Complementary results on Poisson processes

1 Exponential distribution properties

Proposition 1.1 (Memorylessness) A positive random variable S has an exponential distribution if and only if it satisfies the memoryless property

$$
\mathbb{P}(S>s+t \mid S>s)=\mathbb{P}(S>t)
$$

for all $s, t \geqslant 0$.

Proof. Let us assume that S has an exponential distribution $\mathcal{E}(\lambda)$. We have

$$
\mathbb{P}(S>s+t \mid S>s)=\frac{\mathbb{P}(S>s+t, S>s)}{\mathbb{P}(S>s)}=e^{-\lambda t}=\mathbb{P}(S>t) .
$$

On the contrary, Let us assume that S satisfies the memoryless property. We define $g(t)=$ $\mathbb{P}(S>t)$ for all $t \geqslant 0$. We remark that g is a decreasing function on \mathbb{R}^{+}such that $\lim _{t \rightarrow 0} g(t)=1$ and $\lim _{t \rightarrow+\infty} g(t)=0$. Moreover,

$$
\begin{aligned}
\mathbb{P}(S>s+t \mid S>s) & =\frac{\mathbb{P}(S>s+t, S>s)}{\mathbb{P}(S>s)}=\frac{g(s+t)}{g(s)} \\
\mathbb{P}(S>t) & =g(t)
\end{aligned}
$$

and thus $g(s) g(t)=g(s+t)$ for all $s, t \geqslant 0$. By using the following lemma we conclude that $g(t)=e^{-\lambda t}: S$ has an exponential distribution.

Lemma 1.1 Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$a multiplicative non increasing function (i.e. $g(s) g(t)=$ $g(s+t)$ for all $s, t \geqslant 0$), such that $\lim _{t \rightarrow 0} g(t)=1$ and $\lim _{t \rightarrow+\infty} g(t)=0$. Then there exists $\lambda>0$ such that $g(t)=e^{-\lambda t}$ for all $t \geqslant 0$.

Proof. Let n an integer. We have

$$
g(n)=g(1+\ldots+1)=g(1)^{n}
$$

using the multiplicativity property. Let us consider now $n \in \mathbb{N}^{*}$, then we get

$$
g(1)=g\left(\frac{1}{n}+\ldots+\frac{1}{n}\right)=g\left(\frac{1}{n}\right)^{n}
$$

and thus $g(1 / n)=g(1)^{1 / n}$. We can deduce that for all $r=p / q \in \mathbb{Q}^{+}$we have $g(r)=$ $g(p / q)=g(1)^{p / q}$. Finally we consider $t \in \mathbb{R}$. There exists an increasing sequence $\left(r_{n}\right)_{n \geqslant 0}$
and a decreasing sequence $\left(s_{n}\right)_{n \geqslant 0}$ of rational numbers tending to t such that $r_{n} \leqslant t \leqslant s_{n}$ for all $n \in \mathbb{N}$. Then, we have for all n

$$
g\left(r_{n}\right) \leqslant g(t) \leqslant g\left(s_{n}\right)
$$

Since r_{n} and s_{n} rational numbers, we deduce

$$
g(1)^{r_{n}} \leqslant g(t) \leqslant g(1)^{s_{n}} .
$$

Finally, since g is non increasing, we pass to the limit in the previous inequality to obtain $g(t)=g(1)^{t}$ for all $t \geqslant 0$. Since $\lim _{t \rightarrow 0} g(t)=1$ and $\lim _{t \rightarrow+\infty} g(t)=0$, we get $0<g(1)<1$. By setting $\lambda=-\log (g(1))>0$ we obtain the result: $g(t)=e^{-\lambda t}$ for all $t \geqslant 0$.

