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Carlos A. Berenstein and Alain Yger

Abstract

In previous work of the authors and their collaborators (see, e.g., Progress in Math.
114, Birkhauser (1993)) it was shown how the equivalence of several constructions of residue
currents associated to complete intersection families of (germs of) holomorphic functions
in C” could be profitably used to solve algebraic problems like effective versions of the
Nullstellensatz. In this work, the authors explain how such ideas can be transposed to
the non-complete intersection situation, leading to an explicit way to construct a Green
current attached to a purely dimensional cycle in P™. This construction extends a previous
result of the authors done in the complete intersection case. When the cycle is defined
over Q, they give a closed expression for the analytic contribution in the definition of
its logarithmic height (as the residue at A = 0 of a (-function attached to a system of
generators of the ideal which defines the cycle). They also introduce an extension of the
Cauchy-Weil division process and apply it in order to make explicit the membership of the
Jacobian determinant of n elements f; € O,, j = 1,...,n, (which fail to define a regular
sequence) in the ideal (f1, ..., fn).

0. Introduction.

Let Z be an effective algebraic cycle of pure dimension n — d in P"(C), which corre-
sponds to the homogeneous ideal generated by homogeneous polynomials P, ..., P, in
C[Xo, X1, ..., Xp]. The main result of this paper (Theorem 3.2) is the construction (in
terms of the polynomials Py, ..., P,,) of a (d — 1,d — 1)-current valued meromorphic map
on C, A — G, such that

RGS)\ZO [G)\]

is a current with singular support in Supp | Z| which satisfies the Green’s equation
dd°G + [Z] = (deg Z)(dd* log ||¢[|*)*.

Such a result extends what we have done in a previous paper [BY2] under the additional
assumption that Z was defined as a complete intersection by the P;. When the P; lie in
Z[Xy,..., X,], our main Theorem 3.2 leads to the construction (in terms of the polynomials
P; defining the cycle) of an explicit (-function whose residue at A = 0 is the analytic con-
tribution in the expression of the logarithmic height of the arithmetic cycle Z(Py, ..., Py,),
as defined in [BGS]. We expect such constructions to play a role in the intersection theory
developped recently by P. Tworzewski, E. Cygan (see for example [Cyg]).

1" This research has been partly supported by grants from the NSA and NSF
MSC classification: 14B05, 32C30 (Primary), 14Q20, 32A27 (Secondary)
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In order to realize our objective, it proved to be necessary to extend classical analytic
techniques involved in residue calculus from the usual complete intersection (or proper)
setting to the improper case. Let us explain here more precisely what are the tools we had
to introduce. (In fact, such tools may have their own interest independently of the prob-
lem they were introduced for.) They appear as the analytic counterpart to the algebraic
approach developped for example in [ScS].

It is a well known fact from multidimensional residue calculus (for example in the spirit of
Lipman [Li]) that, given a commutative Noetherian ring A and a quasi-regular sequence
ai,...,ap of elements in A such that A/(aq,...,a,) is a projective module of finite type,
then the all residue symbols

rad* - adndrqy A --- Ndr
Res { ! aq1+’f qdnt1 ", qeN",
1 g oo ey n
(for r,71,...,7, being fixed in A) are independent of ¢ and therefore equal the residue

symbol
Res [rdrl /\~-/\drn} .

al,...,0n

The analytic realization of the residue symbol in the case A = , O, the local ring of germs
of holomorphic functions at the origin in C", is

€—0 (2271')”

. 1 hdgi A --- A dgp,
Fioeeos f A

where the f; define a regular sequence in the ring ,,O and I'f(€) is the n-dimensional semi-

analytic chain {|fi| = €1,...,|fn| = €} conveniently oriented (see [GH], chapter 6). In

this context, the independence of the symbols

hf{t--- findgy A --- N dg,

Res
q1+1 nt1
1 g ooy f,g

with respect to ¢ is, of course, an obvious fact. The advantage dealing with such an
analytic realization is that the construction of the objects it involves (namely here residue
symbols) may be extended to a less rigid context. We profit from this fact here and,
following ideas which were initiated in [BGVY] and [PTY], adopt the current point of
view and construct analytic residue symbols attached to a collection f1,..., f,, of germs of
holomorphic functions at the origin (which of course may not define a regular sequence) and
a pair of algebraic and geometric ponderations. The purpose of the algebraic ponderation
is to mimic the construction of residue currents of the form

Ry
© — Res , (0.2)
fl+1 an+1
ey f



¢ being a germ of (n,0)-smooth test form at the origin; such objects will depend on ¢ if we
drop the hypothesis that the sequence (f1,..., f,) is regular. The key point is the change
of section for the representation of the residue symbol in the classical case with the help
of the Bochner-Martinelli approach

n(n—1)

)"z (n—1)! . -
fes lfh 90 ; f’n:| - !g(l) = (Ziﬂegn ) /||f||§=6 (I;(_l)kl l/l\n 8(pl2fl)> e, (0:3)
1£k
where p?, ..., p2 are germs of smooth strictly positive functions and
IFIZ = pEI AP 4+ i | ful -
When fi,..., f, do not define a regular sequence anymore, one may still define the action

of a (0,n) germ of current thanks to the Bochner-Martinelli construction (0.3), but the
constructions will of course depend of the geometric ponderation p.

We will construct such residual objects in section 1 of this paper. Though the currents
we introduce will in general not be closed, they will appear as “quotients” in the divi-
sion of some positive closed currents (dependent on the ponderations) by the df;, this is
essentially the same as in the complete intersection case, where we have the well known
factorisation formula for the integration current dpy(sy (with multiplicities) attached to
the cycle corresponding to the f;:

Sy () = Res | PN Ny
fio-oo fp

(here f1,..., fp define a germ of complete intersection and the action of the residue symbol
corresponds to the action of the Coleff-Herrera current).

What seems to us as an interesting point (besides the fact that such currents are involved in
the proof of our main Theorem 3.2) is that they also play a significant role in the realization
of division-interpolation formulas in the spirit of Cauchy-Weil’s formula. The fact that in
the classical case, the Cauchy-Weil formula can be understood within the general frame of
an algebraic theory for residue calculus (see for example [BoH], [BY3]) gives us some hope
that the generalizations we propose here (see Theorem 2.1) could be also interpreted from
an algebraic point of view.

As an illustration of the range of application of such techniques, we also study in section
2 a division problem inspired by a result (in the homogeneous algebraic case) stated by E.
Netto [Net], and proved later in a constructive way in [Sp]: if Py, ..., P, are n homogeneous
polynomials which simultaneously vanish at some point in C™ \ {0}, then, there is an
explicit division procedure (based on the use of the Euler identity) in order to express the
Jacobian determinant of (P, ..., P,,) in the ideal generated by the P;. It was kindly pointed
to us by W. Vasconscelos that when P, ..., P, are n arbitrary polynomials in n variables,
then the Jacobian determinant J of (Pi,..., P,) transports the top-radical of the ideal
I =1(P,..., P,) into I itself, which implies indeed that J lies in I( Py, ..., P,,) if and only if
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the system of equations { P} = ... = P,, = 0} has no isolated zeros ([Vasl], [Vas2]). Inspired
by a first draft of this manuscript and the algebraic approach from [ScS] and [Vasl], M.
Hickel proved recently that the local version of this result holds: the Jacobian determinant
of n germs f1, ..., f in O, lies in (f1, ..., f») if and only if the sequence (f1,..., f,,) fails to
be regular in O,, ([H]). We present in Section 2 of this paper a division process in order
to solve such a membership problem, that is, write explicitely the Jacobian determinant
of fi,eeey fo i I(f1, ey fn), when \/T(f1,..., fn) = V/I(f1,..., f4) for some d < n or when
the analytic spread of (f1,..., f,) is strictly less than n (see Proposition 2.1 and Theorem
2.2).

We dedicate this work to the memory of Gian-Carlo Rota, whose review [Ro] of our book
[BGVY] gave us encouragement to continue our research in this subject.

