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Abstract

In previous work of the authors and their collaborators (see, e.g., Progress in Math.
114, Birkhäuser (1993)) it was shown how the equivalence of several constructions of residue
currents associated to complete intersection families of (germs of) holomorphic functions
in Cn could be profitably used to solve algebraic problems like effective versions of the
Nullstellensatz. In this work, the authors explain how such ideas can be transposed to
the non-complete intersection situation, leading to an explicit way to construct a Green
current attached to a purely dimensional cycle in Pn. This construction extends a previous
result of the authors done in the complete intersection case. When the cycle is defined
over Q, they give a closed expression for the analytic contribution in the definition of
its logarithmic height (as the residue at λ = 0 of a ζ-function attached to a system of
generators of the ideal which defines the cycle). They also introduce an extension of the
Cauchy-Weil division process and apply it in order to make explicit the membership of the
Jacobian determinant of n elements fj ∈ On, j = 1, ..., n, (which fail to define a regular
sequence) in the ideal (f1, ..., fn).

0. Introduction.

Let Z be an effective algebraic cycle of pure dimension n − d in Pn(C), which corre-
sponds to the homogeneous ideal generated by homogeneous polynomials P1, ..., Pm in
C[X0, X1, ..., Xn]. The main result of this paper (Theorem 3.2) is the construction (in
terms of the polynomials P1, ..., Pm) of a (d − 1, d − 1)-current valued meromorphic map
on C, λ 7→ Gλ such that

Resλ=0 [Gλ]

is a current with singular support in Supp |Z| which satisfies the Green’s equation

ddcG + [Z] = (degZ)(ddc log ‖ζ‖2)d .

Such a result extends what we have done in a previous paper [BY2] under the additional
assumption that Z was defined as a complete intersection by the Pj . When the Pj lie in
Z[X1, ..., Xn], our main Theorem 3.2 leads to the construction (in terms of the polynomials
Pj defining the cycle) of an explicit ζ-function whose residue at λ = 0 is the analytic con-
tribution in the expression of the logarithmic height of the arithmetic cycle Z(P1, ..., Pm),
as defined in [BGS]. We expect such constructions to play a role in the intersection theory
developped recently by P. Tworzewski, E. Cygan (see for example [Cyg]).

1 This research has been partly supported by grants from the NSA and NSF
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In order to realize our objective, it proved to be necessary to extend classical analytic
techniques involved in residue calculus from the usual complete intersection (or proper)
setting to the improper case. Let us explain here more precisely what are the tools we had
to introduce. (In fact, such tools may have their own interest independently of the prob-
lem they were introduced for.) They appear as the analytic counterpart to the algebraic
approach developped for example in [ScS].

It is a well known fact from multidimensional residue calculus (for example in the spirit of
Lipman [Li]) that, given a commutative Noetherian ring A and a quasi-regular sequence
a1, . . . , an of elements in A such that A/(a1, . . . , an) is a projective module of finite type,
then the all residue symbols

Res
[

raq1
1 · · · aqn

n dr1 ∧ · · · ∧ drn

aq1+1
1 , . . . , aqn+1

n

]
, q ∈ Nn ,

(for r, r1, . . . , rn being fixed in A) are independent of q and therefore equal the residue
symbol

Res
[

rdr1 ∧ · · · ∧ drn

a1, . . . , an

]
.

The analytic realization of the residue symbol in the case A = nO, the local ring of germs
of holomorphic functions at the origin in Cn, is

Res
[

hdg1 ∧ · · · ∧ dgn

f1, . . . , fn

]
= lim

~ε→0

1
(2iπ)n

∫

Γf (~ε)

hdg1 ∧ · · · ∧ dgn

f1 · · · fn
, (0.1)

where the fj define a regular sequence in the ring nO and Γf (~ε) is the n-dimensional semi-
analytic chain {|f1| = ε1, . . . , |fn| = εn} conveniently oriented (see [GH], chapter 6). In
this context, the independence of the symbols

Res




hfq1
1 · · · fqn

n dg1 ∧ · · · ∧ dgn

fq1+1
1 , . . . , fqn+1

n




with respect to q is, of course, an obvious fact. The advantage dealing with such an
analytic realization is that the construction of the objects it involves (namely here residue
symbols) may be extended to a less rigid context. We profit from this fact here and,
following ideas which were initiated in [BGVY] and [PTY], adopt the current point of
view and construct analytic residue symbols attached to a collection f1, . . . , fm of germs of
holomorphic functions at the origin (which of course may not define a regular sequence) and
a pair of algebraic and geometric ponderations. The purpose of the algebraic ponderation
is to mimic the construction of residue currents of the form

ϕ → Res




fq1
1 · · · fqn

n ϕ

fq1+1
1 , . . . , fqn+1

n


 , (0.2)
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ϕ being a germ of (n, 0)-smooth test form at the origin; such objects will depend on q if we
drop the hypothesis that the sequence (f1, . . . , fn) is regular. The key point is the change
of section for the representation of the residue symbol in the classical case with the help
of the Bochner-Martinelli approach

Res
[

ϕ
f1, . . . , fn

]
= lim

ε→0

(−1)
n(n−1)

2 (n− 1)!
(2iπε)n

∫

‖f‖2ρ=ε

( n∑

k=1

(−1)k−1
∧

l=1
l6=k

n

∂(ρ2
l fl)

)
∧ϕ , (0.3)

where ρ2
1, . . . , ρ

2
n are germs of smooth strictly positive functions and

‖f‖2ρ := ρ2
1|f1|2 + · · ·+ ρ2

n|fn|2 .

When f1, . . . , fn do not define a regular sequence anymore, one may still define the action
of a (0, n) germ of current thanks to the Bochner-Martinelli construction (0.3), but the
constructions will of course depend of the geometric ponderation ρ.
We will construct such residual objects in section 1 of this paper. Though the currents
we introduce will in general not be closed, they will appear as “quotients” in the divi-
sion of some positive closed currents (dependent on the ponderations) by the dfj , this is
essentially the same as in the complete intersection case, where we have the well known
factorisation formula for the integration current δ[V (f)] (with multiplicities) attached to
the cycle corresponding to the fj :

δ[V (f)](ϕ) = Res
[

ϕ ∧ df1 ∧ · · · ∧ dfp

f1, . . . , fp

]

(here f1, . . . , fp define a germ of complete intersection and the action of the residue symbol
corresponds to the action of the Coleff-Herrera current).

What seems to us as an interesting point (besides the fact that such currents are involved in
the proof of our main Theorem 3.2) is that they also play a significant role in the realization
of division-interpolation formulas in the spirit of Cauchy-Weil’s formula. The fact that in
the classical case, the Cauchy-Weil formula can be understood within the general frame of
an algebraic theory for residue calculus (see for example [BoH], [BY3]) gives us some hope
that the generalizations we propose here (see Theorem 2.1) could be also interpreted from
an algebraic point of view.

As an illustration of the range of application of such techniques, we also study in section
2 a division problem inspired by a result (in the homogeneous algebraic case) stated by E.
Netto [Net], and proved later in a constructive way in [Sp]: if P1, . . . , Pn are n homogeneous
polynomials which simultaneously vanish at some point in Cn \ {0}, then, there is an
explicit division procedure (based on the use of the Euler identity) in order to express the
Jacobian determinant of (P1, ..., Pn) in the ideal generated by the Pj . It was kindly pointed
to us by W. Vasconscelos that when P1, ..., Pn are n arbitrary polynomials in n variables,
then the Jacobian determinant J of (P1, ..., Pn) transports the top-radical of the ideal
I = I(P1, ..., Pn) into I itself, which implies indeed that J lies in I(P1, ..., Pn) if and only if
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the system of equations {P1 = ... = Pn = 0} has no isolated zeros ([Vas1], [Vas2]). Inspired
by a first draft of this manuscript and the algebraic approach from [ScS] and [Vas1], M.
Hickel proved recently that the local version of this result holds: the Jacobian determinant
of n germs f1, ..., fn in On lies in (f1, ..., fn) if and only if the sequence (f1, ..., fn) fails to
be regular in On ([H]). We present in Section 2 of this paper a division process in order
to solve such a membership problem, that is, write explicitely the Jacobian determinant
of f1, ..., fn in I(f1, ..., fn), when

√
I(f1, . . . , fn) =

√
I(f1, . . . , fd) for some d < n or when

the analytic spread of (f1, . . . , fn) is strictly less than n (see Proposition 2.1 and Theorem
2.2).

We dedicate this work to the memory of Gian-Carlo Rota, whose review [Ro] of our book
[BGVY] gave us encouragement to continue our research in this subject.

1. Residue currents in the non-complete intersection case.

Let m ≥ 1 be a positive integer, U an open subset in Cn, and s = (s1, . . . , sm) a vector of
m C1 complex-valued functions in U . For any ordered subset I = {i1, . . . , ir} ⊂ {1, . . . ,m}
with cardinal r ≤ min(m,n), we will denote by Ω(s; I) the differential form

Ω(s; I) =
r∑

k=1

(−1)k−1sik

r∧
l=1
l 6=k

dsil
.

Let now f1, . . . , fm be m complex-valued holomorphic functions of n variables in the open
set U , such that the analytic variety V (f) := {f1 = . . . = fm = 0} has codimension d
(we do not assume here that V (f) is purely dimensional). Let q1, . . . , qm be m positive
integers and ρ1, . . . , ρm m non vanishing real analytic functions in V , and ε > 0, then, as
an example of vector s = (s1, . . . , sm), we consider

sq,ρ,ε =
1
ε
(ρ2

1f1|f1|2q1 , . . . , ρ2
mfm|fm|2qm) .

We also define

‖f‖2q,ρ =< sq,ρ,1, f >=
m∑

k=1

ρ2
k|fk|2(qk+1) .

We have the following lemma

Lemma 1.1. For any ordered subset I ⊂ {1, . . . ,m} with cardinal r ≤ min(m, n), for any
(n, n− r) test form ϕ with coefficients in D(U), the limit

Res




ϕ
fi1 , . . . , fir

f1, . . . , fm




q,ρ

= lim
ε→0

(−1)
r(r−1)

2 (r − 1)!
(2iπ)r

∫

‖f‖2ρ,q=ε

Ω(sq,ρ,ε; I) ∧ ϕ (1.1)

exists and

ϕ 7→ Res




ϕ
fi1 , . . . , fir

f1, . . . , fm




q,ρ
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defines a (0, r) current in U . This current is 0 when r < codim V (f) and, for any (n, n− r)
test form ϕ and any holomorphic function h in U , we have that

h = 0 on V (f) =⇒ Res




hϕ
fi1 , . . . , fir

f1, . . . , fm




q,ρ

= 0

( r∏

l=1

f
qil
il

)
hz ∈ (fq1+1

1 , . . . , fqm+1
m )rOz ∀z ∈ V (f) =⇒ Res




hϕ
fi1 , . . . , fir

f1, . . . , fm




q,ρ

= 0 ,

(1.2)
where we denoted by I the integral closure of an ideal I and by (fq1+1

1 , . . . , fqm+1
m )rOz the

r-th power of the ideal in Oz which is generated by the germs at z of the f
qj+1
j .

