
Let V be a n-dimensional Stein manifold, I be a closed ideal of holomorphic functions on V . It was
proved by Roger Gay that, given an analytic functional T such that hT = 0 (as a functional) for any h ∈ I,

one can find some (n, n) compactly supported current T̃ , such that T̃ (ϕ) = 0 for any ϕ ∈ IE0,0(V ) and

T (h) = T̃ (h) for any h analytic on V . In this paper, we give some explicit construction of T̃ in terms
of residual currents when I is defined as a complete intersection or is locally Cohen-Macaulay. Moreover,
by means of integral representation formulas of the Andersson-Berndtsson-Passare type, we also study the
non complete intersection case in order to represent analytic functionals orthogonal to the ideal in terms of
currents annihilated (as currents) by some power (less than n) of the local integral closure of IE0,0(V ).

1. Introduction.

In [15], [16], one of us considered the following problem: give integral representations for entire solutions
with exponential type in Cn to some particular system of convolution equations. Let IE0,0(Cn) be an ideal
in E0,0(Cn) := C∞(Cn) generated (as an ideal in E0,0(Cn)), by holomorphic functions which correspond to
characteristic functions of the given equations. Using the techniques developed in the two papers quoted
above, it is possible to prove the existence of (n, n) compactly supported currents T in Cn, orthogonal (as
currents) to such an ideal IE0,0(Cn); the integral representation of a solution h of the convolution equation
(or the system of convolution equations) is then of the form

h(z) =< T (ζ), exp(< ζ, z >) >, (1.1)

where T = Th is such a current. In this setting, this was a version of the so called Ehrenpreis’s fundamental
Principle. The results obtained in [15], [16], were, in some sense, optimum, as long as we limited ourselves to
the use of cohomology without any growth conditions. Nevertheless, some natural questions were remaining
unanswered. Among them, the following: given a compactly supported (n, n) current T orthogonal to some
ideal IE0,0(Cn), is there any representation of T in terms of residual currents (as defined in Coleff-Herrera’s
work [8])? Or also this one: can one make T (in (1.1)) completely explicit (in terms of the characteristic
functions of the convolution equations)?

The aim of this paper is to give a preliminary answer, which will be partial but positive and complete in
some particular cases, to such questions. We will use two different kinds of techniques: one is cohomologic
and is based on [15], [16]; the other one, more analytic in nature, is inspired by our approach of residue
currents and division formulas via analytic continuation ([4], [5], [7],[36]).

The fundamental notion that appears in this context is the notion of analytic functional (on a complex
analytic manifold V , which will usually be a Stein manifold) orthogonal to some closed ideal I of holomorphic
functions on V . The set of all such functionals will be denoted by I⊥. In our application, V is a convex open
subset of Cn. The exponential type functions, which are solutions of the system of convolution equations one
considers, are the Fourier-Borel transforms of compactly supported distributions with support included in the
zero set of the ideal I. In the one variable case, these distributions are linear combinations of Dirac masses
and derivatives of Dirac masses at some finite set of points; via Fourier-Borel transform, the corresponding
exponential type entire functions are in this case the exponential polynomials. In the multivariable case, the
exponential type functions one obtains that way can be viewed as a natural generalization of exponential
polynomials in higher dimension (such a generalization is certainly as natural as considering exponential
polynomials in several variables, which correspond to zero dimensional ideals).

We will give, in Section 2, most of the background which is necessary in order to understand the
cohomological method of [16]. Then, in Section 3, we will study in detail (in the particular case where I
is given as a complete intersection) how residual currents play a role in this method (and how I⊥ can be
expressed in terms of them). In Section 4, we will apply cohomological methods to study situations more
general than complete intersections. We will describe in detail what happens in the case when I is locally
Cohen-Macaulay (for example, when I is a zero dimensional ideal). Finally, Section 5 will be devoted to the
description of the analytic method.

For a general survey about convolution equations, we refer to [6].

2. Some preliminary background.
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From now on, V will denote a complex analytic n-dimensional manifold, n ≥ 1, which as usual we will
assume to be countable at infinity. O(V ) denotes the Fréchet space of holomorphic functions on V . Ωp is
the sheaf of holomorphic p-forms on V , Ep,q (resp. ‘Dp,q) denotes the sheaf of (p, q) C∞ differential forms on
V (resp. (p, q) currents on V ). As usual, O will be the sheaf of germs of holomorphic functions on V .

Let F be a sheaf of O modules. One can associate to the functor (from the category of sheaves of
O-modules with base V into itself)

M 7→ HomO(F ,M)

its successive derived functors (with values in the category of sheaves of O-modules with base V )

M 7→ ExtqO(F ,M), q ≥ 0 . (2.1)

In the same vein, if c denotes the family of all compact subsets of V , one can associate to the functor (from
the category of sheaves of O-modules with base V into the category of abelian groups)

M 7→ Homc,O(F ,M) := Γc(V,HomO(F ,M))

its successive derived functors (with values in the category of abelian groups)

M 7→ Extq
c,O(V ;F ,M), q ≥ 0 . (2.2)

One can do the same for the family of all closed subsets of V ; the derived functors (still with values in the
category of abelian groups) will then be denoted as

M 7→ Extq
O(V ;F ,M), q ≥ 0 .

When F is coherent, one can compute these objects using local resolutions of F .

For any nonempty compact subset K ⊂ V , let qK be the semi-norm on O(V )

f 7→ qK(f) = sup{|f(z)|; z ∈ K}.

The standard topology on O(V ) (that is that for which one has uniform convergence on any compact subset)
is defined by the family of all semi-norms qK , K being any compact of V . O(V ), equipped with this topology,
is a Frechet-Schwartz (FS) space. In particular, it is reflexive [23]. A linear form on O(V ) is an analytic
functional if and only if there exists K ⊂⊂ V , cK ≥ 0, such that, for any f ∈ O(V ),

| < T, f > | ≤ cKqK(f). (2.3)

Such a functional is said to be carried by the compact subset K (which is then called a carrier for T ) if and
only if, for any relatively compact neighborhood Ω of K, there exists CΩ ≥ 0, such that, for any f ∈ O(V ),

| < T, f > | ≤ CΩqΩ(f). (2.4)

We will denote by O′(V ) the topologic dual of O(V ), equipped with the strong topology. From Hahn-Banach
theorem, it follows that, if T is an analytic functional carried by some compact set K, then, for any open
subset Ω of V containing K, there exists a (n, n) compactly supported current T1, with support in Ω, such
that T1 represents T , that is

< T, f >=< T1, f >, f ∈ O(V ). (2.5)

We now recall Malgrange’s version [27] of the duality theorem of J. P. Serre [35]. As usual, ∂ is the
(0, 1) component of the exterior derivative.

Let us consider the two exact sequences of sheaves of O-modules with basis V :

0 → O ∂→ E0,0 ∂→ · · · ∂→ E0,n ∂→ 0 (2.6)
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0 → Ωn ∂→ ‘Dn,0 ∂→ · · · ∂→ ‘Dn,n ∂→ 0. (2.7)

The sheaves involved in these two exact sequences satisfy interesting properties: for any x ∈ V , for any
p, q ∈ N (in particular when p = 0 and q is arbitrary), Ep,q

x is a flat Ox-module; similarly, for any such (p, q)
(in particular when p = n and q is arbitrary), ‘Dp,q

x is an injective Ox-module (this is a consequence of the
theorem of division for distributions [26]). From these two properties, one can get ([27]) the following version
of Serre’s duality theorem.

Theorem 2.1 [27]. Let F be an analytic coherent sheaf of O-modules on V . The sequences of O-modules
on V

0 → F → F ⊗ E0,0 → · · · → F ⊗ E0,n → 0 (2.6)′

and
0 → HomO(F , Ωn) → HomO(F , ‘Dn,0) → · · · → HomO(F , ‘Dn,n) → 0 (2.7)′

are in local duality; moreover (2.6)’ is an exact sequence.

In fact one can say much more. Let 0 ≤ q ≤ n. Following Serre’s argument in [27], one can show the
following. If

Γ(V,F ⊗ E0,p) → Γ(V,F ⊗ E0,p+1)

are homomorphisms (the two spaces being considered as topological vector spaces) for p = q and p = q − 1,
then the cohomology space Hq(V,F) (which can be identified to the q-cohomology group of the complex
(Γ(V,F ⊗ E0,∗)) since (2.6)’ is a resolution with fine sheaves, (see [17], p. 181) is equipped with a canonical
Frechet space structure; its topologic dual is isomorphic to the the the n−q cohomology space of the complex

Γc(V,HomO(F , ‘Dn,∗)),

that is to say,
Extn−q

c,O (V ;F , Ωn) =

=
Ker{Γc(V,HomO(F , ‘Dn,n−q)) → Γc(V,HomO(F , ‘Dn,n−q+1))}
Im{Γc(V,HomO(F , ‘Dn,n−q−1)) → Γc(V,HomO(F , ‘Dn,n−q))} .

