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Abstract
Our objective is to construct residue currents from Bochner-Martinelli
type kernels; the computations hold in the non complete intersection
case and provide a new and more direct approach of the residue of
Coleff-Herrera in the complete intersection case; computations involve
crucial relations with toroidal varieties and multivariate integrals of
the Mellin-Barnes type.

1 Introduction.

Of the great number of integral representation formulas for holomorphic func-
tions in several variables, there are two that are particularly simple and use-
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ful, namely those given by the Cauchy kernel and by the Bochner-Martinelli
kernel. It is well known, see [18], that these kernels correspond to each other
via the Dolbeault isomorphism. Moreover, it is an elementary observation
that the Bochner-Martinelli representation formula can be obtained by aver-
aging the Cauchy formula over a simplex. More precisely, taking the mean
value over the simplex

Σp(η) = {s ∈ Rn
+; s1 + . . . + sp = η}

of both sides in the Cauchy formula

h(0) =
1

(2πi)p

∫

|wj |2=sj

h(w) dw1 ∧ . . . ∧ dwp

w1 · · ·wp

,

one arrives at the Bochner-Martinelli formula

h(0) = cp

∫

‖w‖2=η
h(w) Ω(w) ∧ dw1 ∧ . . . ∧ dwp,

where cp = (−1)p(p−1)/2(p − 1)!/(2πi)p is a constant depending only on the
number of variables, and the kernel Ω is given by

Ω(w) =
1

‖w‖2p

p∑

k=1

(−1)k−1w̄kdw̄1 ∧ . . . d̂w̄k . . . ∧ dw̄p.

The simplicity of the Cauchy kernel makes it a natural candidate in the
definition of multidimensional residues. For instance, there is an elegant
integral interpretation of the Grothendieck residue based on this kernel, see
[19]. In 1978 the Cauchy kernel was used by Coleff and Herrera [14] in
their definition of residue currents, which goes as follows: Let f1, . . . , fp be
a system of p holomorphic functions in some domain V ⊂ Cn. For every
smooth, compactly supported test form ϕ ∈ Dn,n−p(V ) one considers the
integral

I(ε) = I(ε; ϕ) =
1

(2πi)p

∫

|fj |2=εj

ϕ

f1 · · · fp

, (1.1)

where the real-analytic chain {|f1|2 = ε1, . . . , |fp|2 = εp} is oriented as the
distinguished boundary of the corresponding polyhedron. It is easy to to see
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that, when the common zero set f−1(0) of the system f = (f1, . . . , fp) has
codimension less than p (that is, when f is not a complete intersection), then
the function I(ε) given by (1.1) does not have a limit as ε → 0. However,
Coleff and Herrera showed that this limit does exist if one lets ε approach the
origin along a special path ε(δ) = (ε1(δ), . . . , εp(δ)), a so-called admissible
trajectory, for which each coordinate tends to zero quicker than any power of
the subsequent coordinate. In the case of a complete intersection this limit
is independent of the ordering of the functions, and it seemed reasonable to
expect, in this case, the existence of an unconditional limit of the function
I(ε) at the origin. This turned out not to be the case, and the counterex-
amples of [25] and [12] show that the behaviour of the integral (1.1) near
ε = 0 can be quite intricate. We have therefore found it natural to consider
the residue current, associated with the mapping f : V → Cp, as a limit of
certain averages of the residue function I(ε).

The aim of the present paper is to study residue currents of the Bochner-
Martinelli type, which may be viewed as limits of mean values of I(ε) over
the simplex Σp(η) and which can in fact be written as

Tf (ϕ) = lim
η→0

cp

∫

‖f‖2=η
Ω(f) ∧ ϕ. (1.2)

In particular, our Theorem 1.1 says that such a limit always exists and defines
a (0, p)-current Tf , which annihilates the integral closure of the p-th power
of the ideal generated by f1, . . . , fp in the space of holomorphic functions in
V , and which also annihilates the conjugate of any function from the radical
of this ideal. In the complete intersection case Tf coincides with the Coleff-
Herrera current, see Theorem 4.1, and with the currents considered in the
papers [23], [5], [24], so there is the natural notation

Tf = ∂̄
1

f1

∧ . . . ∧ ∂̄
1

fp

.

As a consequence we obtain in Theorem 2.1 the alternative representation

Tf (ϕ) = lim
τ→0

p cp

∫

V

τ∂f ∧ ϕ

(‖f‖2 + τ)p+1
, (1.3)

where ∂f = ∂f1 ∧ . . .∧ ∂fp, for the current ∂̄(1/f1)∧ . . .∧ ∂̄(1/fp). This lat-
ter limit agrees with a more classical approach to particularly simple residue

3



currents (with measure coefficients), which was used in [3] for obtaining in-
terpolation and division formulas.

We feel that our results are of a certain interest already in the case of a
complete intersection f . Indeed, a big draw-back in the theory of residue cur-
rents has always been the difficulty (for p > 1) in giving a concise definition
of them, and the above limits (1.2) and (1.3) certainly provide much more ap-
pealing definitions of Tf than the previously existing ones. (We must admit
though that we had to do some work in order to prove their equivalence.)

We shall however not restrict ourselves to the complete intersection case.
This is partly because in our existence proof we do not need this assumption,
but more importantly since there is already some recent work (see for example
[30], [9]), where some questions related to residue theory in the non-complete
intersection case are studied.

Here is the exact formulation of our main result:

Theorem 1.1 Let f1, . . . , fm, be m holomorphic functions defined in some
open set V of Cn. Then, for any ordered subset I ⊂ {1, . . . , m} of cardinality
p ≤ min(m,n), and for any test form ϕ ∈ Dn,n−p(V ), the limit

lim
η→0

cp

ηp

∫

{‖f‖2=η}

( p∑

k=1

(−1)k−1fik

∧

l 6=k

dfil

)
∧ ϕ (1.4)

exists and defines the action of a (0, p) current Tf, I with the following van-
ishing properties:

(i) hTf, I = 0 for any h ∈ O(V ) which vanishes on the common zero set
{f1 = . . . = fm = 0};

(ii) hTf, I = 0 for any h ∈ O(V ) which is locally in the integral closure of
the ideal (f1, . . . , fm)p;

(iii) Tf, I = 0 if p < codim {f1 = . . . = fm = 0}.

Moreover, Tf, I depends in an alternating way on the ordering of the elements
in I.
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Since the currents we introduce here are similar to those introduced in
[15], Section 5, it seems reasonable to expect that the constructions we pro-
pose in this paper might give some further insight regarding explicit formula-
tions of the Ehrenpreis-Palamodov fundamental principle in the non complete
intersection case (in the spirit of the formulation in [13]).

Finally, we will also explain in our paper how explicit computations in-
volving Bochner-Martinelli currents (in the case of normal crossings, when
the fj are monomials) provide interesting connections with multidimensional
Mellin-Barnes integrals (see [27]).

2 Residue currents of the Bochner-Martinelli

type.

In this section we give a proof of Theorem 1.1. First a piece of notation:
Throughout this paper cp will denote the numerical constant (−1)p(p−1)/2(p−
1)!/(2πi)p. Consider an open set V in Cn and let f1, . . . , fm be elements in
the algebra O(V ) of holomorphic functions in V . It follows from Sard’s
theorem that there is a negligible set Ef , such that for each η ∈ R+ \Ef the
equation

‖f(ζ)‖2 :=
m∑

k=1

|fk(ζ)|2 = η

defines a smooth real hypersurface in V , which inherits the standard ori-
entation of V ⊂ Cn. We denote by Γf (η) the corresponding real analytic
(2n−1)-chain. Let further I = {i1, . . . , ip} be an arbitrary ordered subset of
{1, . . . , m}, whose number of elements p is at most min(n,m). For any test
form ϕ ∈ Dn,n−p(V ) and for each η ∈ R+ \ Ef , we then write

Jf, I(ϕ, η) :=
cp

ηp

∫

{‖f‖2=η}

( p∑

k=1

(−1)k−1fik

∧

l 6=k

dfil

)
∧ ϕ . (2.1)

It follows from the co-area formula ([16], Theorem 3.2.11, p. 248) that the
almost everywhere defined map

R+ 3 η 7→ Jf, I(ϕ, η)
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defines a compactly supported element in the weighted space L1(R+, tpdt).
Therefore, its Mellin transform

C 3 λ 7→ Mf, I(ϕ, λ) := λ
∫ ∞

0
Jf, I(ϕ, η)ηλ−1 dη

is a holomorphic function in the half-plane Re λ > p.