1. Residue currents in the non-complete intersection case.

Let m > 1 be a positive integer, U an open subset in C", and s = (sy, ..., S;,) a vector of
m C! complex-valued functions in U. For any ordered subset Z = {i1,...,4,} C {1,...,m}
with cardinal » < min(m,n), we will denote by Q(s;Z) the differential form

T

Q(s;7) = Z(—l)k_lsik /\ ds;, .

k=1 o
Let now f1,..., fin be m complex-valued holomorphic functions of n variables in the open
set U, such that the analytic variety V(f) := {fi1 = ... = f = 0} has codimension d
(we do not assume here that V(f) is purely dimensional). Let ¢,...,q, be m positive
integers and pq, ..., p,, m non vanishing real analytic functions in V', and € > 0, then, as
an example of vector s = (s1,...,S,,), we consider

1

SQvP# — —
€

(IO%E’fl‘qua s 7p$nf_m’fm’2qm) .

We also define

m
I£1l5,, =< s270, f>=> " Rl fulP@ D).
k=1

We have the following lemma

Lemma 1.1. For any ordered subset T C {1,...,m} with cardinal r < min(m,n), for any
(n,n —r) test form ¢ with coefficients in D(U), the limit

q9,p

gp _1 r(r—1) _1 I
Res | fiyy---s fir = lim (=1) 2, (r ) / Q(sTPET) N (1.1)
Foo fo €0 (2im) 17112, =
exists and p
w 9
o+— Res | fi,,.-., fi.
fla sy fm
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defines a (0,7) current in U. This current is 0 when r < codim V'(f) and, for any (n,n—r)
test form ¢ and any holomorphic function h in U, we have that

Fig a.p
h=0onV(f) = Res | fi,,-.-, fi. =0
f17' "7fm
r th q,p
(TT £ he € (F2 o flr )0, V2 e V() = Res | fir,.oos fi =0,
=1 flu"'?fm
B (1.2)

where we denoted by T the integral closure of an ideal I and by (f&*,..., fam+ 1O, the

r-th power of the ideal in O, which is generated by the germs at z of the ffjﬂ.

Proof. The proof of this result was given in [PTY] when ¢ = 0 and p; = 1 for any j.
Since the contributions of the weights ¢ and p do not substantially affect the proof, we will
just sketch it here. The idea is to compute, when ¢ is fixed, the Mellin transform of the
function

r(r

~ (r — 1)!
2 r—1)!

QP T) A
(2im)" /|f|%yq=e (SEE5I) A,

—1
e 119(s Ty 0) = U

that is, the function

A= JUP (o3 T N) = )\/ I(p;e)e* tde
0

defined (and holomorphic) in the half-plane Re A > r 4+ 1. One has

r(r—1)

JUP (I3 N) = S (T_l)u/llf

(2dm)"

2(00=7r)% 2 N
qu )810g||f||q7p/\Q(sqp D Ag. (1.3)

Since the result stated in the lemma is local, we can prove it when the support of ¢ is
contained in some arbitrary small neighborhhood of a point zg € V(f) (near any other
point, the limit (1.1) equals 0, as a consequence, for example, of the coarea formula in [Fe]).
As in our previous work ([BGVY, BY, PTY]), we construct an analytic n dimensional
manifold X, , a neighborhhood W(zy) of 2z, a proper map = : X,, < W(zg) which realizes
a local isomorphism between W (zo) \ {f1 -+ fm = 0} and X, \ 71 ({f1 - fmn = 0}), such
that in local coordinates on X, (centered at a point z), one has, in the corresponding
local chart U, around x,

fiom(t) = uj(#) 7" -t = ()Y, j=1,...,m,

where the u; are non vanishing holomorphic functions and at least one of the monomials
tlathes = 4y(t) divides any t(@+Dex L = 1 ... m. Note that the normalized blow-up
of the ideal (f&'+ ... fam+t1)O, | as used in [Te], is not enough for us, since we need to
put ourselves in the normal crossing case in order to prove the existence of the limit (1.1).
Note also that any coordinate ¢, which divides p divides all the 7* f;, j = 1,...,m. Let us
define the formal expression

Ox = A 120 dlog || fII2, A Q(sT 1),
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A being a complex parameter. If we express this differential form in local coordinates ¢
and profit from the fact that u divides all (7* f;)% 1 j =1,...,m, we get

0y = AMZFA (TTt= F)m) (94 1 %) , (14)

=1

where ¢ and w are smooth forms of respective type (0,7) and (0,7 — 1) and a is a non
vanishing function. Since J%?(p;Z;\) is a combination of terms of the form

/ 7O\ A YT P, (1.5)
Us

where z € X, ¢ is an element of a partition of unity for 7*(Supp ¢) and %" is a linear

combination of the dtl , L =1,...,n. We conclude from the techniques based on integration
by parts developped for example in [BGVY], chapter 3, section 2, that

A= JPP (0I5 M)

can be continued as a meromorphic function in C, whose poles are strictly negative rational
numbers. When A is a holomorphic function in U which vanishes on V (f), all coordinates
t that divide p divide also 7*h since they divide all 7*f;, j = 1,...,m. It follows that,
for any test form ¢, J%?(hy;T;0) = 0, since the singularities of the differential form
10 A ¥ (hp) have no antiholomorphic factor. Let us suppose now that the germ of
at 2o is such that

Qz 1 m+1
H "Vha € (FET L O, .

It follows from the valuative criterion [LeT] that u” divides

Iy, = (ﬁ(ﬂ*fil)qil >7r*h.

=1

Thus, the singularities of the differential form 70 AY7* (hp) have no holomorphic factor.
Hence, in this case, we can again conclude that J*(hp;Z;0) = 0.

On the other hand, we know from ([Bjol], 6.1.19) that for any zo € V(f), there is a
strictly positive integer N, and differential operators Q. ;((, a%, 0 ) with coefficients in

=
0., such that
N

= . o 0
A% —;/\Nzo 10046 5 )| 112, =0

where this is an identity between two distribution-valued meromorphic functions of A in
a neighborhood of zy. With the help of this identity we can prove, as in [BaM,Bjo2],
that the meromorphic continuation of the function A — J2P(p;Z; \) has rapid decrease
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on vertical lines in the complex plane when A tends to co. Therefore, we can invert
the Mellin transform and obtain the existence of the limit when ¢ — 0 of the function
€ — ITP(p;T;€). We also have 19°(p;Z;0) = J2P(p;Z;0). In order to prove that the
currents we just constructed are zero if r < d we proceed as follows. Assume that r < d
and choose a test form ¢ € D"~ "(W(zp)). One can rewrite ¢ as

n—r
o= > Pirroin_y At A NdCy AN G, -
1<ji<-<Jn-r<n =1
n—r_____
For dimensionality reasons, each differential form A d(j;, is zero when restricted to the
I=1
n — d-dimensional analytic variety V(f). This implies that, given a local chart U, around
some point z on the analytic manifold X, the differential form 7* A" d(j;, (which has
antiholomorphic functions as coefficients) vanishes on the analytic variety {u(t) = 0},
where p is the distinguished monomial corresponding to the local chart. Every conjugate
coordinate ¢j such that ¢;, divides y, divides each coefficient of 7* ;" @ which does not
contain dty. This implies that for any local chart U,, the differential form 7*©, A ¥7* (¢)
appearing in the integral (1.5) related to this chart contains only holomorphic singularities
(such singularities arise from logarithmic derivatives and therefore are cancelled by the
corresponding terms coming from 7*¢). This completes the proof. <

We can combine these currents with the differential forms df;, in order to construct
certain closed positive currents [f|2°, r = d,...,min(m,n). Among them, the currents
that corresponds to r = d are related (as we shall see later) to the integration current
(with multiplicities) on the analytic cycle defined by the f;. The other ones will usually be
supported on the embedded components of the cycle, provided ¢ is chosen conveniently.

