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Abstract

Let W be a q-dimensional irreducible algebraic subvariety in the
affine space An

C, P1, ..., Pm m elements in C[X1, ..., Xn], and V (P )
the set of common zeros of the Pj ’s in Cn. Assuming that |W | is
not included in V (P ), one can attach to P a family of non trivial
W -restricted residual currents in ′D0,k(Cn), 1 ≤ k ≤ min(m, q), with
support on |W |. These currents (constructed following an analytic
approach) inherit most of the properties that are fulfillled in the case
q = n. When the set |W | ∩V (P ) is discrete and m = q, we prove that
for every point α ∈ |W | ∩ V (P ) the W -restricted analytic residue of a
(q, 0)-form RdζI , R ∈ C[X1, ..., Xn], at the point α is the same as the
residue on W (completion of W in ProjC[X0, ..., Xn]) at the point α
in the sense of Serre (q = 1) or Kunz-Lipman (1 < q < n) of the q-
differential form (R/P1 · · ·Pq)dζI . We will present a restricted affine
version of Jacobi’s residue formula and applications of this formula
to higher dimensional analogues of Reiss (or Wood) relations, corre-
sponding to situations where the Zariski closures of |W | and V (P )
intersect at infinity in an arbitrary way.

1 Introduction

Let us recall first two questions about effective constructions in Commuta-
tive Algebra and Algebraic Geometry where residue currents play a central
role, both as a discovery tool and in the proofs. These are the Hilbert’s
Nullstellensatz and the construction of Arakelov measures.

The main idea of our work on this subject was to use the analytic theory
of multidimensional residues and residue currents to find key identities and
several explicit constructions. What we used repeatedly was the fact that
residues could also be computed by analytic continuation of associated zeta
functions. We refer to the short monograph [BGVY] for the details. We
recall here just a few points.

Let us assume that f1, . . . , fn, g are holomorphic functions near the origin
of Cn, and assume that {f1 = · · · = fn = 0} = {0}, then the residue of the
meromorphic function g/f1 · · · fn at z = 0, as defined by Poincaré, is given
by

Res (
g

f1 · · · fn

, 0) = lim
ε→0

1

(2πi)n

∫

|f |=ε

g(ζ)

f1(ζ) · · · fn(ζ)
dζ, (1.1)
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dζ = dζ1 ∧ . . . ∧ dζn, where |f | = ε, for ε = (ε1 . . . εn), denotes the cycle
{|f1| = ε1, . . . , |fn| = εn}. When the Jacobian J of the fj does not vanish at
0 we have

Res (
g

f1 · · · fn

, 0) =
g(0)

J(0)
(1.2)

as expected. This definition of the residue in several variables was introduced
by Jacobi at least for polynomials in [Ja2]. It has been extended in [CH] to
define residue currents : namely, if we replace gdζ by a smooth compactly
supported (n, 0) differential form ϕ, then the limit in (1.1) still exists provided
ε1, ..., εn approach 0 in an admissible way, and we may define a (0, n) current
∂(1/f) as

〈∂̄ 1

f
, ϕ〉 := lim

ε→0

1

(2πi)n

∫

|f |=ε

ϕ

f1 · · · fn

. (1.3)

What one does next is to relate this current ∂̄(1/f) to the current-valued
holomorphic map in C

λ 7→ |f1 · · · fn|2λ∂f1 ∧ . . . ∧ ∂fn = |f |2λ∂f, Re λ >> 0

Using the Bernstein–Sato functional equation one sees that the holomorphic
function defined for Re λ >> 0,

λ 7→ λ
∫

Cn

|f |2(λ−1∂f ∧ ϕ,

has an analytic continuation to λ = 0 and it satisfies


λ

∫

Cn

|f |2(λ−1∂f ∧ ϕ




λ=0

= cn〈∂ 1

f
, ϕ〉, (1.4)

where cn 6= 0 is an absolute constant.

The way residues help in finding identities depend on the Abel-Jacobi
vanishing theorem and its generalizations. The following result is due to
Jacobi [Ja2] : let P1, . . . , Pn be polynomials in Cn without any common
zeros at infinity and let Q be another polynomial satisfying the inequality

deg Q ≤ deg P1 + · · ·+ deg Pn − n− 1 ; (1.5)
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then

〈∂ 1

P
,Qdz〉 = 0 , (1.6)

where

〈∂ 1

P
,Qdz〉

denotes the total sum of local residues

Res (
Q

P1 · · ·Pn

, α)

at all common zeroes α of P1, ..., Pn in the affine space Cn. In other words,
the sum of all the residues of the meromorphic function Q/P1 · · ·Pn vanishes.
When all the zeros are simple we obtain Jacobi’s original statement

∑
α

Q(α)

J(α)
= 0.

We refer to [Gr], [Ku2], and [EGH] for interesting geometric applications of
this theorem.

A problem one often finds in trying to apply Jacobi’s theorem is that
given an ideal I in C[X1, ..., Xn] defining a zero-dimensional variety in Cn, it
may not be possible to find P1, . . . Pn in I without common zeros at infinity.
What we can do is construct in some elementary way (that is essentially
without using elimination theory) polynomials P1, . . . Pn in such an ideal I
so that the map

ζ 7→ P (ζ) = (P1(ζ), . . . , Pn(ζ))

is a proper map of Cn into itself. The properness condition is equivalent to
a Lojasiewicz type inequality: there are constants K > 0, γ > 0, and δ > 0
with the property that if |z| > K then

‖P (ζ)‖ ≥ γ‖ζ‖δ, (1.7)

Such a δ is called a Lojasiewicz exponent for P .

In the situation of Hilbert’s Nullstellensatz, where we have a collection of
polynomials p1, . . . , pm in C[X1, ..., Xn] without common zeros, we can find
polynomials P1, . . . Pn in the ideal generated by them that define a proper
map and also have their degrees and size of their coefficients controlled by de-
grees and size of the coefficients of the original polynomials pj. In particular,
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it follows that there is an effective generalization of the vanishing theorem of
Abel–Jacobi. Namely, there is a proper affine function θ : INn → R+ such
that for any polynomial Q and any m ∈ INn such that

deg Q ≤ θ(m) (1.8)

one has

〈∂ 1

Pm+1
, Qdζ〉 = 0, (1.9)

where Pm+1 = (Pm1+1
1 , . . . , Pmn+1

n ). Note that a proper map usually has
zeroes at ∞, this is the point that makes this statement a strong generaliza-
tion of the Abel-Jacobi theorem. The proofs of (1.9) given in [BY1], [BGVY]
depend very heavily on the properties of residue currents.

In [BY1] we used the method just sketched to compute residues in Cn and
the generalized Abel-Jacobi theorem to obtain effective estimates on the solv-
ability of the Nullstellensatz for polynomials p1, . . . , pM ∈ Z[X1, ..., Xn] with-
out common zeros in Cn. This was based on the previous work of Brownawell
[Br1,Br2], J. Heintz and its collaborators [CGH1], J. Kollár [Ko], who proved
that in the above situation there exist polynomials q1, . . . , qM ∈ Z[X1, ..., Xn]
and r0 ∈ Z\{0} such that the equation

p1q1 + · · ·+ pMqM = r0 (1.10)

is satisfied while

max
j

deg qj = O
(
(max

j
deg pj)

n
)

.

By itself, this bound does not produce sufficiently good estimates on the
complexity of deciding whether the Bézout equation is solvable. One needs
to obtain also a priori estimates on the (logarithmic) size of an “optimal”
solution q1, . . . , qM , r0. In fact, it was shown in [BY1] that, given M poly-
nomials p1, ..., pM in Z[X1, ..., Xn] (with degrees dj in decreasing order and
absolute values of coefficients bounded by eh), one can solve (1.10) with
r0 ∈ Z, q1, ..., qM ∈ Z[X1, ..., Xn] satisfying the following estimates :





max
j

deg qj ≤ (3/2)7n(2n + 1)d1 . . . dµ

max(log r0, max
j

h(qj)) ≤ K(n)d4
1(d1 . . . dµ)8(h + log M + d1 log d1),

(1.11)
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where K(n) is a computable constant and h(qj) denotes the maximum of
the logarithms of the absolute values of the coefficients of qj. One can also
replace Z by an arbitrary integral domain A equipped with a size function,
irrespective of the characteristic of the corresponding quotient field K and
corresponding algebraic closure K [BY4]. Though one may substitute alge-
braic tools from residue calculus [BY3, BY4] to analytic tools, such analytic
methods provided [BY6] some insight respect to the following result recently
obtained by M. Hickel [Hi] : let I be an ideal in C[X1, ..., Xn], I its integral
closure in this ring, p1, . . . , pm a system of generators of I, and let dj = deg pj,
such that d1 ≤ d2 · · · ≤ dm = d ; then one has the following alternative :

• if m ≤ n, every p ∈ I is such one can express pm as

pm =
∑

1≤j≤m

qjpj

with maxj deg(qjpj) ≤ m deg p + md1 . . . dm ;

• if n > m, for every p ∈ I there exist qj such that

pn+1 =
∑

1≤j≤m

qjpj

satisfying

max
j

deg(qjpj) ≤ (n + 1) deg p(n + 1) min

{
dn,

d1 . . . dm

dm−n
1

}
.

The use of (1.4) to compute residues plays also a role in a subject that is of
interest in Algebraic Geometry, Mathematical Physics, and Number Theory.
We refer for example to the construction and the properties derived thereby
of the so-called Green currents [BY8, BY5]. These currents appear in the
work of Arakelov on intersection theory and its applications to Physics [Ar],
as well in work of Faltings [Fa], Bost, Gillet, and Soulé [BGS], and the
very interesting lecture of McMullen [Mc] relating them to the Fermat’s last
theorem.