Lemma 2.1 For Re λ > p, the above Mellin transform may be represented
as

Mf, I(ϕ, λ) = cp

∫

V
λ‖f‖2(λ−p−1)∂‖f‖2 ∧

( p∑

k=1

(−1)k−1fik

∧

l 6=k

dfil

)
∧ ϕ (2.2)

Proof. Let Ef (ϕ) denote the set of critical values for the mapping ζ →
‖f(ζ)‖2 restricted to Supp ϕ. It is a closed subset of R+ contained in the
negligible set Ef . If ]α, β[ is any open interval in R+ \ Ef (ϕ), we get from
Fubini’s theorem that, for any λ ∈ C,

∫ β

α
λJf, I(ϕ, η)ηλ−1 dη =

∫

Vαβ

λ‖f‖2(λ−p−1)∂‖f‖2∧(
p∑

k=1

(−1)k−1fik

∧

l 6=k

dfil)∧ϕ,

where Vαβ denotes the set {ζ ∈ V ; α < ‖f‖2 < β}. The set R+ \ Ef (ϕ) is a
countable union of such disjoint intervals ]α, β[, so it follows from Lebesgue’s
theorem and from the co-aerea formula that the equality (2.2) holds for all
λ with Re λ > p. ♦

Our second lemma gives the existence of a meromorphic continuation of
the Mellin transform Mf, I which is in fact holomorphic across the imaginary
axis. Its value at the origin is of particular interest to us.

Lemma 2.2 The function λ 7→ Mf, I(ϕ, λ) can be meromorphically contin-
ued to the whole complex plane, and the poles of the extended function are
strictly negative rational numbers. Moreover, the map

Dn,n−p 3 ϕ 7→ Mf, I(ϕ, 0)

defines the action of a (0, p)-current Tf, I on V such that hTf, I = 0 for any
h ∈ O(V ) which vanishes on the common zero set

Z(f) := {ζ ∈ V ; f1 = . . . = fm = 0}.
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The current Tf, I is hence supported by Z(f), and moreover, one has

Tf, I = 0 (2.3)

when p < codimZ(f).

Proof. Clearly one can reduce the problem to the case where the support of
the test form is an arbitrarily small neighborhood of a point z0 in Z(f), and
for the sake of simplicity we will reduce ourselves, via a change of variables,
to the case z0 = 0. We will therefore assume that Supp ϕ ⊂ W , where W is a
neighborhood of the origin such that there exists a desingularisation (X , Π),
X being a n-dimensional complex manifold and Π a proper holomorphic map
X → W , such that
(i) the hypersurface Π∗({f1 · · · fm = 0}) has normal crossings in X ;
(ii) the map π is a biholomorphic map between X \Π∗({f1 · · · fm = 0}) and
W \ {f1 · · · fm = 0}.
The existence of such a pair (X , Π) follows from Hironaka’s theorem [20].
For Re λ sufficiently large, one can write Mf, I(ϕ, λ) as a finite sum of terms

∫

ω
λ‖Π∗f‖2λΠ∗Θf, I ∧ ρΠ∗ϕ , (2.4)

where

Θf, I := cp

∂‖f‖2 ∧
( ∑p

k=1(−1)k−1fik

∧
l 6=k dfil

)

‖f‖2(p+1)
,

ω is a local chart on X , coming from a finite covering of the compact subset
π∗(Supp ϕ), and ρ is the function from the partition of unity (subordinate to
the covering) which corresponds to the local chart ω. Thanks to the normal
crossing condition (i), one can assume that in a system of local coordinates
on ω centered at the origin,

Π∗fj(t) = uj(t)
n∏

k=1

t
αjk

k = uj(t)mj(t) , j = 1, . . . , m ,

where the uj are invertible elements in O(ω) and the αjk are positive inte-
gers. If one of the vectors αj := (αj1, . . . , αjn), j = 1, . . . ,m, is zero, the
corresponding function of λ in (2.4) is entire as λ 7→ ‖Π∗f‖2λ is. So that the
interesting case occurs when all the αj are nonzero.
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In order to study such a term, we use an idea that has already been
extensively developed in [4]. Let ∆ be the closed convex hull (in Rn

+) of

m⋃

j=1

{αj + Rn
+}

and
∆∼ the corresponding equivalence relation between elements in Rn

+: ξ
∆∼ξ′

if and only if Tr∆(ξ) = Tr∆(ξ′), where

Tr∆(ξ) :=
{
δ ∈ ∆, < ξ, δ >= min

x∈∆
< ξ, x >

}
.

(The brackets here stand for the usual scalar product in the affine space
Rn.) The set of all closures of the equivalence classes for this relation is a
fan Σ(∆) (see [1] and [17].) Such a fan can be refined ([22]) in order that
all cones are simple ones, so that the corresponding toric variety X̃ is a n-
dimensional complex manifold; local charts correspond to different copies of
Cn which are glued together via invertible monoidal transformations from the
n- dimensional torus Tn into itself. Since the union of the cones in this fan
is Rn

+, the projection map Π̃ : X̃ → Cn (which is monoidal when expressed

in local coordinates in each chart) is a proper map. Moreover, Π̃ is invertible
from X̃ \ Π̃∗{t1 · · · tn = 0} to Cn \ {t1 · · · tn = 0}. In each chart $ on X̃ (the
coordinates being τ1, . . . , τn), one can write

Π̃∗Π∗fj(τ1, . . . , τn) = (Π̃∗uj(τ1, . . . τn))µj(τ) , j = 1, . . . , m ,

where µj = Π̃∗mj is also a monomial. Moreover, since the toric variety X̃ is
associated with the Newton polyedron ∆ attached to α1, . . . , αm, there exists
an index j$ ∈ {1, . . . , m} such that µ$ divides all monomials µj, j = 1, . . . , m
(see [1].) This implies that

Π̃∗Π∗‖f‖2(τ) = ũ(τ)|µj$(τ)|2 , τ ∈ $ , (2.5)

where ũ is a non-vanishing positive real analytic function in $. Since Π̃∗ and
Π∗ commute with ∂ and ∂, one has

λ
∫
ω ‖Π∗f‖2λΠ∗Θf,I ∧ ρΠ∗ϕ =

λ
∑

$

∫
$
|uµj$ |2λ

µp
j$

(
θ̃$,1 + θ̃$,2 ∧ dµj$

µj$

)
∧ ξρ,$Π̃∗(ρΠ∗ϕ) , (2.6)
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where the (ξρ,$)$ correspond to a smooth partition of unity subordinate to
Π̃∗(Supp ρ) and θ̃$,1 and θ̃$,2 are smooth forms of bidegree (0, p) and (0, p−1)
respectively.

For any smooth functions ψ ∈ D(Ω) and υ ∈ C∞(Ω), where Ω ⊂ C, such
that υ > 0 on Supp ψ, one can see immediately, just integrating by parts,
that the maps defined for Re λ > p by

λ 7→ λ
∫
Ω υλ|s|2λψ(s)ds

s
∧ ds

sp

λ 7→ λ
∫
Ω υλ|s|2λψ(s)ds∧ds

sp

extend to meromorphic maps with poles in {r ∈ Q, r < 0}. The value at
λ = 0 corresponds to the action of a distribution (with support at the origin)
on the test function ψ in the first case; the value at λ = 0 is 0 in the second
case. Moreover, the distribution that appears in the first case is annihilated
by s.

It follows from the above remark that each term in the right hand side
of (2.6) can be meromorphically continued as a function of λ with poles in
{r ∈ Q, r < 0}. The value at the origin of the meromorphic continuation of
any function of the form (2.6) corresponds to the action of a (0, p)-current in
V . Summing up all functions of λ of the form (2.6), we find that the function
λ 7→ Mf, I(ϕ, λ) can be meromorphically continued to the whole plane, with
strictly negative rational poles. The value at λ = 0 corresponds to the action
of a (0, p)-current Tf, I .

Suppose that h ∈ O(V ), h = 0 on V . It follows from the Nullstellensatz
that for any ϕ ∈ Dn,n−p(V ), one has hN(ϕ) ∈ (f1, . . . , fm)loc for some integer
N(ϕ). For any Π and Π̃ involved in the resolutions of singularities used in
the proof, and for any ρ, $, ξρ,$ as before, we have the estimate

|Π̃∗Π∗(h)(τ)|N(ϕ) ≤ C(ξρ,$)Π̃∗Π∗‖f‖2(τ) ≤ C̃(ξρ,$)|µj$(τ)| , τ ∈ $,

which implies that any τk, k = 1, . . . , n, which divides µj$ also divides Π̃∗Π∗h.
This means that, for any ϕ ∈ D(V ),

[
λ

∑
$

∫
$
|ũµj$ |2λ

µp
j$

(
θ̃$,1 + θ̃$,2 ∧ dµj$

µj$

)
∧ ξρ,$Π̃∗(ρΠ∗hϕ)

]

λ=0

=
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[
λ

∑
$

∫
$
|ũµj$ |2λ

µp
j$

θ̃$,2 ∧ (Π̃∗Π∗h) dµj$

µj$

)
∧ ξρ,$Π̃∗(ρΠ∗ϕ)

]

λ=0

= 0

because the differential form

(Π̃∗Π∗h) dµj$

µj$

is nonsingular.

