B. Allombert

IMB
CNRS/Université Bordeaux 1
10/12/2013

Lignes directrices

Introduction
Markoff forms

Mirror forms
Some examples
Continued fraction expansion
Matrices

Introduction

Let f an integral indefinite binary quadratic form. Three important invariants of f are the discriminant $\operatorname{Disc}(f)$, the minimum $\min (f)$ of f over $\mathbb{Z}^{2} \backslash\{(0,0)\}$ and the ratio $\operatorname{Spec}(f)=\operatorname{Disc}(f) / \min (f)^{2}$.

Markoff triples

An ordered Markoff triple is a triple $0<m_{1} \leq m_{2} \leq m$ of integers that satisfy the equation

$$
\begin{equation*}
m_{1}^{2}+m_{2}^{2}+m^{2}=3 m_{1} m_{2} m \tag{1}
\end{equation*}
$$

The first Markoff triples are
$(1,1,1),(1,1,2),(1,2,5),(1,5,13),(2,5,29),(1,13,34)$
The components of a Markoff triples are called Markoff numbers : 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610

Markoff forms

To such triple is associated k and $/$ such that $k= \pm m 1 / m 2$ $(\bmod m), 0<k \leq m / 2$ and $k^{2}+1=I m$. and a quadratic form

$$
\begin{equation*}
f_{m}(X, Y)=m X^{2}+(3 m-2 k) X Y+(I-3 k) Y^{2} \tag{2}
\end{equation*}
$$

Such form is called a Markoff form, has discriminant $\operatorname{Disc}(f)=9 m^{2}-4$ and minimium $\min (f)=m$ so $\operatorname{Disc}(f)=9 \min (f)^{2}-4$.

Mirror forms

Varnavides introduced two family of forms which have the property that

$$
\begin{equation*}
\operatorname{Disc}(f)=9 \min (f)^{2}+4 \tag{3}
\end{equation*}
$$

and are linked to the equation

$$
\begin{equation*}
x^{2}+y^{2}=3 x y z+z^{2} \tag{4}
\end{equation*}
$$

Such forms also appear in Perrine in the (2, 0, 1)-Markoff theory.
In this talk we show that they are special cases of a more general construction.

We introduce a family of polynomials $U_{n}(X)$ defined by induction:

$$
\begin{align*}
U_{-1} & =0 \tag{5}\\
U_{0} & =X \tag{6}\\
U_{n+2} & =3 X U_{n+1}-U_{n} \tag{7}
\end{align*}
$$

For all $n \geq-1$, the triple $\left(U_{n}, U_{n+1}, X\right)$ satisfies Varnavides equation

$$
U_{n}^{2}+U_{n+1}^{2}=3 X U_{n} U_{n+1}+X^{2}
$$

and furthermore $U_{n}(0)=0$.

If m is a Markoff number, Equation (4) has a unique fundamental solution $(0, m, m)$, and the triples
$\left(U_{n}(m), U_{n+1}(m), m\right)$ give all the solutions up to ordering and sign.

Remark
This not true if m is not a Markoff number, for example when $m=10,(1,33,10)$ and $(0,10,10)$ are two fundamental solutions of (4).

Let $\left(m_{1}, m_{2}, m\right)$ be a Markoff triple and (k, l) be as above. Set

$$
\begin{align*}
u & =U_{n}(m) \tag{8}\\
v & =U_{n-1}(m) \tag{9}\\
A_{n} & =m u \tag{10}\\
B_{n} & =(3 m-2 k) u-2 v \tag{11}\\
C_{n} & =(I-3 k) u-2 u / m+2 k v / m \tag{12}
\end{align*}
$$

and we define the mirror form $g_{m, n}$ by

$$
\begin{equation*}
g_{m, n}(X, Y)=A_{n} X^{2}+B_{n} X Y+C_{n} Y^{2} \tag{13}
\end{equation*}
$$

the condition $U_{n}(0)=0$ ensuring the integrality of C_{n}.

From the identity $k^{2}+1=I m$ and Varnavides equation $u^{2}+v^{2}=3 m u v+m^{2}$, it follows that

$$
\begin{equation*}
\operatorname{Disc} g_{m, n}=\left(9 U_{n}(m)^{2}+4\right) m^{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
I A_{n}+k B_{n}+m C_{n}=0 \tag{15}
\end{equation*}
$$

The goal of this talk is to establish the following result :
Theorem
The minimum of $g_{m, n}$ is equal to $U_{n}(m) m$, so

$$
\operatorname{Disc} g_{m, n}=9 \min \left(g_{m, n}\right)^{2}+4 m^{2}
$$

Lignes directrices

Introduction
\section*{Markoff forms}

Mirror forms
Some examples

Continued fraction expansion

Matrices

Some examples

The "antisymmetric Markoff forms" of Varnavides and the (2,0,1)-Markoff theory of Perrine are the mirror forms associated to the Markoff triple (1, 1, 1) and (1, 1, 2). Varnavides paper establishes Theorem 1 for theses triples. In the sequel, we shall assume $m \leq 5$ to avoid this two cases.
For each Markoff form f_{m}, we remark that the first term of our family is

$$
g_{m, 0}(X, Y)=m f_{m}(X, Y)-2 Y^{2}
$$

which has discriminant $\left(9 m^{2}+4\right) m^{2}$ and minimum m^{2}.