Lemma 1.2. Let U, fi1,..., fm,q,p be as in Lemma 1.1, and d < r < min(m,n), then the
(r,r) current
r dfi, A Ndfi, Ao |07
2 Z (H(QH +1)> Res f’il?"wfir (16)
1<iy1<in<...<ip<m  I=1 fiyes fim

is a closed positive current [f]9* supported by V(f). The action of this current on a
(n —r,n —r) test form can be also expressed as the residue at A\ = 0 of the meromorphic
function of A

r—1
(r—1)! . g 1
St LIRS IBIE oA AT A0 ] A
U J1< - <dp_1 l=1
1<j;<m

(1.7)

Proof. First we give the proof of this lemma when the functions p; are constant. We have

in this case
m

lfllz, = Z(Qj + 1)p3| £517% df;

J=1



and
m

9517t =3 (ay + DRI dfy j =1 om
j=1

An immediate algebraic computation shows that, for any (n — r,n — r) test form ¢,

[ > (qutl) Q(s071 {Zl,...,ir})A/\dfil}A¢:
=1

11 <...<ip
1<ip<m

r—1 r—1
= 0ralfIz, AL S A BT A N et ] A
=1

J1<..<dp—1 l=1
1<j;<m

(1.8)

Let now, for € > 0,

T

so-2 [ [ (Tl + 1) i A A ] A,
=1

I\f\lﬁ,pze i< < =1
1<i;<m

where

We know from Lemma 1.1 that the limit of ®(€) when ¢ — 0 exists and equals (by definition
of the residue symbols) exactly [f]%”. This implies that the function defined on ]0, co[ by

* e =1P(e)d
T+ U(T) :T%r/ ‘ (€)de

o (exryh

also has a limit at 0, which equals U(0) = ®(0) = [f]?*(¢). Using the Fubini and Lebesgue
theorems, one can show that for any 7 > 0,

MG, A [ S (T + D)0 fin, i) A A df ] Ao

: =1
V(1) =7r T/ 1shsm
) =rrw | (A2, T o)+

— r—=1_
AIFIZ, AOIFIE, A X A BB ™) Ao £ ] A

J1<...<dp—_1 l=1

o TT' / 1<j;<m
(2mi)" Ju 1117, LAIG , +7)m

(1.9)
(note that the integrals in the right-hand side of (1.9) are absolutely convergent, which
justifies our use of those theorems to perform the computation of ¥(7)). Since W¥(7)
corresponds to the action on ¢ of a positive current (just look at the second equality in
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(1.9)), the current ¢ — [f]2*(¢) = ®(0) = ¥(0) is positive. On the other hand, we have
also

(r—l)!/ 2 e -5, +1 q;,+1

*l€) = 5 N fllg.p A ANpjfi b )N fi" )| Ny

= i s — Ve L AT A0 £
1<ji<m

—1
(r—1)! - PG o 1
- (27-(2'6)7“ aHf”g,P A [ Z /\ a(pjlfjl . ) N a(pjl jl]l )] Np.
113, p=¢ J1<-<dp_1 1=1
1<j;<m

(1.10)
Since the p; are here supposed constant, the differential form

r—1
A F 4T g5, +1
Z /\ a(pjl sz " ) A a<pjl fjl]l )
J1<-<dr—1 l=1
1<j;<m

r—1
2L N BT A i now =

is d-closed. It follows from Stokes’s theorem that
J1<--<Jr—1 l=1

a|lf
/nfug,p—e
1<j;<m

r—1

0 A 7ot 1 _

- Af||2 aHf“g’p A [ Z /\ 8(pjlszq ) A 8(pjlf]‘.1ll )] A 85 =0

a.p—€ 1< <dp_1 1=1
lgjlgm

for any (n—7—1,n—r) (vesp. (n—7r,n—r—1)) test form ¢ (resp. £). Therefore, we have,
if o =0y or p = 0¢, ®(0) = lin% ®(€) = [f]2P(p) = 0, which shows that the current [f]2
is closed. Thus, we have proved that if the p; are constants, the current [f]%” is closed

and positive.
We now come back to the general case. The Mellin transform of the function

T

Be) = [ S <H(qil—|—1))9(8‘1”3’1;{@'1,...7@',,})/\/T\dfil}/\go
=1

T
€ ||f‘|3,p:€ i1<. .. <ip =1
1<i;<m

is
> A—1 _
)\/0 €T D(e)de =
=\ /U A2l f12, 0 | > (TT@ + D)5 A A dfs | Ag
=1

i1<...<ip [=1
1<i;<m

(1.11)



If we express this function using the same resolution of singularities that we used in the
proof of Lemma 1.1 and use the algebraic relation (1.8), we see that the value at A = 0 of
this function is the same than the value at A\ = 0 of the function of A

A(r—1)! _ o |
e [ MPOTRMA[  ATTAtea1 n

J1<---<Jpr—1 l=1
1<j <m

20m)"

(any term where the differentiation of one of the p; is involved does not contribute to
the value at A = 0, since, when we express it in local coordinates on the local chart
after resolution of singularities, the integrand contains only holomorphic factors in its
denominator). This function is the Mellin transform of the following function of € > 0,

r—1)! r=1_ g4 1
< ((27Ti6))r /|f|2 _ aHng’p/\ [ Z /\ a<pjlfjlq )/\a(pjlqull+ )] Nep.

J1<.-<jr—1 I=1
1<j;<m

Using the same argument preceeding (1.9), one sees that the value of D at € = 0, which is
well-defined, equals the value at 7 = 0 of the function

r—1

3 79t 5+
2Nl N AN@ T A S| A

J1<---<Jr—1 l=1

ollfIZ, Aollf

~ 7"/‘! 1<j;<m
U(r) = - / — =
(2mi)" Ju IANG . CLAIE , + )t

Since ®(0) = W(0) = [f]%(¢), the last current is positive as a limit of positive smooth
currents, as seen earlier in (1.9). As above, note that the value at A = 0 of the function
defined by (1.11) is the same as the value at A = 0 of the function

A(r —1)! )R e ——qj,+1 i1
G / LA DDIA12, 7012 A DD A i D Ad(p £ A
v i1<<dpo1 =1
1<j;<m

This function is the Mellin transform of the function defined for ¢ > 0 by
Ble)= o> /W RN D NdoaFi™ ) ndlonti ™| e
ap=¢€

(2mie)”
1< <ipo1 =1
1<ji<m

—1
(r—1)! - r g1 S
- (27T’L'€)r a||f||3,ﬂ A [ Z /\ d(pjz sz " ) N d(pjl fjljl )] Np.
I3, ,=e 1< <ip—1 I=1
1<j;<m

Since the differential form

r—1
—q;, +1 g, +1
Z /\d(pjzszql )/\d(pjzqull )

J1<--<dr—1 I=1
1<j <m

10



is closed, it follows from Stokes’s theorem that

/nf||2—a“f”3*’A[ > /\ (o5 ) Mo £ now =

J1<--<Jdr—1 l=1
Afli,p—e

1<j <m
J ;1 9
SIS NG T ) A £ )| ABE=0
for any (n —r—1,n—r) (resp. (n —r,n—r—1)) test form ¢ (resp. &). Therefore, the
current ¢ — [f]2°(¢) = ®(0) = lin(lJ ®(e) is closed. This completes the proof.

J1<.-<Jpr—1 l=1
1<j;<m

2. Interpolation-Division formulas.

Let m € N*, U an open set in C", and f1,..., f;n, m holomorphic complex-valued
functions in U. Let s1,...,5s, be m C! complex-valued functions in U. Let < s, f > be
the function defined in U as

<O, f(Q >=< 5,1 > (O = D505

Let u1,...,u, bem C! (1,0)forms in U. Consider the formal differential form in U defined
as

ENCGu) =< s, f > Zsjduj.
j=1

One has, if ¢ is any (n — 1,0) form in (,

d<8,f>/\28jduj'

deE(N; G u) Ny =< s, f >A-l (()\_1)[ — fg>—21

—f—ZdeAde) A¢1.

Jj=1

Therefore, if 1, is any (n — r,0) differential form in (,

%(dCE(Aa C? u))r A ¢r =

_ A d<s,f> A
_ r(A—1) ) 1\ > . )
=<s,f> i1<§...<z—,. [/:\1ds” +(A—1) PP A Q(s,I)} A (l/:\1 dui, ) A,

1<i;<m

r(r—1)

(2.1)
where, for any ordered subset Z = {iy,...,4,} of {1,...,m}, Q(s;Z) has been defined in
Section 1. The term containing A as a factor in the development of (d¢Z(X; ¢, u))" A ¢, is

r(r=1) d<s,f> >

_ r(A-1) ’ E

(=) = rlA<s, f> <sf> P <ZQSI /\du“ APy (2.2)
1<i;<m
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In particular, when s = 577! as in Section 1, this coefficient is exactly

a '
(1) 5 Wlas g giv, iy a () e @3

G, IAIE,

1<i;<m

The following result is a variant of a division formula that appears in [BGVY, DGSY].