In order to prove the last assertion in the statement of Lemma 2.2, assume
p < codim {f1 = · · · = fm = 0} and take a test form ϕ ∈ Dn,n−p(V ). One
can rewrite ϕ as

ϕ =
∑

1≤i1<···<in−p≤n

ϕi1,...,in−pdζ1 ∧ · · · ∧ dζn ∧
n−p∧

l=1

dζil .

Each differential form
∧n−p

l=1 dζil is zero when restricted to the analytic vari-
ety V ∩ {f1 = · · · = fm = 0}. This implies that, given a local chart $ on
any toric manifold such as X̃ , the differential form Π̃∗Π∗ ∧n−p

l=1 dζil (which has
antiholomorphic functions as coefficients) vanishes on the analytic variety
{µj$(τ) = 0}, where µj$ is the distinguished monomial corresponding to the
local chart $. Every conjugate coordinate τ k, such that τk is involved in µj$

then divides each coefficient of Π̃∗Π∗ ∧n−p
l=1 dζil , which does not contain dτ k.

This implies that for any local chart $, the integrand in (2.5) does not con-
tain antiholomorphic singularities (such singularities come from logarithmic
derivatives and therefore are cancelled by the corresponding term Π̃∗Π∗ϕ.)
The proof of our Lemma 2.2 is complete. ♦

Let us recall the definition of the integral closure of an ideal A in the ring

nOz0 of germs of holomorphic functions of n variables at a point z0 ∈ Cn. A
germ h at z0 is in the integral closure of A if and only if it satisfies a relation
of integral dependency

hN +
N∑

k=1

akh
N−k = 0 , (2.7)

where ak ∈ Ak for each k ∈ {1, . . . , N}. If V is an open set in Cn and A an
ideal in O(V ), an element h ∈ O(V ) is locally in the integral closure of A if
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and only if, at any point z0 ∈ V , the germ hz0 belongs to the integral closure
(in nOz0) of the ideal Az0 generated by the germs at z0 of all elements in A.

Lemma 2.3 Let Tf, I be the current occurring in the preceeding lemma. For
any h ∈ O(V ) which is locally in the integral closure of the ideal (f1, . . . , fm)p

we then have

hTf, I = 0 . (2.8)

Proof. Replacing ϕ by hϕ and arguing as in the proof of Lemma 2.2, we
decompose the function λ 7→ Mf, I(hϕ, λ) into a finite sum of expressions of
the type (2.5) (modulo an entire function which vanishes at the origin). The
only thing we have to show is that, for any h which locally belongs to the
integral closure of (f1, . . . , fm)p in O(V ), the value at λ = 0 of the analytic
continuation of

λ 7→
∫

$

|ũµj$ |2λ

µp
j$

(
θ̃$,1 + θ̃$,2 ∧ dµj$

µj$

)
∧ ξρ,$Π̃∗(ρΠ∗hϕ)

equals zero. (The notations are those from the proof of Lemma 2.2.) Since
h is locally in the integral closure of (f1, . . . , fm)p, it follows, from the ex-
istence of local relations of algebraic dependency (2.7) of h over the ideal
(f1, . . . , fm)p, that near any point z0 ∈ V , one has a local estimate

|h(ζ)| ≤ Cz0( max
1≤j≤m

|fj(ζ)|)p .

Such local estimates imply that in any local chart $ involved in (2.5), one
has, on the support of ξρ,$

|Π̃∗Π∗h| ≤ Cρ,$Π̃∗Π∗‖f‖p ≤ C̃ρ,$|µj$ |p .

This implies that the monomial µj$ divides Π̃∗Π∗h. We now make the follow-
ing observation: for any domain Ω ⊂ C, and any smooth functions ψ ∈ D(Ω)
and υ ∈ C∞(Ω), such that υ > 0 on Supp ψ, explicit integration by parts pro-
vides meromorphic continuations of the maps defined for Re λ > p by

λ 7→ λ
∫
Ω υλ|s|2λψ(s)ds ∧ ds

λ 7→ λ
∫
Ω υλ|s|2λψ(s)ds∧ds

s
.
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Their poles are again strictly negative rational numbers, and they both vanish
for λ = 0. This shows that the value at λ = 0 of the analytic continuation
of any of the functions

λ 7→
∫

$

ũ|µj$ |2λ

µp
j$

(
θ̃$,1 + θ̃$,2 ∧ dµj$

µj$

)
∧ ξρ,$Π̃∗(ρΠ∗hϕ)

is also equal to zero. Since our original function of λ (as in (2.2), but with hϕ
instead of ϕ) is a combination of such expressions, its analytic continuation
also vanishes at the origin. This proves our result. ♦

The last lemma that we will need in order to conclude the proof of our
Theorem 1.1 is concerned with rapid decrease in imaginary directions.

Lemma 2.4 Let V be an open set in Cn and let f1, . . . , fm be elements in
O(V ). Let θ be any test form in V of maximal bidegree (n, n) and denote by
λθ,0 > λθ,1 > . . . the sequence of all poles (necessarily in {r ∈ Q, r < 0}) of
the meromorphic continuation Fθ of

λ 7→
∫

V

(
|f1|2 + · · ·+ |fm|2

)λ
θ .

Then, for any natural number k and any real numbers α, β, such that λθ,j+1 <
α < β < λθ,j, j ∈ N∗ or λθ,0 < α < β, there is a constant γ(k, α, β) such
that

sup
α≤Re λ≤β

|(1 + |λ|)kFθ(λ)| ≤ γ(k, α, β) . (2.9)

(In other words, the function Fθ is rapidly decreasing at infinity in any closed
vertical strip which is free of poles.)

Proof. Our proof was inpired by an argument used in [2]. Let G be the
holomorphic function in V × V defined as

G(z, w) :=
m∑

j=1

fj(z)fj(w) .

Consider a point z0 in V where fj(z0) = 0, j = 1, . . . , m. By Corollary 9.10
in Chapter 5 of [10], there exists a neighborhood V(z0) of (z0, z0) in V × V
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such that V(z0) ∩ {dG = 0} ⊂ V(z0) ∩ {G = 0}. As was proved in [21],
Section 6, there is then an operator Pz0(λ, z, w , ∂/∂z, ∂/∂w) in D(z0,z0)[λ],
where D(z0,z0) denotes the ring of holomorphic differential operators in 2n
complex variables with coefficients in the ring 2nO(z0,z0) of germs of holomor-
phic functions at the point (z0, w0), such that

Pz0(λ, z, w, ∂/∂z, ∂/∂w) = λM −
M∑

l=1

λM−lPz0,l(z, w, ∂/∂z, ∂/∂w)

(2.10)

and

Pz0(λ, z, w, ∂/∂z, ∂/∂w)[Gλ] = 0 . (2.11)

If we now make the substitution w = z, and use the fact that the operators
∂/∂zl and ∂/∂zl commute with multiplication by zk and zk, respectively, we
find that in a neighborhood V (z0) of z0, there holds the identity (in the sense
of distributions)

Pz0(λ, z, z, ∂/∂z, ∂/∂z)
[
(

m∑

j=1

|fj|2)λ
]

= 0 . (2.12)

This functional equation (2.12), used in the form

[
(

m∑

j=1

|fj|2)λ
]

=
M∑

l=1

Pz0,l(z, z, ∂/∂z, ∂/∂z)

λl

[
(

m∑

j=1

|fj|2)λ
]

and then iterated (as in an argument quoted from [2]), provides the rapid
decrease of Fθ on closed vertical strips in the λ-plane which are pole-free.
Notice that the fact that the meromorphic continuation of Fθ exists (with
poles organized as a decreasing sequence of strictly negative rational num-
bers) follows (as in our proof of Lemma 2.1) from Hironaka’s theorem on
resolution of singularities. The proof of Lemma 2.3. is thereby complete. ♦

Proof of Theorem 1.1. We have now collected all elements for the
proof of our Theorem 1.1. Recall that the Mellin transform of the function
η 7→ Jf, I(ϕ, η) defined as in (2.1), is equal to the function λ 7→ Mf, I(ϕ, λ)
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described in Lemma 2.1. The Fourier-Laplace inversion formula then tells us
that, for γ0 > 0 large enough, the identity

Jf, I(ϕ, η) =
1

2πi

∫

γ0+iR
(Mf, I(ϕ, λ)η−λ dλ)/λ

holds for every posistive η. We know from Lemma 2.2 that there is a positive
number ε0 such that the only pole of

λ 7→ Jf,I(I; ϕ, λ)η−λ

λ
(2.13)

in the closed vertical strip Γ := Re λ ∈ [−ε0, γ0] is the origin, and that the
residue is Mf, I(ϕ, 0). It follows from Lemma 2.4 that the function (2.13)
is rapidly decreasing at infinity on the strip Γ. We can apply the residue
formula and get that Jf, I(ϕ, η) is equal to

Mf, I(ϕ, 0) +
1

2πi

∫

−ε0+iR

Mf, I(ϕ, λ)η−λ

λ
dλ = Mf, I(ϕ, 0) + O(ηε0) .