For example, when V is a Stein manifold, it follows from the fact that Hk(V,F) = 0 for k > 0 (Cartan’s
theorem B) that

Γ(V,F ⊗ E0,0) → Γ(V,F ⊗ E0,1)

and
Γ(V,F ⊗ E0,−1) := Γ(V,F) → Γ(V,F ⊗ E0,0)

are homomorphisms between topological vector spaces. Therefore, one can apply our version of Serre’s
theorem for q = 0 and get that the space

Extn
c,O(V ;F ,Ωn) =

=
Γc(V,HomO(F , ‘Dn,n))

Im {Γc(V,HomO(F , ‘Dn,n−1)) → Γc(V,HomO(F , ‘Dn,n))}
is isomorphic (as a topological vector space) to the topologic dual space of Γ(V,F) = H0(V,F). The duality
is realized thanks to the bilinear form

Φ : H0(V,F)× Extn
c,O(V ;F , Ωn) → C

that can be expressed as follows. Since H0(V,F) = Ext0O(V ;O,F), one
can define, for u ∈ H0(V,F) and v ∈ Extn

c,O(V ;F ,Ωn),

Ψ(u, v) = u • v,
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where the • above is the composition product of Ext

Ext0O(V ;O,F)× Extn
c,O(V ;F , Ωn) → Extn

c,O(V ;O, Ωn).

Now

Ψ(u, v) ∈ Extn
c (V ;O, Ωn) = Hn

c (V ;O,Ωn) :=
Γc(V, ‘Dn,n)

∂Γc(V, ‘Dn,n−1)
,

so that if t is the trace map which is induced (as one takes quotients) by

T 7→< T, 1 >, Γc(V, ‘Dn,n) → C,

one can naturally define
Φ(u, v) = t(Ψ(u, v)),

which is the bilinear duality map.

Let V be an open subset of Cn and T some analytic functional which admits as a carrier some convex
compact subset K of V . The function from Cn into C

z 7→ F (T )(z) :=< Tζ , exp < ζ, z >>

(where < ζ, z >:=
n∑

j=1

ζjzj) is called the Fourier-Borel Transform of T .

For any ε > 0, there exists a constant Cε ≥ 0 such that

|F (T )(z)| ≤ Cεexp(HK(z) + ε‖z‖), (2.8)

where HK : z 7→ sup{< < ζ, z >; ζ ∈ K} is the support function of the compact subset K. The other way
around, if f is an entire function of n variables satisfying (2.8) (for some convex compact K and for any
ε > 0, with some appropriate constant Cε), there exists some analytic functional T ∈ O′(V ), which admits
K as a carrier, such that F (T ) = f ([20]).

We denote as Exp(K) the vector space of entire functions f in n complex variables, with exponential
type, such that

‖f‖K := sup{|f(z)|exp(−HK(z)); z ∈ Cn} < ∞.

This space, equipped with the norm ‖ · ‖K , is a Banach space. The space

Exp(V ) := lim−→
K⊂⊂V

Exp(K)

will be equipped with the inductive limit topology, associated to some exhaustive sequence (Kn)n≥1 of convex
compact subsets of V . The topology one defines like that does not depend on the choice of the sequence
(Kn)n. It is immediate to check that

F : O′(V ) → Exp(V )

is an isomorphism between topological vector spaces. The space Exp(V )′ is therefore isomorphic to the
bidual O′′(V ) through the transpose tF of F . Since O(V ) is reflexive, one may identify O′′(V ) and O(V ).
Therefore

tF (R)(z) =< Rζ , exp < ζ, z >>, z ∈ V, R ∈ Exp(V )′.

The convolution operation between R ∈ Exp(V )′ and f ∈ Exp(V ) is defined as usual by

(R ∗ f)(z) =< Ru, f(z + u) >, z ∈ V.

This is also F (ρT ), where ρ :=t F (R) and f = F (T ). The convolution between elements in Exp(V )′ is
defined as

< R ∗ S, f >:=< R, S ∗ f >, R, S ∈ Exp(V )′, f ∈ Exp(V ).
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One has the relation
tF (R ∗ S) = (tF (R)) · (tF (S)),

which immediately implies that Exp(V )′ is a convolution algebra isomorphic to O(V ).
If one uses such a dictionary, solving a homogeneous convolution equation (resp. a system of homo-

geneous convolution equations) R ∗ f = 0 (resp. R1 ∗ f = · · · = Rm ∗ f = 0) is just the same thing than
solving a division problem ( resp. a system of division equations to solve simultaneously) ρT = 0 (resp.
ρ1T = · · · = ρmT = 0), where ρ, ρ1 . . . , ρm ∈ O(V ) and T ∈ O′(V ).
Solving the division equation ρT = 0 can be done easily on an n-dimensional Stein manifold. One can
represent T with some (n, n) compactly supported current T1 such that there exists a (n, n− 1) compactly
supported current T2 such that

ρT1 = ∂T2. (2.9)

The existence of T2 is due to the following facts: ρT1 (as a current) is orthogonal to O(V ) and O′(V )
can be identified with Γc(V, ‘Dn,n)/∂Γc(V, ‘Dn,n−1). Then, from Malgrange’s theorem about division of
distributions, it follows that there exists T3 ∈ ‘En,n−1(V ), with compact support, such that ρT3 = T2.
Therefore, one has from (2.9)

ρ(T1 − ∂T3) = 0

(as currents), which implies that T1 − ∂T3 is a (n, n) compactly supported current with support in V(ρ) :=
{z ∈ V ; ρ(z) = 0}, which represents T .

In the case of a system ρ1T = · · · = ρmT = 0, one would like any solution T to be represented by some
(n, n) compactly supported current T̃ , with support included in the analytic set

V(ρ1, · · · , ρm) :=
⋂

1≤j≤m

V(ρj),

the current T̃ being annihilated (as a current) by the functions ρj , 1 ≤ j ≤ m.
More generally, let W be an invariant subspace of Exp(V ) (V being some open convex subset of Cn).

That is, W is closed and, for any f ∈ W , for any u ∈ Cn, z 7→ f(z + u) is in W . One can remark that
tF (W⊥) is a closed ideal in O(V ); moreover, the map W 7→t F (W⊥) is a one-to-one map between invariant
subspaces of Exp(V ) and closed ideals in O(V ). Given such an invariant subspace W , it would be interesting
to give integral representations for the elements in W in terms of compactly supported (n, n) currents which
are orthogonal (as currents) to the closed ideal I =t F (W⊥) associated to this invariant subspace.

In order to describe I⊥ (that is, the orthogonal of I in O′(V )), we use Malgrange’s duality theorem [27].
We proceed as follows. The sheaf of ideals I which is generated by I is coherent, and such that Γ(V, I) = I
(V is a Stein manifold). From classical results, one knows that the sequence

0 → Γ(V, I) → Γ(V,O) → Γ(V,
O
I ) → 0

is an exact sequence of Fréchet spaces. Then

I⊥ = Γ(V, I)⊥ =
(

Γ
(

V,
O
I

))′
(2.10)

and one can identify the dual space in (2.10) thanks to Lemma 2.2 that we are going to state and prove, in
order to help the reader. We will denote as V(I) the support of the sheaf O/I. From now on, ‘Dp,q

I will be
the sheaf of germs of (p, q) currents T , with support in V(I), such that, for any open subset U ⊂ V , for any
f ∈ Γ(U, I), the current f ·T|U is 0 on U . The space Γc(V, ‘Dp,q

I ) is the set of sections with compact support
of this sheaf.

Lemma 2.2. Let I be a coherent subsheaf of the sheaf O on a Stein manifold. We have the three following
assertions.
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(1) The space Γc(V,HomO(O/I, ‘Dn,n)) can be identified with the space Γc(V, ‘Dn,n
I ).

(2) The space

Im{Γc(V,HomO(O/I, ‘Dn,n−1)) ∂→ Γc(V,HomO(O/I, ‘Dn,n))}
can be identified to the subspace ∂[Γc(V, ‘Dn,n−1

I )] of Γc(V, ‘Dn,n
I ).

