Combinatorial aspect of Artin L functions

Combinatorial aspect of Artin L functions

B. Allombert

IMB CNRS/Université Bordeaux 1

15/12/2015

Lignes directrices

Introduction Introduction Exercises

Galois group

Artin L-functions as motivic L-functions

Hasse-Weil zeta function of a ring

-Introduction

- Introduction

Introduction

The purpose of this talk is to study the factorisation of Dedekind ζ functions as product of Artin *L*-functions. If $\zeta_K(s) = L_1(s) \cdots L_n(s)$, the absolute value of the discriminant of *K* the product of the conductor of the L_i will be equal to

 $|\text{Disc}(\mathcal{K})|$, so they will normally be smaller.

Since the cost of computing a L function is proportional to the squareroot of the conductor, this will speed up the computation.

- Introduction

- Exercises

Exercises

Exercise

Let $M \in M_n(K)$ be a matrix, then the following equality of formal power series in K[[T]] holds :

$$\log(\det(1 - TM) = -\sum_{n \ge 1} \operatorname{Tr}(M^n) T^n / n$$

Exercise

Let $\sigma \in S_n$ be a permutation and set $M_{\sigma} = (\delta_{i,\sigma(j)})$ in $\operatorname{GL}_n(K)$. The map $\sigma \mapsto M_{\sigma}$ is called the natural representation of S_n , and furthermore $\operatorname{Tr}(M_{\sigma})$ is the number of fixed points of σ . -Galois group

Let *K* be a number field of degree *n* and *F* its Galois closure and set $G = \text{Gal}(F/\mathbb{Q})$ then *G* acts transitively on the *n* embedding of *K* in *F*. This allows to identify *G* as a conjugacy class of a transitive

subgroup of \mathfrak{S}_n . The map $\mathfrak{S}_n \to GL_n(\mathbb{Q})$ restrict to a representation of *G* called the natural representation.

Let *R* be a finitely generated ring.

Theorem (Nullstellensatz for \mathbb{Z})

if M is a maximal ideal of R, then the quotient M/R is finite.

We note $\mathcal{N}(M)$ the cardinal of the quotient M/R.

Definition

The zeta function of *R* is defined by the formal Dirichlet series

$$\zeta_R(s) = \prod_M \frac{1}{1 - \mathcal{N}(M)^{-s}}$$

where the product run over all maximal ideals of *R*.

Examples

- 1. $\zeta_{\mathbb{Z}} = \zeta$, the Riemann ζ -function.
- 2. More generally, if *K* is a number field and \mathbb{Z}_K its ring of integers, then $\zeta_{\mathbb{Z}_K} = \zeta_K$, the Dedekind ζ -function of *K*.

Euler product

Let *p* be a prime number then

$$\zeta_{R/pR}(s) = \prod_{M,p\in M} rac{1}{1-\mathcal{N}(M)^{-s}}$$

where the product run over all maximal ideals of *R* containing *p*. It follows that ζ_R can be written as an ordinary Euler product

$$\zeta_R(\boldsymbol{s}) = \prod_p \zeta_{R/pR}(\boldsymbol{s}) \; .$$

where the ring R/pR are finitely generated \mathbb{F}_p algebras.

Zeta function of an \mathbb{F}_p algebra

A finitely generated \mathbb{F}_p algebra A is isomorphic to $\mathbb{F}_p[X_1, \dots, X_n]/I$ for some ideal I. We set $V(K) = \{(x_1, \dots, x_n) \in K^n | P(x_1, \dots, x_n) = 0 \forall P \in I\}.$ We define the uppercase Z function of A as $Z(p^{-s}) = \zeta(s)$.

Exercise

$$Z_A(T) = \exp(\sum_{n \ge 1} |V(F_{p^n})|T^n/n)$$

Theorem

Lefchetz trace formula Assuming that A is good, then $|V(F_{\rho^n})| = \sum_{i\geq 0} (-1)^i \operatorname{Tr}(\phi^{n^*}|H^i)$ where the H^i are cohomology group for a Weil cohomology.

Lefchetz fixed point formula

Let *P* be a squarefree polynomial over \mathbb{C} and $V = \{\alpha_i | 1 \ge i \ge n\}$ the complex roots. Topologically, this is just *n* points. The homology of *V* is $H_0(V, \mathbb{Q}) = \mathbb{Q}^n$, $H_i(V, \mathbb{Q}) = 0$ if i > 0, and the points (α_i) induce a basis *B* of $H_0(V, \mathbb{Q})$. An homeomorphism *S* induces a permutation σ of $(\alpha_i)_{i=1}^n$. The matrix of S_* in the basis *B* is the matrix M_σ , whose trace is the number of fixed points of σ hence of *S*.

This is a special case of the Lefchetz fixed point formula but the only case we will need.

Artin L functions

Let *K* be a number field and *P* be an irreducible polynomial over \mathbb{Z} such that $K = \mathbb{Q}[X]/(P)$, Then for all *p* but a finite number $\mathcal{O}_K/p\mathcal{O}_K \cong \mathbb{F}_p[X]/(P)$. If *V* is as above then $|V(F_{p^n})| = \operatorname{Tr}(\phi^{n*}|H^0)$. where ϕ is the dual of the Frobenius operator.