We conclude that the limit (1.4) exists and equals Mf, I(ϕ, 0). We get the
conclusions (i) and (iii) of Theorem 1.1 from Lemma 2.2, and conclusion (ii)
from Lemma 2.3. Our main Theorem 1.1 is thus proved. ♦

One can also realize the action of all the currents Tf, I in Theorem 1.1
as limits of solid volume integrals. More precisely, we have the following
theorem:

Theorem 2.1 Let f1, . . . , fm be holomorphic functions in some open set V ∈
Cn. For any ordered subset I ⊂ {1, . . . ,m} of cardinality p ≤ min(m,n), let
Tf, I be the current defined in (1.4). Then one has the representation

Tf, I(ϕ) = lim
τ→0+

cp p
∫

V

τ ∂||f ||2 ∧
[ ∑p

k=1(−1)k−1fik

∧
l 6=k dfil

]
∧ ϕ

‖f‖2(‖f‖2 + τ)p+1
.

(2.14)

In particular, if m ≤ n and I = {1, . . . , m}, we have

Tf, I(ϕ) = lim
τ→0+

cm m
∫

V

τ
∧m

k=1 dfk ∧ ϕ

(‖f‖2 + τ)m+1
. (2.15)
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Proof. Notice first that the integral in (2.14) is absolutely convergent,
for the differential form inside the integral has bounded coefficients. Let
us fix τ > 0. If [α, β] denotes any interval in R+ which does not contain a
critical value for the mapping Supp ϕ 3 ζ 7→ ‖f(ζ)‖2, it follows from Fubini’s
theorem that

pτ
∫
[α,β]

ηp−1Jf (I; ϕ ,η)

(η+τ)p+1 dη =

= cp p τ
∫
[α,β]

( ∫
‖f‖2=η

[ ∑p
k=1(−1)k−1fik

∧
l 6=k dfil

]
∧ ϕ

)
dη

η(η+τ)p+1

= cp p τ
∫
V ∩{α≤‖f‖2≤β}

∂||f ||2∧
[∑p

k=1
(−1)k−1fik

∧
l6=k

dfil

]
∧ϕ

‖f‖2(‖f‖2+τ)p+1 .

Since the critical values for ‖f‖2 which are attained on Supp ϕ form a neg-
ligible closed subset of R+, we get from Lebesgue’s theorem and from the
continuity at η = 0 of η 7→ Jf, I(ϕ, η) that for any τ > 0

pτ
∫ ∞

0

ηp−1Jf, I(ϕ, η)

(η + τ)p+1
dη = cppτ

∫

V

∂||f ||2 ∧
[ ∑p

k=1(−1)k−1fik

∧
l 6=k dfil

]
∧ ϕ

‖f‖2(‖f‖2 + τ)p+1
.

(2.16)

We just note that for τ > 0,

τ
∫∞
0

ηp−1dη
(η+τ)p+1 =

=
∫∞
τ η−p−1

(
τ p−1 +

∑p−1
k=1(−1)k

( p− 1
k

)
ηkτ p−k

)
dη =

= 1/p + ρ(τ) (2.17)

where lim
τ→0

ρ(τ) = 0. Using the short-hand notation J(η) := Jf, I(ϕ, η) we can

now rewrite the right hand side of (2.17) as

pτ
∫∞
0

ηp−1J(η)dη
(η+τ)p+1 =

= J(0) + pτ
∫ A
0

ηp−1(J(η)−J(0))dη
(η+τ)p+1 − pJ(0)

(
ρ(τ) + τ

∫∞
A

ηp−1dt
(η+τ)p+1

)

= J(0) + pτ
∫ ε
0

ηp−1(J(η)−J(0))dη
(η+τ)p+1 + pτ

∫ A
ε

ηp−1(J(η)−J(0))dt
(η+τ)p+1 + ρ̃ε,A(τ)

= J(0) + pτ
∫ ε
0

ηp−1(J(η)−J(0))dη
(η+τ)p+1 + ρ̌ε,A(τ) (2.18)
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for ε < A and ε arbitrary small, with lim
τ→0+

ρ̌ε,A(τ) = 0. Since we can choose

ε arbitrarily small, we have

lim
τ→0+

pτ
∫ ∞

0

ηp−1J(η)

(η + τ)p+1
dη = J(0) = Tf, I(ϕ) . (2.19)

The conclusion of our theorem follows from (2.16) and (2.19). The final
assertion in Theorem 2.1 follows from the fact that, if m ≤ n and I =
{1, . . . , m}, then

∂||f ||2 ∧
[ m∑

k=1

(−1)k−1fk

∧

l 6=k

dfl

]
= ‖f‖2

m∧

k=1

dfk .

This concludes the proof of Theorem 2.1. ♦

When m ≤ n, it is well known (see [5] or [24]) that for any test form
ϕ ∈ Dn,n−m(V ), the function

(λ1, . . . , λm) := λ 7→ Γf (λ, ϕ) :=
cm

(m− 1)!

∫

V

m∏

k=1

|fk|2(λk−1)
m∧

k=1

dfk ∧ ϕ

can be continued from the cone Re λj > 1, 1 ≤ j ≤ n, to a meromorphic
function in the entire space Cm, with polar set Sing Γf included in a union
of hyperplanes β0 + β1λ1 + · · · + βmλm = 0, where β0 ∈ N, (β1, . . . , βm) ∈
Nm \ {0}. This is obtained immediately using Hironaka’s theorem [20]. It
seems interesting to relate this meromorphic continuation λ 7→ Γf (λ, ϕ) to
the computation of the residue currents we introduced in Theorem 1.1. We
have the following result in this direction.

Theorem 2.2 Let m ≤ n and take I = {1, . . . , m}. If Tf, I is the current
defined in Theorem 1.1, then for any test form ϕ ∈ Dn,n−m(V ), and for any
γ = (γ1, . . . , γm) ∈]0, 1[m, one has

Tf, I(ϕ) = lim
τ→0+

1

(2πi)m

∫

γ+iRm
τ−|s|Γ(|s|+ 1)

m∏

k=1

Γ(1− sk)Γf (s; ϕ)ds,

(2.20)
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where |s| := s1 + · · · + sm. Moreover, if C is any connected component in
Rm of the complement of projRm(Sing (Γf )), then for any fixed τ > 0, and
for for any γ ∈ C, the integral

S(C, τ) :=
∫

γ+iRm
τ−|s|Γ(|s|+ 1)

m∏

k=1

Γ(1− sk)Γf (s; ϕ)ds

(2.21)

is absolutely convergent.

Proof. This result was proved in [29] in the complete intersection case.
In fact, this hypothesis is not necessary and the whole proof goes through
as follows. Fix τ > 0. For any ζ in V such that f1 . . . fm(ζ) 6= 0, one has, if
γ̃1, . . . γ̃m are strictly positive numbers with sum strictly less than m,

(m!τ/(‖f(ζ)‖2 + τ)m+1) =

= 1
(2πi)m

∫
γ̃+iRm Γ(m + 1− |s|) ∏m

k=1 Γ(sk)
∏m

k=1 |fk(ζ)|−2skτ |s|−mds.

