Complementary results on Poisson processes

1 Exponential distribution properties

Proposition 1.1 (Memorylessness) A positive random variable S has an exponential distribution if and only if it satisfies the memoryless property

$$\mathbb{P}(S > s + t | S > s) = \mathbb{P}(S > t)$$

for all $s, t \ge 0$.

Proof. Let us assume that S has an exponential distribution $\mathcal{E}(\lambda)$. We have

$$\mathbb{P}(S > s + t | S > s) = \frac{\mathbb{P}(S > s + t, S > s)}{\mathbb{P}(S > s)} = e^{-\lambda t} = \mathbb{P}(S > t).$$

On the contrary, Let us assume that S satisfies the memoryless property. We define $g(t) = \mathbb{P}(S > t)$ for all $t \ge 0$. We remark that g is a decreasing function on \mathbb{R}^+ such that $\lim_{t\to 0} g(t) = 1$ and $\lim_{t\to +\infty} g(t) = 0$. Moreover,

$$\begin{split} \mathbb{P}(S > s + t | S > s) &= \frac{\mathbb{P}(S > s + t, S > s)}{\mathbb{P}(S > s)} = \frac{g(s + t)}{g(s)}, \\ \mathbb{P}(S > t) &= g(t), \end{split}$$

and thus g(s)g(t) = g(s+t) for all $s, t \ge 0$. By using the following lemma we conclude that $g(t) = e^{-\lambda t}$: S has an exponential distribution.

Lemma 1.1 Let $g : \mathbb{R}^+ \to \mathbb{R}^+$ a multiplicative non increasing function (i.e. g(s)g(t) = g(s+t) for all $s, t \ge 0$), such that $\lim_{t\to 0} g(t) = 1$ and $\lim_{t\to +\infty} g(t) = 0$. Then there exists $\lambda > 0$ such that $g(t) = e^{-\lambda t}$ for all $t \ge 0$.

Proof. Let *n* an integer. We have

$$g(n) = g(1 + \dots + 1) = g(1)^n$$

using the multiplicativity property. Let us consider now $n \in \mathbb{N}^*$, then we get

$$g(1) = g\left(\frac{1}{n} + \dots + \frac{1}{n}\right) = g\left(\frac{1}{n}\right)^n,$$

and thus $g(1/n) = g(1)^{1/n}$. We can deduce that for all $r = p/q \in \mathbb{Q}^+$ we have $g(r) = g(p/q) = g(1)^{p/q}$. Finally we consider $t \in \mathbb{R}$. There exists an increasing sequence $(r_n)_{n \ge 0}$

and a decreasing sequence $(s_n)_{n\geq 0}$ of rational numbers tending to t such that $r_n \leq t \leq s_n$ for all $n \in \mathbb{N}$. Then, we have for all n

$$g(r_n) \leqslant g(t) \leqslant g(s_n).$$

Since r_n and s_n rational numbers, we deduce

$$g(1)^{r_n} \leqslant g(t) \leqslant g(1)^{s_n}.$$

Finally, since g is non increasing, we pass to the limit in the previous inequality to obtain $g(t) = g(1)^t$ for all $t \ge 0$. Since $\lim_{t\to 0} g(t) = 1$ and $\lim_{t\to +\infty} g(t) = 0$, we get 0 < g(1) < 1. By setting $\lambda = -\log(g(1)) > 0$ we obtain the result: $g(t) = e^{-\lambda t}$ for all $t \ge 0$.

2 Equivalent definitions of Poisson process

Theorem 2.1 Let $(T_n)_{n\geq 1}$ a point process on \mathbb{R}^+ , $(N_t)_{t\geq 0}$ its random counting function and $\lambda > 0$. Then the three following propositions are equivalent:

- 1. (N_t) is a Poisson process with intensity λ .
- 2. Increments of $(N_t)_{t\geq 0}$ are independent and we have the following asymptotic expansions, uniform with respect to t, when h tends to 0

$$\mathbb{P}(N_{t+h} - N_t = 0) = 1 - \lambda h + o(h)$$

$$\mathbb{P}(N_{t+h} - N_t = 1) = \lambda h + o(h).$$

3. Waiting times between jumps $(S_n)_{n \ge 1}$ are i.i.d. with law $\mathbb{E}(\lambda)$.

Proof. We have already seen in the course that $1 \Rightarrow 2$ and $1 \Rightarrow 3$. So it is sufficient to show $3 \Rightarrow 2$ and $2 \Rightarrow 1$ to obtain all equivalences. Let us assume that 3 is fulfilled and let us try to prove 2. We start by proving that, under this hypothesis, for all time $s \ge 0$, the process $N_t^s = N_{t+s} - N_s$ is independent with $(N_r, 0 \le r \le s)$ and has waiting times (S_n^s) i.i.d. with distribution $\mathcal{E}(\lambda)$. Since N_s takes its values in \mathbb{N} , it is sufficient to Prove the result conditionally to $N_s = i$ for $i \in \mathbb{N}$. Then we have $S_1^s = S_{i+1} - (s - T_i)$ and $S_n^s = S_{n+1}$ for $n \ge 2$. So, for $n \ge 2$, (S_n^s) are i.i.d. with law $\mathcal{E}(\lambda)$ and independent to the past $(N_r, 0 \le r \le s)$. We calculate now the law of S_1^s . We have