Proof. The proof of this result was given in [PTY] when q = 0 and ρj ≡ 1 for any j.
Since the contributions of the weights q and ρ do not substantially affect the proof, we will
just sketch it here. The idea is to compute, when ϕ is fixed, the Mellin transform of the
function

ε 7→ Iq,ρ(ϕ; I; ε) =
(−1)

r(r−1)
2 (r − 1)!

(2iπ)r

∫

‖f‖2ρ,q=ε

Ω(sq,ρ,ε; I) ∧ ϕ,

that is, the function

λ 7→ Jq,ρ(ϕ; I;λ) = λ

∫ ∞

0

I(ϕ; ε)ελ−1dε

defined (and holomorphic) in the half-plane Reλ > r + 1. One has

Jq,ρ(ϕ; I;λ) =
(−1)

r(r−1)
2 (r − 1)!λ
(2iπ)r

∫
‖f‖2(λ−r)

q,ρ ∂ log ‖f‖2q,ρ ∧ Ω(sq,ρ,1; I) ∧ ϕ . (1.3)

Since the result stated in the lemma is local, we can prove it when the support of ϕ is
contained in some arbitrary small neighborhhood of a point z0 ∈ V (f) (near any other
point, the limit (1.1) equals 0, as a consequence, for example, of the coarea formula in [Fe]).
As in our previous work ([BGVY, BY, PTY]), we construct an analytic n dimensional
manifold Xz0 , a neighborhhood W (z0) of z0, a proper map π : Xz0 ← W (z0) which realizes
a local isomorphism between W (z0) \ {f1 · · · fm = 0} and Xz0 \ π−1({f1 · · · fm = 0}), such
that in local coordinates on Xz0 (centered at a point x), one has, in the corresponding
local chart Ux around x,

fj ◦ π(t) = uj(t)t
αj1
1 · · · tαjn

n = uj(t)tαj , j = 1, . . . , m,

where the uj are non vanishing holomorphic functions and at least one of the monomials
t(qj+1)αj = µ(t) divides any t(qk+1)αk , k = 1, . . . , m. Note that the normalized blow-up
of the ideal (fq1+1

1 , . . . , fqm+1
m )Oz0 , as used in [Te], is not enough for us, since we need to

put ourselves in the normal crossing case in order to prove the existence of the limit (1.1).
Note also that any coordinate tk which divides µ divides all the π∗fj , j = 1, ...,m. Let us
define the formal expression

Θλ = λ‖f‖2(λ−r)
q,ρ ∂ log ‖f‖2q,ρ ∧ Ω(sq,ρ,1; I) ,
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λ being a complex parameter. If we express this differential form in local coordinates t
and profit from the fact that µ divides all (π∗fj)qj+1, j = 1, ..., m, we get

π∗Θλ = λ
|aµ|2λ

µr

( r∏

l=1

(π∗fil
)qil

)(
ϑ + $ ∧ ∂µ

µ

)
, (1.4)

where ϑ and $ are smooth forms of respective type (0, r) and (0, r − 1) and a is a non
vanishing function. Since Jq,ρ(ϕ; I;λ) is a combination of terms of the form

∫

Ux

π∗Θλ ∧ ψπ∗ϕ, (1.5)

where x ∈ Xz0 , ψ is an element of a partition of unity for π∗(Supp ϕ) and ∂µ
µ is a linear

combination of the dtl

tl
, l = 1, . . . , n. We conclude from the techniques based on integration

by parts developped for example in [BGVY], chapter 3, section 2, that

λ 7→ Jq,ρ(ϕ; I;λ)

can be continued as a meromorphic function in C, whose poles are strictly negative rational
numbers. When h is a holomorphic function in U which vanishes on V (f), all coordinates
t that divide µ divide also π∗h since they divide all π∗fj , j = 1, . . . ,m. It follows that,
for any test form ϕ, Jq,ρ(hϕ; I; 0) = 0, since the singularities of the differential form
π∗Θλ ∧ ψπ∗(hϕ) have no antiholomorphic factor. Let us suppose now that the germ of h
at z0 is such that

( r∏

l=1

f
qil
il

)
hz0 ∈ (fq1+1

1 , . . . , fqm+1
m )rOz0 .

It follows from the valuative criterion [LeT] that µr divides

Πh =
( r∏

l=1

(π∗fil
)qil

)
π∗h .

Thus, the singularities of the differential form π∗Θλ∧ψπ∗(hϕ) have no holomorphic factor.
Hence, in this case, we can again conclude that Jq,ρ(hϕ; I; 0) = 0.

On the other hand, we know from ([Bjo1], 6.1.19) that for any z0 ∈ V (f), there is a
strictly positive integer Nz0 and differential operators Qz0,j(ζ, ∂

∂ζ , ∂

∂ζ
) with coefficients in

Oz0 such that
[
λNz0 −

Nz0∑

j=1

λNz0−jQz0,j(ζ,
∂

∂ζ
,

∂

∂ζ
)
]
‖f‖2λ

q,ρ = 0 ,

where this is an identity between two distribution-valued meromorphic functions of λ in
a neighborhood of z0. With the help of this identity we can prove, as in [BaM,Bjo2],
that the meromorphic continuation of the function λ 7→ Jq,ρ(ϕ; I; λ) has rapid decrease
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on vertical lines in the complex plane when λ tends to ∞. Therefore, we can invert
the Mellin transform and obtain the existence of the limit when ε → 0 of the function
ε 7→ Iq,ρ(ϕ; I; ε). We also have Iq,ρ(ϕ; I; 0) = Jq,ρ(ϕ; I; 0). In order to prove that the
currents we just constructed are zero if r < d we proceed as follows. Assume that r < d
and choose a test form ϕ ∈ Dn,n−r(W (z0)). One can rewrite ϕ as

ϕ =
∑

1≤j1<···<jn−r≤n

ϕj1,...,jn−rdζ1 ∧ · · · ∧ dζn ∧
n−r∧

l=1

dζjl
.

For dimensionality reasons, each differential form
n−r∧
l=1

dζjl
is zero when restricted to the

n− d-dimensional analytic variety V (f). This implies that, given a local chart Ux around
some point x on the analytic manifold X , the differential form π∗

∧n−r
l=1 dζjl

(which has
antiholomorphic functions as coefficients) vanishes on the analytic variety {µ(t) = 0},
where µ is the distinguished monomial corresponding to the local chart. Every conjugate
coordinate tk such that tk divides µ, divides each coefficient of π∗

∧n−r
l=1 dζjl

which does not
contain dtk. This implies that for any local chart Ux, the differential form π∗Θλ ∧ψπ∗(ϕ)
appearing in the integral (1.5) related to this chart contains only holomorphic singularities
(such singularities arise from logarithmic derivatives and therefore are cancelled by the
corresponding terms coming from π∗ϕ). This completes the proof. ♦

We can combine these currents with the differential forms dfj , in order to construct
certain closed positive currents [f ]q,ρ

r , r = d, . . . ,min(m,n). Among them, the currents
that corresponds to r = d are related (as we shall see later) to the integration current
(with multiplicities) on the analytic cycle defined by the fj . The other ones will usually be
supported on the embedded components of the cycle, provided q is chosen conveniently.

Lemma 1.2. Let U, f1, . . . , fm, q, ρ be as in Lemma 1.1, and d ≤ r ≤ min(m, n), then the
(r, r) current

ϕ 7→
∑

1≤i1<i2<...<ir≤m

( r∏

l=1

(qil
+ 1)

)
Res




dfi1 ∧ · · · ∧ dfir ∧ ϕ
fi1 , ..., fir

f1, ..., fm




q,ρ

(1.6)

is a closed positive current [f ]q,ρ
r supported by V (f). The action of this current on a

(n− r, n− r) test form can be also expressed as the residue at λ = 0 of the meromorphic
function of λ

(r − 1)!
(2πi)r

∫

U

‖f‖2(λ−r−1)
q,ρ ∂‖f‖2q,ρ∧∂‖f‖2q,ρ∧

[ ∑
j1<...<jr−1

1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

)∧∂(ρjl
f

qjl
+1

jl
)
]
∧ϕ

(1.7)

Proof. First we give the proof of this lemma when the functions ρj are constant. We have
in this case

∂‖f‖2q,ρ =
m∑

j=1

(qj + 1)ρ2
j |fj |2qj dfj
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and

∂sq,ρ,1
j =

m∑

j=1

(qj + 1)ρ2
j |fj |2qj dfj , j = 1, . . . , m .

An immediate algebraic computation shows that, for any (n− r, n− r) test form ϕ,

[ ∑
i1<...<ir
1≤il≤m

( r∏

l=1

(qil
+ 1)

)
Ω(sq,ρ,1; {i1, . . . , ir}) ∧

r∧

l=1

dfil

]
∧ ϕ =

= (−1)r∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

) ∧
r−1∧

l=1

∂(ρjl
f

qjl
+1

jl
)
]
∧ ϕ .

(1.8)

Let now, for ε > 0,

Φ(ε) =
γr

εr

∫

‖f‖2q,ρ=ε

[ ∑
i1<...<ir
1≤il≤m

( r∏

l=1

(qil
+ 1)

)
Ω(sq,ρ,1; {i1, . . . , ir}) ∧

r∧

l=1

dfil

]
∧ ϕ ,

where

γr :=
(−1)

r(r−1)
2 (r − 1)!

(2iπ)r
.

We know from Lemma 1.1 that the limit of Φ(ε) when ε → 0 exists and equals (by definition
of the residue symbols) exactly [f ]q,ρ

r . This implies that the function defined on ]0,∞[ by

τ 7→ Ψ(τ) = τγrr

∫ ∞

0

εr−1Φ(ε)dε

(ε + τ)r+1

also has a limit at 0, which equals Ψ(0) = Φ(0) = [f ]q,ρ
r (ϕ). Using the Fubini and Lebesgue

theorems, one can show that for any τ > 0,

Ψ(τ) = τrγr

∫

U

∂‖f‖2q,ρ ∧
[ ∑

i1<...<ir
1≤il≤m

( r∏
l=1

(qil
+ 1)

)
Ω(sq,ρ,1; {i1, . . . , ir}) ∧

r∧
l=1

dfil

]
∧ ϕ

‖f‖2q,ρ(‖f‖2q,ρ + τ)r+1

=
τr!