(2.22)

This is just a standard iteration of formula 6.422 (3), p. 657 in [18]. Notice
that this idea has been extensively used in [6]. If we change sk into 1 − sk

and let γk = 1− γ̃k, k = 1, . . . , m, formula (2.22) can be rewritten as

(m!τ/(‖f(ζ)‖2 + τ)m+1) =

= 1
(2πi)m

∫
γ+iRm Γ(|s|+ 1)

∏m
k=1 Γ(1− sk)

∏m
k=1 |fk(ζ)|2(sk−1)τ−|s|ds

If we assume that the γj are all very close to 1, we can apply Lebesgue’s and
Fubini’s theorems in order to get, for such τ ,

cm mτ
∫
V

∧m

k=1
dfk∧ϕ

(‖f(ζ)‖2+τ)m+1 =

= 1
(2πi)m

∫
γ+iRm Γ(|s|+ 1)

∏m
k=1 Γ(1− sk)Γf (s, ϕ)τ−|s|ds. (2.23)
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Using Bernstein-Sato functional identities (see [28]) or resolution of singular-
ities (which leads us to the normal crossing case) together with integration
by parts, one can see that the function

s ∈ Cm 7→ Γf (s, ϕ)

can be estimated by

|Γf (s, ϕ)| ≤ C(Re s)(1 + ‖Im s‖)N(Re s) ,

in any vertical strip Re s ∈ K, K ⊂⊂ Rm, which does not intersect the polar
set of this function (in particular when K ⊂]0,∞[m), the constants C(Re s)
and N(Re s) being uniform in Re s in this strip. Similar estimates hold for
the function

s 7→ Γ(|s|+ 1)Γf (s, ϕ) .

Therefore, because of the rapid decrease of the Gamma function on vertical
lines, we get the uniform rapid decrease at infinity for the function

s 7→ Γ(|s|+ 1)
m∏

k=1

Γ(1− sk)Γf (s, ϕ)

in any vertical strip Re s ∈ K, K ⊂⊂ Rn which is pole-free (in particu-
lar when K ⊂]0,∞[m.) Thus, one can apply Cauchy’s formula and replace
(γ1, . . . , γm) in (2.23) by any element in ]0, 1[m. The first assertion of The-
orem 2.2 follows from these computations, together with Theorem 2.1. The
second assertion in the theorem is a consequence (in view of Cauchy’s the-
orem) of the uniform rapid decrease at infinity in vertical strips (which are
pole-free) for the function

s 7→ Γ(|s|+ 1)
m∏

k=1

Γ(1− sk)Γf (s, ϕ) . ♦

Remark 2.1. Using the second part of this statement, it would be
interesting to analyze how S(C, τ) changes when one moves from the original
cell ]0, 1[m into the contiguous ones. The difference between S(C1, τ) and
S(C2, τ) should appear (at least formally) as a (finite or infinite) sum of
iterated residues for the function

s 7→ τ−|s|Γ(|s|+ 1)
m∏

k=1

Γ(1− sk)Γf (s; ϕ)
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relatively to collections of m independent affine polar divisors. We will elab-
orate this idea somewhat in our computations in Section 3. Our assumption
is motivated by the fact that for any τ > 0, for γ > 0 very close to 0

cm mτ
∫
V

∧m

k=1
dfk∧ϕ

(‖f(ζ)‖2+τ)m+1 =

= 1
2πi

∫
−γ+iR Γ(s)Γ(m + 1− s)F (s, ϕ)τ−m−sds (2.24)

where

F (s, ϕ) :=
cm

(m− 1)!

∫

V
‖f‖2s

m∧

k=1

dfk ∧ ϕ (2.25)

(this is proved as formula (2.23), just using formula 6.422 (3), p. 657 in
[18] this time without iterating it.) Thanks to Lemma 2.4, we have the rapid
decrease of F (as a function of s) on vertical strips which are pole free. Using
Cauchy’s formula and moving the integration path in (2.24) to the left, we
deduce from the fact that the poles of F are in ]−∞,−m[ the existence of
an asymptotic development for the function

τ 7→ cm mτ
∫

V

∧m
k=1 dfk ∧ ϕ

(‖f(ζ)‖2 + τ)m+1

along the basis (1, τα(log τ)µ)α∈Q+, µ∈N. It seems reasonable to think that the
coefficients in this asymptotic development should be expressible as (infinite
or finite) sums of residues corresponding to the meromorphic differential form

τ−|s|Γ(|s|+ 1)
m∏

k=1

Γ(1− sk)Γf (s; ϕ)ds1 ∧ · · · ∧ dsm .

This is precisely the point we will emphazise in the examples detailed in the
next section.

3 Some computations.

In this section, we will compute the action of some of the currents Tf, I . Our
approach is to deal only with the normal crossing case (even, in order to
make things more simple, assume that the fj are all momomials) and profit
(as we already did when we stated Theorem 2.2) from some combinatorial
basic identities which correspond to multivariate analogs for the integral
representation of the beta function as an inverse Mellin transform.
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3.1 A simple example when m = 2 and f1 divides f2.

Assume that n > 1 and f1 and f2 are defined in a neighborhood V of the
origin in Cn. Let f2 = f1h and ϕ ∈ Dn,n−2(V ). Then

Mf, {1,2}(ϕ, λ) =
λ

4π2

∫

V
|f1|2(λ−2)(1 + |h|2)λ−2f1df1 ∧ dh ∧ ϕ

=
λ

8π2

∫

V
|f 2

1 |(λ−2)(1 + |h|2)λ−2df 2
1 ∧ dh ∧ ϕ

= Mf2
1 , {1}(1 + |h|2)λ−2dh ∧ ϕ,

λ

2
) .

We conclude in this case that

Tf, {1,2}(ϕ) = 〈∂ 1

f 2
1

∧ dh

(1 + |h|2)2
, ϕ〉 .

This corresponds to the action of a current whose support is the zero set
of the ideal (f1, f2). Note that, in this case, the essential intersection (in
the sense of [14]) of the divisors {f1 = 0} and {f2 = 0} (in this order) is
empty, so that the Coleff-Herrera current associated to the sequence (f1, f2)
in this order would be zero. On the other hand, the Coleff-Herrera current
associated to the sequence (f2, f1) is the residual current ∂ 1

h̃
∧ ∂ 1

f1
, where h̃

is the product of irreducible factors in h which are coprime with f1. In any
case, the Coleff-Herrera current for this example is either 0, either a residual
current supported by the origin and therefore differs from our current Tf, {1,2}.

3.2 The normal crossing case m = n ≥ 2, and relations
with Mellin-Barnes integrals.

In the space Cn we consider a system of monomials

f = (f1, . . . , fn) = (ζα1 , . . . , ζαn),

and the Bochner-Martinelli type current (1.3) corresponding to this system.
According to Theorem 2.2, this current may be represented as the limit

Tf (ϕ) = lim
τ→0+

1

(2πi)n

∫

γ+iRn
ωτ (s) , γ ∈]0, 1[n, (3.1)
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where the integrand is given by the n-form

ωτ (s) = τ−|s|Γ(|s|+ 1)
n∏

k=1

Γ(1− sk) Γf (s; ϕ) ds . (3.2)

In the monomial case under consideration the possible poles of the function
s 7→ Γf (s; ϕ) consist of the n families of hyperplanes

〈αj, s〉 = 0,−1,−2, . . . ; j = 1, . . . , n,

where αj denotes the j’th column vector in the matrix, whose row vectors are
α1, . . . , αn. In other words, if αi = (αi1, . . . , αin), then αj = (α1j, . . . , αnj).

In the real subspace Rn with variables xj = Re sj, j = 1, . . . , n, we now
introduce the cone

K = {x ∈ Rn; 〈αj, x〉 ≥ 0, j = 1, . . . , n}
and we let K0 denote the intersection of K with the closed halfspace

Π− = {x ∈ Rn; x1 + · · ·+ xn ≤ 0}.
Let us write q for the codimension of K0. It is clear that if q = 0, then K0

will contain interior points of Π−, whereas in the case q ≥ 1 the intersection
K0 = K ∩Π− consists of a (n− q)-dimensional face of the cone K, contained
in the hyperplane x1 + · · · + xn = 0, i.e the boundary of Π−. Up to a mere
re-numbering of the faces, we may suppose that

K0 = Kq
0 =

= {x ∈ Rn; 〈α1, x〉 = . . . = 〈αq, x〉 = 0, 〈αq+1, x〉 ≥ 0, . . . , 〈αn, x〉 ≥ 0}.
We have the

Proposition 3.1 If q = 0, then the current Tf , defined by (3.2), is equal to
zero. In case q ≥ 1, it admits the representation

Tf =
q∧

j=1

∂̄


 1

ζ
|αj |
j


 ·

n∧

k=q+1

( 1

ζ
|αk|
k

· dζk

ζk

)
· F (|ζq+1|2, . . . , |ζn|2),

where |αj| denotes the sum of the components of the vector αj, and F is
a certain hypergeometric function (whose representation as a Mellin-Barnes
integral is given in formula (3.9) below). In particular, if q = n, then

Tf = ∂̄[1/ζ
|α1|
1 ] ∧ . . . ∧ ∂̄[1/ζ |α

n|
n ] .
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Remark 3.1. The complex codimension of the support of Tf is equal to
q, which is the real codimension of the cone K0.