Theorem 2.1. Let f1,..., f,, be m holomorphic functions in some neighborhood U of the

origin in C", n > m. Let ¢ € N™ and p1, ..., p; m real-analytic functions non vanishing

in U. Suppose that [gji]1<j<m is a matrix of holomorphic functions in U x U such that
1<k<n

Fi(2) = £ =) gin(O(z— ), G=1,....m,
k=1

and let
GJ(’Z?C) = Zgjk(’z?C)de? ] = 17"'7m
k=1

Let ¢ be a test function with compact support in U which is identically equal to 1 in some
neighborhood U of the origin, and o a C' n-valued function of 2n variables (z, (), defined

in U x W, where W is a neighborhood of supp (dy), holomorphic in z, and such that, for

any z € U,

dp(¢) # 0= or(2,0)(C — ) = L.

k=1

For any function h holomorphic in U, let the function Tj*h be defined in U by

ThE == >, > 2

d<r<m 1< <ip_p J1<.--<Jr

1<i;<n 1<js<m
q,p (24)
hde A Q(o(2,C); T) A ( /\ dg,) A /\ Gj.(2,C)
n—r RES

FY f]17 ctt f]'r‘

fiooo fm
where, v = (=1) (2m)f(t L , t € N, and the action of the residual currents is computed
with respect to the C-Varjables. Then, Tg"* h has the property that the germ (h—Tg""h) ¢ €

(f1,-- -, fm)Oo. Moreover, one can write an explicit division formula

h(z) — T3 h(z ZT‘”’h 2)fi(z U, (2.5)

12



where the T""h are holomorphic functions in U.

Proof. The proof of this result, when ¢ = 0 and p; = 1 for any j is given in [DGSY, Section
5]. The method can be immediately extended to our case. It is based on the weighted
Bochner-Martinelli formulas for division (see, for example, in [BGVY, Proposition 5.18],
or Section 3 in Chapter 2 of the same reference). We will follow the notations used
in the above references. We just need to express the Berndtsson-Andersson weighted
representation formula with one weight (¢,I"), where

(2, Q) = ax(2,¢) = HfH?],(,?_”(Z s 951(C2), > s gin(C, z)) = (a1, qn)
j=1 j=1

and I'(tf) = t™, where X is a complex parameter such that Re A > 2. We let

n

Qx(2,¢) = Y axkdSy

k=1

and

k=1

If we write

K)\(Za () =

S () (1= 1512, + WA < s 1) > ) [ A @ A @eu)].

=0
we have, for any z in (N],

1
hE) =~ [, MOARC) A 0). (26)

We now consider (2.6) as an equality between two meromorphic functions of A which have
no pole at the origin. The identity

1

ME) =~ iy

[ | 100 n K0

A=0
together with the formulas (2.3) and the definition of our residual currents, gives the
division formula (2.5). <

As an application of this theorem, we would like to mention the following result. When
fi,..., fn are n elements in ,,Oy defining a regular sequence, it is a classical fact that the
germ of the Jabobian J = J(f1,..., fn) cannot be in the ideal (fi,..., fn) nOo (see for
example [EiL]). In fact, one has

d1m—<f1,”.,fn)—Res fr

13



If the Jacobian were in the ideal (fi,..., fn), we would have have, from the local duality
theorem, dim ——==2— T = = 0, which is absurd. On the other hand, when Pi,..., P, are

homogeneous polynomials in n variables defining a non discrete variety (that is, the set of
common zeroes contains other points besides the origin), it was claimed by E. Netto ([Net],
vol 2, §441) and proved in [Sp| than the Jacobian of Py, ..., P, lies in the ideal generated
by the P;, j = 1,...,n. This problem was pointed to us by A. Ploski. Using our methods,
we can prove the following local result.

Proposition 2.1. Let fi,..., f, € ,Oy, such that the germ of variety V(f1,..., fn) equals
set theoretically the germ of variety of V(f1,..., f,) for some v < n. Then, the germ of
the Jacobian J = J(f1,..., fn) isin the ideal (f1,..., fn) nOo. If one takes representatives
f; for the germs, the quotients T};J in the division formula

J = ZTjJ(z)fj(z), zeU

(where Uis a neighborhood of 0) can be expressed in terms of the action of currents that
can be defined directly from the analytic continuation of A — F*, where F = |fi|> 4+ --- +
1f 2+ 1 fora N + - 4 | fu]?N for some convenient N € N*.

Proof. We will consider fi,..., f, as germs in ,,41Oy (depending only of the first n coor-
dinates (1,...,(,). We take representatives for the f;, they define in some neighborhood
U of the origin in C"*! an analytic variety V(f) with codimension strictly less than n,
which is set theoretically the same as V(fi,..., f,). Let gj;, 1 < j,1 < n be any collection
of holomorphic functions in U x U, depending on (3, ..., (s, 21, - - -, 2, such that

£i(2) = £ = guz O —G), j=1,...,n.
=1

Let ¢ a test function in D(C™*!), with compact support in U, which is identically equal to
1 in a neighborhhood U of the origin. We know that near any point zg of V(f1,..., fn) =
V(fi,...,f,) in supp (dp), the germs at zo of f,11,..., f, are in the radical of the ideal
(fi,--+y fv) nt1 Os,. Local Lojasiewicz inequalities imply that there exists M such that in

a neighborhood of supp (dyp), %17 .o, fM are locally in the integral closure of the ideal
generated by (f1,...,f,). Wechoose p; =1,j=1,...,n,¢; =0,j=1,...,v, ¢ =nM,
j=v+1,...,n. In order to prove the proposition, it is enough to prove (because of

Theorem 2.1) that

)N EDS

1<r<n 1< <ipgi1—p J1<..-<Jjr

1<i;<n+1 1<js<n
n+l—r q9,p (27)
Jd(,D/\Q(U(Z,C);I)/\( /\ dCZL) /\1 Js(ng)
ni1_r Res =1 5= =0
Tt fj17"';f]r
fl?"';fn
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for any z € U, where o is a n + 1-valued function in (z, (), defined in Ux W, W being a
neighborhood of supp (dy), and

n+1

dp(¢) 0= or(2,¢) (G — 2) = 1.
k=1

We first want to show that all the residue symbols in (2.7) corresponding to subsets J =
{j1,---,Jr} C{1,...,n} with cardinal strictly less than n are identically zero (as functions
of z). We first notice that if J is such a ordered subset of {1,...,n}, with cardinal r < n,
and Z = {iy,...,in41-r} is any ordered subset of {1,...,n + 1} with cardinal n + 1 —r,

we have ,
(TL )T dan.. Ade, = (H %H)(/\ de5> AN df (2.8)
s=1 s=1 f]s jeT
and
n+1 r
Jde A Qo /\ dgi,) A /\ 5o (2Q) = JdGU A ANdCy A ¢

s=1

where ¢ is a (1, r)-differential form with smooth coefficients of compact support in U. As
in Section 1, let

A= AIFIRST0NFIG , A Q@05 T),

where A is a complex parameter. Let zg be a common zero of (f1,..., f,) in the support of
dp and 7 : X,, — W (zp) a resolution of singularities near zo for {f1--- f,, = 0}, such that
in local coordinates on X, (centered at a point x), one has, in the corresponding local
chart U, around x,

fiom()¥T = ()77 - t20mt = 9 ()t j=1,...,n,
J J 1 n—+1 J

where the u;, 7 = 1,...,n, are non vanishing holomorphic functions and at least one of
the monomials (@& +tD% = (¢), j = 1,... n, divides any t(TD* L =1 .. . n. Recall
that the function

Ao J‘N’(Jdg1 Ao AdC A¢;j;A)

is a meromorphic function of \ such that

JEP(TdCL A -+ NdGn N ¢3.T350) =

n+l—r 4P
Jdp AQ(o(2,();T) A ( /\ dCu)/\/\Gas( ¢)
= Res =1
fj17"'7f]r
fl?"'vfn

This function of \ is a combination of terms of the form

/W*GAAww*(Jdgl A= ANdGy N @), (2.9)
Q
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where 1 is a member of a partition of unity for 7*(supp(dy)). If we compute 70, (using
(1.4) and (2.8)), we can express (2.9) as

/Iaul2A 19—|—w/\—> (/T\ ;?) N A f;) Ao,

s=1 i¢T

where 9 and @ are smooth differential forms of respective types (0, r), (0,7 — 1), and a
is a non vanishing function. Suppose now that ¢, is a coordinate that divides u; then, it
divides all 7*f;, j =1,...,n. For any j € {1,...,n}, in particular, when j ¢ 7, we have