As we pointed it out in this introduction, Abel-Jacobi vanshing theorem,
together with various connected tools from residue calculus in Cn, plays a
major role in our approach towards algebraic intersection or division prob-
lems. What we do in the body of the paper is to extend this theorem to
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the case where the underlying space is not Cn. In fact, we replace Cn by
a q-dimensional irreducible algebraic subvariety W and, assuming that W
is not included in the variety V (P ) of common zeros of a family P of m
polynomials P1, ..., Pm in C[X1, ..., Xn], we shall attach to this polynomial
family P a family of non-trivial W -restricted residual currents in ′D0,k(Cn),
1 ≤ k ≤ min(m,n), with support on |W |. These currents (constructed us-
ing analytic ideas) inherit most of the properties that are fulfilled in the
case W = Cn. When the set |W | ∩ V (P ) is discrete and m = q, we prove
that, for every point α ∈ |W | ∩ V (P ), the W -restricted analytic residue of
a (q, 0)-form RdζI , R ∈ C[X1, ..., Xn], at the point α is the same as the
residue on W (completion of W in ProjC[X0, ..., Xn]) at the point α in the
sense of Serre (q = 1) or Kunz-Lipman (1 < q < n) of the q-differential
form (R/P1 · · ·Pq)dζI . We present a restricted version of the affine version
of Jacobi’s residue formula (1.6) and obtain applications of this formula to
higher dimensional analogues of the Reiss-Wood relations, corresponding to
situations where the Zariski closures of |W | and V (P ) intersect at infinity
in an arbitrary way. We expect this extended Jacobi residue to have as
many useful applications to effective constructions in algebraic varieties as
our previous work had for the Nullstellensatz.

2 Preliminaries

Let Γ be a complete integral curve embedded as a closed subscheme in
ProjC[X0, ..., Xn] and C(Γ) its function field. Following the exposition of
Hübl and Kunz of the Serre’s approach [HK2], the residue of a meromorphic
(1, 0)-differential form ω ∈ Ω1

C(Γ)/C at the point α ∈ Γ is defined as follows :

let M1, . . . ,Md be the minimal prime ideals of the completion ÔΓ,α of the
local ring of Γ at α and let Rj, j = 1, ..., d, be the integral closures of the
”branches” Rj = ÔΓ,α/Mj, j = 1, . . . , d, of the curve Γ at the point α. Then
Rj is isomorphic to an algebra of formal power series C[[tj]] and in C((tj))
the differential (1, 0)-form ω can be written as

ω =
∑

k≥kj

aj
k tkj ,
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where aj
k ∈ C, k ≥ kj, are complex numbers which are independent of the

parameters tj. Define

ResΓ,α,Rj
ω := aj

−1 , ResΓ,α ω :=
d∑

j=1

aj
−1 .

It was pointed by G. Biernat in [Bi] that, if f1, ..., fn are n germs of holo-
morphic functions in n variables (with Jacobian determinant Jf ∈ On) such
that (f1, ..., fn−1) define a germ of curve γ (with branches parametrized re-
spectively by ϕ1, ..., ϕd) and dim [γ ∩ {fnJf = 0}] = 0, then, for any h ∈ On,
the Grothendieck residue

Res0

[hdζ1 ∧ · · · ∧ dζn

f1 · · · fn

]
:=

1

(2iπ)n

∫

|f1|=ε1

...
|fn|=εn

hdζ1 ∧ · · · ∧ dζn

f1 · · · fn

(with the orientation for the cycle {|f1| = ε1 , . . . , |fn| = εn} that ensures the
positivity of the differential form d arg f1 ∧ · · · ∧ d arg fn on it) equals

d∑

j=1

Rest=0

[
(fn ◦ ϕj)

′(t)h(ϕj(t))

fn(ϕj(t))Jf (ϕj(t))
dt

]
.

In particular, if ω denotes the (1, 0)-meromorphic differential form

ω :=
gdζα

fn

, g ∈ On , α ∈ {1, ..., n} ,

then

Res0

[df1 ∧ · · · ∧ dfn−1

f1 · · · fn−1

∧ ω
]

equals the sum

d∑

j=1

νjResγj ,0 [ω] , (2.1)

where γ1, ..., γd correspond to the irreducible germs of curves attached to the
isolated primes in the decomposition of (f1, ..., fn−1), the meromorphic form
ω is considered as restricted on the germs of curves γ1, ..., γd, and Resγj ,0 [ω] is
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defined on the model of the Kunz-Hübl residue, this notion being transposed
from the algebraic context to the analytic one (see also [Lej]). This suggests
a natural relation between the approaches developed by Serre-Hübl-Kunz
and the analytic residue approach developed by Coleff-Herrera [CH] (which
precisely allows the transposition of the definition of the Grothendieck residue
in the complete intersection case to the setting of currents).

The analytic approach we use to define restricted residual currents on a q-
dimensional reduced analytic space Y ⊂ U , where U is an open subset of
Cn, will be described in section 3 as follows : if f1, ..., fm are m functions
holomorphic in U , then the map

λ 7→ ΦY,f (λ) := ‖f‖2λ [Y ] ,

where [Y ] denotes the integration current on Y = |Y|, can be meromorphi-
cally continued as a ′D(n−q,n−q)(U)-map. Moreover, for any k ∈ {1, ..., m}, for
any ordered subset I ⊂ {1, ...,m} with cardinal k ≤ min(q, m), the analytic
continuation of

λ 7→ λckΦY,f (λ− k − 1) ∧ ∂‖f‖2 ∧
( k∑

l=1

(−1)l−1fil

k∧
j=1
j 6=l

dfij

)
,

where

ck :=
(−1)k(k−1)/2(k − 1)!

(2iπ)k

is holomorphic at the origin. Its value at 0 defines, up to a multiplicative
constant, a residual regular holonomic (n − q, n − q + k)-current which is
supported by Y ∩ V (f) ; regular holonomiticity is here understood in the
sense of Björk ([Bj2], chapter 9). Properties of such currents are similar to
those introduced above in the case q = n. Proposition 3.1 will summarize
the different properties of such restricted residual currents. The main case
of interest for us will be the case where m ≤ q and dim (Y ∩ V (f)) ≤ q−m,
that is, when f1, ..., fm define a complete intersection in Y . In this case,
the restricted residue current corresponding to I := {1, ..., m} is the Coleff-
Herrera current on Y ( m∧

j=1

∂
1

fj

)
∧ [Y ]

introduced in [CH]. It is not surprising that residual restricted currents in
such a complete intersection setting obey the transformation law for multi-
dimensional residue calculus ([BGVY], chapter 6), which we will prove (and
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use next) in the case m = q. If f1 = P1, ..., fq = Pq are polynomials and W
is an affine q-dimensional algebraic subvariety of the affine scheme An

C such
that dim (V (P ) ∩ |W |) = 0, we will prove in section 4 that the total sum of
restricted residues

Res




[W ] ∧QdXi1 ∧ · · · ∧ dXiq

P1, ..., Pq




vanishes as soon as the degree of Q is sufficiently small, under a properness
assumption on the restriction of (P1, ..., Pq) to |W |. We will thus transpose
to the restricted case an Abel-Jacobi formula proved in the case q = n and
W = An

C in [VY].

Let again W be a q-dimensional irreducible algebraic subvariety in the affine
scheme An

C and P1, ..., Pq, q polynomials in C[X1, ..., Xn] such that |W | ∩
V (P ) is a discrete (hence finite) algebraic set in Cn. Let Q ∈ C[X1, ..., Xn]
and I a subset in {1, ..., n} with cardinal q. The meromorphic differential
form

ω :=
Qdζi1 ∧ · · · ∧ dζiq

P1 · · ·Pq

induces an element in Ωq
C(W)/C, where W denotes the completion of W in

ProjC[X0, ..., Xn]. We will prove in section 5, thanks to the algebraic residue
theorem in [L2] and the properties of restricted residual currents that were
pointed out in previous sections, that the residue at a closed point α in
|W | ∩ V (P ) (in the sense of Hübl or Lipman [L1]) of the differential form ω
(viewed as an element in Ωq

C(W)/C) equals

ResW,α [ω] :=
〈( q∧

j=1

∂
1

Pj

)
∧ [W ] , ψQdζi1 ∧ · · · ∧ dζiq

〉
,

where ψ denotes a test-function with compact support in some small neigh-
borhood of α, such that ψ ≡ 1 near α. The result is clear when α is a smooth
point of W , it will follow from the algebraic residue formula combined with
a perturbation argument in the case α is a singular point of W . As a con-
sequence of the fact that the analytic and algebraic approaches lead to the
same restricted residual objects, we will extend in section 5 (with an alge-
braic formulation) to such a restricted context the affine Jacobi’s theorem
obtained in the non-restricted case W = An

C in [VY].
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Theorem 2.1 Let W be a q-dimensional irreducible affine algebraic subva-
riety in An

C (0 < q < n) and P1, ..., Pq be q polynomials in C[X1, ..., Xn] such
that there exist strictly positive rational numbers δ1, ..., δq and two constants
K > 0, κ > 0 such that :

ζ ∈ |W | , ‖ζ‖ ≥ K =⇒
q∑

j=1

|Pj(ζ)|
‖ζ‖δj

≥ κ ; (2.2)

then, for any Q ∈ C[X1, ..., Xn] such that deg Q < δ1 + · · ·+ δq − q, for any
multi-index (i1, ..., iq) in {1, ..., n}q,

∑

α∈|W |∩V (P )

ResW,α

[Qdζi1 ∧ · · · ∧ dζiq

P1 · · ·Pq

]
= 0 . (2.3)

We will derive (in sections 5 and 6) some consequences of this result in the
spirit of Cayley-Bacharach’s theorem and Wood’s results [W]. The key point
here (compare to the framework of [HK2] or [Ku2]) is that the properness
assumption along |W | (2.2) which is satisfied by the polynomial map P :=
(P1, ..., Pq) does not imply that the Zariski closures of |W | and V (P1, ..., Pq)
in IPn(C) have an empty common intersection on the hyperplane at infinity.

3 Restricted residual currents

We begin this section by recalling some basic facts about currents on analytic
manifolds, especially integration currents on analytic sets or Coleff-Herrera
currents and their “multiplication” with integration currents. We inspire
ourselves on [Bj1], [BY8], [BY5], and [Meo].

We start with some basic facts about integration on a q-dimensional irre-
ducible analytic subset Y in U ⊂ Cn [Le]. The subset Yreg of regular points
of Y is a q-dimensional complex manifold. The set of singular points Ysing

is an analytic subset of U with complex dimension dim Ysing < q. Therefore
for any smooth (q, q) test form φ(q,q) ∈ D(q,q)(U), one can define the action
of the integration current [Y ] on φ(q,q) as

〈[Y ] , φ(q,q)〉 =
∫

Y
φ(q,q)(ζ, ζ̄) =

∫

Yreg

φ(q,q)(ζ, ζ̄) +
∫

Ysing

φ(q,q)(ζ, ζ̄)

=
∫

Yreg

φ(q,q)(ζ, ζ̄) .
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For Re λ > 0 and f1, ..., fm holomorphic in U , one can define the (q, q)-current
‖f‖2λ [Y ] by

〈‖f‖2λ [Y ] , φ(q,q)〉 :=
∫

Yreg

‖f‖2λ φ(q,q) .