Proof of the proposition. First of all we observe that by (the second statement
of) Theorem 2.2 we may enlarge the cube ]0, 1[n, consisting of admissible
values for γ in the integral (3.2), to the convex polyhedron M obtained by
intersecting the interior of the cone K with the open cone {x ∈ Rn; x1 <
1, . . . , xn < 1}.

• If q = 0, i.e dimRn K0 = n, then we can choose the point γ in M so
that |γ| < 0. Therefore, in view of the factor τ−|s|, the restriction of the form
(3.3) to γ + iRn tends to zero as τ → 0+. It then follows that the limit (3.2)
is equal to zero, and hence Tf = 0.

• Assume now that q ≥ 1. Letting M q denote the relative interior of
the intersection K0 ∩M , we have the following formula which decreases the
number of integrations in (3.2).

Lemma 3.1 The limit of the n-fold integral (3.2) may be written as the
(n− q)-fold integral

Tf (ϕ) =
1

(2πi)n−q

∫

γq+i Im Lq

n∏

j=1

Γ(1− sj) · ResLq [Γf (s; ϕ) ds] (3.3)

where γq ∈ M q, and ResLq is the q-fold Poincaré-Leray residue class of the
meromorphic form Γf ds, taken with respect to the intersection Lq = L1 ∩
. . . ∩ Lq of the hyperplanes

Lj = {s ∈ Cn; 〈αj, s〉 = 0}, j = 1, . . . , q.

To prove the lemma we establish first the following asymptotic (as τ →
0+) formula:

1

(2πi)n

∫

γ+iRn
ωτ (s) =

1

(2πi)n−1

∫

γ1+i Im L1
ResL1ωτ (s) + o(τ). (3.4)
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Here γ1 is a point in the (n − 1)-dimensional polyhedron M1, which is the
relative interior of the intersection K1

0 ∩M ⊂ L1. (Notice that L1 = L1.) To
this end we consider the ray

` = γ + {〈α1, x〉 ≤ 0, 〈α2, x〉 = . . . = 〈αn, x〉 = 0},
emanating from the point γ and parallel to one of the edges of the cone
K. Now, what matters to us is the fact that this ray intersects the face
〈α1, x〉 = 0 no later than the hyperplane |x| = 0 (the intersections occur
simultaneously when q = 1), and that among the polar hyperplanes of the
form s 7→ ωτ (s), the ray ` intersects only L1. Letting γ1 denote the point of
intersection between ` and {x ∈ Rn; 〈α1, x〉 = 0} = Re L1, we thus see that,
for any two points γ and κ of ` lying on different sides of γ1, the Cauchy
formula yields

∫

γ+iRn
ωτ (s) =

∫

κ+iRn
ωτ (s) + 2πi

∫

γ1+i Im L1
ResL1ωτ (s). (3.5)

Choosing κ lying inside Π−, i.e with the property |κ| < 0, we find, in view
of the presence of the factor τ−|s| in the form ωτ (s), that the integral over
κ + iRn in (3.6) tends to zero (is o(τ)) as τ → 0+. In this way we obtain
(3.5).

In order to prove formula (3.4) we observe, that the integral in the right
hand side of (3.5) has the same structure, but in the (n−1)-dimensional space
L1, so repeating q − 1 times the residue theorem we arrive at the identity

lim
τ→0+

∫

γ+iRn
ωτ (s) = (2πi)q lim

τ→0+

∫

γq+i Im Lq
ResLqωτ (s) + o(τ). (3.6)

Since we assumed the face K0 is contained in {|x| = 0}, we have Lq ⊂
{s; |s| = 0}, which means that the restriction of s 7→ τ−|s|Γ(1 + |s|) to Lq is
identically equal to 1. Recalling the expression (3.3) for the form ωτ , we may
thus conclude that

ResLqωτ (s) =
n∏

j=1

Γ(1− sj)|
Lq
· ResLq [Γf ds] .

It follows from this that the right hand integral in (3.7) is actually indepen-
dent of τ . Hence there is no need to take a limit, and we have completed the
proof of our lemma.
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Before applying formula (3.4) let us compute the iterated residue of the
form Γf ds, where Γf is given, for a monomial mapping f , by the integral

Γf (s; ϕ) =
δ

(2πi)n

∫

Cn

n∏

j=1

|ζj|2(〈αj ,s〉−1) · Φ(ζ)
∧n

j=1 dζ̄j ∧ dζj
∏n

j=1 ζ
|αj |−1
j

, (3.7)

where δ is the determinant of the matrix (αjk), and the function Φ is related
to the test form ϕ by ϕ = Φ(ζ) dζ. In the new coordinates λ = As, i.e
λj = 〈αj, s〉, j = 1, . . . , n, we may represent Γf ds as

Γf ds =
dλ1

λ1

∧ . . . ∧ dλq

λq

∧ (R(λ) dλ′′) + ϑ(λ),

where λ = (λ′, λ′′), with λ′ = (λ1, . . . , λq), λ′′ = (λq+1, . . . , λn), and ϑ is a
meromorphic n-form with poles along fewer (than q) of the hyperplanes λj =
0, j = 1, . . . , q. Moreover, the form λ′′ 7→ R(0′, λ′′) dλ′′ is the desired iterated
residue. This representation of Γf ds is achieved by performing in (3.8) the
integrations with respect to ζ ′ = (ζ1, . . . , ζq), which can be accomplished
through ordinary principal value integration (see [25]), by means of polar
coordinates and a Taylor expansion of Φ.

An easy computation now leads to the following expresion:

Γf (A
−1(λ); ϕ) =

= δ
(2πi)n−q · 1

λ1···λq

{ ∫
Cn Φα(ζ ′′) ·∏n

j=q+1
|ζj |2(λj−1)

ζ
|αj |−1
j

∧n
j=q+1 dζ̄j ∧ dζj + ϑ̃(λ)

}
,

where ζ = (ζ ′, ζ ′′), ϑ̃ is a holomorphic function in a neighborhood of the
origin, belonging to the ideal 〈λ1, . . . , λq〉, and

Φα(ζ ′′) =
1

(|α1| − 1)! · · · (|αq| − 1)!

∂|α
1|+...+|αq |−q

∂ζ
|α1|−1
1 · · · ∂ζ

|αq |−1
q

Φ(0′, ζ ′′).

Thus we get

ResLq [Γf ds] = R(0′, λ′′) dλ′′ =

=
1

(2πi)n−q

∫

Cn−q
Φα(ζ ′′)

n∏

j=q+1

|ζj|2λj

ζ
|αj |
j

n∧

j=q+1

dζ̄j

ζ̄j

∧ dζj.
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Now, applying (3.2), (3.4) together with Fubini’s theorem, we find that the
action of the current Tf may be expressed as

Tf (ϕ) =
1

(2πi)n−q

∫

Cn−q

Φα(ζ ′′)
∏n

j=q+1 ζ
|αj |
j

· F (|ζq+1|2, . . . , |ζn|2)
n∧

j=q+1

dζ̄j

ζ̄j

∧ dζj,

where F is a function of the hypergeometric type, representable as the Mellin-
Barnes integral

F (|ζq+1|2, . . . , |ζn|2) =

= 1
(2πi)n−q

∫
iRn−q

n∏
j=1

Γ (1− `j(λ
′′)) |ζq+1|2λq+1 · · · |ζn|2λn dλ′′,

(3.8)

where `j(λ
′′) is the j’th component of the vector `(λ′′) = A−1(0′, λ′′). The

proposition is thereby proved. ♦

Remark 3.2. In case q = 1 it is not hard to actually compute the integral
(3.9) by using the methods of [27] and [26]. The result of this computation
then gives a rational function.

4 The complete intersection case.

In this section, we consider m ≤ n holomorphic functions f1, . . . , fm defining
a complete intersection in a domain V ⊂ Cn. It follows from Theorem 1.1
(iii) that {1, . . . ,m} is the only subset I that can give a non-zero current
Tf, I . We use the simpler notation Tf for the corresponding current Tf, {1,...,m}.
We shall now prove that Tf in fact coincides with the residue current in the
sense of Coleff-Herrera ([14].)