(3) The following diagram is commutative

Ext0O(V ;O,O/I)× Extn
c,O(V ;O/I,Ωn) •−→ Extn

c,O(V ;O, Ωn)
↑ j ↓ t

Γ(V,O)
Γ(V,I) ×

(
Γc(V, ‘Dn,n

I )/∂[Γc(V, ‘Dn,n−1
I )]

)
d−→ C

where • denotes the composition law of Ext, t the trace map, j the identification map which results from (1)
and (2), and d is obtained when one takes quotients from the standard duality d : (f, T ) 7→< T, f > between
C∞ functions and (n, n) compactly supported currents.
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Proof.
(1) An element h in Γc(V,HomO(O/I, ‘Dn,n

I )) is an O-homomorphism with compact support, this
support being included in the support of the sheaf HomO(O/I, ‘Dn,n

I ), which is contained in the support of
O/I, that is V(I). This means that h can be considered as a collection of Γ(U,O) homomorphisms

hU : Γ(U,O)/Γ(U, I) → ‘Dn,n(U) ,

for any open subset U ⊂ V , all these homomorphisms being compatible with restrictions. Since Γ(U,O)/Γ(U, I)
is generated by a single element, hU is determined by TU := hU (1U ). Therefore, one can see immediately
that the collection (TU )U provides a (n, n) compactly supported current on V , TV = Φ(h), which is in
Γc(V, ‘Dn,n

I ) because of the definition of this space.
It is clear that the map Φ : h 7→ Φ(h) = TV is a Γ(V,O)-linear homomorphism from Γc(V,HomO(O/I, ‘Dn,n

I ))
into Γc(V, ‘Dn,n

I ).
This map is in fact one to one; in order to prove that, let us explicit its inverse. If T is a current in
Γc(V, ‘Dn,n

I )), let’s associate to T an element Ψ(T ) in Γc(V,HomO(O/I, ‘Dn,n
I )). Such an element is deter-

mined by the collection of homomorphisms (Ψ(T )U )U , U being any open subset of V , where

Ψ(T )U : Γ(U,O)/Γ(U, I) → ‘Dn,n(U)

is defined by
Ψ(T )U (ḟ) = f.T|U ,

ḟ being the class of f ∈ Γ(U,O) modulo Γ(U, I). The map Ψ : T 7→ Ψ(T ) is Γ(V,O)-linear and it is
immediate to check that Φ and Ψ are inverse one to each other.

(2) The proof is analogous to the proof of point (1).

(3) We know that Γ(V,O/I) = Ext0O(V,O,O/I). We also know that

Extn
c,O(V ;O/I,Ωn) =

=
Γc(V,HomO(O/I, ‘Dn,n))

Im {Γc(V,HomO(O/I, ‘Dn,n−1)) → Γc(V,HomO(O/I, ‘Dn,n))}
from Serre-Malgrange duality theorem. The identification map j is obtained from

idΓ(V,O/I) × Φ

when one takes quotients. The fact that the diagram is commutative can be seen as follows: the composition
product • of Ext associates to the pair j(ḟ , Ṫ ) the class of fT in Hn

c (V ;O, Ωn) = Γc(V, ‘Dn,n)/∂[Γc(V, ‘Dn,n−1)].
The lemma is proved. ♦

Now, we know from lemma 2.2 that the orthogonal of any closed ideal I in O(V ) can be identified with

Γc(V, ‘Dn,n
I ))/∂[Γc(V, ‘Dn,n−1

I )],

which is a representation of Extn
c,O(V ;O/I, Ωn).

In particular, if ρ1T = · · · = ρmT = 0, there exists an (n, n) compactly supported current, with support
in V(ρ1, . . . , ρm), which is orthogonal (as a current) to the ideal (ρ1, . . . , ρm)E0,0(V ) and represents T .
Whenever V is a convex open set in Cn, R1, . . . , Rm are m elements in Exp′(V ) (let us say, for example,
m infinite order differential operators with constant coefficients), any solution f in Exp(V ) of the system of
convolution equations

R1 ∗ f = · · · = Rm ∗ f = 0

is of the form f = F (T ), where T ∈ O′(V ) can be represented by some compactly supported (n, n) current
T1, with support included in V(ρ1, . . . , ρm) (ρj =t F (Rj)) such that, for any open subset U ⊂ V , for any
1 ≤ j ≤ m, ρj · (T1|U ) = 0.
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Remark 2.3. It is easy to extend the statements above to closed submodules in Op(V ). When V is a
convex open subset in Cn, one can apply these methods to study systems of convolution equations of the
form

p∑

j=1

Ri,j ∗ φj = 0, 1 ≤ j ≤ q

where Ri,j ∈ Exp′(V ), φi ∈ Exp(V ) for 1 ≤ i ≤ q, 1 ≤ j ≤ p.

Remark 2.4. When V is a convex open subset in Cn and W an invariant subspace in Exp(V ), there is a
unique analytic subspace V(W ) = V(I) (I beeing the sheaf of ideals generated by I⊥ :=t F (W⊥)), such that

W = F

(
Γc(V, ‘Dn,n

I ))
∂[Γc(V, ‘Dn,n−1

I )]

)
.

Remark 2.5. For some given T ∈ O′(V ), the ideal I(T ) of elements ρ ∈ O(V ) such that ρT = 0 is the
largest closed ideal such that T ∈ I⊥. When I(T ) 6= {0}, one can see the analytic space defined by I(T ) as
the analytic carrier of the functional T .

Remark 2.6. We would like to mention the beautiful result of L. Gruman, which generalizes, in some
substantial way, Ritt’s division theorem. Here is some simplified version of this statement:

Theorem [19]. Let (Ik)1≤k≤m be a collection of finitely generated ideals in O(Cn) and, for each k, Tk

be some analytic functional in I⊥k . Assume that, for some collection of M elements (βi)1≤i≤M , for some
collection of M complex numbers (ci)1≤i≤M , the function

z 7→ G(z) :=

∑
1≤k≤m F (Tk)(z)

∑M
i=1 ciexp < βi, z >

is an entire function in Cn. Then, there are closed ideals Ji, 1 ≤ i ≤ N , as well as compactly supported
(n, n) currents Ti, 1 ≤ i ≤ N , such that Ti is annihilated by Ji (as a current) for any i, and

G =
N∑

i=1

F (Ti).

We end this section with the definition of residue currents. We refer to [8], [10], [30], [36] for the properties
of residue and multiple-residue principal value currents.

Let V be a complex manifold of dimension n and {Y1, . . . , Yp} a family of p hypersurfaces (1 ≤ p ≤ n). One
can associate to any (r, q) semimeromorphic form having its poles on the union of the given hypersurfaces,
a multiple residue current of bidegree (r, p + q). In the particular case where each of the hypersurfaces
Yi is defined by the vanishing of a global holomorphic function fi ∈ O(V ) and the family is in complete
intersection position, given any ω′ ∈ En,n−p(V ), we can consider the semimeromorphic form ω := ω′

f1···fp
, and

the action of the associated residue (n, n)-current ∂ 1
f1
∧ . . .∧∂ 1

fp
∧ω on a test function ϕ, may be defined as

the limit along an admissible path ε = ε(δ) (in the sense of [8]), of the following integrals over semianalytic
tubes

∂
1
f1
∧ . . . ∧ ∂

1
fp
∧ ω(ϕ) = lim

δ→0

1
(2πi)p

∫

{|f1|=ε1...|fp|=εp}

ϕ ω′

f1 · · · fp
.

It is interesting to remark that the above limit does not exist in general if we just let ε ∈ Rp
>0 tend to 0,

even in the point case p = n, as it has been shown in [31].
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The residue current may be equivalently defined by means of analytic continuation as follows: using Atiyah’s
theorem [2], one can consider the map

λ 7→ I(·; λ) =
λp

(2iπ)p
|f1 . . . fp|2(λ−1)

p∧

j=1

∂f j

as a current-valued meromorphic map defined in the whole complex plane. One can show that this map has
its poles in Q−, and is such that, for any ω ∈ En,n−p(V ), for any test function ϕ,

I(ωϕ; 0) =
〈
∂

1
f1
∧ . . . ∧ ∂

1
fp
∧ ω, ϕ

〉
.

The local behaviour of this residue current is the following:
Let Y := ∩p

i (fi = 0) and (W, z) be a coordinate neighborhood such that for any A ⊆ {1, . . . , n}, |A| =
n − p, there exists a sufficiently small polydisk UA ⊆ W with the property that Π : UA ∩ Y → Π(UA ∩ Y )
is a ramified covering, where Π is the coordinate projection onto {z : zj = 0 ∀j 6∈ A}. Denote U := ∩AUA.
According to the fibered residue formula of Coleff–Herrera, there exist for each A, a positive integer mA, a
holomorphic function ρA ∈ O(U) such that (ρA = 0) ∩ Y contains sing(Y ) and for any r ∈ Np

0, |r| ≤ mA,
semimeromorphic functions kA[r] on Y with poles contained in (ρA = 0) such that, for any test function ϕ
with support contained in U :

∂
1
f1
∧ . . . ∧ ∂

1
fp
∧ ω(ϕ) =

=
∑

|A|=n−p

PY,ρA


 ∑

|r|≤mA

(
∂r

∂zr
A

)
(ϕ)

∣∣∣∣
Y

. kA[r] . dzA ∧ dzA


 (2.11)

(PY,ρA denotes the principal value current on Y associated to (ρA = 0) and
∂r

∂zr
A

=
∂r

∂zr1
i1

. . . ∂z
rp

ip

if A =

{i1, . . . , ip} with i1 < i2 < . . . < ip).
We observe that ∂ 1

f1
∧ . . . ∧ ∂ 1

fp
∧ ω(ϕ) is locally equal to a sum of principal values over Y of linear

combinations (with semimeromorphic coefficients kA[r]) of holomorphic derivatives transverse to reg Y of the
test function ϕ. These principal values are reduced to integrations if the functions kA[r] have no singularities,
or evaluations if p = n.
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3. The representation of I⊥ in the complete intersection case; a cohomological approach.

