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Complementary results on Poisson processes

1 Exponential distribution properties

Proposition 1.1 (Memorylessness) A positive random variable S has an exponential dis-
tribution if and only if it satisfies the memoryless property

P(S >s+1t]S>s)=P(S >1t)

for all s;t > 0.

Proof. Let us assume that S has an exponential distribution £(\). We have

P(S>s+1t,5 > s)

P(S>s+1tS>s) = PS> s)

=eM=P(S >1).

On the contrary, Let us assume that S satisfies the memoryless property. We define g(t) =
P(S > t) for all ¢ > 0. We remark that g is a decreasing function on RT such that
limy 0 g(t) = 1 and lim;_,,, g(t) = 0. Moreover,

P(S>s+t,S>s g(s+t
P(S>s+tS>s) = ( PS> 5) ): (g(s)),

P(S>1) = g(t),

and thus ¢(s)g(t) = g(s+1t) for all s, > 0. By using the following lemma we conclude that
g(t) = e : S has an exponential distribution. 0

Lemma 1.1 Let g : Rt — RT a multiplicative non increasing function (i.e. g(s)g(t) =
g(s+1t) for all s,t > 0), such that lim;_,og(t) = 1 and limy_, o g(t) = 0. Then there exists
A > 0 such that g(t) = e ™ for allt > 0.

Proof. Let n an integer. We have

gn)=g(1+...+1)=g(1)"

using the multiplicativity property. Let us consider now n € N*, then we get

9(1)—g<%+.-.+%> —g(%y,

and thus g(1/n) = g(1)"/". We can deduce that for all » = p/q € QF we have g(r) =
g(p/q) = ¢g(1)P/9. Finally we consider ¢ € R. There exists an increasing sequence (7,)n>0



and a decreasing sequence ($,),>o of rational numbers tending to ¢ such that r, <t < s,
for all n € N. Then, we have for all n

9(ra) < g(t) < g(sn).

Since r, and s, rational numbers, we deduce

Finally, since ¢ is non increasing, we pass to the limit in the previous inequality to obtain
g(t) = g(1)! for all t > 0. Since lim; o g(t) = 1 and lim;_,,+ g(t) = 0, we get 0 < g(1) < 1.
By setting A = —log(g(1)) > 0 we obtain the result: g(t) = e for all ¢t > 0. U

2 Equivalent definitions of Poisson process

Theorem 2.1 Let (T,,)n>1 a point process on RT, (N;)i=o its random counting function and
A > 0. Then the three following propositions are equivalent:

1. (Ny) is a Poisson process with intensity A.

2. Increments of (Ny)iso are independent and we have the following asymptotic expan-
sions, uniform with respect to t, when h tends to 0

P(Nt+h — Nt = 0) = 1 — )\h + O(h)
P(Nt+h — Nt = 1) = A + 0<h)

3. Waiting times between jumps (Sy)n>1 are i.i.d. with law E()\).

Proof. We have already seen in the course that 1 = 2 and 1 = 3. So it is sufficient to
show 3 = 2 and 2 = 1 to obtain all equivalences. Let us assume that 3 is fulfilled and let
us try to prove 2. We start by proving that, under this hypothesis, for all time s > 0, the
process Nf = N; s — N; is independent with (N,,0 < r < s) and has waiting times (S%)
i.i.d. with distribution £(\). Since Ny takes its values in N, it is sufficient to Prove the result
conditionally to Ny = i for i € N.Then we have S} = S;,1 —(s—1T;) and S = S, forn > 2.
So, for n > 2, (S?) are i.i.d. with law £(\) and independent to the past (N,,0 < r < s). We
calculate now the law of S7. We have

P(S] > t|Ns=1i) = P(Siy1 >t+s—T|T; <s,541>s—1Tp)
P(Siz1 >t+s—T;,T; < 5,541 >s—1T))
P(T; < 5,841 > 5 —1T))
]EI:EI::H‘{SZ'+1>t+S—Ti7Ti<S,Si+1>S—TrL‘}|ﬂ]:|
EE[1 {15,541 >s—1:} | T3]

But S;y; and T; are independent, thus properties of conditional expectation give us

P(S; > t|N, = i) = -2



with
f(u) = E[B{Siﬂ>t+sfu,u<8,3¢+1>sfu}}
= P(SZ'+1 >t+s— UJ|S¢+1 > 8§ — U)P(SH_1 > 8§ — u)]lugs
= P(Si+l > t)P(SZ+1 > 8§ — U)ﬂugs

G—Ate—k(s—u) :H-ués
by using the memoryless property, and

g(u> — E[l{u<5,5i+1>s—u}]
= P(Sprl > 8§ — U)]lugs
e—/\(s—u)]l

UuLs:

Thus we obtain
EleMe 2T

]E[e—)\(s—Ti)]lTigs] =€

so 57 ~ E(\). We also get the independence with the past by showing that
P(Sf > 1, S > S1, 751 > Sl‘le = Z) = G_MP(Sl > 81y eeny S; > Sz‘le = Z)

P(S} > t|N; =1) =

We deduce that increments of (IV;) are independent under assumption 3. Moreover, (Nyyj —
N;) and (Np,) have the same law, so we have
P(Nyyp — Ny =2 1) = P(N,>1)=P(Ty < h) =P(S; <h)
= 1—e*=Xh+o(h)

uniformly with respect to ¢, when A is small. By same arguments we get

0<P(Nyp — N, =>2) = P(N,>2)=P(Ty <h)
< P(S; < h, Sy <h)=(1—e*)?2=0(h)

uniformly with respect to t, when h is small. The difference gives us

P(Nt+h — Nt = 1) = P(Nt-i-h — Nt 2 ]_) — ]P(Np,.h — Nt 2 2) = \h + O(h)
P(Nt+h — Nt = 0) = 1- P(Nt+h — Nt > 1) =1—MAh+ O(h),

which prove 2.

Now we assume that 2 is fulfilled and we try to prove 1. We have independence of
increments, we just have to show stationarity. We will calculate the characteristic function
of Nyys — N, and check that it does not depend on ¢t. Using independence of increments, we
have, for all u € R,

E[eiu(Nt+s_Nt):| _ E[H 6iu(Nt+j%7Nt+(jfl)%)] — HE[GW(MH%*NH(]A)%)]
j=1 j=1
“ s S
1 — A= +e"A—+o0(1 n)
[(1-45m it

J

where o(1/n) is uniform with respect to j. So we have
E[@iu(NtJrs_Nt)] — eks(eiu_l) + 0(1)

Then, when n tends to the limit, we get N;is — Ny ~ P(As) which gives us 1. O
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