It is known ([Bj1],[Bj2]) that this current [Y ] is a regular holonomic current,
which implies, for each point z0 in U ∩Y , for any distribution coefficient T[Y ]

of the integration current [Y ], the existence of a Bernstein-Sato relation

QT[Y ],z0

(
λ, ζ, ζ̄,

∂

∂ζ
,

∂

∂ζ̄

) [
‖f‖2(λ+1) ⊗ T[Y ]

]
= bz0(λ) (‖f‖2λ ⊗ T[Y ]) (3.1)

(bz0 ∈ C[λ]) valid in a neighborhood of z0. In fact, this does not follow
directly from Theorem 3.2.6 in [Bj1] since ‖f‖2 is a real analytic function
(and not a holomorphic one). Nevertheless, the existence of Bernstein-Sato
relations of the form (3.1) remains valid here since ‖f‖2 has the particular
form

‖f(ζ)‖2 =
m∑

j=1

fj(ζ)fj(ζ)

and the integration current on Y = {g1 = · · · = gN = 0} admits a Siu
decomposition

[Y ] =
∑

1≤i1<···<in−q≤N

Ti1,...,in−q ∧
n−q∧

l=1

dgil ,

where the Ti1,...,in−q are (0, n−q) currents which are regular holonomic because
of Coleff-Herrera type ([BY5, Meo, Bj1]). One can then proceed in

U := {(ζ, ζ) : ζ ∈ U} ⊂ C2n

with blocks of variables (ζ, ζ) and profit from the fact that formally ∂ζ and
∂ζ can be considered as derivations respect to independent sets of variables.
Consider then the function of one complex variable defined by

λ 7→ ΦY,f (λ) := ‖f‖2λ [Y ] . (3.2)

This function (which is a ′D(n−q,n−q)(U)-current valued function) is well de-
fined and holomorphic in {λ ∈ C ; Re λ > 0}. Thanks to the Bernstein-Sato
relations (3.1), it can be continued to the whole complex plane as a meromor-
phic function. The poles of this meromorphic extension are strictly negative
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rational numbers. Furthermore, there is a true pole at any point λ = −k,
k ∈ IN∗.

In fact, we will need a more precise result, where the construction of the
meromorphic continuation of (3.2) play a role. What we need is formulated
in the following proposition.

Proposition 3.1 Let Y be an irreducible q-dimensional analytic subset of
U ⊂ Cn and f1, ..., fm m functions holomorphic in U . For any k ∈ {1, ..., m}
and for any ordered subset I ⊂ {1, ..., m} with cardinal k ≤ min(q, m), the
′D(n−q,n−q+k)-valued map

λ 7→ λck‖f‖2(λ−k−1) [Y ] ∧ ∂‖f‖2 ∧
( k∑

l=1

(−1)l−1fil

k∧
j=1
j 6=l

dfij

)

(which is holomorphic in Re λ > k + 1) can be continued as a meromorphic
map to the whole complex plane, with no pole at λ = 0. Its value at λ = 0
defines a residual (n−q, n−q +k)-current which is supported by the analytic
set Y ∩ {f1 = · · · = fm = 0} = Y ∩ V (f) and denoted as

ϕ ∈ D(q,q−k) 7→ Res




[Y ] ∧ (·)
fi1 , ..., fik

f1, ...., fm


 (ϕ) = Res




[Y ] ∧ ϕ
fi1 , ..., fik

f1, ...., fm


 . (3.3)

Proof. Assume that Y is defined (in U) by the equations g1 = · · · = gN = 0
and that ν is the (Hilbert-Samuel) multiplicity of the ideal OU,y generated
by g1, ..., gN at a generic point y ∈ Y . Let d = n − q. One can conclude
from [Meo] that [Y ] coincides with the value at µ = 0 of the meromorphic
′D(d,d)(U)-valued map Ψg

µ
Ψg7→ µ(d− 1)!

(2iπ)d ν
‖g‖2µ ∂ log ‖g‖2 ∧ ∂ log ‖g‖2 ∧ ∑

j1<···<jd−1
1≤jj≤N

d−1∧

l=1

(∂gjl
∧ ∂gjl

‖g‖2

)
.

In fact, in the general situation where (g1, ..., gN) define a q-purely dimen-
sional cycle Z (non necessarily irreducible) in U , the integration current
(with multiplicities) on Z can be expressed as the value at λ = 0 of some
meromorphic ′D(d,d)(U)-valued function which can be made explicit in terms
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of g1, ..., gN (see Theorem 3.1 in [BY5] for a proof in the algebraic case). Let
I ⊂ {1, ..., m} with cardinal k ≤ min(q,m) and, for Re λ > k + 1,

Θf,I(λ) := λ‖f‖2(λ−k−1) ∂‖f‖2 ∧
( k∑

l=1

(−1)l−1fil

k∧
j=1
j 6=l

dfij

)
.

In order to prove the proposition, we can localize the problem and assume
that the origin belongs to Y ∩ V (f). As in our previous work (see for ex-
ample [BY8], pages 32-33, or [BY5], page 208) we construct an analytic n-
dimensional manifold X , a neighborhood V of 0 in U , a proper map π : X →
V which realizes a local isomorphism between V \ {f1 · · · fm g1 · · · gN = 0}
and X \ π−1({f1 · · · fm g1 · · · gN = 0}), such that in local coordinates on X
(centered at a point x), one has, in the corresponding local chart Ux around
x,

fj ◦ π(t) = uj(t) t
αj1

1 · · · tαjn
n = uj(t) tαj , j = 1, . . . , m

gk ◦ π(t) = vk(t) tβk1
j · · · tβkn

n = vk(t) tβk , k = 1, ..., N

where the uj, j = 1, ...,m and the vk, k = 1, ..., N , are non vanishing holo-
morphic functions in Ux, at least one of the monomials tαj , j = 1, ...,m
divides all of them (we will denote this monomial as tα), and at least one
of the monomials tβk , k = 1, ..., N divides all of them (we will denote this
monomial as tβ).
When ϕ is a (q, q − k)-test form with support in V , one has, for Re λ >> 0,

∫

V ∩Y
Θf,I(λ) ∧ ϕ =

[ ∫

V
Ψg(µ) ∧Θf,I(λ) ∧ ϕ

]

µ=0

(the right hand side being continued as a meromorphic function of µ which
has no pole at µ = 0). For λ fixed with Re λ >> 0, one can rewrite for
Re µ >> 0 the integral

∫

V
Ψg(µ) ∧Θf,I(λ) ∧ ϕ

as a sum of integrals of the form

∫

Ux

π∗[Ψg](µ) ∧ π∗[Θf,I(λ)] ∧ ρπ∗(ϕ) , (3.4)

14



where ρ is a test-function in Ux which corresponds to a partition of unity for
π∗(Supp ϕ). We know from Lemmas 2.1 and 2.2 in [BY5] that

[
π∗[Ψg(µ)]

]
µ=0

=
[
Ψg◦π(µ)

]
µ=0

is a positive ∂ and ∂-closed current θUx in Ux, which implies that, as soon as
Re λ >> 0,
[ ∫

Ux

π∗[Ψg](µ) ∧ π∗[Θf,I(λ)] ∧ ρπ∗(ϕ)

]

µ=0

=
∫

Ux

θUx ∧ π∗[Θf,I(λ)] ∧ ρπ∗(ϕ) .

On the other hand, in Ux and for Re λ >> 0, a straightforward computation
leads to

π∗
[
Θf,I

]
(λ) = λ

a2λ|tα|2λ

tkα

(
ϑ + $ ∧ dtα

tα

)
,

where ϑ and $ are smooth differential forms in Ux (with respective types
(0, k) and (0, k − 1)) and a is a strictly positive real analytic function in Ux.
It follows from Stokes’ theorem that

∫

Ux

π∗[Θf,I ](λ) ∧ θUx ∧ ρπ∗(ϕ) =
∫

Ux

|tα|2λ

tkα
θUx ∧ ξϕ(ρ ; t, λ) , (3.5)

where (t, λ) 7→ ξϕ(ρ ; t, λ) is a (n − q, n − q)-differential form with smooth
coefficients (in t) depending holomorphically in λ.
One can see also that, for Re µ >> 0,

π∗[Ψg](µ) = µ b2µ |tβ|2µ
(dtβ

tβ
+ η(0,1)

)
∧

(dtβ

tβ
+ η(1,0)

)
∧ υ ,

where b is a strictly positive real analytic function in Ux, η(0,1), η(1,0), υ are
smooth differential forms in Ux with respective types (0, 1) , (1, 0) and (d −
1, d − 1). This implies that, if ti1 , ..., tis are the coordinates that appear in
tβ ,

θUx =
s∑

l=1

[til = 0] ∧ ωil ,

where ωil is a smooth (d−1, d−1)-form in Ux and [ti = 0] denotes the integra-
tion current (without multiplicities) on {ti = 0}. Therefore, for Re λ >> 0,

∫

Ux

π∗[Θf,I ](λ) ∧ θUx ∧ ρπ∗(ϕ) =
s∑

l=1
(til

,tα)=1

∫

{til=0}∩Ux

|tα|2λ

tkα
ωil(t) ∧ ξϕ(ρ ; t, λ).
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Such a function of λ can be continued to a meromorphic function in the
whole complex plane, with no pole at λ = 0 (using Stokes’ theorem). The
assertion of the proposition follows, since for Re λ >> 0,

∫

V
Ψg(µ) ∧Θf,I(λ) ∧ ϕ

is a sum of integrals of the form (3.4). ♦
Keeping the above notation one obtains the following corollary.

Corollary 3.1 Under the conditions of Proposition 3.1, the residual current
defined by (3.3) has the following properties
1) For any h ∈ H(U) such that

∀K ⊂⊂ U ∩ Y , ∃CK > 0 , |h| ≤ CK‖f‖ on K , (3.6)

one has

Res




hk[Y ] ∧ (·)
fi1 , ..., fik

f1, ...., fm


 ≡ 0

2) If h ∈ H(U) and

h(z) = 0, ∀z ∈ Y ∩ V (f) , (3.7)

then one has

Res




h[Y ] ∧ (·)
fi1 , ..., fik

f1, ...., fm


 ≡ 0

Proof. Let us now suppose that h satisfies (3.6). If we do not perform
integration by parts as in (3.5), we have, for Re λ >> 0,

∫

Ux

π∗[Θf,I ](λ) ∧ θUx ∧ ρπ∗(hkϕ)

= λ
s∑

l=1
(til

,tα)=1

∫

{til=0}∩Ux

a2λ|tα|2λ

tkα

(
ϑ + $ ∧ dtα

tα

)
∧ ωil(t) ∧ ρπ∗(hkϕ) .