In this section, we will characterize I⊥ in terms of residue currents under the hypothesis that the ideal
I is generated by a complete intersection f1, . . . , fp ∈ O(V ) (i.e. V (I) := ∩p

i=1(fi = 0) has dimension n− p).
For any ω ∈ Γc(V, En,n−p), the distribution ((n, n) current) ∂ 1

f1
∧ . . . ∧ ∂ 1

fp
∧ ω , has compact support

contained in supp(ω) ∩ V (I) and is annihilated by f1, . . . , fp, defining an element in I⊥. We will show that
in fact, I⊥ has ∂ 1

f1
∧ . . . ∧ ∂ 1

fp
as a natural generator. Precisely, we will prove that I⊥ can be identified in

a natural way with the ∂-cohomology space Hn−p

∂
(Γc(V, En,•⊗O/I)), and that the identification is realized

via the morphism

Hn−p

∂
(Γc(V, En,• ⊗O/I)) → I⊥

ϕ 7→ (
∂(1/f1) ∧ · · · ∧ ∂(1/fp) ∧ ϕ

)
|O(V )

.

We begin with a characterization of the above cohomology group.

Proposition 3.1. Let V be a n-dimensional manifold and f1, . . . , fp ∈ O(V ) generating a (coherent) sheaf
of ideals I. Then, for any m,

Hm
c (V ; Ωn ⊗O/I) ' Hm

∂
(Γc(V, En,• ⊗O/I)) '

' {ϕ ∈ Γc(V, En,m)/∂̄ϕ =
∑

fiψi, for some ψi ∈ Γc(V, En,m+1)}
∂̄Γc(V, En,m−1) + {∑ fiϕi, ϕi ∈ Γc(V, En,m)} . (3.1)

Proof. By arguments similar to those in Theorem 2.1, it follows that

0 → Ωn ⊗O/I i⊗id→ En,0 ⊗O/I ∂̄⊗id→ En,1 ⊗O/I ∂̄⊗id→ · · · → 0

is a c-soft resolution of Ωn⊗O/I, which proves the first isomorphism Hm
c (V ; Ωn⊗O/I) ' Hm

∂
(Γc(V, En,•⊗

O/I)).
In order to prove the second isomorphism, note first that the quoted flatness of E•,• over O implies that

0 → En,• ⊗ I → En,• → En,• ⊗O/I → 0

is exact.
As H1

c (V, En,• ⊗ I) = 0, we get the following commutative diagram with exact columns:

0 0 0
↓ ↓ ↓

→ Γc(V, En,m−1 ⊗ I) → Γc(V, En,m ⊗ I) → Γc(V, En,m+1 ⊗ I) →
↓ ↓ ↓

−→ Γc(V, En,m−1) → Γc(V, En,m) → Γc(V, En,m+1) −→
↓ ↓ ↓

→ Γc(V, En,m−1 ⊗ O
I ) → Γc(V, En,m ⊗ O

I ) → Γc(V, En,m+1 ⊗ O
I ) →

↓ ↓ ↓
0 0 0

Moreover, the image of Γc(V, En,• ⊗ I) in Γc(V, En,•) is equal to I · Γc(V, En,•), by collecting local represen-
tations of a section by means of a partition of unity.

Therefore, we can compute Ker(∂̄ ⊗ id)/Im(∂̄ ⊗ id) as the stated quotient of global C∞ compactly
supported forms. ♦
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We know from §2 that I⊥ can be represented as Extn
c,O(V ; O/I, Ωn). In the case of a complete

intersection ideal of codimension p, this global Ext can be characterized as follows:

Proposition 3.2. Let V be a n-dimensional manifold and let I be a coherent sheaf of ideals in O. Suppose
there exist p ≤ n such that ExtqO(O/I,Ωn) is nonzero only for q = p. Then,

Extn
c,O(V ; O/I, Ωn) ' Hn−p

c (V, ExtpO(O/I, Ωn)). (3.2)

Moreover, if there exist f1, . . . , fp, p elements in O(V ) in complete intersection position generating I, one
also has the following identification

Extn
c,O(V ; O/I, Ωn) ' Hn−p

c (V ;O/I ⊗ Ωn) (3.3)

Proof. As ExtqO(O/I,Ωn) is nonzero only for q = p, the spectral sequence of Ext degenerates at E2 and
one has for q ≥ p the following isomorphism

Extq
c,O(V ; O/I, Ωn) ' Hq−p

c (V, ExtpO(O/I, Ωn)).

In particular, when q = n, we get (3.2). In order to prove this result, let us consider an injective resolution
J • of Ωn; one closes the double complex K as below

0 0
↓ ↓

0 −→ Γc(V,HomO(OI ,Ωn)) → ·· Γc(V,HomO(OI ,J •)) →
↓ ↓

0 → Γc(V, C0(V,HomO(OI , Ωn))) → ·· Γc(V, C0(V,HomO(OI ,J •))) →
↓ ↓

0 → Γc(V, C1(V,HomO(OI , Ωn))) → ·· Γc(V, C1(V,HomO(OI ,J •))) →
↓ ↓
· ·
· ·
· ·

For this complex, one may compute

′Ep,q
1 (K) =Hq(Cp

c (V,HomO(O/I, Ωn)))
=Cp

c (V,Hq(HomO(O/I,J •)))
=Cp

c (V, ExtqO(O/I, Ωn)),

since Godement’s functor F 7→ Cc(V,F) is exact (see [17], p. 168). Therefore

′Ep,q
2 (K) = Hp

c (V, ExtqO(O/I, Ωn)).

Since we have, for any integer m

′Em−r,r
2 = Hm−r

c (V, ExtrO(O/I,Ωn)) = 0

for r 6= p, it follows from Theorem 4.4.1, p. 81 in [17], that

Hn(K) =′ En−p,p
2 (K) = Hn−p

c (V, ExtpO(O/I,Ωn)). (3.4)

Since the sheaves HomO(O/I,J •)) are flabby, we have also, for any q ≥ 1,

′′Ep,q
1 (K) = Hq

c (C•(V,HomO(O/I,J p))) = Hq
c (V,HomO(O/I,J p)) = 0. (3.5)

11



Then, using again Godement’s Theorem 4.4.1, we get from (3.5)

Hn(K) =′′ En,0
2 (K) = Hn

c (V,HomO(O/I,J •)) = Extn
c,O(V ; O/I, Ωn). (3.6)

From (3.4) and (3.6), we deduce the isomorphism (3.2).

In order to prove (3.3), observe first that there exist an invertible matrix A = (aij) ∈ GL(C, p) such
that the functions gi :=

∑p
j=1 aij fj form a regular sequence in O(V ) generating I ([11, Prop. 1.2]). We

can suppose then w.l.o.g. that the given generators f1, . . . , fp are a regular sequence and we consider the
associated Koszul projective resolution of O/I:

0 → ΛpOp βp

→ Λp−1Op → · · · → Λ1Op β1

→ O → O/I → 0 .

The sheaves ExtrO(O/I,Ωn) are the cohomology sheaves of the dual complex (HomO(Λ•Op, Ωn),t β•), which
again can be identified to a Koszul complex. Therefore,

a) for any q ≥ 1, q 6= p, ExtqO(O/I, Ωn) = 0 , and so (3.2) is true.

b) ExtpO(O/I,Ωn) ' O/I ⊗ Ωn , proving that

Extn
c,O(V ; O/I, Ωn) = Hn−p

c (V ;O/I ⊗ Ωn).

Finally, we deduce (3.3) from Proposition 3.1. ¦

Corollary 3.3. If I is generated by a complete intersection f1, . . . , fp ∈ O(V ),

I⊥ ' Hn−p

∂
(Γc(V, En,• ⊗O/I)) .

We show next that every element in I⊥ is represented by a residue current. The approach to prove this
special case of the classical duality theorems ([33],[34]), is inspired by [28] (see also [13]).

Theorem 3.4. Let V be an n-dimensional Stein manifold and I ⊆ O(V ) generated by a complete intersec-
tion f1, . . . , fp ∈ O(V ). Let I denote the coherent sheaf of ideals associated to I. Then,

Hn−p

∂
(Γc(V, En,• ⊗O/I)) → I⊥

ϕ 7→ (
∂(1/f1) ∧ · · · ∧ ∂(1/fp) ∧ ϕ

)
|O(V )

is an isomorphism.

Proof. By ([12, Prop. 1.2]), there exist an invertible matrix A = (aij) ∈ GL(C, p) such that the functions
gi :=

∑p
j=1 aij fj are another set of p generators of I satisfying the additional hypotheses that, for any

subset J ⊆ {1, . . . , p} with cardinal k, ∩i∈J{gi = 0} is an analytic set of codimension k. Moreover, by the
Transformation Law for residue currents (see for example [18] for the discrete case, [21], p. 171 and [12] for
the complete intersection case), we have the equality of currents:

∂(1/g1) ∧ · · · ∧ ∂(1/gp) =
(

1
det(A)

)
∂(1/f1) ∧ · · · ∧ ∂(1/fp) .