Theorem 4.1 Let f1, . . . , fm, be holomorphic functions defined in some open
set V ∈ Cn. Assume that f1, . . . , fm define a complete intersection in V (in
particular that m ≤ n). Then

Tf =
m∧

k=1

∂
1

fk

.
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Proof. As mentioned in the introduction (see formula (1.2)), the actions
of the two currents Tf and

∧m
k=1 ∂ 1

fk
on test forms which are ∂-closed in a

neighborhood of {f1 = · · · = fm = 0} coincide. The problem is to show
this remains true for any test form. For this, we will need two preparatory
lemmas.

Lemma 4.1 ([4],[24]) Let p ≥ 2 and g1, . . . , gp be p holomorphic functions of
n variables defining a complete intersection in an open subset V of Cn. Then,
for any test form ϕ ∈ Dn,n−p+1(V ), the function of two complex variables

(λ1, λ2) 7→ λp−1
2

∫

V
|g1|2λ1|g2 · · · gp|2(λ2−1)

p∧

k=2

dgk ∧ ϕ (4.1)

can be continued from {Re λ1 > 0, Re λ2 > 1} as a meromorphic function in
two complex variables. Moreover, this meromorphic continuation Mg(λ; ϕ)
can be written near the origin in C2 as

Mg(λ; ϕ) = k0(λ) + λp−1
2

( N∑

j=1

kj(λ)
∏p−2

l=1 (ρjlλ1 + σjlλ2)

)
(4.2)

where k0, . . . , kN are holomorphic near the origin and the ρjl ( resp. σjl ) are
constants in N (resp. in N∗.)

Proof. The fact that the function (4.1) can be meromorphically con-
tinued to C2 and that its continuation has the form (4.2) near the origin is
proved in details in [4], p. 70-72, from formula (3.34) up to formula (3.40).
To be more precise, in the mentioned reference, only the meromorphic con-
tinuation of

(λ1, λ2) 7→ λp−1
1

∫

V
|g1|2λ1|g2 · · · gp|2(λ2−1)

p∧

k=2

dgk ∧ ∂ψ

(for some test form ψ ∈ Dn,n−p(V )) was expressed in the form (4.2), but in
fact the argument does not use at all the fact that the test form is the ∂ of
another one; therefore one could replace ∂ψ by any test form ϕ and get the
same result. ♦
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Lemma 4.2 Let p ≥ 2 and g1, . . . , gp be p holomorphic functions of n vari-
ables defining a complete intersection in an open subset V of Cn. Let g′ :=
(g2, . . . , gp). Then, for any test form ϕ ∈ Dn,n−p+1(V ), the function of two
complex variables

(λ1, λ2) 7→ λ2

∫

V
|g1|2λ1‖g′‖2λ2

∧p
k=2 dgk ∧ ϕ

(|g2|2 + · · ·+ |gp|2)p−1
(4.3)

can be continued from {Re λ1 > 0, Re λ2 > 1} as a meromorphic function in
two complex variables. Moreover, this meromorphic continuation Ng(λ; ϕ)
is holomorphic in a product of halfplanes {Re λ1 > −η1} × {Re λ2 > −η2}.

Proof. Although implicitly given in [6] and [4], Section 5, the proof of
this lemma is there more suggested than detailed, so we will write it out here
completely following the basic ideas one can find for example in [7], proof of
Proposition 9 or in Section 2 above. We first localize the problem and use a
resolution of singularities (X , Π) for the hypersurface {g1 = g2 = · · · = gp =
0}, so that, in the local chart ω, we have in local coordinates t1, . . . , tn,

Π∗gk(t) = uk(t)t
αk1
1 · · · tαkn

n , k = 1, . . . , n

where the uk are invertible holomorphic functions on the local chart ω and
the αkl are positive integers. Then, as in section 2, our analytic function
λ 7→ N (λ, ϕ) appears as the sum of terms

λ2

∫

ω
|u1m1|λ1

‖Π∗g′‖2λ2

(
∑p

k=2 |ukmk|2)p−1

m∧

k=2

∂ukmk ∧ ρΠ∗ϕ (4.4)

where ρ = ρω is the function associated to the local chart in some partition
of unity subordonned to Supp Π∗ϕ. In order to decompose an integral of the
form (4.4), we use the toric variety X̃ (together with the projection proper
map Π̃ : X̃ 7→ Cn) corresponding to the closed convex hull (in Rn

+) of

p⋃

j=2

{(αj1, . . . , αjn) + Rn
+}

(see the proof of lemma 2.2 in section 2 above.) This introduces a new
decomposition of (4.4), with expressions of the form

λ2

∫

$
|Π̃∗u1m1|λ1|µj$ |2λ2

∧m
k=2 ∂υkµω ∧ ξρ,$Π̃∗(ρΠ∗ϕ)

|µj$ |2(p−1)(
∑m

k=2 |υk|2)p−1−λ2
(4.5)
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where µ$ is the distinguished monomial among the µj = Π̃∗mj, j = 2, . . . , p,
the υk are the holomorphic functions defined as Π̃∗(ukmk) = υkµj$ (note
that υj$ is invertible in $) and ξρ,$ comes from a partition of unity related
to a covering of Π̃∗Supp ρ. Such an expression (4.5) can be written as

λ2

∑
$

∫

$

|Π̃∗u1m1|λ1|µj$ |2λ2

µp−1
j$

(
θ̃$,1,λ2 + θ̃$,2,λ2 ∧

dµj$

µj$

)
∧ Π̃∗Π∗ϕ ,

(4.6)

where θ̃$,1,λ2 and θ$,2,λ2 are smooth forms with respective types (0, p) and
(0, p − 1) depending holomorphically on the parameter λ2. It is now imme-
diate that the meromorphic continuation of λ 7→ N (λ, ϕ) exists and that its
polar set is included in a collection of hyperplanes β0 + β1λ1 + β2λ2 = 0,
where β0 ∈ N and (β1, β2) ∈ N2 \{0}. In order to see that there are no polar
hyperplanes with β = 0 (and then we will be done), we need to look more
carefully at the analytic continuation of expressions of the form

λ2

∑
$

∫

$

|Π̃∗u1m1|λ1|µj$ |2λ2

µp−1
j$

θ̃$,2,λ2 ∧
dτ

τ
∧ Π̃∗Π∗ϕ , (4.7)

where τ is among the coordinates that divide the distinguished monomial
µj$ . If τ does not appear in the decomposition of Π̃∗m1, then the integration
by parts which is necessary in order to raise the singularity τ implies just
a division of the expression by λ2 (instead of a combination of λ1 and λ2

as it should be if the hypothesis was not fulfilled.) Since λ2 was in the
numerator, the new expression (after integration by parts with respect to
τ) is holomorphic near the origin in C2. If τ appears in the decomposition
of Π̃∗m1, it means that Π ◦ Π̃{τ = 0} is included in the n − p dimensional
analytic set {g1 = · · · = gp = 0}. This implies (for dimension reasons) that
any antiholomorphic differential form Π̃∗Π∗ ∧

j∈I dζj, when I ⊂ {1, . . . , n},
#I = n − p + 1, vanishes identically on τ = 0, which means that all its
coefficients have τ as a factor. In such a case,

λ2

∑
$

∫

$

|Π̃∗u1m1|λ1|µj$ |2λ2

µp−1
j$

θ̃$,2,λ2 ∧
dτ

τ
∧ Π̃∗Π∗ϕ

has only holomorphic singularities and therefore defines a holomorphic func-
tion of λ at the origin. This completes the proof of Lemma 4.2. ♦
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Proof of Theorem 4.1. We now follow the proof given in [4], Section 5.
We will prove our theorem by induction on the number n−m. When n = m,
we are in the discrete situation, so we know that the two currents Tf and∧m

k=1 ∂ 1
fk

act in the same way on (n, 0) test forms which are holomorphic

near the set {f1 = · · · = fn = 0} and are both killed by all antiholomorphic
functions which vanish on this set (see Theorem 1 for this property for the
current Tf and [14] for the analogous property for the Coleff-Herrera current.)
This implies that the action of the two currents coincide when n −m = 0.
We will assume from now on that the inductive hypothesis holds when 0 ≤
nb variables−nb functions ≤ k−1 and we want to prove our result when we
take p−1 functions g2, . . . , gn in n variables, defining a complete intersection
in V ⊂ Cn, and such that n − (p − 1) = k. There is no restriction if we
suppose V is a polydisk centered at the origin in Cn (since our problem is a
local one.) Let ϕ be a (n, n− p + 1) test form in V or the form ϕIdζ ∧ dζJ ,
#J = n − p + 1. It follows from the Noether Normalisation lemma (see for
example [10]) that (with V eventually restricted) one can find convenient
coordinates -also denoted as (ζ1, . . . , ζn) = (ζ1, ζ

′)- so that ϕ contains dζ1,
dim{ζ1 = g2 = · · · = gp = 0} = n− p and, for any generic choice of ζ0

1 ,

dimζ′{g2(ζ
0
1 , ζ

′) = · · · = gp(ζ
0
1 , ζ

′) = 0} ≤ n− p .