7T*<dfj) = d(ﬂ'*fj) = thl —I— ggdtb,
where &; and & are (0,1) and (0,0) forms in U,. Therefore, since
/r\ (" f5,)
™ fi,

is a wedge product of logarithmic derivatives, the differential form
T d * )
1 T ey

does not have ¢, as a factor in its denominator. But the only possible holomorphic non
vanishing factors in the denominator of

T O\ NPT (JdG A -+ - NdCy N @)

are of the form t*, since we have from (1.4)

(TLe ) (940 2,

r
K s=1

|2)\

Oy — A lap
where ¥ and @ are smooth differential forms of type (0,7), (0,7 — 1) respectively (see
(1.4)). This means that the differential form

T O\ AT (JdCL A -+ - ANdCu A @)

has no holomorphic singularities. We conclude that (Jd{; A--- Ad(, A ¢; T;0) = 0, which
means that

nt+l—r a,p
Jdp N Qo(z,¢);T) A ( /\ di,) A A Gj.(2,¢)
Res =1 s=1 =0.
fj17 s 7f]r
f17 s 7fn
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It remains for us to show that, for any z € U,

n q,p
JO’n+1dg0/\an+1 A /\ GJ(27C)
R Jj=1 =0. 2.10
s Jis-oos In (210)
fisooos fa

We know also that if U is small enough, which we can always assume, the radical of
(f1,--., fn) is the radical of (fi,...,f,). Let us consider again a point zo in V(f) =
V(f1,..., fv) Nsupp (de); in a neighborhood of such point, f,i1,..., f, are identically
zero on any component of the analytic set {fi = ... = f, = 0} that contains zy. Let
as before m : X, — W(zp) (where W (zp) is a neighborhhood of zy) be a resolution of
singularities such that in local coordinates on X, (centered at a point x), one has, in the
corresponding local chart U, around z,

fiom(t) =u; ()t - )0 = w0, j=1,...,v,

where the u; are non vanishing holomorphic functions and at least one of the monomials
t% = u(t), j = 1,...,d, divides any t**, k = 1,...,v. As before, it divides also any
W*ffj+1, Jj=1,...,n, because q; =nM > M for j =v +1,...,n. We even know that u"

divides 7* ﬁ%, oM since any fJ”M, j=v+1,...,n, is in the n-th power of the
integral closure of the ideal generated by the germs of f1,..., f, in ,4+10,,. We can write

n

mlfII2, = lapl® + D 7152 = |ap?,
j=v+1

where a and a are non vanishing functions in the local chart. Therefore, if we set
2(A—n)j 2 P51,
O = AIFIZSlFIG , A Qs2P 5 {1, nd),
we have, in local coordinates in the local chart,

(11 =) (94 =n2). .11

j=v+1 H

2\
70y = A—'a“ll
1

n

nM
The factor ( [ =* fj> in (2.11) compensates the singularity in p™. Thus, the differ-
j=v+1
ential form (2.11) has only antiholomorphic singularities. Now, since

A J (Jonaadg NG A\ Gy(2 Qi {1, n} )
j=1
is a combination of integrals of the form
/ 7'('*@)\ /\77D7T* (,]O’n+1d90/\d<_n+1 A /\ Gj(z, C))
Us =1
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for z € X, we have

Jq7p<<]0'n+1d90/\d€’n+l A /\ Gj(z7§);{17'-'7n};0> = Res flw--afn =0
j=1 fl?"'vfn

and the proof of our proposition is complete. Note that, as a consequence of Theorem 2.1,
we have also in this case an explicit division formula

J(z) =Y T;J(2)fi(2), z€U. &
j=1

Remark 2.1. In fact, the only terms for which we had to introduce the weight ¢ and use
the geometric hypothesis on V(f) are the terms of the form (2.10). In general, one has

1 JOns1do A dCugr A ,7\1 G0
T()J(Z):_(QW,L')R'GS fl,--"f"j
f17 R fn
1 - N
T 2in(nM + 1)V [f]%’p(det[gjz(z,C)]0n+1(27€“)390 A dc”“)’ zel,

and
(J— T()J)O - (fl,. .. ,fn) nOO .

Since the (n,n) current [f]%” is positive, and therefore is of the form

(%) e N\ dG Ada,
I=1

where © is a positive measure, then, for any holomorphic function A in U which vanishes

on V(f), one has Ty(hJ) = 0, which means that hJ is locally in U in the ideal generated

by (f1,-.-, fn). This result is well known when fi,..., f,, define the origin as an isolated

zero (it follows from Kronecker’s interpolation formula [GH]).

In fact, we have the following theorem.
Theorem 2.2. Let f1,..., fn, be n germs of holomorphic functions in ,,Oy which define

an ideal with analytic spread v strictly less than n. Then, the germ at 0 of the Jacobian
J=J(f1,..., fn) is in the ideal (f1,..., fn) nOo-

Proof. Consider f1, ..., f, such that the germs at 0 of (fl, e ,fl,) define an ideal with the
same integral closure than the ideal generated by the germs of the f;. As before, we take
representatives for the germs in some neighborhood U of the origin in C™. and functions
holomorphic g;; in U x U such that

Fi(2) = F©Q) =) a0 —G), j=1,...,v.
k=1

18



We consider a test function ¢ with support in U, which is identically zero in some neig-
borhood U of the origin and a n-complex valued function o of 2n variables (z, (), defined

in U x W, where W is a neighborhood of the support of dp, holomorphic in z, C' in ¢
such that

dp(C) #0 =Y ok(2,O)(Ck — 2)
k=1

In order to prove that J belongs to the ideal (fi,..., fy), it is enough to prove that .J
belongs to the ideal (f1,...,f,).From Theorem 2.1, it is enough to show that for any

zeU,
)EED DD

1<r<v i1<...<ip_p §1<...<ir

<i;<n 1<js<t »
Jdp N Qo (2,0 T) A ( /\ dg;,) A /\ Gy, (2,0
(% - Res fz}"' ij ):0,
fl?"‘)fl/

where we take here ¢ = (q1,...,¢,) = (0,...,0) and p = (p1,...,p,) = (1,...,1). As
before, we consider, for any point in V(f) = V(f), a desingularization ., : X,, — W(zo),
such that in local coordinates on X, (centered at a point x), one has, in the corresponding
local chart U, around x,

fiom(t) = w0t - % = ()%, j=1,...,v,

where the u; are non vanishing holomorphic functions and at least one of the monomials
t% = p(t), j =1,...,v, divides any t**, k = 1,...,v. Since the f; are in the integral
closure of the ideal defined by the fj, w divides any 7* f;, j = 1,...,n. It follows from that
that p"~! divides 7*(df1) A -+ A 7*(df,). Then, for any r € {1,...,v}, for any subset J
of {1,...,v} with cardinal r, the differential form

A IFIEQ B 12, A Qs )| A /\ (df;)

has no holomorphic singularities. This implies that, for any such 7, forany Z C {1,...,n},
#I =n —r, for any z € U, one has

n—r roo q9,p
Jdp ANQ(o(2,C);T) A (N dG) AN Gj.(2,)
Res .o =L s=1 =0
Finseooi B
fla"'?fl/

(it is enough to look at the behavior near 0 of the meromorphic function of A whose value
at 0 is precisely this residue symbol). This completes the proof of the theorem. <

These results can also be stated from the global point of view. For example, we have
the following theorem, extending partially Netto’s statement to the affine case.
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Theorem 2.3. Let Pi,...P, be n polynomials in n variables such that the zero set of
Py, ..., P, can be defined as the zero set of Py,...,P,, with v < n. Then, the Jacobian
J(Pr,...,P,) of (Py,...,P,) is in the ideal generated by the P;, 1 < j < n. Moreover,
one has a division formula

J=A1P+ -+ A,P,,

where the A; can be computed in terms of the analytic continuation of the map
A
A — <]P1’2 44 ’Pu|2 + ]P,/+1’2(nN+1) 4 ‘Pn|2(nN+1)) ’

where N is such that

(rad (Pi,...,P,))" C local integral closure of (P;,...,P,).