(2πi)r

∫

U

∂‖f‖2q,ρ ∧ ∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧
l=1

∂(ρjl
fjl

qjl
+1

) ∧ ∂(ρjl
f

qjl
+1

jl
)
]
∧ ϕ

‖f‖2q,ρ(‖f‖2q,ρ + τ)r+1

(1.9)
(note that the integrals in the right-hand side of (1.9) are absolutely convergent, which
justifies our use of those theorems to perform the computation of Ψ(τ)). Since Ψ(τ)
corresponds to the action on ϕ of a positive current (just look at the second equality in
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(1.9)), the current ϕ 7→ [f ]q,ρ
r (ϕ) = Φ(0) = Ψ(0) is positive. On the other hand, we have

also

Φ(ε) =
(r − 1)!
(2πiε)r

∫

‖f‖2q,ρ=ε

∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

) ∧ ∂(ρjl
f

qjl
+1

jl
)
]
∧ ϕ

= − (r − 1)!
(2πiε)r

∫

‖f‖2q,ρ=ε

∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

) ∧ ∂(ρjl
f

qjl
+1

jl
)
]
∧ ϕ .

(1.10)
Since the ρj are here supposed constant, the differential form

∑
j1<...<jr−1

1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

) ∧ ∂(ρjl
f

qjl
+1

jl
)

is d-closed. It follows from Stokes’s theorem that

∫

‖f‖2q,ρ=ε

∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

) ∧ ∂(ρjl
f

qjl
+1

jl
)
]
∧ ∂ψ =

=
∫

‖f‖2q,ρ=ε

∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

) ∧ ∂(ρjl
f

qjl
+1

jl
)
]
∧ ∂ξ = 0

for any (n−r−1, n−r) (resp. (n−r, n−r−1)) test form ψ (resp. ξ). Therefore, we have,
if ϕ = ∂ψ or ϕ = ∂ξ, Φ(0) = lim

ε→0
Φ(ε) = [f ]q,ρ

r (ϕ) = 0, which shows that the current [f ]q,ρ
r

is closed. Thus, we have proved that if the ρj are constants, the current [f ]q,ρ
r is closed

and positive.
We now come back to the general case. The Mellin transform of the function

Φ(ε) =
γr

εr

∫

‖f‖2q,ρ=ε

[ ∑
i1<...<ir
1≤il≤m

( r∏

l=1

(qil
+ 1)

)
Ω(sq,ρ,1; {i1, . . . , ir}) ∧

r∧

l=1

dfil

]
∧ ϕ

is

λ

∫ ∞

0

ελ−1Φ(ε)dε =

= λγr

∫

U

||f ||2(λ−r−1)∂||f ||2q,ρ ∧
[ ∑

i1<...<ir
1≤il≤m

( r∏

l=1

(qil
+ 1)

)
Ω(sq,ρ,1; I) ∧

r∧

l=1

dfil

]
∧ ϕ

(1.11)
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If we express this function using the same resolution of singularities that we used in the
proof of Lemma 1.1 and use the algebraic relation (1.8), we see that the value at λ = 0 of
this function is the same than the value at λ = 0 of the function of λ

λ(r − 1)!
(2iπ)r

∫

U

‖f‖2(λ−r−1)∂‖f‖2q,ρ∧∂‖f‖2q,ρ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

)∧∂(ρjl
f

qjl
+1

jl
)
]
∧ϕ

(any term where the differentiation of one of the ρj is involved does not contribute to
the value at λ = 0, since, when we express it in local coordinates on the local chart
after resolution of singularities, the integrand contains only holomorphic factors in its
denominator). This function is the Mellin transform of the following function of ε > 0,

ε 7→ (r − 1)!
(2πiε)r

∫

||f ||2q,ρ=ε

∂||f ||2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

∂(ρjl
fjl

qjl
+1

) ∧ ∂(ρjl
f

qjl
+1

jl
)
]
∧ ϕ .

Using the same argument preceeding (1.9), one sees that the value of Φ̃ at ε = 0, which is
well-defined, equals the value at τ = 0 of the function

Ψ̃(τ) =
τr!

(2πi)r

∫

U

∂‖f‖2q,ρ ∧ ∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧
l=1

(∂(ρjl
fjl

qjl
+1

) ∧ ∂(ρjl
f

qjl
+1

jl
)
]
∧ ϕ

‖f‖2q,ρ(‖f‖2q,ρ + τ)r+1
.

Since Φ̃(0) = Ψ̃(0) = [f ]q,ρ
r (ϕ), the last current is positive as a limit of positive smooth

currents, as seen earlier in (1.9). As above, note that the value at λ = 0 of the function
defined by (1.11) is the same as the value at λ = 0 of the function

λ(r − 1)!
(2iπ)r

∫

U

‖f‖2(λ−r−1)∂‖f‖2q,ρ∧∂‖f‖2q,ρ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

d(ρjl
fjl

qjl
+1

)∧d(ρjl
f

qjl
+1

jl
)
]
∧ϕ

This function is the Mellin transform of the function defined for ε > 0 by

Φ̃(ε) =
(r − 1)!
(2πiε)r

∫

||f ||2q,ρ=ε

∂||f ||2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

d(ρjl
fjl

qjl
+1

) ∧ d(ρjl
f

qjl
+1

jl
)
]
∧ ϕ

= − (r − 1)!
(2πiε)r

∫

||f ||2q,ρ=ε

∂||f ||2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

d(ρjl
fjl

qjl
+1

) ∧ d(ρjl
f

qjl
+1

jl
)
]
∧ ϕ .

Since the differential form

∑
j1<...<jr−1

1≤jl≤m

r−1∧

l=1

d(ρjl
fjl

qjl
+1

) ∧ d(ρjl
f

qjl
+1

jl
)
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is closed, it follows from Stokes’s theorem that
∫

‖f‖2q,ρ=ε

∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

(d(ρjl
fjl

qjl
+1

) ∧ d(ρjl
f

qjl
+1

jl
)
]
∧ ∂ψ =

=
∫

‖f‖2q,ρ=ε

∂‖f‖2q,ρ ∧
[ ∑

j1<...<jr−1
1≤jl≤m

r−1∧

l=1

(d(ρjl
fjl

qjl
+1

) ∧ d(ρjl
f

qjl
+1

jl
)
]
∧ ∂ξ = 0

for any (n − r − 1, n − r) (resp. (n − r, n − r − 1)) test form ψ (resp. ξ). Therefore, the
current ϕ 7→ [f ]q,ρ

r (ϕ) = Φ̃(0) = lim
ε→0

Φ̃(ε) is closed. This completes the proof. ♦

2. Interpolation-Division formulas.

Let m ∈ N∗, U an open set in Cn, and f1, . . . , fm, m holomorphic complex-valued
functions in U . Let s1, . . . , sm be m C1 complex-valued functions in U . Let < s, f > be
the function defined in U as

< s(ζ), f(ζ) >=< s, f > (ζ) :=
m∑

j=1

sj(ζ)fj(ζ) .

Let u1, . . . , um be m C1 (1, 0)forms in U . Consider the formal differential form in U defined
as

Ξ(λ; ζ, u) =< s, f >λ−1
m∑

j=1

sjduj .

One has, if ψ1 is any (n− 1, 0) form in ζ,

dζΞ(λ; ζ, u) ∧ ψ1 =< s, f >λ−1

(
(λ− 1)

[d < s, f > ∧
m∑

j=1

sjduj

< s, f >2

]
+

m∑

j=1

dsj ∧ duj

)
∧ ψ1 .

Therefore, if ψr is any (n− r, 0) differential form in ζ,

(−1)
r(r−1)

2

r!
(dζΞ(λ; ζ, u))r ∧ ψr =

=< s, f >r(λ−1)
∑

i1<...<ir
1≤il≤m

[ r∧

l=1

dsil
+ (λ− 1)

d < s, f >

< s, f >
∧ Ω(s; I)

]
∧ ( r∧

l=1

duil

) ∧ ψr

(2.1)
where, for any ordered subset I = {i1, . . . , ir} of {1, ...,m}, Ω(s; I) has been defined in
Section 1. The term containing λ as a factor in the development of (dζΞ(λ; ζ, u))r ∧ ψr is

(−1)
r(r−1)

2 r! λ < s, f >r(λ−1) d < s, f >

< s, f >
∧

∑
i1<...<ir
1≤il≤m

Ω(s; I) ∧ ( r∧

l=1

duil

) ∧ ψr . (2.2)
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In particular, when s = sq,ρ,1 as in Section 1, this coefficient is exactly

(−1)
r(r−1)

2 r!λ‖f‖2r(λ−1)
q,ρ

∑
i1<...<ir
1≤il≤m

∂‖f‖2q,ρ

‖f‖2q,ρ

∧ Ω(sq,ρ,1; {i1, . . . , ir}) ∧
( r∧

l=1

duil

) ∧ ψr . (2.3)

The following result is a variant of a division formula that appears in [BGVY, DGSY].

Theorem 2.1. Let f1, . . . , fm be m holomorphic functions in some neighborhood U of the
origin in Cn, n > m. Let q ∈ Nm and ρ1, . . . , ρm m real-analytic functions non vanishing
in U . Suppose that [gjk] 1≤j≤m

1≤k≤n
is a matrix of holomorphic functions in U × U such that

fj(z)− fj(ζ) =
n∑

k=1

gjk(z, ζ)(zk − ζk) , j = 1, . . . , m,

and let

Gj(z, ζ) =
n∑

k=1

gjk(z, ζ)dζk , j = 1, . . . , m .

Let ϕ be a test function with compact support in U which is identically equal to 1 in some
neighborhood Ũ of the origin, and σ a C1 n-valued function of 2n variables (z, ζ), defined

in Ũ ×W , where W is a neighborhood of supp (dϕ), holomorphic in z, and such that, for

any z ∈ Ũ ,

dϕ(ζ) 6= 0 =⇒
n∑

k=1

σk(z, ζ)(ζk − zk) = 1.