Therefore, we can suppose w.l.o.g. that the given generators f1, . . . , fp define a regular sequence for any
order.

Let (R•, ρ) be the Koszul resolution of O/I:

O −→ ΛpOp ρ−→ · · · ρ−→ Λ1Op ρ−→ Λ0Op π−→ O/I −→ 0 ,
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where ρ(ei1 ∧ . . . ∧ eis
) =

∑s
j=1(−1)j−1fj . ei1 ∧ . . . ∧ êij

∧ . . . ∧ eis
.

Denote by Z0 the set

{ω ∈ HomO(R•, En,•) : ω(ΛjOp) ⊆ En,n−j , j = 0, . . . , p, and ∂ω = ωρ}
Following Palamodov ([28]), each ω ∈ Γc(V,Z0) is called a (closed) peripherical form.
Given I ⊆ {1, . . . , p}, denote eI = ei1 ∧ . . . ∧ eis if I = {i1, . . . , is} with i1 < i2 < · · · < is, and let

ωI = ω(eI). Then, each ω ∈ Γc(V,Z0) is determined by a collection (ωI)I⊆{1,...,p} of C∞ compactly supported
forms verifying:

i) ωI ∈ Γc(V, En,n−|I|), for all I ⊆ {1, . . . , p}.
ii) ∂ωI =

∑|I|
j=1(−1)j−1fj . ωI−{ij}, for all I such that |I| ≥ 2, and ∂ω{i} = fi . ω(1) for all i = 1, . . . , p.

Consider
Z1 := {ω ∈ HomO(R .

, En, . ) : ω(ΛjOp) ⊆ En,n−j−1, j = 0, . . . , p}
and let ∆ : Z1 → Z0 defined by

∆(ω)(eI) = ∂ω(eI) + ω(ρ(eI)),

as in [28]. By Theorem 5.1 in [28],
Γc(V,Z0)

∆Γc(V,Z1)

α−→ I⊥

ω 7−→ ∫
V

ω(1) .
(3.7)

is an isomorphism. By [25, Remarque 2.5],

Γc(V,Z0)
∆Γc(V,Z1)

β−→ Hn−p

∂
(Γc(V, En,• ⊗O/I)

ω 7−→ ω(e1 ∧ . . . ∧ ep)
(3.8)

is also an isomorphism.
We claim that for any closed peripherical form ω and any holomorphic function h ∈ O(V ):

∫

V

ω(1) . h = (−1)p
〈
∂

1
f1
∧ . . . ∧ ∂

1
fp
∧ ω{1,...,p}, h

〉
. (3.9)

The proof of this fact is a consequence of properties 1.7.2(4), 1.7.6(2) and 1.7.7(3) of residue and residue-
principal value currents shown in [8].

First, ∫

V

ω(1) . h =
(
[
1
f1

] ∧ f1 . ω(1)
)
(h) =

(
[
1
f1

] ∧ ∂ω{1}
)
(h)

= −
(
∂[

1
f1

] ∧ ω{1}
)
(h) .

because ∂h = ∂f1 = 0.
Similarly, for any k ∈ {1, . . . , p},

(
∂

1
f1
∧ . . . ∧ ∂

1
fk−1

∧ ω{1,...,k−1}
)
(h) =

=
(
∂

1
f1
∧ . . . ∧ ∂

1
fk−1

∧
[ 1
fk

]
∧ fk . ω{1,...,k−1}

)
(h) =

=
(
∂

1
f1
∧ . . . ∧ ∂

1
fk−1

∧
[ 1
fk

]
∧ (−1)k−1∂ω{1,...,k}

)
(h)+

+
∑

j<k

(
∂

1
f1
∧ . . . ∧ ∂

1
fk−1

∧
[ 1
fk

]
∧ (−1)j+k+1fj . ω{1,...,̂j,...,k}

)
(h) =

= (−1)k−1(−1)k
(
∂

1
f1
∧ . . . ∧ ∂

1
fk
∧ ω{1,...,k}

)
(h) + 0 =

= −
(
∂

1
f1
∧ . . . ∧ ∂

1
fk
∧ ω{1,...,k}

)
(h),
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which proves (3.9).
Taking into account (3.1), each class in Hn−p

∂
(Γc(V, En,•⊗O/I)) is represented by a form ϕ ∈ Γc(V, En,n−p)

with ∂ϕ =
∑

fiψi, for some ψi ∈ Γc(V, En,n−p+1). Let ϕ be any such form; by (3.8), there exists a periph-
erical form ωϕ such that ϕ = ωϕ(e1 ∧ . . . ∧ ep).

By (3.7), (3.8) and (3.9),

Hn−p

∂
(Γc(V, En,• ⊗O/I)) → I⊥

ϕ 7→ (
∂(1/f) ∧ ωϕ(e1 ∧ . . . ∧ ep)

)
|O(V )

is an isomorphism.
On the other side, by (3.1), ϕ − ωϕ(e1 ∧ . . . ∧ ep) = ∂ψ +

∑
fiϕi, where ψ ∈ Γc(V, En,n−p−1) and

ϕi ∈ Γc(V, En,n−p), ∀i = 1, . . . , p. Now,

(a)
〈
∂(1/f1) ∧ · · · ∧ ∂(1/fp) ∧ ∂ψ, h

〉
= ±

〈
∂(1/f1) ∧ · · · ∧ ∂(1/fp) ∧ ψ, ∂h

〉
= 0 ,

for any h ∈ O(V ) and

(b)
〈
∂(1/f1) ∧ · · · ∧ ∂(1/fp),

∑
fiϕi

〉
= 0

since the residue current is annihilated by the ideal (f1, . . . , fp).
Finally, we deduce that

(
∂(1/f1) ∧ · · · ∧ ∂(1/fp) ∧ ωϕ(e1 ∧ . . . ∧ ep)

)
|O(V )

=

=
(
∂(1/f1) ∧ · · · ∧ ∂(1/fp) ∧ ϕ

)
|O(V )

,

which proves the theorem. ♦

Corollary 3.5. Let V be an n-dimensional Stein manifold and I ⊆ O(V ) generated by a complete inter-
section f1, . . . , fp ∈ O(V ). For any T ∈ I⊥ and any open Stein neighborhood Ω of a carrier K of T , there
exists a C∞ (n, n− p)-form ϕT with compact support contained in Ω such that

T (h) =
〈
∂(1/f1) ∧ · · · ∧ ∂(1/fp) ∧ ϕT , h

〉
for all h ∈ O(V ).

Moreover, ϕT can be chosen verifying:

∂ϕT =
p∑

i=1

fi · ϕi, for some ϕi ∈ Γc(V, En,n−p+1) .

Proof. As T extends to an analytic functional over O(Ω) by (2.5), the Corollary follows from Theorem 3.4
and the representation of

Hn−p

∂
(Γc(V, En,• ⊗O/I))

given in Proposition 3.1. ♦

Remark 3.6. From the injectivity of the “residue” isomorphism

Hn−p

∂
(Γc(V, En,• ⊗O/I) −→ I⊥
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in Theorem 3.4, we deduce that given ϕ ∈ Γc(V, En,n−p) defining a cohomology class (i.e. such that ∂ϕ =∑p
i=1 fiϕi, for some ϕi ∈ Γc(V, En,n−p+1), i = 1, . . . , p), the restriction of the residue current ∂(1/f1) ∧

· · · ∧ ∂(1/fp) ∧ ϕ to O(V ) defines the zero functional iff there exist forms β ∈ Γc(V, En,n−p−1), and βi ∈
Γc(V, En,n−p) ∀i = 1, . . . , p, such that ϕ = ∂β +

∑p
i=1 fiβi.

In fact,
O(V )/I ×Hn−p

∂
(Γc(V, En,• ⊗O/I) −→ C

h× ϕ 7−→
(
∂(1/f) ∧ ϕ

)
(h)

is a non-degenerated bilinear pairing.
We can also rediscover here the Duality Law for residue currents with holomorphic numerators ([11],[29]):
Given h ∈ O(V ), the condition h ∈ I is equivalent to

(
h∂(1/f1) ∧ · · · ∧ ∂(1/fp)

)
(ϕ) =

(
ϕ∂(1/f1) ∧ · · · ∧ ∂(1/fp)

)
(h)

= 0 ∀ϕ ∈ Γc(V, En,n−p)

(or even for any such ϕ for which ∂ϕ is in the ideal generated by I in Γc(V, En,n−p+1)).

4. From complete intersections to locally Cohen–Macaulay ideals.

In this section, we extend the results of §3 to describe I⊥ in terms of residue currents in case I is a
closed ideal such that each local quotient Ox/Ix is a Cohen–Macaulay ring of some fixed dimension. We
recall that a local ring Ox/Ix is said to be Cohen–Macaulay if it has a regular sequence of germs vanishing
at x of length equal to dim(Ix). In particular, if dim(Ix) = 0 or if Ix is a complete intersection, then Ox/Ix

is Cohen-Macaulay.
We give a simple proof for the case of dimension 0, using Taylor expansions of C∞ functions in local

coordinates around each point in V (I). In the general Cohen-Macaulay case, the proof relies on cohomological
methods.