Remark. Using local Lojasiewicz inequalities ([JKS], [Cyg]) and the Briangon-Skoda

theorem [BS], one can choose N = [] Dy.

k=1
Proof. We use the weighted Bochner-Martinelli formulas with two pairs of weights (Qx,t™)
and (091og(1 + ||¢||?),tM) for M large enough and

n

Qx =Y axplz Od,

k=1
where , .
o = IPIR )(ZPjgjk(Z,C)Jr Y. BIpP Ngjk(Z7C)>a
=1 j=vt1
with , .
IPIR =D 1P+ D PPN,
k=1 k=v-+1

and the g, satisfying

Pi(2) = Pi() =) gin(z: Oz — &), j=1,....n.
k=1

Let K and Py be the two kernels involved in the representation formulas (we refer to
[BGVY] for the details and the notations). Then, if ¢ is a test function identically equal
to 1 in some neighborhood u of the origin and R > 0, one has, for any z € u,

1) = ( [ 10050 - 1 [ 0T 1 mmo) e

We consider (2.12), when R is fixed, as an identity between two meromorphic functions of
A, then let A = 0 by following the analytic continuation, and finally let R tend to infinity.
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The choice of N is made possible by the control one has on the growth of the distributions
(of the principal value type or coefficients of residue currents) involved as coefficients in
the Laurent developments at its poles of the meromorphic function

A || PR
(see for example [BY1], Proposition 5). {
3. Green currents and purely dimensional cycles.

In this section, we shall give another application of the same ideas. We will explain how
to construct a Green current G relative to a purely dimensional effective cycle Z in P™(C)
which can be decomposed into irreducible ones as

Z =Y miZ; m; € N*, codim (Z;) =d, i=1,...,s,

i=1
in terms of global sections Py, ..., P,,, that generate the ideal sheaf
1(2) =Y 1(Z:)™,
i=1
where I(Z;) denotes the ideal sheaf of Z;. Here Py, ..., P, are homogeneous polynomials

in n 4 1 variables with respective degrees Dy > Do > --- > D,,. More precisely, we would
like to construct a (d — 1,d — 1) current Gz such that

dd°Gz + (deg Z)wP = 07 = Y m; degI(Z;) 3z,),

7
i=1

where w = dd®log(|zo|? +- - - +|2n|?) defines the Kahler metric on P™(C) and d(,] denotes
the integration current (without multiplicities) on the reduced algebraic variety V(I([Z;])).
Moreover, we would like Gz to be smooth outside the support of the cycle Z. (So that,
later on, we can use such a current to express in terms of the polynomials P, ..., P,,, the
analytic contribution to the arithmetic height of Z, whenever the P; are in Z|[xo, ..., z,].)
Such a construction was done in [BY] under the condition that I([Z]) = (P4, ..., Py), that
is the cycle Z is defined as a complete intersection (or the divisors {P; =0}, j =1,...,4d,
intersect properly). Our construction will be based on the following theorem.

Theorem 3.1. Let Pi,..., P,, be m homogeneous polynomials in n + 1 variables, with
respective degrees D1 > ... > D,,, defining a purely n — d-dimensional algebraic variety
V(P) in P"(C), and Z be the cycle associated to the ideal sheaf (Py,..., Py, )Opn(c).

Then, for N > dD{ and for generic complex values Bjk, j = 1,...,d, k = 1,...,m,

21



Boi, L =0,...,n, the meromorphic current-valued map (with values in the space of (d,d)
currents in P"(C)) defined by

A— I, =
Ad =D o158 A2 2 N5 A+ @jy+1
—dHQ 0,q 8||Q| q,p N 8||62||q,p A Z /\ a<leQJl ) A a(p]lQJl " )7
(2271-) 1< <dg—1 l=1
1<jr<m+d
(3.1)
where
{Qj:0>j:17~~->d {Qj:N7j:d+1,...,m+d
p; =z, j=1,....d p; = x|~ UL G =d41,....d+m
- " D1—D .
Qi =>_Bin( D Bow) "Py, j=1,....d,
k=1 =0
Qj :Pj—d; j:d+1,,d—|—m7
m-d
1QIE, = Y pl@, Py,
j=1

is holomorphic at A = 0 and such that Iy is the integration current (with multiplicities)
07.

Proof. If the P; define a discrete variety in P™(C), then we choose the coefficients [y,

n

[ =0,...,n, such that the hyperplane I' = { ) Gy;z; = 0} does not intersect the support
1=0

of the cycle Z. If the P; define a variety with codimension 1 < d < n, then, we choose the

n
Bor such that the hyperplane { > So;z; = 0} intersects properly any connected component
1=0

of Reg (V(P)), where Reg (V(P)) is the set of regular points in V(P). We will denote by
A the linear form

A(ZZJ) = Z ﬂo[.’l?l .
=0

Let 'y, ..., 't the different connected components of Reg (V(P))\I', and z,, 1 <7< T,
a generic point in I'-. In the discrete case, the points x,., 7 = 1,...,T, will be by definition
the points in V(P).

We claim that, when d < n, one can choose the generic point x, on I'; such that
if \j, 7 =1,...,d, k =1,...,m, are generic complex coefficients, then the polynomials
(P1,...,P,) and the polynomials

Qx;(z) = Z)\jkA(x)Dl—kak(x)7 j=1,....,d,
=1

define the same (smooth) algebraic variety in a neighborhood of .. In order to see that, we
proceed as follows. Let F be an algebraic closure of the field C(\jx; 1 < j < d; 1 <k <m).
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We consider the polynomials @)y ; as homogeneous polynomials with coefficients in F and
the primary decomposition

(@15 Qna) =[P

in the polynomial ring F|x]. We consider only the isolated primes P, in this decomposition
whose zero set contains z,. Among them, there is the prime ideal P which defines the

smooth algebraic set V(P) near x,. If P, is different from P, the zero variety (in P"(F))
of P, intersects V(P) (near 7 in P"(F)) along a variety with dimension strictly less that
n — d. This implies that one can choose Z, close to x, on I'; and such that Z, is not in
any of the zero sets V(P,) C P*(F), where P, # P. This means that for generic values of
A, for any such ¢, £, is not a common zero of the polynomials = — p, ;(\, z), where the
p.,1 generate P,. We will choose this new point Z, instead of x,. It is clear that at this
new point =, the polynomials @y 1,...,Qx, q, define also V(P) as a smooth variety near

x, for any generic choice of the parameters \.

Let pi,...,pm, be the homogeneous polynomials P; expressed in affine coordinates in
some neighborhood of z,. Recall (see for example [Te], corollaire 5.4) that the multiplicity
of (p1,...,Pm)nOz. at x; equals the multiplicity of (p1,...,0m>Lr1, -, Lrn—d)nOx,,
where L. 1,..., L, ,,_q are generic linear forms (expressed in affine coordinates) vanishing
at z,. Let f;, j =1,...,m, be the germs at z, of the polynomials P;jAP*=Pr j=1,... m,
expressed in local coordinates (centered at x,). Recall that the f;, j =1,...,m, define in
nOz. the same ideal as the p;, j = 1,...,m, since z, does not belong to the hyperplane
I'. Thus, the multiplicity at x, of

(P17 ceey Pmu LT,l? ceey LT,n—d) nOwT
is also the multiplicity in (C%,0) of the germ (in (C<,0)) of the map
Es (Fu(r + Ast)y o Fm(r + At)),

where A, is a (n,d) matrix with generic coefficients (generic depends of course of the
choice of x.). If we take d generic linear combinations (still depending on 7) of the germs
t— fi(x; + A;t), we preserve the local multiplicity at x,, since the integral closure of the
aMo-primary ideal generated in 4 Oy by these germs is the same than the integral closure
in this local ring of the ideal generated by the f;(x, + A;t), j =1,...,m [NR]. Moreover,
as we have seen above, we can choose these d generic linear combinations so that they

define a smooth complete intersection near the point x.. Thus, if the 8, j = 1,...,d,
k = 1,...m, are generic complex numbers, the multiplicity at any x,, 7 = 1,...,T, of
the ideal generated by the P; in O,  equals the multiplicity of the ideal generated by the
germs at z, of the homogeneous polynomials @;, j = 1,...,d, where

Qj(z) = BiAx)? " PrPy(x), j=1,....d.
k=1

This local multiplicity remains constant on the whole connected component I'; (we will
denote it as m,). Moreover, the smooth complete intersection {Q1 = ... = Q4 = 0} is
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defined near z, as the zero set of some primary component P, of the homogeneous ideal
(Q1,...,Qq). We will denote I, =T, \ Sing (V(Q1,...,Qq)). All points in I'; are smooth
points both for Z and for the algebraic variety V(Q1,...,Q4). At all these points, m. is
also the local multiplicity of the ideal defined by the germs of the Q;, j =1,...,d.