Condition (3.6) implies that there exists some positive constant κ such that,
for any l = 1, ..., s with til coprime with tα,

|π∗h(t1, ...,
il
0, ..., tn)| ≤ κ|tα| , t ∈ Supp ρ ,
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which implies that tkα divides (π∗hk){|til=0} on the support of ρ. This implies
that for such h,

[ ∫

Ux

π∗[Θf,I ](λ) ∧ θUx ∧ ρπ∗(hkϕ)

]

λ=0

= 0 ,

which gives the first assertion of the corollary since
∫

V
Ψg(µ) ∧Θf,I(λ) ∧ ϕ

is a sum of integrals of the form (3.4).
If h vanishes on Y ∩ V (f), then, for any l = 1, ..., s such that til is coprime
with tα, any coordinate which divides tα also divides (π∗h)|{til=0} on the
support of ρ. This implies that any expression of the form

∫

{til=0}∩Ux

a2λ|tα|2λ

tkα

(
ϑ + $ ∧ dtα

tα

)
∧ ωil(t) ∧ ρπ∗(hϕ)

has in fact no antiholomorphic singularity (therefore has a meromorphic ex-
tension which is polefree at the origin). It follows that for such h, one has
again [ ∫

Ux

π∗[Θf,I ](λ) ∧ θUx ∧ ρπ∗(hϕ)

]

λ=0

= 0 ,

which proves the remaining assertion of the corollary since again
∫

V
Ψg(µ) ∧Θf,I(λ) ∧ ϕ

is a sum of integrals of the form (3.4). ♦
When k = m ≤ q, we will use the simplified notation

Res
[

[Y ] ∧ (·)
f1, ..., fm

]
(ϕ) := Res




[Y ] ∧ (·)
f1, ..., fm

f1, ...., fm


 .

The transformation law for residual currents can be transposed to the case
of restricted residual currents. Since we deal in this paper with restricted
residual currents supported by discrete sets, we state the transformation law
in this particular setting. One has the following proposition :

17



Proposition 3.2 Let Y be an irreducible q-dimensional analytic subset of
U ⊂ Cn and f1, ..., fq, g1, ..., gq, 2q functions holomorphic in U such that
Y ∩ V (f) and Y ∩ V (g) are discrete analytic sets. Assume that there exist
q2 holomorphic functions in U , akl, 1 ≤ k, l ≤ q, such that

gk(ζ) =
q∑

l=1

akl(ζ) fl(ζ) , k = 1, ..., q , ζ ∈ Y

Then, one has the following equality between restricted residual currents :

Res
[

[Y ] ∧ (·)
f1, ...., fq

]
= Res

[
∆ [Y ] ∧ (·)
g1, ...., gq

]
, (3.8)

where ∆ := det[akl]1≤k,l≤q.

Proof. In order to prove this equality, we just need to prove it when U is
a neighborhood V of a point α ∈ Y ∩ (V (f) ∪ V (g)) such that α is the only
point of Y ∩ (V (f) ∪ V (g)) which lies in this neighborhood. Thanks to the
first assertion in Corollary 3.1, it is enough to test the two currents involved
in (3.8) on test forms in D(q,0)(V ) whose coefficients are holomorphic in a
neighborhood of α. Let ϕ be such a test form. Since

∂

[
‖f‖2(λ−q) [Y ] ∧

( q∑

j=1

(−1)j−1f j

q∧
l=1
l6=j

dfj

)]

= λ‖f‖2(λ−q) [Y ] ∧
q∧

j=1

dfj

= λ‖f‖2(λ−q−1) [Y ] ∧ ∂‖f‖2 ∧
( q∑

j=1

(−1)j−1f j

q∧
l=1
l6=j

dfl

)

for Re λ >> 0 and

q∑

j=1

sj(ζ)fj(ζ) = 1 , ∀ ζ ∈ (V ∩ Yreg) \ {α},

where

sj :=
f j

‖f‖2
, j = 1, ..., q,
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one has, by Stokes’ theorem, that

Res
[

[Y ] ∧ ϕ
f1, ...., fq

]
= (−1)qωq

∫

Yreg

q∑
j=1

(−1)j−1f j

q∧
l=1
l6=j

dfj

‖f‖2q
∧ ∂ϕ

= (−1)qωq

∫

Yreg

( q∑

j=1

(−1)j−1sj

q∧
l=1
l6=j

dsl

)
∧ ∂ϕ . (3.9)

Similarly, if we introduce

tj :=
gj

‖g‖2
, j = 1, ..., q ,

and

s̃j :=
q∑

l=1

aljtl , j = 1, ..., q ,

one has also

q∑

j=1

s̃j(ζ)fj(ζ) = 1 , ∀ ζ ∈ (V ∩ Yreg) \ {α} .

Let, for ξ ∈ [0, 1] and j = 1, ..., q,

s
(ξ)
j = (1− ξ) sj + ξ s̃j .

Note that we have

q∑

j=1

s
(ξ)
j (ζ)fj(ζ) = 1 , ∀ξ ∈ [0, 1] , ∀ζ ∈ (V ∩ Yreg) \ {α} .

Therefore, one has, since
q∧

j=1

∂ζs
(ξ)
j ≡ 0

on (V ∩ Yreg) \ {α} ,

d

dξ

[ ∫

Wreg

( q∑

j=1

(−1)j−1s
(ξ)
j

q∧
l=1
l6=j

ds
(ξ)
l

)
∧ ∂ϕ

]
≡ 0
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on [0, 1]. It follows from (3.9) that

Res
[

[Y ] ∧ ϕ
f1, ...., fq

]
= (−1)qωq

∫

Yreg

( q∑

j=1

(−1)j−1s̃j

q∧
l=1
l6=j

∂s̃l

)
∧ ∂ϕ

= (−1)qωq

∫

Yreg

∆

q∑
j=1

(−1)j−1gj

q∧
l=1
l6=j

dgj

‖g‖2q
∧ ∂ϕ

= Res
[
∆ [Y ] ∧ ϕ
g1, ...., gq

]
.

this concludes the proof of the proposition. ♦
As a consequence of this result, we will state in the algebraic context the
following analogue of the global transformation law. We need first some ad-
ditional of notation. Assume that W is a q-dimensional irreducible algebraic
subvariety in the affine space An

C (the integration current on |W | without
multiplicities taken into account being denoted as [W ]) and that P1, ..., Pq are
q elements in C[X1, ..., Xn] such that |W | ∩ V (P1, ..., Pq) is a discrete (hence
finite) algebraic subset of Cn. For any Q ∈ C[X1, ..., Xn], any ordered subset
{i1, ..., iq} of {1, ..., n}, we will denote as

Res




[W ] ∧Q
q∧

l=1
dXil

P1, ..., Pq




the result of the action of the W -restricted current

ϕ 7→ Res
[

[W ] ∧ ϕ
P1, ..., Pq

]

on the (q, 0)-test form Q(ζ)ψ(ζ)
∧q

l=1 dζil , where ψ is any test-function in
D(Cn) which equals 1 in a neighborhood of |W | ∩ V (P ). If

Γ =
M∑

j=1

νjWj

(where W1, ..., WM are M irreducible algebraic subsets in Cn and νj ∈ IN∗,
j = 1, ...,M) is an effective q-dimensional algebraic cycle in the affine space
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Cn and P1, ..., Pq are q polynomials such that Wj ∩ V (P ) is discrete for any
j = 1, ..., M , we will also denote as

Res




[Γ] ∧Q
q∧

l=1
dXil

P1, ..., Pq




the weighted sum

M∑

j=1

νjRes




[Wj] ∧Q
q∧

l=1
dXil

P1, ..., Pq




Corollary 3.2 Let Γ be an effective q-dimensional algebraic cycle in the
affine space Cn and P1, ..., Pq, R1, ..., Rq be 2q polynomials such that Supp Γ∩
V (P1, ..., Pq) and Supp Γ ∩ V (R1, ..., Rq) are discrete (hence finite) algebraic
subsets of Cn. Assume that there is a (q, q)-matrix of polynomials [Ak,l]1≤k,l≤q

such that

Rk =
q∑

l=1

AklPl on Supp Γ k = 1, .., q .

Then, for any Q ∈ C[X1, ..., Xn], any ordered subset {i1, ..., iq} of {1, ..., n},
one has

Res




[Γ] ∧Q
q∧

l=1
dXil

P1, ..., Pq


 = Res




[Γ] ∧∆ Q
q∧

l=1
dXil

R1, ..., Rq


 , (3.10)

where ∆ denotes the determinant of the matrix [Ak,l]1≤k,l≤q.

Another key point about the restricted residual current in the discrete context
is the following annihilator property :

Proposition 3.3 Let Y be an irreducible q-dimensional analytic subset of
U ⊂ Cn and f1, ..., fq be q functions holomorphic in U such that Y ∩V (f) is
a discrete analytic set. Then one has, for k = 1, ..., q,

Res
[
fk[Y ] ∧ (·)
f1, ...., fq

]
= 0 (3.11)
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Proof. We give here a self-contained proof of the above proposition. Ac-
tually, because of the properties quoted in Corollary 3.1, it is enough to
show that if α ∈ V (P ) ∩ Y and ϕ is a test-function with support arbitrar-
ily small about α with ϕ = 1 in some neighborhood vα of α, then, for any
function h ∈ C∞(U) which is holomorphic on vα, for any ordered subset
I = {i1, ..., iq} ⊂ {1, ..., n}, one has, for j = 1, ..., q,

Res
[
fj[Y ] ∧ hϕ dζI

f1, ...., fq

]
= 0 .