The following lemma will be used to reduce this case to the complete intersection case previously studied.

Lemma 4.1. Let V be a Stein manifold of dimension n and let I ⊆ O(V ) be a proper closed ideal such that
codimV (I) = k ∈ {1, . . . , n}. There exist f1, . . . , fk ∈ I such that codim ∩k

i=1{fi = 0} = k.

Proof. Let f1 ∈ I \{0}. For k > 1, given 1 ≤ j ≤ k−1 and f1, . . . , fj ∈ I such that codim∩j
i=1 {fi = 0} = j,

let N be a countable set such that N ∩ (Zν \ ∩j
i=1 {fi = 0}) 6= ∅ for each irreducible component Zν of

∩j
i=1 {fi = 0}. For any x ∈ N, Aν := {f ∈ I/f(x) 6= 0} is an open dense subset of I, and then A := ∩νAν

in non void. For any fj+1 ∈ A, the sequence {f1, . . . , fj+1} ⊆ I is a complete intersection. ♦

We show in the next proposition that when dimV (I) = 0, each functional in I⊥ is the restriction to
O(V ) of a residual current associated to any complete intersection ideal contained in I.

Proposition 4.2. Let I ⊆ O(V ) be a closed ideal such that dimV (I) = 0. For any T ∈ I⊥ there exists a
unique compactly supported residual current RT such that:

(i) RT |O(V ) = T.

(ii) h ·RT = 0 in Γc(V,′Dn,n), for any h ∈ I.

Moreover, for any complete intersection ideal K contained in I with V (K) discrete, generated by
f1, . . . , fn, there exists ω ∈ Γc(V, En,0) with ∂ω ∈ K · Γc(V, En,1) such that

RT = ∂(1/f1) ∧ · · · ∧ ∂(1/fn) ∧ ω .
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Proof. By Lemma 4.1, there exists a complete intersection ideal K ⊆ I of dimension 0 generated by
a regular sequence f1, . . . , fn. Given a functional T orthogonal to I, T is also in K⊥. By Theorem 3.4
(or Corollary 3.5), there exists ω ∈ Γc(V, En,0) with ∂ω ∈ K · Γc(V, En,1) such that the residual current
RT := ∂(1/f1) ∧ · · · ∧ ∂(1/fn) ∧ ω extends T and is annihilated by K as a current. It remains to show that
RT is also annihilated as a current by all elements in I.

Let ϕ ∈ Γc(V, E0,0) and h ∈ I. By a partition of unity argument, we may suppose that suppϕ∩V(K) = ∅
(and then RT (ϕ) = 0), or that supp ϕ is contained in a small coordinate neighborhood Ω of a point P0 ∈ V (K)
and supp ϕ ∩ V(K) = {P0}. We assume then that there exist n global holomorphic functions z1, . . . , zn

defining a system of local coordinates in Ω and such that zi(P0) = 0 ∀i = 1, . . . , n. As RT has compact
support, it has finite order bounded by m. Consider the Taylor expansion of order m of ϕ(z):

ϕ(z) = ϕ1(z) + ϕ2(z) + ϕ3(z)

where

ϕ1(z) =
∑

α∈Nn

|α|≤m

1
α!

∂αϕ

∂zα
(0) zα

ϕ2(z) =
n∑

j=1

zj θj(z) (4.1)

ϕ3(z) =
∑

|α|=m+1

Kα(z) zα

for some θj and Kα in E0,0(Ω).
Now,

(i) h ·RT (ϕ1) = RT (h · ϕ1) = T (h · ϕ1) = 0, because ϕ1 ∈ O(V ).
(ii) h ·RT (ϕ2) = RT (h · ϕ2) = 0 because each function zi is the conjugate of a holomorphic function

vanishing at suppRT ∩ Ω (cf. 1.7.5 (2) in [8]; it is in fact a consequence of (2.11)).
(iii) h ·RT (ϕ3) = 0 by the choice of m.

Then, h ·RT ≡ 0, as wanted.
Suppose that K ′ =< f ′1, . . . , f

′
n > is another complete intersection ideal of dimension 0 contained in

I, and let ω′ ∈ Γc(V, En,0) such that the residual current R′T := ∂(1/f ′1) ∧ · · · ∧ ∂(1/f ′n) ∧ ω′ also coincides
with T ( and then with RT ) on O(V ). Let m ≥ max{ordRT , ordR′T }. Again, by a partition of unity
argument we may suppose that we are given a test C∞ function ϕ such that supp ϕ ∩ (V(K) ∪ V(K′)) = ∅
(and then RT (ϕ) = 0 = R′T (ϕ)), or that supp ϕ is contained in a small coordinate neighborhood of a point
in V (K)∪ V (K ′). In this case, taking into account that suppRT ⊆ V(K), supp R′T ⊆ V(K′), and expanding
ϕ = ϕ1 + ϕ2 + ϕ3 up to order m as in (4.1), we deduce by arguments similar to the previous one that
RT (ϕ) = R′T (ϕ). ♦

In the case of locally Cohen-Macaulay ideals with positive dimensional zero set, we still have a residue
representative RT for each T ∈ I⊥ (see Theorem 4.4 below), but uniqueness is lost. This “non uniqueness”
is already present in the complete intersection case. For example, consider I =< z1, . . . , zn−1 > in V = Cn

and any ϕ ∈ Γc(Cn, En,0). Then, ∂(1/z1) ∧ · · · ∧ ∂(1/zn−1) ∧ ∂ϕ is in general a non zero current, but its
restriction to O(V ) is the zero functional.

Theorem 4.4. Let I ⊆ O(V ) be a closed ideal such that each local quotient Ox/Ix is a Cohen–Macaulay
ring of some fixed dimension n−p ∈ {0, . . . , n}. For any T ∈ I⊥ there exists a compactly supported residual
current RT such that:

(i) RT |O(V ) = T.

(ii) h ·RT = 0 in Γc(V,′Dn,n), for any h ∈ I.
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Moreover, for any complete intersection ideal K =< f1, . . . , fp > contained in I, there exists ω ∈
Γc(V, En,n−p) with ∂ω ∈ K ·Γc(V, En,n−p+1) such that the residue current ∂(1/f1)∧· · ·∧∂(1/fp)∧ω extends
T.

Proof. By Lemma 4.1 there exists a complete intersection ideal K contained in I. Let K =< f1, . . . , fp >
be any such ideal. As in particular T ∈ K⊥, there exists by Corollary 3.5 a compactly supported form
ω ∈ Γc(V, En,n−p) such that ∂ω ∈ K ·Γc(V, En,n−p+1) and Rf,ω := ∂(1/f1)∧ · · · ∧ ∂(1/fp)∧ω coincides with
T on O(V ). This residue current Rf,ω is annihilated by K and we will show that in fact ω can be chosen in
such a way that h · Rf,ω(ϕ) = 0, for any h ∈ I and any test function ϕ. For any such ω, Rf,ω satisfies the
required properties for RT in the statement of the theorem.

Let K denote the coherent sheaf of (complete intersection) ideals associated to K. We know from Lemma
2.2 that I⊥ (resp. K⊥) can be naturally identified with Extn

c,O(V ;O/I, Ωn) (resp. Extn
c,O(V ;O/K,Ωn)).

The fact that each local quotient Ox/Ix is Cohen–Macaulay of codimension p implies that ExtqO(O/I,Ωn)x =
Extq

Ox
(Ox/Ix,Ωn

x) = 0 for q 6= p, ∀x ∈ V . We have then by (3.2) that Extn
c,O(V ; O/I, Ωn) ' Hn−p

c (V, ExtpO(O/I, Ωn)).
At the level of local rings, ExtpO(O/K, Ωn)x can be identified with (O/K⊗Ωn)x as was already observed in

the proof of Proposition 3.2. The inclusion K ↪→ I induces an injection ExtpO(O/I, Ωn)x ↪→ ExtpO(O/K, Ωn)x,
and under the identification Extp

Ox
(Ox/Kx, Ωn

x) ' Ox/Kx ⊗ Ωn
x , the image of ExtpO(O/I, Ωn)x is just [Kx :

Ix]/Kx ⊗ Ωn
x (cf.[25], [32]), where as usual [Kx : Ix] denotes the ideal quotient, i.e. all the germs sending

any element in Ix into Kx.
By the results in §3, K⊥ may be regarded as Hn−p

c (V ;O/K⊗Ωn) (cf. (3.3), and by the above paragraph,
any element of I⊥ (inside K⊥) is in the image of Hn−p

c (V ; ([K : I]/K)⊗Ωn). By the identification in terms
of global sections given in (3.1), any element in the image of Hn−p

c (V ; ([K : I]/K)⊗Ωn) is represented by a
form ω ∈ [K : I] ·Γc(V, En,n−p). For any such ω , the residue current Rf,ω extends T by Theorem 3.4. Thus,
given any h ∈ I, we know that h · ω ∈ K · Γc(V, En,n−p) and then,

h ·Rf,ω = ∂(1/f1) ∧ · · · ∧ ∂(1/fp) ∧ (h · ω) = 0,

proving the theorem. ♦

5. An analytic description of the representation formulas.

In this section, we intend to make explicit some of the results proved with a cohomogical approach in
the two preceeding sections. The first result we would like to illustrate that way is Corollary 3.5. We will
start with some formulation of our results for V being some open pseudoconvex subset in Cn. It is easy
to extend these results to Stein manifolds. This can be done using Narasimhan-Forster result (see [14]),
which allows us to consider the Stein manifold V as a submanifold in some CN , then using an holomorphic
retraction on this manifold to extend holomorphic functions on V to the ambient space (see also [9].)