For any function h holomorphic in U , let the function T q,ρ
0 h be defined in Ũ by

T q,ρ
0 h(z) = −

∑

d≤r≤m

∑
i1<...<in−r

1≤il≤n

∑
j1<...<jr
1≤js≤m

(
γn−r Res




hdϕ ∧ Ω(σ(z, ζ); I) ∧ ( n−r∧
l=1

dζil

) ∧
r∧

s=1
Gjs(z, ζ)

fj1 , . . . , fjr

f1, . . . , fm




q,ρ ) (2.4)

where, γt = (−1)
t(t−1)

2 (t−1)!
(2πi)t , t ∈ N, and the action of the residual currents is computed

with respect to the ζ-variables. Then, T q,ρ
0 h has the property that the germ (h−T q,ρ

0 h) 0 ∈
(f1, . . . , fm)O 0. Moreover, one can write an explicit division formula

h(z)− T q,ρ
0 h(z) =

m∑

j=1

T q,ρ
j h(z)fj(z), z ∈ Ũ , (2.5)
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where the T q,ρ
j h are holomorphic functions in Ũ .

Proof. The proof of this result, when q = 0 and ρj ≡ 1 for any j is given in [DGSY, Section
5]. The method can be immediately extended to our case. It is based on the weighted
Bochner-Martinelli formulas for division (see, for example, in [BGVY, Proposition 5.18],
or Section 3 in Chapter 2 of the same reference). We will follow the notations used
in the above references. We just need to express the Berndtsson-Andersson weighted
representation formula with one weight (q, Γ), where

q(z, ζ) = qλ(z, ζ) = ‖f‖2(λ−1)
q,ρ

( m∑

j=1

sq,ρ,1
j gj1(ζ, z), . . . ,

m∑

j=1

sq,ρ,1
j gjn(ζ, z)

)
= (qλ,1, . . . , qλ,n)

and Γ(t) = tm, where λ is a complex parameter such that Re λ > 2. We let

Qλ(z, ζ) =
n∑

k=1

qλ,kdζk

and

Σ(z, ζ) =
n∑

k=1

σk(z, ζ)dζk .

If we write

Kλ(z, ζ) =
m∑

l=0

(
m
l

) (
1− ‖f‖2q,ρ + ‖f‖2(λ−1) < sq,ρ,1, f(z) >

)m−l[
Σ ∧ (∂ζΣ)n−1−l ∧ (∂ζQλ)l

]
,

we have, for any z in Ũ ,

h(z) = − 1
(2πi)n

∫

U

h(ζ)dϕ(ζ) ∧Kλ(z, ζ) . (2.6)

We now consider (2.6) as an equality between two meromorphic functions of λ which have
no pole at the origin. The identity

h(z) = − 1
(2πi)n

[∫

U

h(ζ)dϕ(ζ) ∧Kλ(z, ζ)
]

λ=0

,

together with the formulas (2.3) and the definition of our residual currents, gives the
division formula (2.5). ♦

As an application of this theorem, we would like to mention the following result. When
f1, . . . , fn are n elements in nO0 defining a regular sequence, it is a classical fact that the
germ of the Jabobian J = J(f1, . . . , fn) cannot be in the ideal (f1, . . . , fn) nO0 (see for
example [EiL]). In fact, one has

dim nO0

(f1, . . . , fn)
= Res

[
J(ζ)dζ1 ∧ · · · ∧ dζn

f1, . . . , fn

]
.
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If the Jacobian were in the ideal (f1, . . . , fn), we would have have, from the local duality
theorem, dim nO0

(f1,...,fn) = 0, which is absurd. On the other hand, when P1, . . . , Pn are
homogeneous polynomials in n variables defining a non discrete variety (that is, the set of
common zeroes contains other points besides the origin), it was claimed by E. Netto ([Net],
vol 2, §441) and proved in [Sp] than the Jacobian of P1, . . . , Pn lies in the ideal generated
by the Pj , j = 1, . . . , n. This problem was pointed to us by A. Ploski. Using our methods,
we can prove the following local result.

Proposition 2.1. Let f1, . . . , fn ∈ nO0, such that the germ of variety V (f1, . . . , fn) equals
set theoretically the germ of variety of V (f1, . . . , fν) for some ν < n. Then, the germ of
the Jacobian J = J(f1, . . . , fn) is in the ideal (f1, . . . , fn) nO0. If one takes representatives
fj for the germs, the quotients TjJ in the division formula

J =
n∑

j=1

TjJ(z)fj(z), z ∈ Ũ

(where Ũ is a neighborhood of 0) can be expressed in terms of the action of currents that
can be defined directly from the analytic continuation of λ 7→ Fλ, where F = |f1|2 + · · ·+
|fν |2 + |fν+1|2N + · · ·+ |fn|2N for some convenient N ∈ N∗.

Proof. We will consider f1, . . . , fn as germs in n+1O0 (depending only of the first n coor-
dinates ζ1, . . . , ζn). We take representatives for the fj , they define in some neighborhood
U of the origin in Cn+1 an analytic variety V (f) with codimension strictly less than n,
which is set theoretically the same as V (f1, . . . , fν). Let gjl, 1 ≤ j, l ≤ n be any collection
of holomorphic functions in U × U , depending on ζ1, . . . , ζn, z1, . . . , zn, such that

fj(z)− fj(ζ) =
n∑

l=1

gjl(z, ζ)(zl − ζl), j = 1, . . . , n .

Let ϕ a test function in D(Cn+1), with compact support in U , which is identically equal to
1 in a neighborhhood Ũ of the origin. We know that near any point z0 of V (f1, . . . , fn) =
V (f1, . . . , fν) in supp (dϕ), the germs at z0 of fν+1, . . . , fn are in the radical of the ideal
(f1, . . . , fν) n+1Oz0 . Local Lojasiewicz inequalities imply that there exists M such that in
a neighborhood of supp (dϕ), fM

ν+1, . . . , f
M
n are locally in the integral closure of the ideal

generated by (f1, . . . , fν). We choose ρj ≡ 1, j = 1, . . . , n, qj = 0, j = 1, . . . , ν, qj = nM ,
j = ν + 1, . . . , n. In order to prove the proposition, it is enough to prove (because of
Theorem 2.1) that

∑

1≤r≤n

∑
i1<...<in+1−r

1≤il≤n+1

∑
j1<...<jr
1≤js≤n

(
γn+1−r Res




Jdϕ ∧ Ω(σ(z, ζ); I) ∧ ( n+1−r∧
l=1

dζil

) ∧
r∧

s=1
Gjs(z, ζ)

fj1 , . . . , fjr

f1, . . . , fn




q,ρ )
= 0

(2.7)
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for any z ∈ U , where σ is a n + 1-valued function in (z, ζ), defined in Ũ ×W , W being a
neighborhood of supp (dϕ), and

dϕ(ζ) 6= 0 =⇒
n+1∑

k=1

σk(z, ζ)(ζk − zk) = 1 .

We first want to show that all the residue symbols in (2.7) corresponding to subsets J =
{j1, . . . , jr} ⊂ {1, . . . , n} with cardinal strictly less than n are identically zero (as functions
of z). We first notice that if J is such a ordered subset of {1, . . . , n}, with cardinal r < n,
and I = {i1, . . . , in+1−r} is any ordered subset of {1, . . . , n + 1} with cardinal n + 1 − r,
we have ( r∏

s=1

f
qis
js

)
J dζ1 ∧ . . . ∧ dζn =

( r∏
s=1

f
qjs+1
js

)( r∧
s=1

dfjs

fjs

)
∧

∧

j /∈J
dfj (2.8)

and

Jdϕ ∧ Ω(σ(z, ζ); I) ∧ ( n+1−r∧

l=1

dζil

) ∧
r∧

s=1

Gjs(z, ζ) = Jdζ1 ∧ · · · ∧ dζn ∧ φ

where φ is a (1, r)-differential form with smooth coefficients of compact support in U . As
in Section 1, let

Θλ = λ‖f‖2(λ−r)
q,ρ ∂‖f‖2q,ρ ∧ Ω(sq,ρ,1;J ),

where λ is a complex parameter. Let z0 be a common zero of (f1, . . . , fn) in the support of
dϕ and π : Xz0 7→ W (z0) a resolution of singularities near z0 for {f1 · · · fn = 0}, such that
in local coordinates on Xz0 (centered at a point x), one has, in the corresponding local
chart Ux around x,

(fj ◦ π(t))qj+1 = uj(t)t
αj,1
1 · · · tαj,n+1

n+1 = θj(t)tαj , j = 1, . . . , n,

where the uj , j = 1, . . . , n, are non vanishing holomorphic functions and at least one of
the monomials t(qj+1)αj = µ(t), j = 1, . . . , n, divides any t(qk+1)αk , k = 1, . . . , n. Recall
that the function

λ 7→ Jq,ρ
(
Jdζ1 ∧ · · · ∧ dζn ∧ φ;J ; λ

)

is a meromorphic function of λ such that

Jq,ρ(Jdζ1 ∧ · · · ∧ dζn ∧ φ;J ; 0) =

= Res




Jdϕ ∧ Ω(σ(z, ζ); I) ∧ ( n+1−r∧
l=1

dζil

) ∧
r∧

s=1
Gjs(z, ζ)

fj1 , . . . , fjr

f1, . . . , fn




q,ρ

.

This function of λ is a combination of terms of the form
∫

Ω

π∗Θλ ∧ ψπ∗(Jdζ1 ∧ · · · ∧ dζn ∧ φ), (2.9)
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where ψ is a member of a partition of unity for π∗(supp(dϕ)). If we compute π∗Θλ (using
(1.4) and (2.8)), we can express (2.9) as

λ

∫

Ω

|aµ|2λ
(
ϑ̃ + $̃ ∧ ∂µ

µ

)
∧

( r∧
s=1

d(π∗fjs
)

π∗fjs

)
∧

∧

j /∈J
d(π∗fj) ∧ ψπ∗φ ,

where ϑ̃ and $̃ are smooth differential forms of respective types (0, r), (0, r − 1), and a
is a non vanishing function. Suppose now that tι is a coordinate that divides µ; then, it
divides all π∗fj , j = 1, . . . , n. For any j ∈ {1, . . . , n}, in particular, when j /∈ J , we have

π∗(dfj) = d(π∗fj) = tιξ1 + ξ2dtι,

where ξ1 and ξ2 are (0, 1) and (0, 0) forms in Ux. Therefore, since

r∧
s=1

d(π∗fjs)
π∗fjs

is a wedge product of logarithmic derivatives, the differential form

( r∧
s=1

d(π∗fjs)
π∗fjs

)
∧

∧

j /∈J
d(π∗fj)

does not have tι as a factor in its denominator. But the only possible holomorphic non
vanishing factors in the denominator of

π∗Θλ ∧ ψπ∗(Jdζ1 ∧ · · · ∧ dζn ∧ φ)

are of the form tkι
ι , since we have from (1.4)