We will work from now on in such a domain V = D(0, r1) ×D′, with these
coordinates. Let ϕ = dζ1 ∧ dζ1 ∧ ψ. Let us fix λ1 = λ0

1 with Re λ0
1 >> 0

and consider λ2 with Re λ2 > 1. It follows from Fubini’s theorem that, if
g = (ζ1, g2, . . . , gp) = (ζ1, g

′),

Mg(λ, ϕ) =

± λp−1
2

(p−1)!

∫
D(0,r1) |ζ1|2λ0

1dζ1 ∧ dζ1 ∧
( ∫

D′ |g2 · · · gp|2(λ2−1) ∧p
k=2 ∂ζ′gk ∧ ψ

)
.

(4.8)

If Re λ2 > p− 1, we have also, for the same λ0
2,

Ng(λ, ϕ) =

±λ2

∫
D(0,r1) |ζ1|2λ0

1dζ1 ∧ dζ1 ∧
( ∫

D′ ‖g′‖2λ2

∧p

k=2
∂ζ′gk∧ψ

(|g2|2+···+|gp|2)p−1

)
.

(4.9)
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For ζ0
1 fixed (in a generic way), we know from Theorem 1.1 that the function

Nζ0
1 ,g′ of one variable λ2, defined as

Nζ0
1 ,g′(λ2, ψ) := λ2

∫

D′
‖g′(ζ0

1 , ζ
′)‖2λ2

∧p
k=2 ∂ζ′gk(ζ0

1 , ζ
′) ∧ ψ(ζ0

1 , ζ
′)

(
∑p

k=2 |gk(ζ0
1 , ζ

′|2)p−1

(for Re λ2 large enough) can be continued as a meromorphic function in C
(with poles in {r ∈ Q, r < 0}.) Moreover, we have

Nζ0
1 ,g′(0, ψ) =

(2πi)p−1(−1)
(p−1)(p−2)

2

(p− 1)!
Tg′(ζ0

1 ,ζ′),{1,...,p−1}(ψ(ζ0
1 , ζ

′)) (4.10)

(see Lemma 2.2.) The same is true for the function of the complex variable
λ2 defined (also for Re λ2 large enough) by

Mζ0
1 ,g′(λ2, ψ) := λp−1

2

∫

D′
|g2 · · · gp(ζ

0
1 , ζ

′)|2(λ2−1)
p∧

k=2

∂ζ′gk(ζ0
1 , ζ

′) ∧ ψ(ζ0
1 , ζ

′)

as known from [4]. Moreover, one can see in [23] or in [12], Theorem 6.2.1,
p. 107, that

Mζ0
1 ,g′(0, ψ) = (2πi)p−1(−1)

(p−1)(p−2)
2

〈 n∧

k=2

∂
1

gk(ζ0
1 , ζ

′)
, ψ(ζ0

1 , ζ
′)

〉
.

Since we are dealing now with p − 1 functions of n − 1 variables, we have
n− 1− (p− 1) = n− p = k − 1, we can apply the inductive hypothesis and
therefore obtain

(p− 1)!Nζ0
1 ,g′(0, ψ(ζ0

1 , ζ
′) = Mζ0

1 ,g′(0, ψ(ζ0
1 , ζ

′)) .

Our final step will be to check that for Re λ0
1 large enough, the analytic

continuation (with respect to λ2) commutes with the integration with respect
to ζ1 in (4.8) and (4.9). We already know (by lemma 4.1 and 4.2) that the
functions

λ1 7→ Mg((λ1, 0), ϕ)

λ1 7→ Ng(λ1, 0), ϕ)

are well defined as meromorphic functions and have no pole at the origin.
Let us assume for the moment that analytic continuation (with respect to
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λ2 and up to Re λ2 > 0) and integration with respect to ζ1 commute when
Re λ0

1 >> 0. Then we will get that for Re λ0
1 >> 0, we have

(p− 1)!Ng((λ
0
1, 0), ϕ) = Ng((λ

0
1, 0), ϕ) .

Following the analytic continuation, this time with respect to λ1, we get that

(p− 1)!k0(0, 0) = k̃0(0, 0)

which means, if we refer to Lemma 2.2 and to [23] or [12], Theorem 6.2.1,
p. 107, that

Tg, {1,...,p−1}(ϕ) =
〈 p∧

k=2

∂
1

gk

, ϕ
〉

and concludes the proof of our inductive assumption when n− p = k.

It remains to explain why that analytic continuation (with respect to
λ2 up to Re λ2 > −η) and integration with respect to ζ1 commute when
Re λ0

1 >> 0 in (4.8) and (4.9). This was already explained in [4]. We will use
here a different approach, based on the use of Bernstein-Sato relations instead
of resolution of singularities. Such an approach seems more natural. It follows
from Proposition 3 in [8] that there exist analytic functions h1 and h2 in one
complex variable u, defined in D(0, r′1), r′1 ≤ r1, polynomials b1 and b2 in
C[ν, λ2], differential operators Q1(ν, λ2; u, ζ, ∂ζ) and Q2(ν, λ2; u, ζ, ζ̃, ∂ζ , ∂ζ̃)
(polynomials in ν, λ2, ∂ and with analytic coefficients in ζ ∈ W ⊂ V for Q1,
in (ζ, ζ̃) ∈ W ×W for Q2), such that

h1(u)b1(ν, λ2)[(ζ1 − u)ν(g2 · · · gp)
λ2 ] = Q1[(ζ1 − u)ν(g2 · · · gp)

λ2+1]

(4.11)

h2(u)b2(ν, λ2)[(ζ1 − u)νG(ζ, ζ̃)λ2 ] = Q2[(ζ1 − u)νG(ζ, ζ̃)λ2+1]

the above identities being understood as formal identities in D(0, r′1)×W or
in D(0, r′1)×W ×W and

G(ζ, ζ̃) :=
p∑

k=2

g2(ζ)g2(ζ̃) .

The second relation provides, if one substitutes ζ̃ = ζ and repeats the rea-
soning in lemma 2.4, the following formal identity in D(0, r′1)× V

h2(u)b2(ν, λ2)[(ζ1 − u)ν‖g′‖2λ2 ] = Q2[(ζ1 − u)ν‖g′‖2(λ2+1)]

(4.12)
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In order to express the analytic continuations of

λ2 7→ Mζ0
1 ,g′(λ2, ψ)

λ2 7→ Nζ0
1 ,g′(λ2, ψ)

we just use the fact that for a C1 (n−1, n−1) form Φ with compact support
in V

∫

V ∩{ζ1=ζ0
1}

Φ = − 1

2πi

∫

V

dζ1 ∧ ∂Φ

ζ1 − ζ0
1

= −
[ ∫

V

|ζ1 − ζ0
1 |2ν

ζ1 − ζ0
1

dζ1 ∧ ∂Φ
]
ν=0

(4.13)

We now express our two functions Mg′,ζ0
1
(λ2, ψ) and Ng′,ζ0

1
(λ2, ψ) (when

Re λ2 >> 0) using formula (4.13) and then transform the two functions of
(ν, λ2) that appear with the help of formula (4.11) (to rewrite Mg′,ζ0

1
(λ2, ψ))

or (4.12) (to rewrite Ng′,ζ0
1
(λ2, ψ)), with u = ζ0

1 (of course such h1(u)h2(u) 6=
0), as meromorphic expressions of λ2 (in Re λ2 > −η) with coefficients esti-
mated in C/|h1h2(ζ

0
1 )|M for some very large M and poles independent of ζ0

1 .
If we reduce r1, then one can assume that on D(0, r1), h1h2(u) = h̃(u)uK ,
where h̃ is an invertible holomorphic function. If Re λ0

1 >> 0, all the coef-
ficients in the meromorphic expressions are integrable (with respect to ζ0

1 )
when multiplied by |ζ0

1 |2λ0
1 . This shows that the integration with respect to

ζ0
1 and the analytic continuation with respect to λ2 up to λ2 = −η, η < 0,

commute in this case. This concludes the proof of Theorem 4.1. ♦
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