One can use Stokes’ formula (as in the proof of Proposition 3.2) and write

Res
[
fk[Y ] ∧ hϕ dζI

f1, ...., fq

]
= (−1)qωq

∫

Yreg

hfk

( q∑

j=1

(−1)j−1sj

q∧
l=1
l6=j

dsl

)
∧ ∂ϕ ∧ dζI ,

where sj := fj/‖f‖2, j = 1, ..., q. One can see at once that

fk

( q∑

j=1

(−1)j−1sj

q∧
l=1
l6=j

dsl

)
∧ dζI ∧ [Y ] =

( q∧
l=1
l6=k

dsl

)
∧ ∂ϕ ∧ dζI ∧ [Y ]

= ±d

[
sk′

( q∧
l=1

l6=k,k′

dsl

)
∧ ∂ϕ ∧ dζI ∧ [Y ]

]

for k′ 6= k, since s1f1 + · · ·+ sqfq ≡ 1 on Y ∩ Supp ∂ϕ, which shows that

∫

Yreg

hfk

( q∑

j=1

(−1)j−1sj

q∧
l=1
l6=j

dsl

)
∧ ∂ϕ ∧ dζI = 0

as a consequence of Stokes’ formula on Y . ♦
We remark here that there is an alternate proof of the last proposition. In
fact, when m ≤ q and f1, ..., fm define a complete intersection on Y , one can
show that the restricted residual current

Res
[

[Y ] ∧ (·)
f1, ..., fm

]

coincides with the Coleff-Herrera current
( ∧m

j=1 ∂(1/fj)
)
∧ [Y ] as it is defined

in [CH]. The proof of this claim can be carried out as it was done in the
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non restricted case in [PTY], section 5. Since the proof of this fact is rather
tedious, we will not give it here. A consequence of this result is that, when
f1, ..., fm (m ≤ q) define a complete intersection on Y , one has for k =
1, ...,m,

Res
[
fk[Y ] ∧ (·)
f1, ...., fm

]
= fk

( m∧

j=1

∂
1

fj

)
∧ [Y ] = 0

(see [CH]). This implies the proposition when m = q.
Note moreover that Proposition 3.2 also holds when m < q : namely, if
(f1, ..., fm) and (g1, ..., gm) define complete intersections on Y and are such
that there exist holomorphic functions akl, 1 ≤ k, l ≤ m in the ambient space
U satisfying

gk(ζ) =
m∑

l=1

akl(ζ)fl(ζ) , k = 1, ..., m , ζ ∈ Y ,

then formula (3.8) remains valid with m instead of q.

4 An Abel-Jacobi formula in the restricted

case (analytic approach)

One of the key facts about restricted residual currents (as defined through
the analytic approach described in section 3) is that they satisfy (in the 0-
dimensional complete intersection setting) Abel-Jacobi’s formula, exactly as
in the non-restricted case (see [VY]). Such a result will be, together with the
validity of the transformation law in the restricted context) a crucial fact in
order to compare our analytic approach and the algebraic one.

Proposition 4.1 Let W be a q-dimensional irreducible affine algebraic sub-
variety of the affine scheme An

C (0 < q < n) and P1, ..., Pq be q polynomials in
C[X1, ..., Xn] such that there exist strictly positive rational numbers δ1, ..., δq

and two constants K > 0, κ > 0 with :

ζ ∈ |W | , ‖ζ‖ ≥ K =⇒
q∑

j=1

|Pj(ζ)|
‖ζ‖δj

≥ κ . (4.1)
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Then, for any Q ∈ C[X1, ..., Xn] such that deg Q < δ1 + · · ·+ δq − q, for any
multi-index (i1, ..., iq) in {1, ..., n}q,

Res




[W ] ∧Q
q∧

l=1
dXil

P1, ..., Pq


 = 0 . (4.2)

Before we give the proof of this result, let us state an important corollary :

Corollary 4.1 Let W be a q-dimensional irreducible algebraic subvariety in
the affine scheme An

C and W be its completion in ProjC[X0, ..., Xn]. Let
P1, ..., Pq be q elements in C[X1, ..., Xn], with respective degrees D1, ..., Dq,
such that

|W| ∩
{
[ζ0 : ... : ζn] ∈ IPn(C) ; hPj(ζ0, ..., ζn) = 0, j = 1, ..., q

}
⊂ Cn ,

(4.3)

where hPj, j = 1, ..., q, denotes the homogeneization of the polynomial Pj.
Then, for any Q ∈ C[X1, ..., Xn] such that deg Q < D1 + · · · + Dq − q, for
any multi-index (i1, ..., iq) in {1, ..., n}q,

Res




[W ] ∧Q
q∧

l=1
dXil

P1, ..., Pq


 = 0 (4.4)

Proof of Corollary 4.1. Assume that

|W| =
{
[ζ0 : ... : ζn] ∈ IPn(C) ; hGj(ζ0, ..., ζn) = 0, j = 1, ..., N

}
,

where G1, ...,GN are homogeneous polynomials in ζ̃ = (ζ0, ..., ζn). Condition
(4.3) implies that

|W| ∩
{
[ζ0 : ... : ζn] ∈ IPn(C) ; hPj(ζ0, ..., ζn) = 0, j = 1, ..., q

}

is a finite set in Cn ; this implies (through a compacity argument) that there
exists K,κ > 0 such that, for any (ζ0, ..., ζn) ∈ Cn+1 \ {(0, ..., 0)} such that

(
|ζ1|2 + · · ·+ |ζn|2

)1/2 ≥ K|ζ0| ,

24



one has
q∑

j=1

|hPj(ζ̃)|
‖ζ̃‖Dj

+
M∑

l=1

|Gl(ζ̃)|
‖ζ̃‖deg Gl

≥ κ .

Condition (4.1) with δj = Dj, j = 1, ..., q, holds if we restrict to the affine
space Cn. The statement (4.4) follows then from (4.2). ♦
We remark that a proposition similar to Proposition 4.1 was proved in the
non restricted case (W = An

C) in [VY]. Unfortunately, the proof which is
given there (and depends heavily on resolution of singularities on the analytic
manifold IPn(C)) cannot immediately be transposed to the restricted case
(since the Zariski closure |W| of |W | in IPn(C) is not a smooth manifold
anymore). Instead, we will follow an alternative approach (applicable also
for the case q = n), based on an argument in the affine space (and not in its
compactification IPn(C)), which was proposed by Häı Zhang in [Z]. Our task
has been to adapt this argument to the restricted case.

Note that, if z = Aw is a linear change of variables in Cn, one has, for any
element in D(q,0)(Cn)

Res
[
[W ] ∧ ϕ
f1, ..., fq

]
= Res

[
[A−1(W )] ∧ A∗ϕ
f1 ◦ A, ..., fq ◦ A

]
.

Therefore, we do not loose generality is we assume that I = {1, ..., q} and
that the projection

Π : (ζ1, ..., ζn) 7→ (ζ1, ..., ζq)

is a proper map from |W | to Cq (coordinates can be choosen in such a way
that Noether normalization theorem applies respect to any (q, n−q) splitting
ζ = (ζ ′, ζ ′′) of the set of variables (ζ1, ..., ζn), see for example [Fo, Ru]).

For δi, i = 1, . . . , q which appear in the statement of Proposition 4.1 we
choose a positive integer N large enough so that

N
q∏

l=1
l6=j

δl > 2, j = 1, . . . , q . (4.5)

Then, let

δ[j] := N
q∏

l=1
l6=j

δl , j = 1, ..., q ,
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and
δ := Nδ1 · · · δq = δjδ

[j] , j = 1, ..., q .

Similarly, for the polynomials P1, . . . , Pq, one can define, in the affine open
set Cn \ {P1 · · ·Pq = 0}, the C∞ functions

s̃j :=
|Pj|δ[j]

Pj

q∑
l=1
|Pl|δ[l]

, j = 1, ..., q .

These functions s̃j, j = 1, ..., q, extend (provided N >> 1) to C1 functions
in Cn \ V (P ), satisfying

q∑

j=1

s̃j(ζ)Pj(ζ) = 1 , ζ ∈ Cn \ V (P ) .

Let finally

uj := |Pj|δ[j]/2 , j = 1, ..., q

and

S :=
q∑

j=1

u2
j = ‖u‖2 .

At this point we return to the

Proof of Proposition 4.1. One can suppose without any loss of gener-
ality that {i1, ..., iq} = {1, ..., q} and that the projection Π is a proper map
from |W | to Cq. Condition (4.1) implies the existence of a strictly positive
constant κN such that

S(ζ) ≥ κN‖ζ‖δ , ζ ∈ |W | , ‖ζ‖ ≥ K . (4.6)

Let
θ ∈ D(]− 3κN/4, 3κN/4[

such that θ ≡ 1 on [−κN/4, κN/4] ; for any R > 0, let the element ϕR in
C1(Cn) defined as

ϕR : ζ 7→ θ(S(ζ)/Rδ) .

Since the restriction S||W | is a proper map (all δj’s, j = 1, ..., q, being strictly
positive) and V (P ) ∩ |W | is a discrete (hence finite) algebraic subset of Cn
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(this follows also from (4.1)), there exists R0 such that for R > R0, ϕR ≡ 1
in a neighborhood of |W | ∩ V (P ). Therefore, if

sj :=
Pj

‖P‖2

one has (see for example formula (3.9))

Res




[W ] ∧Q
q∧

l=1
dXl

P1, ..., Pq




= cq

∫

|W |reg

( q∑

j=1

(−1)j−1sj

q∧
l=1
l6=j

dsl

)
∧Q dζ ′ ∧ ∂ϕR

(4.7)

for any R > R0, where dζ ′ =
∧q

l=1 dζl. It follows from an homotopy argument
similar to the one which is developed in the proof of Proposition 3.2 that

Res




[W ] ∧Q
q∧

l=1
dXl

P1, ..., Pq




= cq

∫

|W |reg

( q∑

j=1

(−1)j−1s̃j

q∧
l=1
l6=j

ds̃l

)
∧Qdζ ′ ∧ ∂ϕR

= cq

∫

|W |reg

( q∑

j=1

(−1)j−1s̃j

q∧
l=1
l6=j

∂s̃l

)
∧Qdζ ′ ∧ ∂ϕR

(4.8)

for any R > R0. Since Pj s̃j = u2
j/S, j = 1, ..., q, one can rewrite (4.8) as

Res




[W ] ∧Q
q∧

l=1
dXl

P1, ..., Pq




= cq 2q−1
∫

|W |reg

( q∏

j=1

|Pj|
Pj

u
1− 2

δ[j]

j

)
q∑

j=1
(−1)j−1uj

q∧
l=1
l6=j

dul

‖u‖2q
∧Qdζ ′ ∧ ∂ϕR
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=
(−1)q cq 2q−1

Rδ

∫

|W |reg

( q∏

j=1

|Pj|
Pj

u
1− 2

δ[j]

j

)
q∧

l=1
dul

‖u‖2(q−1)
∧ θ′

(‖u‖2

Rδ

)
Qdζ ′.

