonstration.

This should follow from Theorem 2 and Dickson lemma.