It is clear that, for any value of the complex parameter A with large real part, the differential
form in homogenous coordinates that appears in (3.1) defines a differential form in P"(C).
If p is an (n — d,n — d) test form in P"(C), then an(C) I\ N\ ¢ is the Mellin transform of

the function
€= (p;e) =

d—1
(d—1) 5. Ol - 3.2
(2ime) NRIZ, A Y N8 @) ndp i) B2
”ng,q:6 J1<<jg_1 l=1
1<jr<m+d

We know from Lemmas 1.1 and 1.2 that this last function has a limit when ¢ — 0. This limit
equals < [Q]%7”, ¢ >, where [Q]4” is a closed positive current supported by V(Q) = V(P).
It follows that A\ — I can be continued as a (d,d) current-valued meromorphic function
with no pole at the origin, and the value Iy at the origin is exactly the current [Q]%”. In
order to conclude the proof of the theorem, we have to distinguish the cases d = n and
d < n. In the first case, we need to prove that the mass of the current [Q]%” equals the
multiplicity of Z at any point of the discrete variety V' (P). In the second case, it is enough
to prove that our current coincides with the integration current (with multiplicities), near
any point 2 in each fT, T =1,...,t, since the union of these sets is dense in Reg (V (P)),
thus also in V(P). Since the currents dz and [Q]?” are positive, closed, of type (d, d), and
supported by the variety V(P) of pure codimension d, they will concide. Therefore, we
have to prove the two previous claims to conclude the proof. Since these claims are local,
we can express the differential forms in affine coordinates in the local chart around zp in
which we are working. Hence, in what follows we consider only the affine situation.

We have seen in the proof of Lemma 1.2 that both fP”(C) Iy A ¢ and the Mellin
transform of the following function

O(p5e) =
y d d
d . :
X LY (T + 1) Q™ i iah) A\ dQu | A
€ ||Q|‘Z,p:€ i1<...<ig =1 =1
1<ij<d+m
d(d—1) ' L
(where 4 = &1 (;Tri)d(d_l)' and s?’p’l = p3|Q;[?4Q; for j =1,...,d+ m) take the same

value at A = 0. We consider this function as a sum of the following two terms. The first
one is

ed

&;1(%6) = ﬁ/ Q(sq’p’l;{l,...,d})/\dQlA--~/\deAg0. (3.3)
IRz ,=e
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The second one is

By (ps¢) =

d d
Vd ' .
i LY (T + )06 i, i) A N\ dQi | A (34)
U -1
I#{1,...,d}

The Mellin transform of the function A — @ (¢; €) is the sum of the two functions

303 2210,

d
_ =1
JH (3 ) ZMd/HQHif,? @ JHQ —— AQ(sPP L d) A N\ dQj Ay
q,p j=1
=0 &, 2
4 ‘—Zd:+1pj|Qj‘ ) d
T3 0) = Ma / QUG AR L d) A A g ne
q,p j=1

We consider now a point zp which is either an arbitrary point of V(P), in the discrete
case, or a regular point of one of the components fT, otherwise. In the first case, all the
polynomials Q441 = Pi,...,Q4+m = P, vanish at the point zy. In this case, it follows
from the local Lojasiewicz inequality [JKS] (applied to Q1, .. ., Q4, which also vanish at zy),

that the germs at zy of all the polynomials fo, j=d+1,...,d+ m, are in the integral
closure of the ideal generated by the germs of Q)q,...,Q4. In the second case, since zj
is a regular point both of V(P) and of V(Q1,...,Q4) and these two algebraic varieties
are purely n — d dimensional, the first one being included into the second one, it follows
that the two germs of variety they define at zg coincide. Therefore, the polynomials @;,
j=d+1,...,d+m, vanish on the germ of variety defined by Q1,...,Q4 at 2. As in the
first case, it follows from local Lojasiewicz inequality [JKS] (applied to Q1, ..., Q4, which
d

also vanish at zp), that the germs at 2 of all the polynomials Qle, j=d+1,...,d+m,
are in the integral closure of the ideal generated by the germs of Q1,...,Qq4.

Let m : &, — W/(zp) a resolution of singularities near zo for {P;--- P,, = 0} such
that in local coordinates on X, (centered at a point y), one has, in the corresponding local
chart U, around y,

Qi (t) = ui ()8 -t = (Y, j=1,....d,

where the u; are non vanishing holomorphic functions and at least one of the monomials
t% = u(t), j=1,...,d, divides any t*, k = 1,...,d. Since the P].Df, j=1,...,mlie in
the integral closure of the ideal generated by Q1, ..., Qq near zy, the monomial x¢ divides
any 7*(Q;) = W*degf, l=d+1,...,d+ m. In the local coordinates ¢ in the local chart

QU2 = (w*(ipgw))u + 1), (3.4)
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where 6 is a positive real analytic function. If we express J{;”(¢; \) as a sum of integrals
on the local charts that cover 7*(Supp (¢)) after rewriting it as

T (@A) =
d
; P31Q51%) d Z p3lQ;?
—/\%I/IIQIIQ(A D — AQsTP T, /\de —ar
Z H2k s

we see, using (3.4) in each local chart and the fact that the computations of J{;”(;0)
involve only integration currents on the coordinate axis {t; = 0} where ¢; divides p, that

d

(> rQ;P) d
]A:O

=1
JEP (930 [)\fyd/HQHz()‘ d) AQsPH {1, dY) A /\ dQ; N

J
d .
Z_: PJ|QJ|2 j=1

(3.5)
If we express the integrals in local coordinates, we can see (as it was extensively discussed
in the proof of Lemma 1.2, and is based on the fact that one can essentially consider the
p; as constants when computing the values at zero of these meromorphic functions) that
we also have

d

d
J1 (30 [)"Yd/||Q||2(>\ ? /\ (ps1Q;1%) /\ (log p;|Q;1*) A ] . (3.6)
j=1 A=0

It follows from Proposition 8 in [BY2] (see also, for a more detailed proof, [PTY, Section
4]) that

I (950) = 0y(@y.....@u)1 (¥),

where 6;(,,....Q,) is the integration current (with multiplicities) on {Q1 = ... = Q, = 0}
near zg. Since the local multiplicities at zg for the ideals (Q1,...,Qq) and (Py,..., Py)
coincide, we have also

(93 0) = 6z (e) -

If we now express J%° (p; A) or the Mellin transform of € — ®5(¢; €) in the desingularization
coordinates, we see that these functions appear as combinations of terms of the form

ap|* o )
)\/U | ZL (19+w/\f> A (T PjN)go, (3.7)

where U, is a local chart around y, p the corresponding distinguished monomials, a a
non vanishing function in Uy, ¥ and w two smooth forms with respective types (d,d)
and (d,d — 1), and j € {1,...,m}. The choice of N > dD¢ implies that u? divides
W*PJ-N , so that the integrand in (3.7) has no holomorphic singularities. Therefore, the
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value at the origin of the meromorphic function defined by (3.7) is zero. So we have
JZP (0;0) = ®y(p; 0) = 0, which means that our current Iy coincides with the integration
current on Z (with multiplicities) near zo. In the two cases (in the discrete case directly,
and otherwise using the density in V(P) of such points zy), we conclude that Iy =édz. &

Remark 3.1. It follows from formula (2.1) that Iy(y), which also equals the value at
A = 0 of the Mellin transform of € — ®(p;¢€), is the value at A = 0 of the meromorphic
continuation of A — W an(C) Af\d) A @, where the differential form )\Ag\d) is the term
involving A as a factor in the decomposition

A(1QIZ, tog QU2 )] = 3| (IQIZ50108 [QI12,) A (B
= QI B + A4

2 10g]1Q12 )| )

Following the method developped in [BY2, section 4], one may now construct a Green
current associated with a purely dimensional cycle Z in P™(C), even if it is not defined
as a complete intersection. The key point is that this current is computed in terms of
generators of the ideal that define the cycle (with multiplicities). We proceed as follows.
Let ¢ — L¢ be the meromorphic map from C to D™ (P?"*1(C)) expressed in homogeneous
coordinates (z,y) in P?"T1(C) as

13 n
_1( ||z — ylI? ) 2\ k 2 2\\n—k
Le=— |1 s dd®log [z —y[|")" A (dd®log([[=[|” + [[y[I"))" ™™ | .
=% \prmwe) | )
The value at £ = 0 of this meromorphic map coincides with the Levine form ([GK],[Le])
for the subspace z = y in P?"T1(C); note that this subspace is defined as a complete
intersection in P?"*1(C). Let 7 the map from (C"*1)* x (C"T1)* x (C?)* to P?"*1(C)
obtained by taking quotients from the map

((Cn+l)*)2 X (02)* = (C2(n+1))* : (a:,y, (607ﬁ1>) = (ﬁowvﬁly) :

One can now define a meromorphic map & — Y¢ from C into the space of (n —1,n — 1)
currents on P™(C) x P™(C) as

Te(x,y) = / 7 (Le)(w,y, ) -
BeP1(C)

For more details about this construction, we refer to [BY1, Section 4]. We now can state
the following theorem.