From now on V will be a pseudoconvex open subset of Cn. We recall one basic consequence of Cartan’s
theorem A: given some holomorphic function f on V , one can find some holomorphic map

g = g[f ] = (g[f ],1, . . . , g[f ],n) : V × V → Cn

such that, for any z ∈ V , for any ζ ∈ V ,

f(z)− f(ζ) =
n∑

k=1

g[f ],k(z, ζ)(zk − ζk). (5.1)

When V is convex, one can make explicit such a map g[f ] thanks to Taylor integral formula

f(z)− f(ζ) =
∫ 1

0

(
d

dt
[f(ζ + t(z − ζ))]

)
dt ;
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when f is a polynomial, one can also use express g[f ] as a polynomial map obtained with successive divided
differences. For the sake of simplicity in our next computations, we will denote as G[f ] the (1,0) differential
form in V × V

G[f ](z, ζ) :=
n∑

k=1

g[f ],k(z, ζ)dζk. (5.2)

Such a form G[f ] is called an Hefer form for f .

Let (Kl)∞l=1 be some exhaustive sequence of compact subsets of V such that, for any l ∈ N∗, [̂Kl]V ⊂
◦
Kl+1

and
◦

Kl is a strictly pseudoconvex open subset with C∞ boundary (for the existence of such a sequence (Kl)l,
see for example [22], corollary 1.5.11, here [̂K]V denotes the holomorphic hull of K). Let l ∈ N∗; given Kl

and its defining function ρl, one can construct a Henkin-Leiterer section

s[l] :
◦

Kl ×
◦

Kl→ Cn,

which is holomorphic in z, of arbitrary large regularity in ζ, and such that, for any compact K ⊂⊂ Kl, for

any z ∈
◦
K, for any ζ ∈

◦
K,

<(< s[l](z, ζ), ζ − z >) ≥ ρl(ζ)− ρl(z) + δ(K)‖ζ − z‖2, (5.3)

for some strictly positive constant δ(K). We will denote as S[l] the differential form on
◦

Kl ×
◦

Kl

S[l](z, ζ) :=
n∑

k=1

s
[l]
k (z, ζ)dζk.

For each l ∈ N∗, let ϕ[l] be an element in D(V ), with support included in
◦
Kl+1, such that ϕ[l] ≡ 1 in a

neighborhood of [̂Kl]V . We can further assume (from (5.3)) that for any z in some neighborhhood of [̂Kl]V ,
for any ζ in the support of ∂ϕ[l], < s[l+1](z, ζ), ζ − z > does not vanish. We will also assume that S[l+1] is
smooth for z in some neighborhood of [̂Kl]V and ζ in some neighborhood of the support of ∂ϕ[l].

Finally, we remind in our setting Koppelman’s representation formulas with weight factors, which are
due to M. Andersson and B. Berndtsson ([1], [3]). Let

q : V × V 7→ Cn, (z, ζ) 7→ (q1(z, ζ), . . . , qn(z, ζ))

where the qj are holomorphic in z and C1 in ζ. Let Φ be some entire function in one variable such that
Φ(1) = 1. For any positive integer m, let Γ(m) be the function on V × V

Γ(m) : (z, ζ) 7→
(

d

dt

)m

[Φ]|t=<q(z,ζ),z−ζ>+1.

Let also Q be the (1,0) differential form on V × V which is associated to q by

Q(z, ζ) :=
n∑

k=1

qk(z, ζ)dζk.

For any h ∈ O(V ), for any l ∈ N∗, one has the following representation formula for z in a neighborhood of
[̂Kl]V :

h(z) = h(z)ϕ[l](z) =
1

n!(2iπ)n

∫

ζ∈V

hϕ[l](ζ)Γ(0)(z, ζ)(∂ζQ)n(z, ζ)−

1
(2iπ)n

∫

ζ∈V

h∂ϕ[l](ζ) ∧
(

n−1∑
m=0

Γ(m)S[l+1] ∧ (∂ζS
[l+1])n−1−m ∧ (∂ζQ)m(z, ζ)

m! < s[l+1](z, ζ), ζ − z >n−m

)

(5.4)
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We need some additional notation. If U is some open subset of V , ω is an element in Ep,q(U × U) of
the form

ω(z, ζ) =
∑

1≤i1<···<ip≤n

1≤j1<···<jq≤n

ωI,J (z, ζ)dζI ∧ dζJ ,

and S ∈ ‘Ep,q(U), we will denote as < Sz, ω(z, ·) > the differential form on U

< Sz, ω(z, ·) >: ζ 7→
∑

1≤i1<···<ip≤n

1≤j1<···<jq≤n

< Sz, ωI,J (z, ζ) > dζI ∧ dζJ .

In particular, when S = µ, where µ is a measure with compact support in U ,
∫

U

ω(z, ζ)dµ(z) :=
∑

1≤i1<···<ip≤n

1≤j1<···<jq≤n

(∫

U

ωI,J (z, ζ)dµ(z)
)

dζI ∧ dζJ .

We now are ready to state our results about the description of the orthogonal of some ideal I in O(V )
which is defined as a complete intersection. In our first statement, we deal with the zero dimensional case.

Proposition 5.1. Let f1, . . . , fn define a complete intersection in O(V ). Let T be some element in O′(V )
such that, for any j ∈ {1, . . . , n}, fjT ≡ 0 (as an analytic functional). There exist l0 ∈ N∗, and a Radon
measure µ0 with support in Kl0 , such that, for any h ∈ O(V ),

T (h) =< ∂(1/f1) ∧ · · · ∧ ∂(1/fn), hωT >, (5.5)

where ωT is the element in Dn,0(V ) defined as

ωT (ζ) = (−1)n(n−1)/2ϕ[l0](ζ)
∫

V




n∧

j=1

Gj(z, ζ)


 dµ0(z), (5.6)

the Gj =
∑

k gj,kdζk, 1 ≤ j ≤ n, being Hefer forms respectively for f1, . . . , fn.

Before giving the proof of this statement, let us complete it with the following remark.

Remark 5.2. From our point of view, the functions ϕ[l], l ∈ N∗, were fixed a priori (that is independently
of the functional T one wants to represent). For a given T , we can replace ϕ[l] by any element ϕ

[l]
T in

D(
◦
Kl+1) which coincides with ϕ[l] on [̂Kl]V and is identically equal to 0 near each common zero of f1, . . . , fn

in Kl+1 \ [̂Kl]V (these zeroes are isolated). Formula (5.5) remains valid if in ωT one replaces ϕ[l0] by ϕ
[l0]
T ,

which gives ω̃T instead of ωT . So we have also the representation formula

T (h) =< ∂(1/f1) ∧ · · · ∂(1/fn), hω̃T >, (5.7)

where now ω̃T satisfies ∂ω̃T ≡ 0 in some neighborhood of {f1 = · · · = fn = 0} (since the Gj have holomorphic
coefficients in z and ζ). Such a representation formula (5.7) (with the additional condition that ∂ωT is in
the ideal generated by the fj ’s in En,1(V ), which is clearly realized here for ω̃T , since this form is ∂ closed
near {f1 = · · · = fn = 0}), fits with Corollary 3.5 in the zero dimensional case.

Proof of Proposition 5.1. As we have already seen in the proof ot Theorem 3.4, we may assume that
f1, . . . , fn define a regular sequence in O(V ) whatever the order is (that is, for any 1 ≤ k ≤ n, for any subet
J ⊂ {1, · · · , n} such that |J | = k, codimV {fj = 0; j ∈ J} = k). Let T ∈ O′(V ). Since the (Kl)∞l=1 define an
exhaustion of V , it follows from Hahn-Banach theorem that there exists some l0 ∈ N∗, some Radon measure
µ0 supported by Kl0 such that, for any h ∈ O(V ),

< T, h >=
∫

Kl0

h(z)dµ0(z). (5.8)
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We now represent any holomorphic function h ∈ O(V ) using formula (5.4) for some adapted choice of
q and Φ. This is inspired from M. Passare and B. Berndtsson works ([3], [7], [29], [36]). We take here the
approach which was proposed in [4] (see also [5], chapter 3). In fact q depends on a complex parameter λ
such that, at the beginning <(λ) >> 0. Instead of defining q = qλ, it seems easier to plot the associated
(1,0) differential form on V × V , namely

Q(z, ζ) = Qλ(z, ζ) :=
1
n

n∑

j=1

|fj(ζ)|2(λ−1)fj(ζ)
n∑

k=1

gj,k(z, ζ)dζk.