(4.9)

For any order J ⊂ {1, ..., q}, let

ωJ =
q∧

j=1

dαJ ,l

where

αJ ,l(ζ1, ..., ζq) :=
{

Re ζj if j ∈ J
Im ζj if j 6∈ J ;

then one can write

dζ ′ =
q∧

l=1

dζl =
∑

J⊂{1,...,q}
iq−#J dωJ .

In order to prove formula (4.4), it is enough to prove that for any J ⊂
{1, ..., q}, one has, as soon as deg Q < δ1 + · · ·+ δq − q,

lim
R→+∞

[
1

Rδ

∫

|W |reg

( q∏

j=1

|Pj|
Pj

u
1− 2

δ[j]

j

)
q∧

l=1
dul

‖u‖2(q−1)
∧ θ′

(‖u‖2

Rδ

)
QωJ (ζ ′)

]
= 0 .

(4.10)

Since the restriction of P = (P1, ..., Pq) to each connected sheet F (above the
ζ ′-space) of the 2q-dimensional real manifold |W |reg is proper, the map

FJ ,F : ζ ∈ F 7→ (u1, ..., uq, αJ ,1, ..., αJ ,q)

is a R2q-valued proper map, with topological degree dJ ,F . Moreover, condi-
tion (4.6) implies that, for R > K,

Supp
(
θ(S/Rδ)

)
⊂ {ζ ∈ Cn : ‖ζ‖ < R} .

Actually, for ‖ζ‖ ≥ R > K, one has

S(ζ) ≥ κN‖ζ‖δ ≥ κNRδ > (3κN/4)Rδ .
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For such R, one has

∥∥∥∥∥
q∏

j=1

|Pj|
Pj

Qθ′(S/Rδ)

∥∥∥∥∥∞
≤ C R deg Q ,

where C = C(θ, Q) is a positive constant. It follows then from the properness
of all maps FJ ,F and from the positivity of the differential form

( q∏

j=1

u
1− 2

δ[j]

j

) q∧

l=1

dul

in ]0,∞[q that

1

Rδ

∣∣∣∣∣
∫

|W |reg

( q∏

j=1

|Pj|
Pj

u
1− 2

δ[j]

j

)
q∧

l=1
dul

‖u‖2(q−1)
∧ θ′

(‖u‖2

Rδ

)
QωJ (ζ ′)

∣∣∣∣∣

≤
(
∑
F

dJ ,F) C R deg Q

Rδ

( ∫
κN Rδ

4
≤‖u‖2≤ 3κN Rδ

4

( q∏

j=1

u
1− 2

δ[j]

j

)
q∧

l=1
dul

‖u‖2(q−1)

)

×
( ∫

‖t‖<R
dt1 ∧ · · · ∧ dtq

)

≤
(
∑
F

dJ ,F) CN R deg Q+q

Rqδ

( ∫
κN Rδ

4
≤‖u‖2≤ 3κN Rδ

4

( q∏

j=1

u
1− 2

δ[j]

j

) q∧

l=1

dul

)

≤
(
∑
F

dJ ,F) C̃N,~δ R deg Q+q

Rqδ
R

δ
2

q∑
j=1

(
1− 1

δ[j]

)
+q δ

2

≤ (
∑

F
dJ ,F) C̃N,~δ Rdeg Q+q−δ1− ···−δq = o(1) ,

which proves the conclusion (4.10) we need. The proof of Proposition 4.1 is
therefore completed. ♦

5 Analytic versus algebraic approach

Let X be an integral C-variety of dimension q and D1,...,Dq be q Cartier
divisors on X such that |D1| ∩ · · · ∩ |Dq| is finite. If ω is a meromorphic form
in Ωq

C(X )/C which has a simple pole along D1 + · · ·+Dq, one may define (see
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[Hu], page 621) the local residue of ω at any closed point α in |D1|∩· · ·∩|Dq|.
That is, if

ω =
η

f1 · · · fq

,

where η ∈ ωq
C(X )/C,α and fj = 0, j = 1, ..., q, is a local equation for Dj at α

then

ResX ;D1,...,Dq ,α (ω) = ResC(X )/C,α

([
η

f1, ..., fq

])
.

When X is smooth, this definition agrees with the definition in [GH], chapter
5, section 1. (See [L1], Appendix A). Adding the hypothesis that X is C-
complete, one has (see Proposition 12.2, page 108, in [L2])

∑

α∈|D1|∩···∩|Dq |
ResX ;D1,...,Dq ,α (ω) = 0 ,

which is known as residue theorem on X (it extends the classical residue
theorem on a complete integral curve in its algebraic formulation, see [Se]).

Such a residue theorem holds in our analytic setting (and is essentially a
consequence of Stokes’ formula). Namely, if W is an integral algebraic q-
dimensional subscheme in An

C (with completion W in ProjC[X0, ..., Xn])
and P1, ..., Pq are q polynomials in n variables such that |W| ∩ {hP1 = · · · =
hPq = 0} is finite and included in Cn, then ([W ] being understood as the
integration current free of multiplicities),

Res
[
[W ] ∧Q(X)dXi1 ∧ · · · ∧ dXiq

P1, ..., Pq

]
= 0

when deg Q ≤ ∑q
j=1 deg Pj − q − 1 (corollary 4.1) for any ordered subset

{i1, ..., iq} ⊂ {1, ..., n}.
On the other hand, the transformation law holds for our analytic restricted
residue (see Corollary 3.2). Such a transformation law remains valid (in its
local formulation) for restricted residue symbols defined through the algebraic
approach (see Theorem 2.4 in [HK1]).

Finally, the local residue symbol

ResW;D1,...,Dq ,α (ω) = ResC(X )/C,α

([
η

f1, ..., fq

])
,
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where
ω =

η

f1 · · · fq

,

η ∈ ωq
C(X )/C,α and fj = 0, j = 1, ..., q, is a local equation for Dj at α, equals

to 0 as soon as η = fj η̃ for some η̃ ∈ ωq
C(X )/C,α (see also [HK1], section 2).

The same annihilation property is satisfied by the restricted residual current
(Proposition 3.3).

Our goal in this section is to profit from the fact that both restricted resid-
ual objects (defined through the algebraic or analytic approach) satisfy the
transformation law, the residue formula, the annihilation property, in or-
der to show that they coincide. Therefore, we are able to give an algebraic
formulation of the Proposition 4.1, which is the Theorem 2.1 stated in our
preliminaries section.

In order to do that, we will need the following technical lemma :

Lemma 5.1 Let |W | be an irreducible q-dimensional algebraic set in Cn

and |W| its Zariski closure in IPn(C). Let also P1, ..., Pq be q polynomials in
C[X1, ..., Xn] such that V (P )∩|W | is a discrete (hence finite) algebraic subset
of Cn, with 0 ∈ V (P ) ∩ |W |. Then, there exists N0 > 0 such that, for any
integer N ≥ N0, one can find qn + 1 complex parameters ujk, j = 1, . . . , q,
k = 1, . . . , n, t ∈ C∗, so that, if

P̃
(N,u,t)
j (X) := tPj(X) +

( n∑

k=1

ujkXk

)N
, j = 1, ..., q ,

one has :

• any point α ∈ |W | ∩ V (P̃ (N,u,t)) but 0 belongs to |W |reg ;

• the set

|W| ∩ {[ζ0 : ... : ζn] ∈ IPn(C) : hP
(N,u,t)
j (ζ0, ..., ζn) = 0 , j = 1, ..., q}

is contained in Cn.

Proof. Since |W | is irreducible and q-dimensional, one has dim |W |sing < q ;
one can find an algebraic affine hypersurface H := {ζ ∈ Cn ; H(ζ) = 0}
(with Zariski closure |H|) such that |W |sing ⊂ H and dim (|W| ∩ |H|) < q.
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Let N0 > deg Pj, j = 1, ..., q, and N ≥ N0. Assume also that N ≥ ρP,W (0),
where ρP,W (0) is the order of vanishing of P at the origin (along |W |).
Let u = [ujk], j = 1, ..., q, k = 1, ..., n, be a (q, n) matrix with generic complex
entries,

Mu := {ζ ∈ Cn : uj1ζ1 + · · ·+ ujnζn = 0 , j = 1, ..., q}

and |Mu| its Zariski closure in IPn(C). Since dim |W| = q and dim (|W| ∩
|H|) < q, |Mu| ∩ |W| ⊂ Cn and |Mu| ∩ |W| ∩ |H| = {0} for u generic.
Therefore, for such a generic choice of u (u = u0) (this choice will be refined
later), for any t ∈ C∗, the polynomials

tPj(X) + (u0
j1X1 + · · ·+ u0

jnXn)N , j = 1, ..., q ,

define in Cn an algebraic set Z(N,u0,t) whose closure Z(N,u0,t) in IPn(C) in-
tersects |W| only at points in Cn (note that 0 is one of these points). The
algebraic set |W | ∩ Z(N,u0,t) can be described as

|W | ∩ Z(N,u0,t) = {ζ(N,1)(u0, t), ..., ζ(N,m)(u0, t)} ∪ {0} ,

where m is fixed (depending on N and |W|) and the t 7→ ζ(N,j)(u0, t), j =
1, ...,m, are algebraic Cn-valued functions of t which are not identically 0 and
can be classified in two classes, depending on their behavior when |t| tends to
zero. A branch t 7→ ζ(N,j)(u0, t) will be in the first class if ζ(N,j)(u0, t) tends
to zero when |t| tends to 0. It will be in the second class if ζ(N,j)(u0, t) tends
to a point in |W | ∩Mu0 which is distinct from 0 when |t| goes to 0. It follows
then from Mu0 ∩ |W | ∩H = {0} that none of the functions

t 7→ H(ζ(N,j)(u0, t))

where t 7→ ζ(N,j)(u0, t) belongs to the second category, can be identically
equal to 0. The behavior of branches of the first category can now be studied
when |t| goes to infinity. The assumption on N ensures us that such branches
either approach points in (|W | ∩ V (P )) \ {0}, either satisfy

lim
|t|→∞

|ζ(N,j)(u0, t)| = +∞

in the second alternative. The hypothesis on u0 implies that the function
t 7→ H(ζ(N,j)(u0, t)) is not identically 0 if we are in the second alternative.
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If u0 is conveniently choosen (in terms of the Taylor developments at the
first order for P1, ..., Pq at the points in (|W | ∩ V (P )) \ {0}, the assertion
t 7→ H(ζ(N,j)(u0, t)) 6≡ 0 also holds for branches concerned by the first alter-
native. Finally, for any branch t 7→ ζ(N,j)(u0, t), one has H(ζ(N,j)(u0, t) 6≡ 0.
Therefore, once u0 has been conveniently chosen, one can pick up t 6= 0 such
that the map P̃ (N,u0,t) satisfies the assertions of the lemma. ♦
We can now relate the analytic and algebraic approaches for restricted resid-
ual symbols.

