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Introduction

Introduction

Let f an integral indefinite binary quadratic form. Three
important invariants of f are the discriminant Disc(f ), the
minimum min(f ) of f over Z2 \ {(0,0)} and the ratio
Spec(f ) = Disc(f )/min(f )2.



Markoff forms

Markoff triples

An ordered Markoff triple is a triple 0 < m1 ≤ m2 ≤ m of
integers that satisfy the equation

m2
1 + m2

2 + m2 = 3m1m2m . (1)

The first Markoff triples are
(1,1,1), (1,1,2), (1,2,5), (1,5,13), (2,5,29), (1,13,34)
The components of a Markoff triples are called Markoff
numbers : 1,2,5,13,29,34,89,169,194,233,433,610



Markoff forms

Markoff forms

To such triple is associated k and l such that k = ±m1/m2
(mod m), 0 < k ≤ m/2 and k2 + 1 = lm. and a quadratic form

fm(X ,Y ) = mX 2 + (3m − 2k)XY + (l − 3k)Y 2 . (2)

Such form is called a Markoff form, has discriminant
Disc(f ) = 9m2 − 4 and minimium min(f ) = m so
Disc(f ) = 9 min(f )2 − 4.



Mirror forms

Mirror forms

Varnavides introduced two family of forms which have the
property that

Disc(f ) = 9 min(f )2 + 4 (3)

and are linked to the equation

x2 + y2 = 3xyz + z2 (4)

Such forms also appear in Perrine in the (2,0,1)-Markoff
theory.
In this talk we show that they are special cases of a more
general construction.



Mirror forms

We introduce a family of polynomials Un(X ) defined by
induction :

U−1 = 0 (5)
U0 = X (6)

Un+2 = 3XUn+1 − Un (7)

For all n ≥ −1, the triple (Un,Un+1,X ) satisfies Varnavides
equation

U2
n + U2

n+1 = 3XUnUn+1 + X 2

and furthermore Un(0) = 0.



Mirror forms

If m is a Markoff number, Equation (4) has a unique
fundamental solution (0,m,m), and the triples
(Un(m),Un+1(m),m) give all the solutions up to ordering and
sign.

Remark
This not true if m is not a Markoff number, for example when
m = 10, (1,33,10) and (0,10,10) are two fundamental
solutions of (4).



Mirror forms

Let (m1,m2,m) be a Markoff triple and (k , l) be as above. Set

u = Un(m) (8)
v = Un−1(m) (9)

An = mu (10)
Bn = (3m − 2k)u − 2v (11)
Cn = (l − 3k)u − 2u/m + 2kv/m (12)

and we define the mirror form gm,n by

gm,n(X ,Y ) = AnX 2 + BnXY + CnY 2 , (13)

the condition Un(0) = 0 ensuring the integrality of Cn.



Mirror forms

From the identity k2 + 1 = lm and Varnavides equation
u2 + v2 = 3muv + m2, it follows that

Discgm,n = (9Un(m)2 + 4)m2 (14)

and
lAn + kBn + mCn = 0 . (15)



Mirror forms

The goal of this talk is to establish the following result :

Theorem
The minimum of gm,n is equal to Un(m)m, so

Discgm,n = 9 min(gm,n)
2 + 4m2 .
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Some examples
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Some examples

Some examples

The “antisymmetric Markoff forms” of Varnavides and the
(2,0,1)-Markoff theory of Perrine are the mirror forms
associated to the Markoff triple (1,1,1) and (1,1,2).
Varnavides paper establishes Theorem 1 for theses triples. In
the sequel, we shall assume m ≤ 5 to avoid this two cases.
For each Markoff form fm, we remark that the first term of our
family is

gm,0(X ,Y ) = mfm(X ,Y )− 2Y 2

which has discriminant (9m2 + 4)m2 and minimum m2.