π∗Θλ = λ
|aµ|2λ

µr

( r∏
s=1

(π∗fjs)
qjs

)(
ϑ + $ ∧ ∂µ

µ

)
,

where ϑ and $ are smooth differential forms of type (0, r), (0, r − 1) respectively (see
(1.4)). This means that the differential form

π∗Θλ ∧ ψπ∗(Jdζ1 ∧ · · · ∧ dζn ∧ φ)

has no holomorphic singularities. We conclude that (Jdζ1 ∧ · · · ∧ dζn ∧ φ;J ; 0) = 0, which
means that

Res




Jdϕ ∧ Ω(σ(z, ζ); I) ∧ ( n+1−r∧
l=1

dζil

) ∧
r∧

s=1
Gjs(z, ζ)

fj1 , . . . , fjr

f1, . . . , fn




q,ρ

= 0 .
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It remains for us to show that, for any z ∈ U ,

Res




Jσn+1dϕ ∧ dζn+1 ∧
n∧

j=1

Gj(z, ζ)

f1, . . . , fn

f1, . . . , fn




q,ρ

= 0 . (2.10)

We know also that if U is small enough, which we can always assume, the radical of
(f1, . . . , fn) is the radical of (f1, . . . , fν). Let us consider again a point z0 in V (f) =
V (f1, . . . , fν) ∩ supp (dϕ); in a neighborhood of such point, fν+1, . . . , fn are identically
zero on any component of the analytic set {f1 = . . . = fν = 0} that contains z0. Let
as before π : Xz0 7→ W (z0) (where W (z0) is a neighborhhood of z0) be a resolution of
singularities such that in local coordinates on Xz0 (centered at a point x), one has, in the
corresponding local chart Ux around x,

fj ◦ π(t) = uj(t)t
αj,1
1 · · · tαj,n+1

n+1 = uj(t)tαj , j = 1, . . . , ν,

where the uj are non vanishing holomorphic functions and at least one of the monomials
tαj = µ(t), j = 1, . . . , d, divides any tαk , k = 1, . . . , ν. As before, it divides also any
π∗fqj+1

j , j = 1, . . . , n, because qj = nM > M for j = ν + 1, . . . , n. We even know that µn

divides π∗fnM
ν+1, . . . , π

∗fnM
n , since any fnM

j , j = ν + 1, . . . , n, is in the n-th power of the
integral closure of the ideal generated by the germs of f1, . . . , fν in n+1Oz0 . We can write

π∗‖f‖2q,ρ = |aµ|2 +
n∑

j=ν+1

π∗|fj |2nM = |ãµ|2,

where a and ã are non vanishing functions in the local chart. Therefore, if we set

Θλ = λ‖f‖2(λ−n)
q,ρ ∂‖f‖2q,ρ ∧ Ω(sq,ρ,1; {1, . . . , n}),

we have, in local coordinates in the local chart,

π∗Θλ = λ
|aµ|2λ

µn

( n∏

j=ν+1

π∗fj

)nM(
ϑ + $ ∧ ∂µ

µ

)
. (2.11)

The factor
( n∏

j=ν+1

π∗fj

)nM

in (2.11) compensates the singularity in µn. Thus, the differ-

ential form (2.11) has only antiholomorphic singularities. Now, since

λ 7→ Jq,ρ
(
Jσn+1dϕ ∧ dζn+1 ∧

n∧

j=1

Gj(z, ζ); {1, . . . , n};λ
)

is a combination of integrals of the form
∫

Ux

π∗Θλ ∧ ψπ∗
(
Jσn+1dϕ ∧ dζn+1 ∧

n∧

j=1

Gj(z, ζ)
)
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for x ∈ Xz0 , we have

Jq,ρ
(
Jσn+1dϕ ∧ dζn+1 ∧

n∧

j=1

Gj(z, ζ); {1, . . . , n}; 0
)

= Res




Jφ
f1, . . . , fn

f1, . . . , fn




q,ρ

= 0

and the proof of our proposition is complete. Note that, as a consequence of Theorem 2.1,
we have also in this case an explicit division formula

J(z) =
n∑

j=1

TjJ(z)fj(z), z ∈ Ũ . ♦

Remark 2.1. In fact, the only terms for which we had to introduce the weight q and use
the geometric hypothesis on V (f) are the terms of the form (2.10). In general, one has

T0J(z) = − 1
(2πi)

Res




Jσn+1dϕ ∧ dζn+1 ∧
n∧

j=1

Gj(z, ζ)

f1, . . . , fn

f1, . . . , fn




q,ρ

= − 1
2iπ(nM + 1)n−ν

[f ]q,ρ
n

(
det[gjl(z, ζ)]σn+1(z, ζ)∂ϕ ∧ dζn+1

)
, z ∈ Ũ ,

and
(J − T0J)0 ∈ (f1, . . . , fn) nO0 .

Since the (n, n) current [f ]q,ρ
n is positive, and therefore is of the form

( 1
2i

)n

Θ
m∧

l=1

dζl ∧ dζl ,

where Θ is a positive measure, then, for any holomorphic function h in U which vanishes
on V (f), one has T0(hJ) = 0, which means that hJ is locally in Ũ in the ideal generated
by (f1, . . . , fn). This result is well known when f1, . . . , fn define the origin as an isolated
zero (it follows from Kronecker’s interpolation formula [GH]).

In fact, we have the following theorem.

Theorem 2.2. Let f1, . . . , fn be n germs of holomorphic functions in nO0 which define
an ideal with analytic spread ν strictly less than n. Then, the germ at 0 of the Jacobian
J = J(f1, . . . , fn) is in the ideal (f1, . . . , fn) nO0.

Proof. Consider f̃1, . . . , f̃ν such that the germs at 0 of (f̃1, . . . , f̃ν) define an ideal with the
same integral closure than the ideal generated by the germs of the fj . As before, we take
representatives for the germs in some neighborhood U of the origin in Cn. and functions
holomorphic g̃jk in U × U such that

f̃j(z)− f̃j(ζ) =
n∑

k=1

g̃jk(z, ζ)(zk − ζk), j = 1, . . . , ν .
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We consider a test function ϕ with support in U , which is identically zero in some neig-
borhood Ũ of the origin and a n-complex valued function σ of 2n variables (z, ζ), defined
in Ũ × W , where W is a neighborhood of the support of dϕ, holomorphic in z, C1 in ζ
such that

dϕ(ζ) 6= 0 =⇒
n∑

k=1

σk(z, ζ)(ζk − zk) .

In order to prove that J belongs to the ideal (f1, . . . , fn), it is enough to prove that J
belongs to the ideal (f̃1, . . . , f̃ν).From Theorem 2.1, it is enough to show that for any
z ∈ U ,

∑

1≤r≤ν

∑
i1<...<in−r

1≤il≤n

∑
j1<...<jr
1≤js≤t

(
γn−r Res




Jdϕ ∧ Ω(σ(z, ζ); I) ∧ ( n−r∧
l=1

dζil

) ∧
r∧

s=1
G̃js(z, ζ)

f̃j1 , . . . , f̃jr

f̃1, . . . , f̃ν




q,ρ )
= 0 ,

where we take here q = (q1, . . . , qν) = (0, . . . , 0) and ρ = (ρ1, . . . , ρν) ≡ (1, . . . , 1). As
before, we consider, for any point in V (f̃) = V (f), a desingularization πz0 : Xz0 7→ W (z0),
such that in local coordinates on Xz0 (centered at a point x), one has, in the corresponding
local chart Ux around x,

f̃j ◦ π(t) = uj(t)t
αj,1
1 · · · tαj,n

n = uj(t)tαj , j = 1, . . . , ν,

where the uj are non vanishing holomorphic functions and at least one of the monomials
tαj = µ(t), j = 1, . . . , ν, divides any tαk , k = 1, . . . , ν. Since the fj are in the integral
closure of the ideal defined by the f̃j , µ divides any π∗fj , j = 1, . . . , n. It follows from that
that µn−1 divides π∗(df1) ∧ · · · ∧ π∗(dfn). Then, for any r ∈ {1, . . . , ν}, for any subset J
of {1, . . . , ν} with cardinal r, the differential form

λπ∗
[
‖f‖2(λ−r)

q,ρ ∂‖f‖2q,ρ ∧ Ω(sq,ρ,1;J )
]
∧

n∧

j=1

π∗(dfj)

has no holomorphic singularities. This implies that, for any such J , for any I ⊂ {1, . . . , n},
#I = n− r, for any z ∈ Ũ , one has

Res




Jdϕ ∧ Ω(σ(z, ζ); I) ∧ ( n−r∧
l=1

dζil

) ∧
r∧

s=1
G̃js(z, ζ)

f̃j1 , . . . , f̃jr

f̃1, . . . , f̃ν




q,ρ

= 0

(it is enough to look at the behavior near 0 of the meromorphic function of λ whose value
at 0 is precisely this residue symbol). This completes the proof of the theorem. ♦

These results can also be stated from the global point of view. For example, we have
the following theorem, extending partially Netto’s statement to the affine case.
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Theorem 2.3. Let P1, . . . Pn be n polynomials in n variables such that the zero set of
P1, . . . , Pn can be defined as the zero set of P1, . . . , Pν , with ν < n. Then, the Jacobian
J(P1, . . . , Pn) of (P1, . . . , Pn) is in the ideal generated by the Pj , 1 ≤ j ≤ n. Moreover,
one has a division formula

J = A1P1 + · · ·+ AnPn,

where the Aj can be computed in terms of the analytic continuation of the map

λ 7→
(
|P1|2 + · · ·+ |Pν |2 + |Pν+1|2(nN+1) + · · ·+ |Pn|2(nN+1)

)λ

,

where N is such that

(rad (P1, . . . , Pν))N ⊂ local integral closure of (P1, . . . , Pν) .

Remark. Using local Lojasiewicz inequalities ([JKS], [Cyg]) and the Briançon-Skoda

theorem [BS], one can choose N =
ν∏

k=1

Dk.

Proof. We use the weighted Bochner-Martinelli formulas with two pairs of weights (Qλ, tn)
and (∂∂ log(1 + ‖ζ‖2), tM ) for M large enough and

Qλ =
n∑

k=1

qλ,k(z, ζ)dζk,

where

qλ,k = ‖P‖2(λ−1)
N

( ν∑

j=1

Pjgjk(z, ζ) +
n∑

j=ν+1

Pj |Pj |2nNgjk(z, ζ)
)
,

with

‖P‖2N =
ν∑

k=1

|Pk|2 +
n∑

k=ν+1

|Pk|2(nN+1),

and the gjk satisfying

Pj(z)− Pj(ζ) =
n∑

k=1

gjk(z, ζ)(zk − ζk), j = 1, . . . , n .