2 Equivalent definitions of Poisson process

Theorem 2.1 Let $\left(T_{n}\right)_{n \geqslant 1}$ a point process on $\mathbb{R}^{+},\left(N_{t}\right)_{t \geqslant 0}$ its random counting function and $\lambda>0$. Then the three following propositions are equivalent:

1. $\left(N_{t}\right)$ is a Poisson process with intensity λ.
2. Increments of $\left(N_{t}\right)_{t \geqslant 0}$ are independent and we have the following asymptotic expansions, uniform with respect to t, when h tends to 0

$$
\begin{aligned}
& \mathbb{P}\left(N_{t+h}-N_{t}=0\right)=1-\lambda h+o(h) \\
& \mathbb{P}\left(N_{t+h}-N_{t}=1\right)=\lambda h+o(h) .
\end{aligned}
$$

3. Waiting times between jumps $\left(S_{n}\right)_{n \geqslant 1}$ are i.i.d. with law $\mathbb{E}(\lambda)$.

Proof. We have already seen in the course that $1 \Rightarrow 2$ and $1 \Rightarrow 3$. So it is sufficient to show $3 \Rightarrow 2$ and $2 \Rightarrow 1$ to obtain all equivalences. Let us assume that 3 is fulfilled and let us try to prove 2 . We start by proving that, under this hypothesis, for all time $s \geqslant 0$, the process $N_{t}^{s}=N_{t+s}-N_{s}$ is independent with $\left(N_{r}, 0 \leqslant r \leqslant s\right)$ and has waiting times $\left(S_{n}^{s}\right)$ i.i.d. with distribution $\mathcal{E}(\lambda)$. Since N_{s} takes its values in \mathbb{N}, it is sufficient to Prove the result conditionally to $N_{s}=i$ for $i \in \mathbb{N}$. Then we have $S_{1}^{s}=S_{i+1}-\left(s-T_{i}\right)$ and $S_{n}^{s}=S_{n+1}$ for $n \geqslant 2$. So, for $n \geqslant 2$, $\left(S_{n}^{s}\right)$ are i.i.d. with law $\mathcal{E}(\lambda)$ and independent to the past $\left(N_{r}, 0 \leqslant r \leqslant s\right)$. We calculate now the law of S_{1}^{s}. We have

$$
\begin{aligned}
\mathbb{P}\left(S_{1}^{s}>t \mid N_{s}=i\right) & =\mathbb{P}\left(S_{i+1}>t+s-T_{i} \mid T_{i} \leqslant s, S_{i+1}>s-T_{i}\right) \\
& =\frac{\mathbb{P}\left(S_{i+1}>t+s-T_{i}, T_{i} \leqslant s, S_{i+1}>s-T_{i}\right)}{\mathbb{P}\left(T_{i} \leqslant s, S_{i+1}>s-T_{i}\right)} \\
& =\frac{\left.\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\left\{S_{i+1}>+t+s-T_{i}, T_{i} \leqslant s, S_{i+1}>s-T_{i}\right\}}\right\} T_{i}\right]\right]}{\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{\left\{T_{i} \leqslant s, S_{i+1}>s-T_{i}\right\}} \mid T_{i}\right]\right]}
\end{aligned}
$$

But S_{i+1} and T_{i} are independent, thus properties of conditional expectation give us

$$
\mathbb{P}\left(S_{1}^{s}>t \mid N_{s}=i\right)=\frac{\mathbb{E}\left[f\left(T_{i}\right)\right]}{\mathbb{E}\left[f\left(T_{i}\right)\right]}
$$

with

$$
\begin{aligned}
f(u) & =\mathbb{E}\left[\mathbb{1}_{\left\{S_{i+1}>t+s-u, u \leqslant s, S_{i+1}>s-u\right\}}\right] \\
& =\mathbb{P}\left(S_{i+1}>t+s-u \mid S_{i+1}>s-u\right) \mathbb{P}\left(S_{i+1}>s-u\right) \mathbb{1}_{u \leqslant s} \\
& =\mathbb{P}\left(S_{i+1}>t\right) \mathbb{P}\left(S_{i+1}>s-u\right) \mathbb{1}_{u \leqslant s} \\
& =e^{-\lambda t} e^{-\lambda(s-u)} \mathbb{1}_{u \leqslant s}
\end{aligned}
$$

by using the memoryless property, and

$$
\begin{aligned}
g(u) & =\mathbb{E}\left[\mathbb{1}_{\left\{u \leqslant s, S_{i+1}>s-u\right\}}\right] \\
& =\mathbb{P}\left(S_{i+1}>s-u\right) \mathbb{1}_{u \leqslant s} \\
& =e^{-\lambda(s-u)} \mathbb{1}_{u \leqslant s} .
\end{aligned}
$$

