e
On the computation of automorphisms of a Nilpotent Galois extension of number field

On the computation of automorphisms of a

Nilpotent Galois extension of number field

B. Allombert

IMB
CNRS/Université Bordeaux 1

18/12/2018

On the computation of automorphisms of a Nilpotent Galois extension of number field

Introduction

Let T € Z[X] be a monic irreducible polynomial and assume that
T is totally split over the splitting field L = Q[X]/(T). This is
equivalent to say that L/Q is a Galois extension.
The set S of roots of T over L are in bijection with the group
Gal(L/Q) :

S — (QX]/(T)—= L)

a — (P(X)~ P(a))

The goal is to compute the set S and its group structure.

On the computation of automorphisms of a Nilpotent Galois extension of number field

Factorization over number fields

Let p be prime number such that T is squarefree modulo p. Let P
be the set of maximal ideals of Ok above p so that

POL = [l,ep . & =|P| and f the residual degree.

Classical polynomial method (nfroots) : Pick an element p of P,
find the solutions of

T(5)=0 (modyp),

lift them to L, and try to identify them as algebraic number using
LLL (Lenstra).

Problem : Since we are using a single prime ideal, the precision is

huge and LLL will is very costly.

Fundamental remark : When p is inert it is much easier, no LLL is
needed it is only a matter of recognizing the rational coefficients.

On the computation of automorphisms of a Nilpotent Galois extension of number field

Frobenius lift
For any p € P, there exists an unique ¢ € G such that

¢(x) = xP (mod p)

(the Frobenius element). G acts transitively on P, so
P = {7(p)|T € G}. For all T € G we have

¢ (x) = xP (mod 7(p))
In particular if ¢ is in the center of G, then

¢(x) = xP (mod 7(p))

for all 7 and so by Chinese remainder theorem,

d(x) =xP (mod pZ;) .

On the computation of automorphisms of a Nilpotent Galois extension of number field

Lifting algorithm

In my thesis | give a detailed algorithm for the following problem.

Let & the natural map from G to
A= Aut(Zi/pZ) = Aut(Fp[X]/T) .

There exist a polynomial-time algorithm that determines whether
an element a € A is in the image of ® and if so returns the
corresponding element s of S. If some precomputation depending
only on G and p are performed, the algorithm is very efficient.

On the computation of automorphisms of a Nilpotent Galois extension of number field

A= Aut(Fo[X]/T) = Cr 1S,

If pis inert, then ® is an isomorphism, otherwise it is only
one-to-one, A being of order f&8g! which is much larger than n.
If pis totally split, then A = &,,. This allows to represent the
elements of G by simple permutation, which makes composing
them much faster.

On the computation of automorphisms of a Nilpotent Galois extension of number field

The Abelian case

Acciaro-Kliiners algorithm :
Apply the previous algorithm to the Frobenius

d(x) =xP (mod p, T)

for various primes p until either it fails (then we know the group is
not abelian) or until we have a set of generators (then we know the
group is abelian).

Polynomial-time under GRH.

On the computation of automorphisms of a Nilpotent Galois extension of number field

The supersolvable case

In my thesis, | describe an algorithm (used by galoisinit) that works
for supersolvable groups, but is not polynomial-time. In practice,
the smallest groups where the algorithm is too slow to be useful are

of order 125 = 52 and are nilpotent.

On the computation of automorphisms of a Nilpotent Galois extension of number field

A group G is supersolvable if
» G is trivial or

» G admits a non-trivial cyclic normal subgroup F such that
G/F is supersolvable.

A group G is nilpotent if
» G is trivial or

» G admits a non-trivial cyclic central subgroup F such that
G/F is nilpotent.

p-groups are always nilpotent.

On the computation of automorphisms of a Nilpotent Galois extension of number field

Structure

It follows that in both case there is a family of generators (g;)"_;, a
tower of subgroups G; = (g1, ..., &) such that G = G, and g;
(mod Gj_1) is normal (resp. central) in G/G;_1. Furthermore
» forall he G, [h,g;] S G,' (resp. [h,g;] € G;_l),
» the order of g; (mod G;) is noted o; and is called the relative
order of g;,

» an element of G can be written uniquely as a product g;*...g5"
with 0 < e < 0j for 1 < j < n.

On the computation of automorphisms of a Nilpotent Galois extension of number field

The nilpotent case

If G is nilpotent, then Z(G) is non trivial, so we can try to find p
non totally split such that the Frobenius ¢ is in Z(G) in which
case :

d(x) =xP (mod 7p)

for all 7 of G and so
b(x) = x? (mod p, T)

which we can lift to a solution in L with the above algorithm. If the
algorithm returns false, we try another prime p. Under the
Cebotarev density theorem, the probability of success is

(1Z(G)| = 1)/(]G| — 1) if we reject totally split primes (which
occurs with probability 1/|G|).

On the computation of automorphisms of a Nilpotent Galois extension of number field

Lifting

The problem is actually to get the other solutions.

In my thesis, | explain how to compute the fixed field K of L by ¢.
H = G/{¢) = Gal(K/Q) is also nilpotent so we can apply the
algorithm recursively. From this, we will recover the automorphisms
of K, the generators of H as a nilpotent group, and for each
generators a prime ideal of K such that the generator is the
Frobenius of such prime.