Let Kλ and Pλ be the two kernels involved in the representation formulas (we refer to
[BGVY] for the details and the notations). Then, if ϕ is a test function identically equal
to 1 in some neighborhood u of the origin and R > 0, one has, for any z ∈ u,

J(z) =
1

(2πi)n

( ∫
J(ζ)ϕ(

ζ

R
)Pλ(z, ζ)− 1

R

∫
J(ζ)∂ϕ(

ζ

R
) ∧Kλ(z, ζ)

)
. (2.12)

We consider (2.12), when R is fixed, as an identity between two meromorphic functions of
λ, then let λ = 0 by following the analytic continuation, and finally let R tend to infinity.
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The choice of N is made possible by the control one has on the growth of the distributions
(of the principal value type or coefficients of residue currents) involved as coefficients in
the Laurent developments at its poles of the meromorphic function

λ 7→ ‖P‖2λ
N

(see for example [BY1], Proposition 5). ♦

3. Green currents and purely dimensional cycles.

In this section, we shall give another application of the same ideas. We will explain how
to construct a Green current G relative to a purely dimensional effective cycle Z in Pn(C)
which can be decomposed into irreducible ones as

Z =
s∑

i=1

miZi, mi ∈ N∗, codim (Zi) = d, i = 1, . . . , s,

in terms of global sections P1, . . . , Pm, that generate the ideal sheaf

I(Z) =
s∑

i=1

I(Zi)mi ,

where I(Zi) denotes the ideal sheaf of Zi. Here P1, . . . , Pm are homogeneous polynomials
in n + 1 variables with respective degrees D1 ≥ D2 ≥ · · · ≥ Dm. More precisely, we would
like to construct a (d− 1, d− 1) current GZ such that

ddcGZ + (deg Z)ωp = δZ =
s∑

i=1

mi deg I(Zi) δ[Zi],

where ω = ddc log(|x0|2 + · · ·+ |xn|2) defines the Kahler metric on Pn(C) and δ[Zi] denotes
the integration current (without multiplicities) on the reduced algebraic variety V (I([Zi])).
Moreover, we would like GZ to be smooth outside the support of the cycle Z. (So that,
later on, we can use such a current to express in terms of the polynomials P1, . . . , Pm, the
analytic contribution to the arithmetic height of Z, whenever the Pj are in Z[x0, . . . , xn].)
Such a construction was done in [BY] under the condition that I([Z]) = (P1, . . . , Pd), that
is the cycle Z is defined as a complete intersection (or the divisors {Pj = 0}, j = 1, . . . , d,
intersect properly). Our construction will be based on the following theorem.

Theorem 3.1. Let P1, . . . , Pm, be m homogeneous polynomials in n + 1 variables, with
respective degrees D1 ≥ . . . ≥ Dm, defining a purely n − d-dimensional algebraic variety
V (P ) in Pn(C), and Z be the cycle associated to the ideal sheaf (P1, . . . , Pm)OPn(C).

Then, for N ≥ dDd
1 and for generic complex values βjk, j = 1, . . . , d, k = 1, . . . , m,
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β0l, l = 0, . . . , n, the meromorphic current-valued map (with values in the space of (d, d)
currents in Pn(C)) defined by

λ 7→ Iλ =

λ(d− 1)!
(2iπ)d

‖Q‖2(λ−p−1)
ρ,q ∂‖Q‖2q,ρ ∧ ∂‖Q‖2q,ρ ∧

∑
j1<···<jd−1
1≤jr≤m+d

d−1∧

l=1

∂(ρjl
Qjl

qjl+1) ∧ ∂(ρjl
Qjl

qjl+1),

(3.1)
where

{
qj = 0, j = 1, ..., d
ρj = ‖x‖−D1 , j = 1, . . . , d

{
qj = N, j = d + 1, . . . , m + d
ρj = ‖x‖−(N+1)Dj , j = d + 1, . . . , d + m

Qj =
m∑

k=1

βjk

( n∑

l=0

β0lxl

)D1−DkPk, j = 1, . . . , d,

Qj = Pj−d, j = d + 1, . . . , d + m,

‖Q‖2q,ρ =
m+d∑

j=1

ρ2
j |Qj |2(qj+1) ,

is holomorphic at λ = 0 and such that I0 is the integration current (with multiplicities)
δZ .

Proof. If the Pj define a discrete variety in Pn(C), then we choose the coefficients β0l,

l = 0, . . . , n, such that the hyperplane Γ = {
n∑

l=0

β0lxl = 0} does not intersect the support

of the cycle Z. If the Pj define a variety with codimension 1 ≤ d < n, then, we choose the

β0l such that the hyperplane {
n∑

l=0

β0lxl = 0} intersects properly any connected component

of Reg (V (P )), where Reg (V (P )) is the set of regular points in V (P ). We will denote by
Λ the linear form

Λ(x) =
n∑

l=0

β0lxl .

Let Γ1, . . . , ΓT the different connected components of Reg (V (P )) \ Γ, and xτ , 1 ≤ τ ≤ T ,
a generic point in Γτ . In the discrete case, the points xτ , τ = 1, . . . , T , will be by definition
the points in V (P ).

We claim that, when d < n, one can choose the generic point xτ on Γτ such that
if λjk, j = 1, . . . , d, k = 1, . . . , m, are generic complex coefficients, then the polynomials
(P1, . . . , Pm) and the polynomials

Qλ,j(x) =
m∑

k=1

λjkΛ(x)D1−DkPk(x), j = 1, . . . , d,

define the same (smooth) algebraic variety in a neighborhood of xτ . In order to see that, we
proceed as follows. Let F be an algebraic closure of the field C(λjk; 1 ≤ j ≤ d; 1 ≤ k ≤ m).
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We consider the polynomials Qλ,j as homogeneous polynomials with coefficients in F and
the primary decomposition

(Qλ,1, . . . , Qλ,d) =
⋂
ι

Pι

in the polynomial ring F[x]. We consider only the isolated primes Pι in this decomposition
whose zero set contains xτ . Among them, there is the prime ideal P which defines the
smooth algebraic set V (P ) near xτ . If Pι is different from P, the zero variety (in Pn(F))
of Pι intersects V (P ) (near τ in Pn(F)) along a variety with dimension strictly less that
n − d. This implies that one can choose x̃τ close to xτ on Γτ and such that x̃τ is not in
any of the zero sets V (Pι) ⊂ Pn(F), where Pι 6= P. This means that for generic values of
λ, for any such ι, x̃τ is not a common zero of the polynomials x 7→ pι,l(λ, x), where the
pι,l generate Pι. We will choose this new point x̃τ instead of xτ . It is clear that at this
new point xτ , the polynomials Qλ,1, . . . , Qλ,d, define also V (P ) as a smooth variety near
xτ for any generic choice of the parameters λ.
Let p1, . . . , pm, be the homogeneous polynomials Pj expressed in affine coordinates in
some neighborhood of xτ . Recall (see for example [Te], corollaire 5.4) that the multiplicity
of (p1, . . . , pm) nOxτ at xτ equals the multiplicity of (p1, . . . , pm, Lτ,1, . . . , Lτ,n−d) nOxτ ,
where Lτ,1, . . . , Lτ,n−d are generic linear forms (expressed in affine coordinates) vanishing
at xτ . Let fj , j = 1, . . . , m, be the germs at xτ of the polynomials PjΛD1−Dk , j = 1, . . . , m,
expressed in local coordinates (centered at xτ ). Recall that the fj , j = 1, . . . , m, define in
nOxτ the same ideal as the pj , j = 1, . . . , m, since xτ does not belong to the hyperplane
Γ. Thus, the multiplicity at xτ of

(P1, . . . , Pm, Lτ,1, . . . , Lτ,n−d) nOxτ

is also the multiplicity in (Cd, 0) of the germ (in (Cd, 0)) of the map

t 7→ (f1(xτ + Aτ t), . . . , fm(xτ + Aτ t)),

where Aτ is a (n, d) matrix with generic coefficients (generic depends of course of the
choice of xτ ). If we take d generic linear combinations (still depending on τ) of the germs
t 7→ fj(xτ + Aτ t), we preserve the local multiplicity at xτ , since the integral closure of the
dM0-primary ideal generated in dO0 by these germs is the same than the integral closure
in this local ring of the ideal generated by the fj(xτ + Aτ t), j = 1, . . . , m [NR]. Moreover,
as we have seen above, we can choose these d generic linear combinations so that they
define a smooth complete intersection near the point xτ . Thus, if the βjk, j = 1, . . . , d,
k = 1, . . . m, are generic complex numbers, the multiplicity at any xτ , τ = 1, . . . , T , of
the ideal generated by the Pj in Oxτ equals the multiplicity of the ideal generated by the
germs at xτ of the homogeneous polynomials Qj , j = 1, . . . , d, where

Qj(x) =
m∑

k=1

βjkΛ(x)D1−DkPk(x), j = 1, . . . , d .

This local multiplicity remains constant on the whole connected component Γτ (we will
denote it as mτ ). Moreover, the smooth complete intersection {Q1 = . . . = Qd = 0} is
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defined near xτ as the zero set of some primary component Pτ of the homogeneous ideal
(Q1, . . . , Qd). We will denote Γ̃τ = Γτ \Sing (V (Q1, . . . , Qd)). All points in Γ̃τ are smooth
points both for Z and for the algebraic variety V (Q1, . . . , Qd). At all these points, mτ is
also the local multiplicity of the ideal defined by the germs of the Qj , j = 1, . . . , d.

It is clear that, for any value of the complex parameter λ with large real part, the differential
form in homogenous coordinates that appears in (3.1) defines a differential form in Pn(C).
If ϕ is an (n− d, n− d) test form in Pn(C), then

∫
Pn(C)

Iλ ∧ ϕ is the Mellin transform of
the function

ε 7→ Φ(ϕ; ε) =

(d− 1)!
(2iπε)d

∫

‖Q‖2ρ,q=ε

∂‖Q‖2q,ρ ∧
∑

j1<···<jd−1
1≤jr≤m+d

d−1∧

l=1

∂(ρjl
Qjl

qjl+1) ∧ ∂(ρjl
Qjl

qjl+1). (3.2)

We know from Lemmas 1.1 and 1.2 that this last function has a limit when ε → 0. This limit
equals < [Q]q,ρ

d , ϕ >, where [Q]q,ρ
d is a closed positive current supported by V (Q) = V (P ).