So $Z_V(T) = \sum_{n \ge 1} \operatorname{Tr}(\phi^{n*}|H^0) T^n/n$ which give $Z_V(T) = 1/\det(1 - T\phi^*|H^0)$

To factor Z_V , the idea is to decompose H^0 as a direct sum of subspaces (E_i) that are stable under ϕ . Indeed if $H^0 = \bigoplus_i E_i$ then

$$\mathrm{Tr}(\phi^{n^*}|H^0) = \sum_i \mathrm{Tr}(\phi^{n^*}|E_i)$$

and $Z_V(T) = \prod_i 1 / \det(1 - T\phi^* | E_i)$.

Note that H^0 is mostly independent of p, only the Frobenius action is. If we choose the E_i to be stable by all the Frobenius (hence the whole Galois group), we get a factorisation of ζ_K . Such subspace are naturally identified to representation of the Galois group $\operatorname{Gal}(F/\mathbb{Q})$ where F is the Galois closure of K. So if ρ is such a representation, $L_{\rho,p} = \sum_{n \ge 1} \operatorname{Tr}(\rho(\phi^{n*}|H^0))T^n/n$ which give $L_{\rho,p}(T) = 1/\det(1 - T\rho(\phi^*|H^0))$. And globally $L_{\rho}(s) = \prod_p 1/\det(1 - p^{-s}\rho(\phi_p))$ where ϕ_p is a Frobenius $\left(\frac{\mathfrak{p}}{K/\mathbb{Q}}\right)$ for any ideal \mathfrak{p} of \mathcal{O}_K above p.

If F/K is an extension of number fields, we define $L_{\rho}(s) = \prod_{\mathfrak{p}} L_{\rho,\mathfrak{p}}$ where if \mathfrak{p} is not ramified, $L_{\rho,\mathfrak{p}} = 1/\det(1 - \mathcal{N}(\mathfrak{p})^{-s}\rho(\phi_{\mathfrak{p}}))$. where $\phi_{\mathfrak{p}}$ is a Frobenius $\left(\frac{\mathfrak{p}}{K/\mathbb{Q}}\right)$ for any ideal \mathcal{P} of \mathcal{O}_F above \mathfrak{p} . and if \mathfrak{p} is ramified, and *I* be the inertia subgroup of \mathfrak{p} and *D* the composition subgroup. Let ϕ be an automorphism such that $\phi(x) = x^{\mathcal{N}(\mathfrak{p})} \pmod{\mathcal{P}}$. ϕ is unique modulo an element of *I*. Let *W* the subset of *V* of elements that are fixed by $\rho(I)$, $L_{\rho,\mathfrak{p}} = 1/\det(1 - \mathcal{N}(\mathfrak{p})^{-s}\rho|W(\phi))$.

We define the degree of an Artin L-function as the product $\dim \rho \deg K$. We will say that an Artin *L* function is irreducible if we cannot write it as a product of two non-constant Artin *L* functions.

Artin *L* function associated to irreducible representations are not in general irreducible if the base field is not \mathbb{Q} . Two Artin *L* functions associated to different representations can be equal.

It follows that $\zeta_F = L_{\rho}$ where ρ is the adjunct representation of *G*. Since ρ is a direct sum of irreducible representation we have the factorisation : $\zeta_L = \prod_{\rho \text{ irred}} L_{\rho}^{\dim \rho}$.

Links with Hecke L-functions

Let L/K an abelian extension, then it can be described by class field theory parameters (\mathfrak{m}, C) such that by Artin reciprocity $\mathcal{C}\ell_{\mathfrak{m}}(K)/C \cong \operatorname{Gal}(L/K)$. This isomorphism links a character χ of $\mathcal{C}\ell_{\mathfrak{m}}(K)/C$ with an irreducible representation ρ of $G = \operatorname{Gal}(L/K)$ such that $L_{\chi} = L_{\rho}$.

Theorem

Hecke Artin L-functions associated to non-trivial representations of degree 1 admit an holomorphic continuation to the whole complex plane, and can be completed to a function Λ which satisfies $\Lambda(1 - s) = \epsilon \overline{\Lambda}(\overline{s})$.

(Artin *L*-functions of trivial representations are Dedekind ζ functions).

Theorem

Brauer Artin L-functions admits a meromorphic continuation to the whole complex plane and can be completed to a function Λ which satisfies $\Lambda(1 - s) = \epsilon \overline{\Lambda}(\overline{s})$.

Conjecture

Artin Artin L-functions associated to non-trivial irreducible representation are holomorphic on the whole complex plane. This is proven for all supersolvable groups. This is also true for A_4 but not for $\hat{A}_4 = SL_2(\mathbb{F}_3)$.

If *K* is a number field of degree *n*, let *F* be its Galois closure and G = Gal(F/K). The action of *G* on the *n* embedding of *K* in *F* define a monomorphism from *G* to *S_n*. The natural representation of *S_n* leads to a *n* dimension representation ρ of *G* and furthermore $\zeta_K = L_\rho$. Note that the trivial representation appears in ρ , so $\zeta_K(s) = \zeta(s)L_{\rho'}$.