On the computation of automorphisms of a Nilpotent Galois extension of number field

Lifting

So let o € H that is the Frobenius of some prime ideal q in K above
some prime p € Z. We pick a prime ideal p above q in L and extend
o to L to the Frobenius of p. Since ¢ is central, we have for all k

o(x)=xP (mod ¢“(p))
so by Chinese remainder,

o(x) = x* (mod qZy)
and so for any 7

TO'T_l(X) =xP (mod 7(q)Z.)

On the computation of automorphisms of a Nilpotent Galois extension of number field

Bracket formula

We obtain the important formula :

-1

[r,ol(x)P " =07 (x) (mod 7(q)Zy)

Now assuming we have already computed [r, o] for all 7, we obtain
the quantity 0~!(x) modulo all the conjugates of q, and so we can
apply our algorithm to recover o.

So we should start with F = (¢), find o such that [G,o] C F, lift
it, add it to F and continue...

However since we do not know yet the group G, we have no way to
compute the bracket [, 0]. To solve this problem with a polynomial

number of guesses we use the presentations of nilpotent groups
(Ph. Hall).

On the computation of automorphisms of a Nilpotent Galois extension of number field

Polycyclic presentation

A nilpotent polycyclic presentation over the free generators
gi,---,8n is given by
> Relative orders (0;)"_,

» Powers (u;)?_; (ujisaword in gi,...,gi—-1)
» Brackets (wji)1<i<j<n (wj,i is a word in g1,...,8i-1)

G={(g,....gnV1<i<j<n g’=ulg.gl=w,)

Ds: (g1.8. 818t =85 = 1,85 = g1, g1, 8] = [g1.83] = 1. [, &3] = &1)

Hs: (g1, 8081 = 1.8 = &5 = &1, 81, &) = [g1.83] = 1, [g2, &3] = &1)

On the computation of automorphisms of a Nilpotent Galois extension of number field

A reduced word is a word of the form gi*...g5" with 0 < e; < o; for
1 <j < n. Every elements of G can be represented uniquely as a
reduced word.

» Reduction algorithm (Ph. Hall) : Use the bracket relation
gjgi = w; jgigj to reorder the terms. Whenever g7 appears,
replace by u;. It terminates because all letters of w;; and u;
come before /.

» Multiplication : we concatenate the words and reduce the
result.

» Quotient : the presentation of G/(gi) is obtained by removing
the letter gy from w and w.

On the computation of automorphisms of a Nilpotent Galois extension of number field

We assume we have been able to find the words u and w modulo
g1. Since gj is in the center the word v and w are just missing
some power of g1 at the start.

We proceed in order with k =2, k = 3, etc. gk modulo (g1) is the
Frobenius of some prime ideal qx € K above some prime number
Pk, so we pick some prime ideal p, € L above qy, and we lift g to
the Frobenius of py.

gk(x) = xPx (mod pg)

[h, g(x) = g " (x)P (mod h(px))

On the computation of automorphisms of a Nilpotent Galois extension of number field

w | 83 84 &5

82 | W32 Wi W52
83 W43 W53
84 W5 4

Let us assume we already determined the group Gi_1 and the
relations w; j for 1 <j < k —1and i > j. We want to find gj.
We will try all possible lifts of the w; for all k < i < n, where
lifting means adding some power of g to the word.

On the computation of automorphisms of a Nilpotent Galois extension of number field

Let R a set of representative of H/(gy). We can take for R the set
of reduced words that do not involve g1 and g.

For each h € R we need to compute [h, gk|. We proceed as follow :
we write h = hjh, where hy is the part with generators of index

i < k, and h, is the part with generators of index i > k.

Since g is in the center of G,/Gy_1, it exists hj and h} in G,_;
such that hgx = hgkhr gkh = h/gkh,

and moreover the computation of the words h; and h} only requires
the knowledge of the w; j for 1 <j < k and i > j.

On the computation of automorphisms of a Nilpotent Galois extension of number field

We obtain [h, gk] = h/(h/)~1. This way we can write [h, gx] as a
product of the elements gj for 1 < j < k — 1 which we have already
computed.

We compute [h, gk] for all h € H, and we apply the Chinese
remainder to the formulas for all h € H

[h, gl(x) = g (x)? (mod hpy)

and we use the lifting algorithm to recover g.
At this point we can compute g* to lift uy.

On the computation of automorphisms of a Nilpotent Galois extension of number field

Complexity

We can reduce the problem to a group of order p” where all the
relatives orders are equal to p. We see that the number of choice to
try to find g» is p"~2, p"~3 for g3 etc. which leads to a total
number of choice of (p"~! — p)/(p — 1) which is less that the order
of the group.

If the group is abelian, then this algorithm is slightly faster than
Acciaro-Kliiners algorithm.

On the computation of automorphisms of a Nilpotent Galois extension of number field

The super-solvable case

Let assume (¢) is normal instead of central. Then for all T there
exists k such that 771 = ¢¥ and so

¢ (x) = xP (mod 7(q)Zy)

which leads to
d(x) = xP (mod 7(q)Z¢)
for I such that /k =1 (mod f).
We recover ¢ by trying all the admissible functions from P to
(Z/fZ)*.
This is subexponential in the worse case of C, x Cp_1, there is
(p — 2)! possible functions to test.
However the lifting part is in exponential time (" with

o < 5%25 ~ 1.29370), so ideally we would like to find a better way
for lifting.