Continued fraction expansion

It is classical to associate a periodic continued fraction expansion to Markoff forms, or indeed any integral indefinite binary quadratic form.
In this section we give a formula for the period of the mirror forms in term of the period of the Markoff form.
We recall that the period of a form associated to a non-singular Markoff triple can always be written as $\left[2, a_{1}, a_{2}, \ldots, a_{n}, 1,1,2\right]$ with $a_{i} \in\{1,2\}$. We shall see that mirror forms share this property.

Continued fraction expansion

Given two sequences $\left(a_{i}\right)_{i=1}^{p}$ and $\left(b_{i}\right)_{i=1}^{q}$ we define the sequence

$$
\begin{equation*}
a \wedge b=\left[a_{1}, a_{2}, \ldots, a_{p}, 2,2,1,1, b_{q}, b_{q-1}, \ldots, b_{1}\right] \tag{16}
\end{equation*}
$$

which is a sequence of length $p+q+4$.
Let $\left(m_{1}, m_{2}, m\right)$ a Markoff triple, and $\left[2, a_{1}, a_{2}, \ldots, a_{p}, 1,1,2\right]$ the period of the form f_{m}. We denote by $h_{m, n}$ the primitive form whose period is given by the sequence

$$
\begin{equation*}
S_{m, n}=\left[2, c_{n, 1}, c_{n, 2} \ldots, c_{n, r_{n}}, 1,1,2\right] \tag{17}
\end{equation*}
$$

where c_{n} and r_{n} are defined inductively by :

$$
\begin{align*}
c_{0} & =a \wedge a \tag{18}\\
r_{0} & =2 p+4 \tag{19}\\
c_{i+1} & =c_{0} \wedge c_{i} \tag{20}\\
r_{i+1} & =r_{0}+r_{i}+4 \tag{21}
\end{align*}
$$

Theorem

The period of the form $g_{m, n}$ is given by the sequence $S_{m, n}$, i.e, $g_{m, n}$ and $h_{m, n}$ are proportional.
This will be a consequence of Lemma 5 in the next section.

Matrices

Continued fraction expansion are associated to matrix factorization in the group $\mathrm{SL}_{2}(\mathbb{Z})$. We denote by V_{i} the matrices
$V_{i}=\left(\begin{array}{cc}0 & 1 \\ 1 & i\end{array}\right)$ and by T the matrix $T=\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right)$. We recall the following lemma :
Lemma
Let $\left[p_{1}, \ldots, p_{r}\right]$ be the period of an reduced integral indefinite binary quadratic form f. We denote by M_{f} the matrix
$M_{f}=\prod_{k=1}^{r} V_{p_{i}}$. There exists some rational number λ such that

$$
\begin{equation*}
f(X, Y)=\lambda(-Y, X) M(X, Y) \tag{22}
\end{equation*}
$$

In particular, for the Markoff form f_{m}, we have the identity
$M_{f_{m}}=\left(\begin{array}{cc}l & k \\ k & m\end{array}\right) T$.

Matrices

Lemma
Let $\left(m_{1}, m_{2}, m\right)$ be a Markoff triple. The matrices $M_{m, n}$ of the forms $h_{m, n}$ statisfy

$$
\begin{align*}
M_{m, 0} & =M_{f_{m}} T^{-1} M_{f_{m}}^{t} T \tag{23}\\
M_{m, n+1} & =M_{m, 0} T^{-1} M_{m, n}^{t} T \tag{24}
\end{align*}
$$

Démonstration.
This follows directly from the definitions by noting that the matrices V_{i} are symmetrical and that $T=V_{2}^{-1} V_{1}^{2} V_{2}$.

Lemma

Let $m_{1} \leq m_{2} \leq m$ be a non singular Markoff triple, and set

$$
\begin{align*}
u & =U_{n}(m) \tag{25}\\
v & =U_{n-1}(m) \tag{26}\\
D_{n} & =\frac{3 u}{m}(k u+v) \tag{27}
\end{align*}
$$

then the matrix $M_{m, n}$ of the form $h_{m, n}$ satisfy the equation

$$
M_{m, n}=\left(\begin{array}{cc}
1+D_{n} & -\frac{3 u}{m} C_{n} \tag{28}\\
\frac{3 u}{m} A_{n} & 9 u^{2}+1-D_{n}
\end{array}\right)
$$

Démonstration.
This follows from Lemma 3 and the properties of U by a direct but extremly tedious computation best left to PARI/GP. It is easy to prove the lemma for $n=0$. To prove the induction, replace A_{n}, B_{n}, C_{n} and D_{n} by their expression as rational functions of u, v, m, k, l, then compare the product $M_{m, 0} T^{-1} M_{m, n}^{t} T$ with the first expression where (u, v) is substitued by ($3 m u-v, u$), and finally reduce using the equations $k^{2}+1=I m$ and $u^{2}+v^{2}=3 m u v+m^{2}$.

Lemma

Let $\left(m_{1}, m_{2}, m\right)$ be a Markoff triple. The matrix $M_{m, n}$ of the form $h_{m, n}$ statisfies the equation

$$
\begin{equation*}
\frac{3}{m} U_{n} g_{m, n}(X, Y)=(-Y, X) M_{m, n}(X, Y) \tag{29}
\end{equation*}
$$

Démonstration.
This follows from Lemma 4 and the equality

$$
\begin{equation*}
D_{n}=\frac{9}{2} u^{2}-\frac{3 u}{2 m} B_{n} \tag{30}
\end{equation*}
$$

Theorem
The minimum of $g_{m, n}$ is equal to $U_{n+1}(m) m$, so

$$
\operatorname{Disc} g_{m, n}=9 \min \left(g_{m, n}\right)^{2}+4 m^{2}
$$

Démonstration.
This should follow from Theorem 2 and Dickson lemma.