Proposition 5.1 Let W be a complete integral C-variety of dimension q,
embedded in the projective scheme ProjC[X0, ..., Xn], α be a closed point in
|W| such that α ∈ Cn and D1,...,Dq be q Cartier divisors on W so that the
intersection |D1| ∩ · · · ∩ |Dq| defines a zero-dimensional scheme on W in a
neighborhood of α. If

ω =
η

P1 · · ·Pq

,

where η = Q dXi1 ∧ · · · ∧ dXiq , Q ∈ C[X1, ..., Xn] induces an element in
ωq

C(X )/C,α and P1, ..., Pq are elements in C[X1, ..., Xn] such that Pj, j =
1, ..., q, is a local equation for Dj at α, then, for any function ϕ ∈ D(Cn)
with arbitrary small support around α satisfying ϕ ≡ 1 in a neighborhood of
α, one has

ResW;D1,...,Dq ,α (ω) = Res
[
[W ] ∧ ϕ η
P1, ..., Pq

]
. (5.1)

Proof. One can assume for the sake of simplicity that α = 0. Let M be the
maximal ideal (X1, ..., Xn) in the local algebra OC[X1,...,Xn],0 and (I(W ))0 the
localization at 0 of the radical ideal

I(W ) := {g ∈ C[X1, ..., Xn] ; g(ζ) = 0 ∀ζ ∈ |W| ∩Cn} .

Choose p ∈ IN∗ such that

Mp ∈
(
[(P1, ..., Pq)0]

2, I(W )0

)
.

It follows from the validity of the transformation law and the annihilating
property in the algebraic context that, if

P̃j(X) := Pj(X) +
( n∑

k=1

ujkXk

)p
,
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then one has, for any η = Q dXi1 ∧ · · · ∧ dXiq , Q ∈ C[X1, ..., Xn], that

ResW;D1,...,Dq ,0

( η

P1 · · ·Pq

)
= ResW;D̃1,...,D̃q ,0

( η

P̃1 · · · P̃q

)
, (5.2)

where D̃j, j = 1, ..., q, is the Cartier divisor on W with local equation P̃j in a
neighborhood of the origin. On the other hand, it follows from Proposition
3.2 and Proposition 3.3 that, for any test-function ϕ with arbitrary small
support around the origin, one has also

Res
[
[W ] ∧ ϕη
P1, ..., Pq

]
= Res

[
[W ] ∧ ϕη
P̃1, ..., P̃q

]
. (5.3)

If the ujk, j = 1, ..., q, k = 1, ..., n are generic (see for example the con-
struction in the proof of Lemma 5.1), the algebraic set V (P̃ ) ∩ |W| ∩ Cn

is discrete (hence finite). We can then conclude from (5.2) and (5.3) that
in order to prove (5.1), it is not restrictive to assume that the algebraic set
V (P ) ∩ |W| ∩Cn is finite, what we will do from now on.

The same argument as above shows that, in order to prove (5.1), one can
replace Pj, j = 1, ..., q, by the polynomial

1

t
P̃

(N,u,t)
j

constructed in Lemma 5.1 (N being choosen sufficiently large, certainly such
that N ≥ max deg Pj, MN ⊂ (I(P )0, I(W )0)) and deg Q < q(N − 1)), and
this is what we do (preserving the notations Pj and Dj). As a consequence
of the residue formula in the algebraic context (which we recalled at the
beginning of this section) and of Corollary 4.1, one has

∑

α∈V (P )∩W(C)

ResW;D1,...,Dq ,α

( η

P1 · · ·Pq

)
=

∑

α∈V (P )∩W(C)

Res
[
[W ] ∧ ϕη
P1, ..., Pq

]

(5.4)

whenever ϕ is a test-function in D(Cn) with arbitrary small support around
the points α ∈ V (P ) ∩ |W|, such that ϕ ≡ 1 in a neighborhood of each
of these points (ϕα will denote next ϕ θα, where θα is a test-function with
support arbitrary small around α and θα ≡ 1 in a neighborhood of α). If α
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is any point in V (P ) ∩ |W| distinct from 0, W is smooth about α (Lemma
5.1, first assertion) and we know in this case that

ResW;D1,...,Dq ,α

( η

P1 · · ·Pq

)
= Res

[
[W ] ∧ ϕα η
P1, ..., Pq

]
, (5.5)

since the construction of our restricted residual currents corresponds to the
construction proposed in [GH], chapter 5, section 1 (this is a consequence
of the classical relation between Bochner-Martinelli and Cauchy kernels),
which is known to fit with the algebraic approach in the smooth case (as
it was recalled at the beginning of this section). Formula (5.1) follows then
from (5.4) and from the identifications (5.5). ♦
Proof of Theorem 2.1. We may now transpose to the algebraic context
the analytic result stated in Proposition 4.1. This gives the statement of the
Theorem 2.1 of our introduction, provided we remember that we have

ResW;D1,...,Dq ,α (ω) = ResC(W)/C,α

([
η

f1, ..., fq

])

for any point α in |W| ∩ |D1| ∩ · · · ∩ |Dq| ∩ Cn (here we just assume that
D1,...,Dn define a 0-dimensional scheme on W , there is no assumption about
what happens on |W| \ |W |) and any ω in Ωq

C(W)/C with simple poles (in W )
along D1 + · · ·+Dq (η = f1 · · · fq ω, where fj denotes a local equation for the
Cartier divisor Dj). Since the reference to the divisors D1, ...,Dq was implicit
in the expression of the element in Ωq

C(W)/C, we used the abridged notation
ResW,α[ ] instead of ResW;D1,...,Dq ,α in order to formulate the statement in this
theorem. ♦
As a direct consequence we formulate the restricted version of the Cayley-
Bacharach Theorem.

Corollary 5.1 Let W be a q-dimensional irreducible affine algebraic subva-
riety in An

C (0 < q < n) and P1, ..., Pq be q polynomials in C[X1, ..., Xn]
satisfying the condition (2.2). Assume also that V (P ) and |W | intersect
transversally at any of the k distinct points which constitute V (P ) ∩ |W |.
Then any algebraic hypersurface {Q = 0}, Q ∈ C[X1, ..., Xn], such that
deg Q < δ1 + · · · + δq − q, which passes through any k − 1 points of the set
V (P ) ∩ |W | passes through the last one also.
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6 An affine version of Wood’s theorem.

Let γ1, ...,γd be d pieces of manifold in IPn(C) and |L0,0| be a line in IPn(C)
which intersects each of the γj transversally respectively at distinct points
pj0, j = 1, ..., d. Assume that affine coordinates are such that the support
|L0,0| is the line ζ1 = · · · = ζn−1 = 0. Then, for (α, β) ∈ (Cn−1)2 close to
(0, 0), the projective line

|Lα,β| := {[ζ0 : ... : ζn] ∈ IPn(C) ; ζk = αk ζn + βk ζ0 , k = 1, ..., n− 1}

intersects transversally γ1,...,γd at the respective points p1(α, β),..., pd(α, β)
(pj(α, β) being close to pj0). In [W], J. Wood gave a simple criterion for the
local germs of manifold γ1, ..., γd to be germs of a global algebraic hypersur-
face (with degree d) |H| in IPn(C) satisfying the relation such that

|H| ∩ |Lα,β| = {p1(α, β), ..., pd(α, β)}

for (α, β) close to (0, 0). The (necessary and sufficient) condition he gave can
be formulated as follows :

d∑

j=1

ζn[pj(α, β)] = h0(α) +
n−1∑

k=1

hk(α) βk , (6.6)

where h0, ..., hn−1 are germs of holomorphic functions in α at the origin (here
ζn[p], where p denotes a point in Cn, means the n-th affine coordinate of
p). Note that the algebraic hypersurface |H| (in IPn(C)) which interpolates
γ1, ..., γd is such that its intersection at infinity with any line |Lα,β|, with
(α, β) close to (0, 0), is empty. What we would like to state here is an affine
analog of this result, Pn(C) being replaced by some irreducible q-dimensional
affine algebraic subvariety of Cn (q = 2, ..., n).

Let us first state the following easy consequence of our Theorem 2.1.

Proposition 6.1 Let W be an algebraic irreducible q-dimensional subvariety
of the affine scheme An

C (with 2 ≤ q ≤ n), m be a positive integer strictly be-
tween 0 and q, and γ1,...,γd be d disjoint pieces of q−m-dimensional analytic
manifold such that γj lies in |W |reg for j = 1, ..., d. Furthermore, assume that
the affine n + m− q-dimensional subspace

L0,0 := {ζ ∈ Cn ; ζk = 0 , k = 1, ..., q −m}
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intersects each γj transversally respectively at points pj0, j = 1, ..., d. Suppose
that there are strictly positive rational numbers δ1, ..., δm and polynomials
P1, ..., Pm with deg Pj = dj ≥ δj, j = 1, ..., m, such that

• |W | ∩ V (P ) is a q − m-dimensional variety in Cn which interpolates
the pieces γj and is such that |W | ∩ V (P ) ∩ L0,0 = {p10, ..., pd0} ;

• there exists strictly positive constants κ,K such that

ζ ∈ |W | , ‖ζ‖ ≥ K =⇒
m∑

j=1

|Pj(ζ)|
‖ζ‖δj

+
q−m∑

k=1

|ζk|
‖ζ‖ ≥ κ . (6.7)

Then, for (α, β) close to (0, 0) in (Cn+m−q)q−m×Cq−m, the affine n+m−q-
dimensional subspace

Lα,β :=
{
ζ ∈ Cn ; ζk =

n+m−q∑

r=1

αk,rζq−m+r + βk , k = 1, ..., q −m
}

intersects each γj transversally respectively at the points pj(α, β), j = 1, ..., d
(necessarily distinct and close to the pj0) and one has

d∑

j=1

ζl[pj(α, β)] =
∑

k∈INq−m

|k|≤ρ+1

h
(l)
k (α) βk1

1 · · · βkq−m

q−m , l = q −m + 1, ..., n , (6.8)

where the h
(l)
k are germs of holomorphic functions in α about the origin and

ρ :=
m∑

j=1

(dj − δj)

Proof. Let, for k = 1, ..., q −m,

Λα,β,k(ζ) := ζk −
n+m−q∑

r=1

αk,r ζq−m+r − βk , ζ ∈ Cn ;

condition (6.7) implies that, when (α, β) is sufficiently close to (0, 0), one has

ζ ∈ |W | , ‖ζ‖ ≥ K =⇒
m∑

j=1

|Pj(ζ)|
‖ζ‖δj

+
q−m∑

k=1

|Λα,β,k(ζ)|
‖ζ‖ ≥ κ

2
. (6.9)
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This shows that for (α, β) close to (0, 0), the only points in Lα,β∩|W |∩V (P )
are d points pj(α, β), j = 1, ..., d which approach the points p10, ..., pd0 (about
each of these points, one can use the implicit function theorem in order to
describe the intersection γj ∩ Lα,β). This proves the first assertion of the
proposition.