$$\mathbb{P}(S_1^s > t | N_s = i) = \mathbb{P}(S_{i+1} > t + s - T_i | T_i \leqslant s, S_{i+1} > s - T_i) \\
= \frac{\mathbb{P}(S_{i+1} > t + s - T_i, T_i \leqslant s, S_{i+1} > s - T_i)}{\mathbb{P}(T_i \leqslant s, S_{i+1} > s - T_i)} \\
= \frac{\mathbb{E}[\mathbb{E}[\mathbb{1}_{\{S_{i+1} > t + s - T_i, T_i \leqslant s, S_{i+1} > s - T_i\} | T_i]]}{\mathbb{E}[\mathbb{E}[\mathbb{1}_{\{T_i \leqslant s, S_{i+1} > s - T_i\}} | T_i]]}$$

But S_{i+1} and T_i are independent, thus properties of conditional expectation give us

$$\mathbb{P}(S_1^s > t | N_s = i) = \frac{\mathbb{E}[f(T_i)]}{\mathbb{E}[f(T_i)]},$$

with

$$f(u) = \mathbb{E}[\mathbb{1}_{\{S_{i+1} > t+s-u, u \leq s, S_{i+1} > s-u\}}]$$

= $\mathbb{P}(S_{i+1} > t+s-u | S_{i+1} > s-u) \mathbb{P}(S_{i+1} > s-u) \mathbb{1}_{u \leq s}$
= $\mathbb{P}(S_{i+1} > t) \mathbb{P}(S_{i+1} > s-u) \mathbb{1}_{u \leq s}$
= $e^{-\lambda t} e^{-\lambda (s-u)} \mathbb{1}_{u \leq s}$

by using the memoryless property, and

$$g(u) = \mathbb{E}[\mathbb{1}_{\{u \leq s, S_{i+1} > s - u\}}]$$

= $\mathbb{P}(S_{i+1} > s - u)\mathbb{1}_{u \leq s}$
= $e^{-\lambda(s-u)}\mathbb{1}_{u \leq s}.$

Thus we obtain

$$\mathbb{P}(S_1^s > t | N_s = i) = \frac{\mathbb{E}[e^{-\lambda t}e^{-\lambda(s-T_i)}\mathbb{1}_{T_i \leq s}]}{\mathbb{E}[e^{-\lambda(s-T_i)}\mathbb{1}_{T_i \leq s}]} = e^{-\lambda t}$$

so $S_1^s \sim \mathbb{E}(\lambda)$. We also get the independence with the past by showing that

$$\mathbb{P}(S_1^s > t, S_1 > s_1, ..., S_i > s_i | N_s = i) = e^{-\lambda t} \mathbb{P}(S_1 > s_1, ..., S_i > s_i | N_s = i).$$

We deduce that increments of (N_t) are independent under assumption 3. Moreover, $(N_{t+h} - N_t)$ and (N_h) have the same law, so we have

$$\mathbb{P}(N_{t+h} - N_t \ge 1) = \mathbb{P}(N_h \ge 1) = \mathbb{P}(T_1 \le h) = \mathbb{P}(S_1 \le h)$$
$$= 1 - e^{-\lambda h} = \lambda h + o(h)$$

uniformly with respect to t, when h is small. By same arguments we get

$$0 \leq \mathbb{P}(N_{t+h} - N_t \geq 2) = \mathbb{P}(N_h \geq 2) = \mathbb{P}(T_2 \leq h)$$

$$\leq \mathbb{P}(S_1 \leq h, S_2 \leq h) = (1 - e^{-\lambda h})^2 = o(h)$$

uniformly with respect to t, when h is small. The difference gives us

$$\mathbb{P}(N_{t+h} - N_t = 1) = \mathbb{P}(N_{t+h} - N_t \ge 1) - \mathbb{P}(N_{t+h} - N_t \ge 2) = \lambda h + o(h)$$

$$\mathbb{P}(N_{t+h} - N_t = 0) = 1 - \mathbb{P}(N_{t+h} - N_t \ge 1) = 1 - \lambda h + o(h),$$

which prove 2.

Now we assume that 2 is fulfilled and we try to prove 1. We have independence of increments, we just have to show stationarity. We will calculate the characteristic function of $N_{t+s} - N_t$ and check that it does not depend on t. Using independence of increments, we have, for all $u \in \mathbb{R}$,

$$\mathbb{E}[e^{iu(N_{t+s}-N_t)}] = \mathbb{E}[\prod_{j=1}^n e^{iu(N_{t+j\frac{s}{n}}-N_{t+(j-1)\frac{s}{n}})}] = \prod_{j=1}^n \mathbb{E}[e^{iu(N_{t+j\frac{s}{n}}-N_{t+(j-1)\frac{s}{n}})}]$$
$$= \prod_{j=1}^n \left(1-\lambda\frac{s}{n}+e^{iu}\lambda\frac{s}{n}+o(1/n)\right)$$

where o(1/n) is uniform with respect to j. So we have

$$\mathbb{E}[e^{iu(N_{t+s}-N_t)}] = e^{\lambda s(e^{iu}-1)} + o(1).$$

Then, when n tends to the limit, we get $N_{t+s} - N_t \sim \mathcal{P}(\lambda s)$ which gives us 1.