It follows that λ 7→ Iλ can be continued as a (d, d) current-valued meromorphic function
with no pole at the origin, and the value I0 at the origin is exactly the current [Q]q,ρ

d . In
order to conclude the proof of the theorem, we have to distinguish the cases d = n and
d < n. In the first case, we need to prove that the mass of the current [Q]q,ρ

d equals the
multiplicity of Z at any point of the discrete variety V (P ). In the second case, it is enough
to prove that our current coincides with the integration current (with multiplicities), near
any point z0 in each Γ̃τ , τ = 1, . . . , t, since the union of these sets is dense in Reg (V (P )),
thus also in V (P ). Since the currents δZ and [Q]q,ρ

d are positive, closed, of type (d, d), and
supported by the variety V (P ) of pure codimension d, they will concide. Therefore, we
have to prove the two previous claims to conclude the proof. Since these claims are local,
we can express the differential forms in affine coordinates in the local chart around z0 in
which we are working. Hence, in what follows we consider only the affine situation.

We have seen in the proof of Lemma 1.2 that both
∫
Pn(C)

Iλ ∧ ϕ and the Mellin
transform of the following function

Φ̃(ϕ; ε) =

γd

εd

∫

‖Q‖2q,ρ=ε

[ ∑
i1<...<id
1≤il≤d+m

( d∏

l=1

(qil
+ 1)

)
Ω(sq,ρ,1; {i1, . . . , id}) ∧

d∧

l=1

dQil

]
∧ ϕ

(where γd = (−1)
d(d−1)

2 (d−1)!
(2πi)d and sq,ρ,1

j = ρ2
j |Qj |2qj Qj for j = 1, . . . , d + m) take the same

value at λ = 0. We consider this function as a sum of the following two terms. The first
one is

Φ̃1(ϕ; ε) =
γd

εd

∫

‖Q‖2q,ρ=ε

Ω(sq,ρ,1; {1, . . . , d}) ∧ dQ1 ∧ · · · ∧ dQd ∧ ϕ. (3.3)
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The second one is

Φ̃2(ϕ; ε) =

γd

εd

∫

‖Q‖2q,ρ=ε

[ ∑
i1<...<id
1≤il≤d+m

I6={1,...,d}

( d∏

l=1

(qil
+ 1)

)
Ω(sq,ρ,1; {i1, . . . , id}) ∧

d∧

l=1

dQil

]
∧ ϕ . (3.4)

The Mellin transform of the function λ 7→ Φ̃1(ϕ; ε) is the sum of the two functions

Jq,ρ
11 (ϕ; λ) = λγd

∫
‖Q‖2(λ−d)

q,ρ

∂
( d∑

j=1

ρ2
j |Qj |2

)

‖Q‖2q,ρ

∧ Ω(sq,ρ,1; {1, . . . , d}) ∧
d∧

j=1

dQj ∧ ϕ

Jq,ρ
12 (ϕ; λ) = λγd

∫
‖Q‖2(λ−d)

q,ρ

∂
( d+m∑

j=d+1

ρ2
j |Qj |2

)

‖Q‖2q,ρ

∧ Ω(sq,ρ,1; {1, . . . , d}) ∧
d∧

j=1

dQj ∧ ϕ

We consider now a point z0 which is either an arbitrary point of V (P ), in the discrete
case, or a regular point of one of the components Γ̃τ , otherwise. In the first case, all the
polynomials Qd+1 = P1, . . . , Qd+m = Pm vanish at the point z0. In this case, it follows
from the local Lojasiewicz inequality [JKS] (applied to Q1, . . . , Qd, which also vanish at z0),

that the germs at z0 of all the polynomials Q
Dd

1
j , j = d + 1, . . . , d + m, are in the integral

closure of the ideal generated by the germs of Q1, . . . , Qd. In the second case, since z0

is a regular point both of V (P ) and of V (Q1, . . . , Qd) and these two algebraic varieties
are purely n − d dimensional, the first one being included into the second one, it follows
that the two germs of variety they define at z0 coincide. Therefore, the polynomials Qj ,
j = d + 1, . . . , d + m, vanish on the germ of variety defined by Q1, . . . , Qd at z0. As in the
first case, it follows from local Lojasiewicz inequality [JKS] (applied to Q1, . . . , Qd, which

also vanish at z0), that the germs at z0 of all the polynomials Q
Dd

1
j , j = d + 1, . . . , d + m,

are in the integral closure of the ideal generated by the germs of Q1, . . . , Qd.
Let π : Xz0 7→ W (z0) a resolution of singularities near z0 for {P1 · · ·Pm = 0} such

that in local coordinates on Xz0 (centered at a point y), one has, in the corresponding local
chart Uy around y,

π∗Qj(t) = uj(t)t
αj,1
1 · · · tαj,n

n = uj(t)tαj , j = 1, . . . , d,

where the uj are non vanishing holomorphic functions and at least one of the monomials

tαj = µ(t), j = 1, . . . , d, divides any tαk , k = 1, . . . , d. Since the P
Dd

1
j , j = 1, . . . ,m lie in

the integral closure of the ideal generated by Q1, . . . , Qd near z0, the monomial µd divides
any π∗(Ql) = π∗P dDd

1
j−l , l = d + 1, . . . , d + m. In the local coordinates t in the local chart

π∗‖Q‖2q,ρ =
(
π∗

( d∑

j=1

ρ2
j |Qj |2

))
(1 + |µ|2θ), (3.4)
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where θ is a positive real analytic function. If we express Jq,ρ
11 (ϕ;λ) as a sum of integrals

on the local charts that cover π∗(Supp (ϕ)) after rewriting it as

Jq,ρ
11 (ϕ;λ) =

= λγd

∫
‖Q‖2(λ−d)

q,ρ

∂
( d∑

j=1

ρ2
j |Qj |2

)

d∑
j=1

ρ2
j |Qj |2

∧ Ω(sq,ρ,1; {1, . . . , d}) ∧
d∧

j=1

dQj ∧

d∑
j=1

ρ2
j |Qj |2

‖Q‖2q,ρ

ϕ,

we see, using (3.4) in each local chart and the fact that the computations of Jq,ρ
11 (ϕ; 0)

involve only integration currents on the coordinate axis {tj = 0} where tj divides µ, that

Jq,ρ
11 (ϕ; 0) =

[
λγd

∫
‖Q‖2(λ−d)

q,ρ

∂
( d∑

j=1

ρ2
j |Qj |2

)

d∑
j=1

ρ2
j |Qj |2

∧ Ω(sq,ρ,1; {1, . . . , d}) ∧
d∧

j=1

dQj ∧ ϕ

]

λ=0

.

(3.5)
If we express the integrals in local coordinates, we can see (as it was extensively discussed
in the proof of Lemma 1.2, and is based on the fact that one can essentially consider the
ρj as constants when computing the values at zero of these meromorphic functions) that
we also have

Jq,ρ
11 (ϕ; 0) =

[
λγd

∫
‖Q‖2(λ−d)

q,ρ

d∧

j=1

∂(ρj |Qj |2) ∧
d∧

j=1

∂(log ρj |Qj |2) ∧ ϕ

]

λ=0

. (3.6)

It follows from Proposition 8 in [BY2] (see also, for a more detailed proof, [PTY, Section
4]) that

Jq,ρ
11 (ϕ; 0) = δ[(Q1,...,Qd)](ϕ),

where δ[(Q1,...,Qd)] is the integration current (with multiplicities) on {Q1 = . . . = Qp = 0}
near z0. Since the local multiplicities at z0 for the ideals (Q1, . . . , Qd) and (P1, . . . , Pm)
coincide, we have also

Jq,ρ
11 (ϕ; 0) = δZ(ϕ) .

If we now express Jq,ρ
12 (ϕ;λ) or the Mellin transform of ε → Φ̃2(ϕ; ε) in the desingularization

coordinates, we see that these functions appear as combinations of terms of the form

λ

∫

Uy

|aµ|2λ

µd

(
ϑ + $ ∧ ∂µ

µ

)
∧ (π∗PN

j )ϕ, (3.7)

where Uy is a local chart around y, µ the corresponding distinguished monomials, a a
non vanishing function in Uy, ϑ and $ two smooth forms with respective types (d, d)
and (d, d − 1), and j ∈ {1, . . . , m}. The choice of N ≥ dDd

1 implies that µd divides
π∗PN

j , so that the integrand in (3.7) has no holomorphic singularities. Therefore, the
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value at the origin of the meromorphic function defined by (3.7) is zero. So we have
Jq,ρ

12 (ϕ; 0) = Φ̃2(ϕ; 0) = 0, which means that our current I0 coincides with the integration
current on Z (with multiplicities) near z0. In the two cases (in the discrete case directly,
and otherwise using the density in V (P ) of such points z0), we conclude that I0 = δZ . ♦
Remark 3.1. It follows from formula (2.1) that I0(ϕ), which also equals the value at
λ = 0 of the Mellin transform of ε 7→ Φ̃(ϕ; ε), is the value at λ = 0 of the meromorphic
continuation of λ 7→ λ

(2πi)d

∫
Pn(C)

A
(d)
λ ∧ ϕ, where the differential form λA

(d)
λ is the term

involving λ as a factor in the decomposition
[
∂(‖Q‖2λ

q,ρ log ‖Q‖2q,ρ)
]d = ∂

[
(‖Q‖2λ

q,ρ∂ log ‖Q‖2q,ρ) ∧
(
∂(‖Q‖2λ

q,ρ log ‖Q|2q,ρ)
)d−1

]

= ‖Q‖2λd
q,ρ B(d) + λA

(d)
λ .

(3.8)

Following the method developped in [BY2, section 4], one may now construct a Green
current associated with a purely dimensional cycle Z in Pn(C), even if it is not defined
as a complete intersection. The key point is that this current is computed in terms of
generators of the ideal that define the cycle (with multiplicities). We proceed as follows.
Let ξ 7→ Lξ be the meromorphic map from C to Dn,n(P2n+1(C)) expressed in homogeneous
coordinates (x, y) in P2n+1(C) as

Lξ :=
−1
ξ

( ||x− y||2
||x||2 + ||y||2

)ξ
(

n∑

k=0

(
ddc log ||x− y||2)k ∧ (ddc log(||x||2 + ||y||2))n−k

)
.

The value at ξ = 0 of this meromorphic map coincides with the Levine form ([GK],[Le])
for the subspace x = y in P2n+1(C); note that this subspace is defined as a complete
intersection in P2n+1(C). Let π the map from (Cn+1)∗ × (Cn+1)∗ × (C2)∗ to P2n+1(C)
obtained by taking quotients from the map

((Cn+1)∗)2 × (C2)∗ 7→ (C2(n+1))∗ : (x, y, (β0, β1)) 7→ (β0x, β1y) .

