Exercise 1. Let us consider a Poisson process $\left(N_{t}\right)_{t \geqslant 1}$ with intensity λ. Prove that $\left(N_{t}\right)_{t \geqslant 1}$ is a jump Markov process with values in \mathbb{N} and with transition matrices

$$
P_{x y}(t)=e^{-\lambda t} \frac{(\lambda t)^{y-x}}{(y-x)!} \mathbb{1}_{\{y \geqslant x\}} .
$$

Give its infinitesimal generator.

Exercise 2. Let us consider a Poisson process $\left(N_{t}\right)_{t \geqslant 1}$ with intensity λ and X_{0} a random variable independent with $\left(N_{t}\right)_{t \geqslant 1}$ and with values in $E=\{-1,1\}$. We define, for all $t \geqslant 0$,

$$
X_{t}=(-1)^{N_{t}} X_{0}
$$

Prove that $\left(X_{t}\right)_{t \geqslant 1}$ is a jump Markov process and calculate its transition matrices. Give its infinitesimal generator. This process is called "Telegraph process".

Exercise 3. [Revisions] For all the following matrices:

1. Show that it is a stochastic matrix, or complete missing values to obtain a stochastic matrix.
2. Draw the relative graph.
3. Give communicating classes.
4. Give closed classes, absorbing states, recurrent and transient states. Indicate if the Markov chain is irreducible or not.

$$
\left.\begin{array}{rl}
A=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right), & B=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 0
\end{array}\right), \\
C=\left(\begin{array}{ccccc}
? & 0 & 1 / 12 & 1 / 4 & 1 / 3 \\
0 & ? & 0 & 0 & 1 / 4 \\
1 / 3 & 1 / 12 & ? & 0 & 1 / 12 \\
0 & 1 / 6 & 1 / 4 & ? & 1 / 6 \\
0 & 2 / 3 & 0 & 0 & ?
\end{array}\right), \quad D=\left(\begin{array}{ccccc}
? & 0 & 0 & 0 & 0 \\
1 / 2 & ? & 1 / 2 & 0 & 0 \\
0 \\
1 / 2 & 0 & ? & 0 & 1 / 2
\end{array}\right) 0 \\
0 & 1 / 2 \\
0 & 0 \\
? & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Exercise 4. For all the following matrices:

1. Prove that it is an infinitesimal generator.
2. Draw the relative graph and give communicating classes and their properties.

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -1 & 0 \\
2 & 1 & -3
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
-2 & 0 & 1 & 0 & 1 \\
1 & -3 & 0 & 1 & 1 \\
0 & 1 & -3 & 2 & 0 \\
1 & 1 & 0 & -2 & 0 \\
1 & 0 & 1 & 1 & -3
\end{array}\right) \\
C=\left(\begin{array}{ccccc}
-\lambda & \lambda & 0 & 0 & 0 \\
0 & -\lambda & \lambda & 0 & 0 \\
0 & 0 & -\lambda & \lambda & 0 \\
0 & 0 & 0 & -\lambda & \lambda \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

Exercise 5. Let a jump Markov process $\left(X_{t}\right)_{t \geqslant 0}$ and $\left(\mathcal{F}_{t}^{X}\right)$ his natural filtration. Show that its jump times T_{n} and the time of the first return to state x, denoted R_{x}, are stopping times.

Exercise 6. Let us consider two independent Poisson processes $\left(N_{t}\right)_{t \geqslant 0}$ and $\left(N_{t}^{\prime}\right)_{t \geqslant 0}$ with intensity λ and μ. We denote $\left(T_{n}\right)$ jump times of the process $\left(N_{t}\right)_{t \geqslant 0}$. We set $M_{n}=$ $N_{T_{n}}^{\prime}-N_{T_{n-1}}^{\prime}$ for all $n \geqslant 1$.

1. Draw one draw of trajectories of $\left(N_{t}\right)_{t \geqslant 0}$ and $\left(N_{t}^{\prime}\right)_{t \geqslant 0}$, and for a fixed n give the relative value of M_{n}.
2. M_{n} has values in which set?
3. Show that $\mathbb{P}\left(M_{n+1}=k\right)=\mathbb{P}\left(M_{1}=k\right)$ and that the law of M_{n} does not depend on n.
4. Let us consider a random variable $X \sim \mathcal{E}(\alpha)$. Show that for all integer k we have $\mathbb{E}\left[X^{k}\right]=\alpha^{-k} k!$.
5. Deduce the law of M_{1}.