Theorem 3.2. Let Z be the effective algebraic cycle of pure dimension n — d in P"(C)
which corresponds to the homogeneous ideal generated by the homogeneous polynomials
Py, ..., Py, with respective degrees D1 > ... > D,,. Let A be a generic linear form in
(xg,...,xy) and Q1,...Qq, d generic Ilnear combinations of the polynomials P, AP1—Dx
k= 1,...,m. Let

|Pk|2(de+1)

d
Z Q12 Z
= [z]|2Pr e ] 2P (DT D)
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and Qy and Qs the singular (d, d) differential forms in P™(C) defined by the formal identity

1

oL [O(F*dlog F)]! = FP Q) +d A Q).

Then, the (d — 1,d — 1) current-valued map A\ — G defined for any complex number \
with a large real part by

< G o= N / F¥ ()Qa(y) A Talz, ) A (3.9)
P (C)xP"(C)

can be analytically continued as a meromorphic function with a simple pole at A = 0.
The coefficient G of A" in the Laurent development about the origin is a current which
is smooth outside the support of Z and satisfies the Green equation

dd°Go + 07 = (deg Z)w? . (3.10)

Proof. It follows from Theorem 3.1 and Remark 3.1 that, for any (n —d,n — d) test form
in P"(C), one has

<Oz, >= [)\/ FAMy)Q2(y) A so(y)}
Pn(C) A=0
(3.11)

[ [ P Aew] .

The proof of the proposition follows exactly the proof of Proposition 9 in [BY2]. The
meromorphic map

A= d X F™Q,
plays the role of A — I. The identity (3.8)

5[(F)‘810g F) A (9(F0log F))“H} = (2im) T F (Q + AQy)

can be written as

1
(27i)d

5[(F’\810gF) A (5(F’\810gF))d_1} = —I\+1,

and used exactly as the identity that defines I in [BY2]. We will not repeat here the
details of the proof. <

Let Z be an arithmetic cycle in Proj Z[xq, ..., z,], defined by m homogeneous polyno-
mials P, ..., P,, with respective degrees D1 > ... > D,,. We assume that the algebraic
cycle Z = Z(C) is purely dimensional, with codimension d. Then, one can compute the
degree of Z as

Y

deg Z = Res)—o / FAQ Aw™ ¢
P~ (C)
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where
D1—D
| Z AjpAP1=Pr py } |Pk|2(dD‘f+1)

d
F=3 - 2
i ||$H2D1 Pt Hx”QDk(deJrl)

and (), is defined by the formal identity

I = d
I(F*9log F)|" = FQ +d A Q
(27T’i)d [ ( 0g )} [ 1+ 2] )
the linear form A and the coefficients A\ji, j =1,...,d, k =1,...,m, being generic.
If we assume that {xg = -+ = 2,,_q = Pi(x) = -+ = Pp(x) = 0} is the empty

set in P™(C), then the logarithmic size of Z (in the sense of [BGS]) is the sum of the
“arithmetic” contribution
Z n,log 7

T prime

(where > n, is the n + 1 arithmetic cycle IT - Z, where IT := {x, =+ = 2,_q4 = 0}),
T prime
and of an “analytic” contribution, which can be obtained as

deg Z
: > Z " Resisg [A / FN (y)w ()" A Qa(y) A Ta ()
h—qi=1’ (z,y)EP™(C)xP"(C)

1 2
+ §Res/\:0 [)\/ FA (y) A Qa(y) A Tk(xlla y)] .
IIxP"(C)

Thus, we have a close expression for the degree and the analytic contribution in the expres-
sion of the size as residues at A\ = 0 of zeta functions of A that can be expressed in terms
of the polynomials Py, ..., P, that define the ideal sheaf I(Z). This result extends the
result one could obtain before only for complex hypersurfaces (see the examples in [BY2]
and [D]) and, more generally, for complete intersections see BY2. In fact, in the complete
intersection case, computing a Green current is much simpler when the polynomials P;
have the same degree D. We let

2 |

Proposition 3.3. Let P,..., Py, be d homogeneous polynomials in n+ 1 variables, with
degree D, defining a complete intersection cycle Z in P™(C). Then the (d—1,d—1)-current
valued meromorphic map

d—1
-1 . 1
A= Gy = IIPIR (Y (ddelog |PI2)* A (D))
k=0
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can be analytically continued as a meromorphic function in C with a simple pole at 0.
Moreover, the coefficient Gy of \° in the Laurent development at the origin is a solution

of the Green equation
dd°Go + 6z = Dw?.

Finally, the current G is smooth at the origin.

Remark 3.2. This proposition shows that the construction in Proposition 9 in [BY?2]
can be avoided in the complete intersection case. Nethertheless, this construction remains
essential for the general case.

Proof. We compute, as in [BY2], formula (67),

i — _
dd°Gy, = ||P||iAded - %Af)log IP||2 A Dlog || P||2 A (dd€ log |\P||§,)d L1 Ry,

where
; d—2
Ry = == MP|2dlog | P2 A Tlog [P A (3 (ddelog | PJ2)* A (Dw)1+).
k=0
We have

BIP|Z01og | P2 = |[PI|2 (ADlog | P|12 A 0log | P|2 + Bdlog | P2)
This implies, for any k > 1, that
(@] P|2010g | P|12)" =
= | PI*((@010g | PI2)" + ADlog |P[[2 A dlog |12 A (B010g]|P|12)* ")
=[Pl B® + A4

The function
(k) n—k,n—k n
S T L)

is (up to a constant) the Mellin transform (with kX instead of ) of the function

~ k
EH_:/”P|§:€[ Z Q(s;{il,...,ik})/\/\d}’il}/\90

€ . )
1,1<..A<1,k l:1
1<i;<d

where s; = ||z||72PP;, j = 1,...,d (see formula (2.3)). The value at 0 of this Mellin
transform equals

AP, A---NdP, A%’
Z Res P ,.. P

1<i1 <ig<...<ip<d Py, ..., Py
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These sums of residue symbols are zero whenever k£ < d (see Lemma 1.1). So, for any k
between 0 and d — 2, the current which is defined as the value at A = 0 of

A= A PI2r0log [|P|5 A Dlog || P||5 A (dd°log || PI2)"

is the zero current. Since, we have also (see [BY1, Proposition 8])
i _ . _
5 A0log |P[[§ A Dlog || P[5 A (dd” log | P|[7)" =92

we get at A = 0 the relation
dd°Go + 67 = DIw?.
It is clear that Gg is smooth outside the support of the cycle Z. <

Remark 3.3. When the P; define a complete intersection, they have the same degree,
their coefficients are in Z, and they are such that II N V(P) is the empty set in P"(C),
where II = {xy = --- = x,—q = 0}, then, the analytic contribution to the arithmetic size
of the cycle Z defined by the P; in ProjZ|xo, ..., x,] is

k

DT & L1 1 2) - c n—1—Fk
TN ey | [ 1P (oo [P A (D)
k=0

k=d j=1 J
d—1
/H r|PH,%A(Z<ddCIOg||P||i>kA(Dw)”-l-’f)].

k=0

— iRes,\:() 2
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