One can now define a meromorphic map ξ 7→ Υξ from C into the space of (n − 1, n − 1)
currents on Pn(C)×Pn(C) as

Υξ(x, y) :=
∫

β∈P1(C)

π∗(Lξ)(x, y, β) .

For more details about this construction, we refer to [BY1, Section 4]. We now can state
the following theorem.

Theorem 3.2. Let Z be the effective algebraic cycle of pure dimension n − d in Pn(C)
which corresponds to the homogeneous ideal generated by the homogeneous polynomials
P1, . . . , Pm, with respective degrees D1 ≥ . . . ≥ Dm. Let Λ be a generic linear form in
(x0, . . . , xn) and Q̃1, . . . Q̃d, d generic linear combinations of the polynomials PkΛD1−Dk ,
k = 1, . . . , m. Let

F =
d∑

j=1

|Q̃j |2
‖x‖2D1

+
m∑

k=1

|Pk|2(dDd
1+1)

‖x‖2Dk(dDd
1+1)
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and Ω1 and Ω2 the singular (d, d) differential forms in Pn(C) defined by the formal identity

1
(2πi)d

[
∂(Fλ∂ log F )

]d = F dλ[Ω1 + d λ Ω2] .

Then, the (d − 1, d − 1) current-valued map λ 7→ Gλ defined for any complex number λ
with a large real part by

< Gλ, ϕ >= λ2

∫

Pn(C)×Pn(C)

Fλ2
(y)Ω2(y) ∧Υλ(x, y) ∧ ϕ (3.9)

can be analytically continued as a meromorphic function with a simple pole at λ = 0.
The coefficient G0 of λ0 in the Laurent development about the origin is a current which
is smooth outside the support of Z and satisfies the Green equation

ddcG0 + δZ = (deg Z)ωd . (3.10)

Proof. It follows from Theorem 3.1 and Remark 3.1 that, for any (n− d, n− d) test form
in Pn(C), one has

< δZ , ϕ > =
[
λ

∫

Pn(C)

Fλ(y)Ω2(y) ∧ ϕ(y)
]

λ=0

=
[
dλ

∫

Pn(C)

F dλ(y)Ω2(y) ∧ ϕ(y)
]

λ=0
.

(3.11)

The proof of the proposition follows exactly the proof of Proposition 9 in [BY2]. The
meromorphic map

λ 7→ d λ F dλΩ2

plays the role of λ 7→ Iλ. The identity (3.8)

∂
[
(Fλ∂ log F ) ∧ (

∂(Fλ∂ log F )
)d−1

]
= (2iπ)dF dλ(Ω1 + λΩ2)

can be written as

− 1
(2πi)d

∂
[
(Fλ∂ log F ) ∧ (

∂(Fλ∂ log F )
)d−1

]
= −Iλ + Ĩλ

and used exactly as the identity that defines Ĩλ in [BY2]. We will not repeat here the
details of the proof. ♦

Let Z be an arithmetic cycle in ProjZ[x0, . . . , xn], defined by m homogeneous polyno-
mials P1, . . . , Pm, with respective degrees D1 ≥ . . . ≥ Dm. We assume that the algebraic
cycle Z = Z(C) is purely dimensional, with codimension d. Then, one can compute the
degree of Z as

deg Z = Resλ=0

[ ∫

Pn(C)

FλΩ2 ∧ ωn−d

]
,
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where

F =
d∑

j=1

∣∣ m∑
k=1

λjkΛD1−DkPk

∣∣2

‖x‖2D1
+

m∑

k=1

|Pk|2(dDd
1+1)

‖x‖2Dk(dDd
1+1)

and Ω2 is defined by the formal identity

1
(2πi)d

[
∂(Fλ∂ log F )

]d = F dλ[Ω1 + d λ Ω2] ,

the linear form Λ and the coefficients λjk, j = 1, . . . , d, k = 1, . . . ,m, being generic.
If we assume that {x0 = · · · = xn−d = P1(x) = · · · = Pm(x) = 0} is the empty

set in Pn(C), then the logarithmic size of Z (in the sense of [BGS]) is the sum of the
“arithmetic” contribution ∑

τ prime

nτ log τ

(where
∑

τ prime

nτ is the n + 1 arithmetic cycle Π · Z, where Π := {x = · · · = xn−d = }),
and of an “analytic” contribution, which can be obtained as

deg Z

2

n∑

k=d

k∑

j=1

1
j
− 1

2
Resλ=0

[
λ

∫

(x,y)∈Pn(C)×Pn(C)

Fλ2
(y)ω(x)n−d+1 ∧ Ω2(y) ∧Υλ(x, y)

]

+
1
2
Resλ=0

[
λ

∫

Π×Pn(C)

Fλ2
(y) ∧ Ω2(y) ∧Υλ(x′′, y)

]
.

Thus, we have a close expression for the degree and the analytic contribution in the expres-
sion of the size as residues at λ = 0 of zeta functions of λ that can be expressed in terms
of the polynomials P1, . . . , Pm that define the ideal sheaf I(Z). This result extends the
result one could obtain before only for complex hypersurfaces (see the examples in [BY2]
and [D]) and, more generally, for complete intersections see BY2. In fact, in the complete
intersection case, computing a Green current is much simpler when the polynomials Pj

have the same degree D. We let

‖P‖2ρ =
m∑

k=1

|Pk(x)|2
‖x‖2D

.

Proposition 3.3. Let P1, . . . , Pd, be d homogeneous polynomials in n + 1 variables, with
degree D, defining a complete intersection cycle Z in Pn(C). Then the (d−1, d−1)-current
valued meromorphic map

λ 7→ Gλ =
−1
λ
‖P‖2λ

ρ

( d−1∑

k=0

(ddc log ‖P‖2ρ)k ∧ (Dω)d−1−k
)
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can be analytically continued as a meromorphic function in C with a simple pole at 0.
Moreover, the coefficient G0 of λ0 in the Laurent development at the origin is a solution
of the Green equation

ddcG0 + δZ = Ddωd .

Finally, the current G0 is smooth at the origin.

Remark 3.2. This proposition shows that the construction in Proposition 9 in [BY2]
can be avoided in the complete intersection case. Nethertheless, this construction remains
essential for the general case.
Proof. We compute, as in [BY2], formula (67),

ddcGλ = ‖P‖2λ
ρ Ddωd − i

2π
λ∂ log ‖P‖2ρ ∧ ∂ log ‖P‖2ρ ∧ (ddc log ‖P‖2ρ)d−1 + Rλ,

where

Rλ = − i

2π
λ‖P‖2λ

ρ ∂ log ‖P‖2ρ ∧ ∂ log ‖P‖2ρ ∧
( d−2∑

k=0

(ddc log ‖P‖2ρ)k ∧ (Dω)d−1−k
)

.

We have

∂‖P‖2ρ∂ log ‖P‖2ρ = ‖P‖2λ
ρ

(
λ∂ log ‖P‖2ρ ∧ ∂ log ‖P‖2ρ + ∂∂ log ‖P‖2ρ

)
.

This implies, for any k ≥ 1, that

(∂‖P‖2ρ∂ log ‖P‖2ρ)k =

= ‖P‖λk
ρ

(
(∂∂ log ‖P‖2ρ)k + λ∂ log ‖P‖2ρ ∧ ∂ log ‖P‖2ρ ∧ (∂∂ log ‖P‖2ρ)k−1

)

= ‖P‖λk
ρ B(k) + λA

(k)
λ .

The function
λ 7→

∫
A

(k)
λ ∧ ϕ, ϕ ∈ Dn−k,n−k(Pn(C)),

is (up to a constant) the Mellin transform (with kλ instead of λ) of the function

ε 7→ γk

εk

∫

‖P‖2ρ=ε

[ ∑
i1<...<ik
1≤il≤d

Ω(s; {i1, . . . , ik}) ∧
k∧

l=1

dPil

]
∧ ϕ

where sj = ‖x‖−2DPj , j = 1, . . . , d (see formula (2.3)). The value at 0 of this Mellin
transform equals

∑

1≤i1<i2<...<ik≤d

Res




dPi1 ∧ · · · ∧ dPik
∧ ϕ

Pi1 , ..., Pik

P1, ..., Pd




0,ρ

.
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These sums of residue symbols are zero whenever k < d (see Lemma 1.1). So, for any k
between 0 and d− 2, the current which is defined as the value at λ = 0 of

λ 7→ λ‖P‖2λ
ρ ∂ log ‖P‖2ρ ∧ ∂ log ‖P‖2ρ ∧ (ddc log ‖P‖2ρ)k

is the zero current. Since, we have also (see [BY1, Proposition 8])

[ i

2π
λ∂ log ‖P‖2ρ ∧ ∂ log ‖P‖2ρ ∧ (ddc log ‖P‖2ρ)d−1

]
λ=0

= δZ ,

we get at λ = 0 the relation
ddcG0 + δZ = Ddωd .

It is clear that G0 is smooth outside the support of the cycle Z. ♦
Remark 3.3. When the Pj define a complete intersection, they have the same degree,
their coefficients are in Z, and they are such that Π ∩ V (P ) is the empty set in Pn(C),
where Π = {x0 = · · · = xn−d = 0}, then, the analytic contribution to the arithmetic size
of the cycle Z defined by the Pj in ProjZ[x0, . . . , xn] is

Dd

2

n∑

k=d

k∑

j=1

1
j

+
1
2
Resλ=0

1
λ2

[ ∫

Pn(C)

‖P‖2λ
ρ

( d−1∑

k=0

(ddc log ‖P‖2ρ)k ∧ (Dω)n−1−k
)]

− 1
2
Resλ=0

1
λ2

[ ∫

Π

‖P‖2λ
ρ

( d−1∑

k=0

(ddc log ‖P‖2ρ)k ∧ (Dω)n−1−k
)]

.
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holomorphes en un point de Cn, Comptes Rendus Acad. Sci. Paris, série A, 278 (1974),
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à l’origine de Cn, soumis.
[JKS] S. Ji, J. Kollár and B. Shiffman, A Global Lojasiewicz Inequality for Algebraic
Varieties, Trans. Amer. Math. Soc. 329 (1992), 813-818.
[Le] H. Levine, A theorem on holomorphic mappings into complex projective space, Ann.
of Math. 71 (1960), 529-535.
[LeT] M. Lejeune-Jalabert, B. Teissier, Clôture intégrale des idéaux et équisingularité,
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E-mail adress : yger@math.u-bordeaux.fr

33