Continued fraction expansion

Continued fraction expansion

It is classical to associate a periodic continued fraction
expansion to Markoff forms, or indeed any integral indefinite
binary quadratic form.
In this section we give a formula for the period of the mirror
forms in term of the period of the Markoff form.
We recall that the period of a form associated to a non-singular
Markoff triple can always be written as [2,a1,a2, . . . ,an,1,1,2]
with ai ∈ {1,2}. We shall see that mirror forms share this
property.



Continued fraction expansion

Continued fraction expansion



Continued fraction expansion

Given two sequences (ai)
p
i=1 and (bi)

q
i=1 we define the

sequence

a ∧ b = [a1,a2, . . . ,ap,2,2,1,1,bq,bq−1, . . . ,b1] (16)

which is a sequence of length p + q + 4.
Let (m1,m2,m) a Markoff triple, and [2,a1,a2, . . . ,ap,1,1,2] the
period of the form fm. We denote by hm,n the primitive form
whose period is given by the sequence

Sm,n = [2, cn,1, cn,2 . . . , cn,rn ,1,1,2] (17)

where cn and rn are defined inductively by :

c0 = a ∧ a (18)
r0 = 2p + 4 (19)

ci+1 = c0 ∧ ci (20)
ri+1 = r0 + ri + 4 (21)



Continued fraction expansion

Theorem
The period of the form gm,n is given by the sequence Sm,n, i.e,

gm,n and hm,n are proportional.
This will be a consequence of Lemma 5 in the next section.



Matrices

Matrices
Continued fraction expansion are associated to matrix
factorization in the group SL2(Z). We denote by Vi the matrices

Vi =

(
0 1
1 i

)
and by T the matrix T =

(
0 −1
1 3

)
. We recall

the following lemma :

Lemma
Let [p1, . . . ,pr ] be the period of an reduced integral indefinite
binary quadratic form f . We denote by Mf the matrix
Mf =

∏r
k=1 Vpi . There exists some rational number λ such that

f (X ,Y ) = λ(−Y ,X )M(X ,Y ) (22)

In particular, for the Markoff form fm, we have the identity

Mfm =

(
l k
k m

)
T .



Matrices

Matrices

Lemma
Let (m1,m2,m) be a Markoff triple. The matrices Mm,n of the
forms hm,n statisfy

Mm,0 = MfmT−1M t
fmT (23)

Mm,n+1 = Mm,0T−1M t
m,nT (24)

Démonstration.
This follows directly from the definitions by noting that the
matrices Vi are symmetrical and that T = V−1

2 V 2
1 V2.



Matrices

Lemma
Let m1 ≤ m2 ≤ m be a non singular Markoff triple, and set

u = Un(m) (25)
v = Un−1(m) (26)

Dn =
3u
m

(ku + v) (27)

then the matrix Mm,n of the form hm,n satisfy the equation

Mm,n =

(
1 + Dn −3u

m Cn
3u
m An 9u2 + 1− Dn

)
(28)



Matrices

Démonstration.
This follows from Lemma 3 and the properties of U by a direct
but extremly tedious computation best left to PARI/GP. It is easy
to prove the lemma for n = 0. To prove the induction, replace
An, Bn, Cn and Dn by their expression as rational functions of u,
v , m, k , l , then compare the product Mm,0T−1M t

m,nT with the
first expression where (u, v) is substitued by (3mu − v ,u), and
finally reduce using the equations k2 + 1 = lm and
u2 + v2 = 3muv + m2.



Matrices

Lemma
Let (m1,m2,m) be a Markoff triple. The matrix Mm,n of the form
hm,n statisfies the equation

3
m

Ungm,n(X ,Y ) = (−Y ,X )Mm,n(X ,Y ) (29)

Démonstration.
This follows from Lemma 4 and the equality

Dn =
9
2

u2 − 3u
2m

Bn (30)



Matrices

Theorem
The minimum of gm,n is equal to Un+1(m)m, so

Discgm,n = 9 min(gm,n)
2 + 4m2 .

Démonstration.
This should follow from Theorem 2 and Dickson lemma.
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