Thus we obtain

$$
\mathbb{P}\left(S_{1}^{s}>t \mid N_{s}=i\right)=\frac{\mathbb{E}\left[e^{-\lambda t} e^{-\lambda\left(s-T_{i}\right)} \mathbb{1}_{T_{i} \leqslant s}\right]}{\mathbb{E}\left[e^{-\lambda\left(s-T_{i}\right)} \mathbb{1}_{T_{i} \leqslant s}\right]}=e^{-\lambda t}
$$

so $S_{1}^{s} \sim \mathbb{E}(\lambda)$. We also get the independence with the past by showing that

$$
\mathbb{P}\left(S_{1}^{s}>t, S_{1}>s_{1}, \ldots, S_{i}>s_{i} \mid N_{s}=i\right)=e^{-\lambda t} \mathbb{P}\left(S_{1}>s_{1}, \ldots, S_{i}>s_{i} \mid N_{s}=i\right)
$$

We deduce that increments of $\left(N_{t}\right)$ are independent under assumption 3. Moreover, ($N_{t+h}-$ $\left.N_{t}\right)$ and $\left(N_{h}\right)$ have the same law, so we have

$$
\begin{aligned}
\mathbb{P}\left(N_{t+h}-N_{t} \geqslant 1\right) & =\mathbb{P}\left(N_{h} \geqslant 1\right)=\mathbb{P}\left(T_{1} \leqslant h\right)=\mathbb{P}\left(S_{1} \leqslant h\right) \\
& =1-e^{-\lambda h}=\lambda h+o(h)
\end{aligned}
$$

uniformly with respect to t, when h is small. By same arguments we get

$$
\begin{aligned}
0 \leqslant \mathbb{P}\left(N_{t+h}-N_{t} \geqslant 2\right) & =\mathbb{P}\left(N_{h} \geqslant 2\right)=\mathbb{P}\left(T_{2} \leqslant h\right) \\
& \leqslant \mathbb{P}\left(S_{1} \leqslant h, S_{2} \leqslant h\right)=\left(1-e^{-\lambda h}\right)^{2}=o(h)
\end{aligned}
$$

uniformly with respect to t, when h is small. The difference gives us

$$
\begin{aligned}
& \mathbb{P}\left(N_{t+h}-N_{t}=1\right)=\mathbb{P}\left(N_{t+h}-N_{t} \geqslant 1\right)-\mathbb{P}\left(N_{t+h}-N_{t} \geqslant 2\right)=\lambda h+o(h) \\
& \mathbb{P}\left(N_{t+h}-N_{t}=0\right)=1-\mathbb{P}\left(N_{t+h}-N_{t} \geqslant 1\right)=1-\lambda h+o(h),
\end{aligned}
$$

which prove 2 .
Now we assume that 2 is fulfilled and we try to prove 1 . We have independence of increments, we just have to show stationarity. We will calculate the characteristic function of $N_{t+s}-N_{t}$ and check that it does not depend on t. Using independence of increments, we have, for all $u \in \mathbb{R}$,

$$
\begin{aligned}
\mathbb{E}\left[e^{i u\left(N_{t+s}-N_{t}\right)}\right] & =\mathbb{E}\left[\prod_{j=1}^{n} e^{i u\left(N_{t+j \frac{s}{n}}-N_{t+(j-1) \frac{s}{n}}\right)}\right]=\prod_{j=1}^{n} \mathbb{E}\left[e^{i u\left(N_{t+j} \frac{s}{n}-N_{t+(j-1)} \frac{s}{n}\right)}\right] \\
& =\prod_{j=1}^{n}\left(1-\lambda \frac{s}{n}+e^{i u} \lambda \frac{s}{n}+o(1 / n)\right)
\end{aligned}
$$

where $o(1 / n)$ is uniform with respect to j. So we have

$$
\mathbb{E}\left[e^{i u\left(N_{t+s}-N_{t}\right)}\right]=e^{\lambda s\left(e^{i u}-1\right)}+o(1) .
$$

Then, when n tends to the limit, we get $N_{t+s}-N_{t} \sim \mathcal{P}(\lambda s)$ which gives us 1 .