It follows from Proposition 4.1 that, as soon as the multi-index k ∈ INq−m is
such that

m∑

j=1

(dj − 1) + 1 <
m∑

j=1

δj +
q−m∑

l=1

(kl + 1)− q =
m∑

j=1

δj + |k| −m,

then, for l = q − m + 1, ..., n, for any finite ordered subset {i1, ..., iq−m} ⊂
{1, ..., n},

Res




[W ] ∧Xl

( m∧
j=1

dPj

)
∧

( q−m∧
l=1

dXil

)

P1, ..., Pm, (Λα,β,1)
k1+1, ..., (Λα,β,q−m)kq−m+1


 = 0

for (α, β) such that (6.9) holds. It is immediate to check (use for exam-
ple formula (4.7)) that for such (α, β), one has, for any multi-index k =
(k1, ..., kq−m) ∈ INq−m,

∂|k|

∂βk1
1 · · · ∂β

kq−m

q−m

Res




[W ] ∧Xl

( m∧
j=1

dPj

)
∧

( q−m∧
l=1

dXil

)

P1, ..., Pm, Λα,β,1, ..., Λα,β,q−m




= ±Res




[W ] ∧Xl

( m∧
j=1

dPj

)
∧

( q−m∧
l=1

dXil

)

P1, ..., Pm, (Λα,β,1)
k1+1, ..., (Λα,β,q−m)kq−m+1


 . (6.10)

Then it follows from (6.9) that the right-hand side of (6.10) (hence the left-
hand side) equals identically 0 when

|k| >
m∑

j=1

(dj − δj) + 1 = ρ + 1 .

This proves that, when (α, β) is close to (0, 0) and l = m− q + 1, ..., n,

d∑

j=1

ζl[pj(α, β)] ≡ Res




[W ] ∧ ζl

( m∧
j=1

dPj

)
∧

( q−m∧
l=1

dΛα,β,l

)

P1, ..., Pm, Λα,β,1, ..., Λα,β,q−m



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is a polynomial expression in β = (β1, ..., βq−m) with total degree at most ρ+1
(the coefficients being holomorphic functions in α). The second assertion of
the proposition is proved. ♦
Remark. Note that we recover here as a particular case the necessity of
Wood’s condition in the case W = An

C, m = 1, δ1 = d1 = d, which means
precisely that in this case we also impose the restriction

{ζ̃ ∈ IPn(C) ; hP1(ζ̃) = 0} ∩ |L0,0| = {p10, ..., pd0} .

Furthermore, one can state the following proposition, which appears as a
weak converse of Proposition 6.1 in the affine setting.

Proposition 6.2 Let γ1,...,γd be d disjoint pieces of n−m-dimensional an-
alytic manifold (1 ≤ m < n) in the affine space Cn. Suppose that for any
(α, β) ∈ (Cm)n−m ×Cn−m close to (0, 0), the affine m-dimensional subspace

Lα,β :=
{
ζ ∈ Cn ; ζk =

m∑

r=1

αk,rζn−m+r + βk , k = 1, ..., n−m
}

intersects transversally γ1,...,γd respectively at points p1(α, β), ..., pd(α, β).

Assume that there exists D ∈ IN and analytic functions h
(l)
k , |k| ≤ D + 1,

l = n−m + 1, ..., n, in a neighborhood of 0 in (Cm)n−m such that for (α, β)
close to (0, 0) in (Cm)n−m ×Cn−m, for any l = n−m + 1, ..., n,

d∑

j=1

ζl[pj(α, β)] =
∑

k∈INn−m

|k|≤D+1

h
(l)
k (α) βk1

1 · · · βkn−m
q−m . (6.11)

Then, one can find a collection of polynomials (Pι)ι∈J with degree at most
d + D which define an affine algebraic variety V (P ) such that for some con-
venient constants ε > 0, κ > 0, K > 0, one has :

• if
Γε :=

⋃

(α,β)∈(Cm)n−m×Cn−m

max(‖α‖,‖β‖)<ε

Lα,β ,

then

ζ ∈ Γε , ‖ζ‖ ≥ K =⇒ max
ι∈J

|Pι(ζ)| ≥ κ‖ζ‖d ; (6.12)
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• for max(‖α‖, ‖β‖) < ε, one has

Lα,β ∩ V (P ) = {p1(α, β), ..., pd(α, β)} . (6.13)

The proof of this proposition is directly inspired on [W] (page 237, proof of
the sufficiency). First we observe, as in Wood’s argument, that conditions
(6.11) imply that for any integer σ ∈ IN∗, for any l = n −m + 1, ..., n, one
has, for (α, β) close to (0, 0) in (Cm)n−m ×Cn−m,

d∑

j=1

(ζl[pj(α, β)])σ =
∑

k∈INn−m

|k|≤D+σ

h
(l)
σ,k(α) βk1

1 · · · βkn−m
n−m , (6.14)

where the h
(l)
σ,k are analytic functions in α in a neighborhood of 0. One can

then define, for any l = n −m + 1, ..., n, the polynomial Al in the variable
Xl (with coefficients analytic in α and polynomial in β) as

Al(Xl, α ; β) =
d∏

j=1

(Xl − ζl[pj(α, β)])

= Xd
l − Al1(α, β)Xd−1

l + · · ·+ (−1)dAld(α, β)

(6.15)

(α and β close to 0 in their respective spaces). For any such α, denote as
Pl,α the element in C[X1, ..., Xn] defined as

Pl,α(X) = Al

(
Xl, α ; X1 −

m∑

r=1

α1,rXn−m+r, ..., Xn−m −
m∑

r=1

αn−m,rXn−m+r

)
.

For each α close to 0 and each l ∈ {n−m + 1, ..., n}, Pl,α is a polynomial in
variables (X1, ..., Xn) with total degree less than d+D, such that all pieces of
manifold γ1, ..., γd lie in V (Pn−m+1,α, ..., Pn,α) for any α close to 0 in (Cm)n−m.

Let now F be the finite subset in L0,0 defined as

ζ ∈ F ⇐⇒ ∀ l = n−m + 1, ..., n , ∃j ∈ {1, ..., d} , ζl = ζl[pj0]

and F ′ := F \ {p10, ..., pd0}, and Λ be an affine form in Xn−m+1, ..., Xn such
that for any ζ ∈ F ′,

Λ(ζ) 6= Λ(pj0), j = 1, ..., d ;
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if

B(Xn−m+1, ..., Xn ; β) :=
d∏

j=1

(Λ(Xn−m+1, ..., Xn))− Λ[pj(0, β)])

and Q(X) := B(Xn−m+1, ..., Xn ; X1, ..., Xn−m), one can check that the col-
lection of all polynomials Pl,α, l = n −m + 1, ..., n, together with the poly-
nomial Q fits with the assertions (6.12) and (6.13). ♦
In the particular case m = 1, one can be more precise and repeat Wood’s
argument in order to obtain the following :

Proposition 6.3 Let γ1,...,γd be d disjoint pieces of smooth analytic hyper-
surface in the affine space Cn. Suppose that for any (α, β) ∈ (Cn−1)2 close
to (0, 0), the affine line

Lα,β :=
{
ζ ∈ Cn ; ζk = αkζn + βk , k = 1, ..., n− 1

}

intersects transversally γ1,...,γd respectively at points p1(α, β), ..., pd(α, β).
Assume that there exists D ∈ IN and analytic functions hk, |k| ≤ D + 1,
in a neighborhood of 0 in Cn−1 such that for (α, β) close to (0, 0) in (Cn−1)2,

d∑

j=1

ζn[pj(α, β)] =
∑

k∈INn−m

|k|≤D+1

hk(α) βk1
1 · · · βkn−m

q−m .

(one from the hk for |k| = D + 1 being non identically zero). Then, one
can find a polynomial P with degree d + D which defines an affine algebraic
variety V (P ) such that for some convenient constants ε > 0, κ > 0, K > 0,
one has :

• if
Γε :=

⋃

(α,β)∈(Cm)n−m×Cn−m

max(‖α‖,‖β‖)<ε

Lα,β ,

then

ζ ∈ Γε , ‖ζ‖ ≥ K =⇒ |P (ζ)| ≥ κ‖ζ‖d ;

• for max(‖α‖, ‖β‖) < ε, one has

Lα,β ∩ V (P ) = {p1(α, β), ..., pd(α, β)} .
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Remark. In the particular case W = An
C, m = 1, Proposition 6.3 appears

as the reciprocal assertion to Proposition 6.1. The difficulty in the more
general case W = An

C, m > 1, is to be able to interpolate the germs γ1, ..., γd

by an algebraic complete intersection V (P1, ..., Pm). It does not seem possible
when m > 1 even if conditions (6.10) are satisfied with D = 0 (which would
mean that the projective variety {hP1 = ... = hPm = 0} corresponding to
the complete intersection V (P ) that interpolates the pieces γj does not hit
|H∞|∩|L0,0|). We do not have the answer to that question yet. Nevertheless,
Proposition 6.2 can be seen as an attempt to settle a converse to Proposition
6.1 in general.
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[BGS] J.-B. Bost, H. Gillet, and C. Soulé, Height of projective varieties and
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