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Complementary results on Poisson processes

1 Exponential distribution properties

Proposition 1.1 (Memorylessness) A positive random variable S has an exponential dis-
tribution if and only if it satisfies the memoryless property

P(S > s+ t|S > s) = P(S > t)

for all s, t > 0.

Proof. Let us assume that S has an exponential distribution E(λ). We have

P(S > s+ t|S > s) =
P(S > s+ t, S > s)

P(S > s)
= e−λt = P(S > t).

On the contrary, Let us assume that S satisfies the memoryless property. We define g(t) =
P(S > t) for all t > 0. We remark that g is a decreasing function on R+ such that
limt→0 g(t) = 1 and limt→+∞ g(t) = 0. Moreover,

P(S > s+ t|S > s) =
P(S > s+ t, S > s)

P(S > s)
=
g(s+ t)

g(s)
,

P(S > t) = g(t),

and thus g(s)g(t) = g(s+ t) for all s, t > 0. By using the following lemma we conclude that
g(t) = e−λt : S has an exponential distribution. ut

Lemma 1.1 Let g : R+ → R+ a multiplicative non increasing function (i.e. g(s)g(t) =
g(s + t) for all s, t > 0), such that limt→0 g(t) = 1 and limt→+∞ g(t) = 0. Then there exists
λ > 0 such that g(t) = e−λt for all t > 0.

Proof. Let n an integer. We have

g(n) = g(1 + ...+ 1) = g(1)n

using the multiplicativity property. Let us consider now n ∈ N∗, then we get

g(1) = g

(
1

n
+ ...+

1

n

)
= g

(
1

n

)n
,

and thus g(1/n) = g(1)1/n. We can deduce that for all r = p/q ∈ Q+ we have g(r) =
g(p/q) = g(1)p/q. Finally we consider t ∈ R. There exists an increasing sequence (rn)n>0
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and a decreasing sequence (sn)n>0 of rational numbers tending to t such that rn 6 t 6 sn
for all n ∈ N. Then, we have for all n

g(rn) 6 g(t) 6 g(sn).

Since rn and sn rational numbers, we deduce

g(1)rn 6 g(t) 6 g(1)sn .

Finally, since g is non increasing, we pass to the limit in the previous inequality to obtain
g(t) = g(1)t for all t > 0. Since limt→0 g(t) = 1 and limt→+∞ g(t) = 0, we get 0 < g(1) < 1.
By setting λ = − log(g(1)) > 0 we obtain the result: g(t) = e−λt for all t > 0. ut

2 Equivalent definitions of Poisson process

Theorem 2.1 Let (Tn)n>1 a point process on R+, (Nt)t>0 its random counting function and
λ > 0. Then the three following propositions are equivalent:

1. (Nt) is a Poisson process with intensity λ.

2. Increments of (Nt)t>0 are independent and we have the following asymptotic expan-
sions, uniform with respect to t, when h tends to 0

P(Nt+h −Nt = 0) = 1− λh+ o(h)

P(Nt+h −Nt = 1) = λh+ o(h).

3. Waiting times between jumps (Sn)n>1 are i.i.d. with law E(λ).

Proof. We have already seen in the course that 1 ⇒ 2 and 1 ⇒ 3. So it is sufficient to
show 3 ⇒ 2 and 2 ⇒ 1 to obtain all equivalences. Let us assume that 3 is fulfilled and let
us try to prove 2. We start by proving that, under this hypothesis, for all time s > 0, the
process N s

t = Nt+s − Ns is independent with (Nr, 0 6 r 6 s) and has waiting times (Ssn)
i.i.d. with distribution E(λ). Since Ns takes its values in N, it is sufficient to Prove the result
conditionally to Ns = i for i ∈ N.Then we have Ss1 = Si+1−(s−Ti) and Ssn = Sn+1 for n > 2.
So, for n > 2, (Ssn) are i.i.d. with law E(λ) and independent to the past (Nr, 0 6 r 6 s). We
calculate now the law of Ss1. We have

P(Ss1 > t|Ns = i) = P(Si+1 > t+ s− Ti|Ti 6 s, Si+1 > s− Ti)

=
P(Si+1 > t+ s− Ti, Ti 6 s, Si+1 > s− Ti)

P(Ti 6 s, Si+1 > s− Ti)

=
E[E[1{Si+1>t+s−Ti,Ti6s,Si+1>s−Ti}|Ti]]

E[E[1{Ti6s,Si+1>s−Ti}|Ti]]

But Si+1 and Ti are independent, thus properties of conditional expectation give us

P(Ss1 > t|Ns = i) =
E[f(Ti)]

E[f(Ti)]
,
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with

f(u) = E[1{Si+1>t+s−u,u6s,Si+1>s−u}]

= P(Si+1 > t+ s− u|Si+1 > s− u)P(Si+1 > s− u)1u6s

= P(Si+1 > t)P(Si+1 > s− u)1u6s

= e−λte−λ(s−u)1u6s

by using the memoryless property, and

g(u) = E[1{u6s,Si+1>s−u}]

= P(Si+1 > s− u)1u6s

= e−λ(s−u)1u6s.

Thus we obtain

P(Ss1 > t|Ns = i) =
E[e−λte−λ(s−Ti)1Ti6s]

E[e−λ(s−Ti)1Ti6s]
= e−λt,

so Ss1 ∼ E(λ). We also get the independence with the past by showing that

P(Ss1 > t, S1 > s1, ..., Si > si|Ns = i) = e−λtP(S1 > s1, ..., Si > si|Ns = i).

We deduce that increments of (Nt) are independent under assumption 3. Moreover, (Nt+h−
Nt) and (Nh) have the same law, so we have

P(Nt+h −Nt > 1) = P(Nh > 1) = P(T1 6 h) = P(S1 6 h)

= 1− e−λh = λh+ o(h)

uniformly with respect to t, when h is small. By same arguments we get

0 6 P(Nt+h −Nt > 2) = P(Nh > 2) = P(T2 6 h)

6 P(S1 6 h, S2 6 h) = (1− e−λh)2 = o(h)

uniformly with respect to t, when h is small. The difference gives us

P(Nt+h −Nt = 1) = P(Nt+h −Nt > 1)− P(Nt+h −Nt > 2) = λh+ o(h)

P(Nt+h −Nt = 0) = 1− P(Nt+h −Nt > 1) = 1− λh+ o(h),

which prove 2.

Now we assume that 2 is fulfilled and we try to prove 1. We have independence of
increments, we just have to show stationarity. We will calculate the characteristic function
of Nt+s −Nt and check that it does not depend on t. Using independence of increments, we
have, for all u ∈ R,

E[eiu(Nt+s−Nt)] = E[
n∏
j=1

e
iu(Nt+j s

n
−Nt+(j−1) s

n
)
] =

n∏
j=1

E[e
iu(Nt+j s

n
−Nt+(j−1) s

n
)
]

=
n∏
j=1

(
1− λ s

n
+ eiuλ

s

n
+ o(1/n)

)
where o(1/n) is uniform with respect to j. So we have

E[eiu(Nt+s−Nt)] = eλs(e
iu−1) + o(1).

Then, when n tends to the limit, we get Nt+s −Nt ∼ P(λs) which gives us 1. ut
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