The key fact is that

< qλ(z, ζ), z − ζ > +1 =


1− 1

n

n∑

j=1

|fj(ζ)|2λ


 +

1
n

n∑

j=1

|fj(ζ)|2λfj(ζ)fj(z).

The entire function Φ we choose is the polynomial

Φ(t) =
1
n!

n−1∏

j=0

(nt− j).

For z ∈ Kl0 , one can represent h(z)ϕ[l0](z) thanks to formula (5.4). So

(2iπ)nh(z) = (2iπ)nh(z)ϕ[l0](z) =

=
1
n!

∫

ζ∈V

ϕ[l0]h(ζ)Γ(0)(z, ζ)(∂ζQλ)n(z, ζ)−

−
∫

ζ∈V

h∂ϕ[l0] ∧
(

n−1∑
m=0

Γ(m)S[l0+1] ∧ (∂ζS
[l0+1])n−1−m ∧ (∂ζQλ)m(z, ζ)

m! < s[l0+1](z, ζ), ζ − z >n−m

)

(5.9)

The first integral in the right handside of (5.9), as one can check immediately, equals

Θh,l0(λ) =

= (−1)n(n−1)/2λn

∫

V

hϕ[l0]|f1 · · · fn|2(λ−1)




n∧

j=1

∂fj(ζ)


 ∧




n∧

j=1

Gj(z, ζ)




(5.10)

As a function of the complex parameter λ, it is known (from [2]) that Θh,l0 can be continued up to the
whole complex plane as a meromorphic function of λ; in fact, as shown in ([5], chapter 3, Proposition 3.6
and Theorem 3.18), all the poles of Θh,l0 are in {<(λ) < 0} and the value at λ = 0 is

Θh,l0(0) = (−1)n(n−1)/2
〈
∂(1/f1) ∧ · · · ∧ ∂(1/fn), hϕ[l0]

n∧

j=1

Gj(z, ·)
〉
.

Inspired by this idea, one can take in (5.9), as in [5], the analytic continuation of both sides (as mero-
morphic functions of the complex parameter λ) and compare the values obtained at λ = 0. Thanks to the
choice of Φ, the formula that one obtains at this stage (see [5], pages 74 to 79) is, for z ∈ Kl0 , of the form

h(z) = h(z)ϕ[l0](z) =
n∑

j=1

fj(z)hj(z) + r(z), (5.11)
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where the hj are holomorphic in some neighborhood of ̂[Kl0 ]V (since
< s[l0](z, ζ), ζ− z > does not vanish for z in some neighborhood of ̂[Kl0 ]V and ζ in the support of ∂ϕ[l0]) and

r(z) = (−1)n(n−1)/2
〈
∂(1/f1) ∧ · · · ∧ ∂(1/fn), hϕ[l0]

n∧

j=1

Gj(z, ·)
〉
.

Since holomorphic functions in some neighborhood of ̂[Kl0 ]V can be uniformly approximated on Kl0 by
elements in O(V ) ([23], Theorem 2.6.11 and Lemma 4.3.1), the fact that T , as a functional, is orthogonal to∑

fjO(V ) implies
n∑

j=1

∫

Kl0

fj(z)hj(z)dµ0(z) = 0.

Therefore, it follows from (5.11)

< T, h >=
∫

Kl0

h(z)dµ0(z) =
∫

Kl0

r(z)dµ0(z).

We finally use Fubini theorem in order to get
∫

Kl0

r(z)dµ0(z) =

= (−1)n(n−1)/2

∫

Kl0

〈
∂(1/f1) ∧ · · · ∧ ∂(1/fn), hϕ[l0]

n∧

j=1

Gj(z, ·)
〉
dµ0(z) =

=< ∂(1/f1) ∧ · · · ∧ ∂(1/fn), hωT >,

where

ωT (ζ) = (−1)n(n−1)/2ϕ[l0](ζ)
∫

V




n∧

j=1

Gj(z, ζ)


 dµ0(z).

This concludes the proof of the proposition. ♦

For non zero dimensional complete intersections, we have the following result:

Proposition 5.3. Let f1, . . . , fn define a complete intersection in O(V ). Let T be some element in O′(V )
such that, for any j ∈ {1, . . . , p}, fjT ≡ 0 (as an analytic functional). There exists l0 ∈ N∗, µ0 a Radon
measure with support in Kl0 , such that, for any h ∈ O(V ), one has

< T, h >=< ∂(1/f1) ∧ · · · ∧ ∂(1/fp), hηT >,

where ηT is the (n, n− p) form

ηT (ζ) =

= −Cp∂ϕ[l0](ζ) ∧
∫

Kl0

(
S[l0+1] ∧ (∂ζS

[l0+1])n−p−1(z, ζ)
< s[l0+1](z, ζ), ζ − z >n−p

)
∧G(z, ζ)dµ0(z)

where

G(z, ζ) :=
p∧

j=1

Gj(z, ζ), Cp :=
(−1)

p(p−1)
2

(2iπ)n−p

the Gj =
∑

k gj,kdζk being Hefer forms attached to f1, . . . , fp. Moreover, there are p elements inDn,n−p+1(V ),
ηT,1, . . . , ηT,p, such that

∂ηT (ζ) =
p∑

j=1

fj(ζ)ηT,j(ζ). (5.12)
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Remark 5.4. This representation formula, with the additional property (5.12), fits with the statement in
Corollary 3.5 as well as in the zero dimensional case.

Proof of Proposition 5.3. The proof follows the same lines of the proof of Proposition 5.1. Again, we may
assume that f1, . . . , fp define a regular sequence in O(V ) whatever the order is (that is, for any 1 ≤ k ≤ p,
for any subet J ⊂ {1, · · · , p} such that |J | = k, codimV {fj = 0; j ∈ J} = k). As before, there exist some
l0 ∈ N∗, and some Radon measure µ0 supported by Kl0 such that, for any h ∈ O(V ),

< T, h >=
∫

Kl0

h(z)dµ0(z).

We represent h in Kl0 using formula (5.4) for a convenient choice of q and Φ; q will at the beginning
depend on a complex parameter λ such that <(λ) >> 0; let’s express q = qλ by plotting its associated (1, 0)
differential form

Q(z, ζ) = Qλ(z, ζ) :=
1
p

p∑

j=1

|fj(ζ)|2(λ−1)fj(ζ)
n∑

k=1

gj,k(z, ζ)dζk.

We have, as before,

< qλ(z, ζ), z − ζ > +1 =


1− 1

p

p∑

j=1

|fj(ζ)|2λ


 +

1
p

p∑

j=1

|fj(ζ)|2λfj(ζ)fj(z).

The entire function Φ we now choose is the polynomial

Φ(t) =
1
p!

p−1∏

j=0

(pt− j).

For z ∈ Kl0 , one can represent h(z)ϕ[l0](z) thanks to formula (5.4). Since it is immediate that, for
m > p (and in particular, for m = n)

(∂ζQλ)m =
(

λ

p

)m



p∑

j=1

|fj(ζ)|2(λ−1)∂fj ∧Gj(z, ζ)




m

= 0,

one has from (5.4), for z in some neighborhhod of ̂[Kl0 ]V ,

(2iπ)nh(z) =

−
∫

ζ∈V

h∂ϕ[l0] ∧
(

p∑
m=0

Γ(m)S[l0+1] ∧ (∂ζS
[l0+1])n−1−m ∧ (∂ζQλ)m(z, ζ)

m! < s[l0+1](z, ζ), ζ − z >n−m

)
.

This can be written as

(2iπ)nh(z) =

= −(−1)p(p−1)/2λp

∫

ζ∈V

h|f |2(λ−1)∂f ∧G(z, ζ) ∧ ∂ϕ[l0] ∧Ψl0(z, ζ)−

−
∫

ζ∈V

h∂ϕ[l0] ∧
(

p−1∑
m=0

Γ(m)S[l0+1] ∧ (∂ζS
[l0+1])n−1−m ∧ (∂ζQλ)m(z, ζ)

m! < s[l0+1](z, ζ), ζ − z >n−m

)

(5.14)

where

Ψl0(z, ζ) :=
S[l0+1](z, ζ) ∧ (∂ζS

[l0+1])n−1−p

< s[l0+1](z, ζ), ζ − z >n−p
.
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and

∂f : =
p∧

j=1

∂fj

|f | : = |f1 · · · fp| .

When z is fixed in some neighborhood of ̂[Kl0 ]V , all the forms

ζ → ∂ϕ[l0] ∧ S[l0+1] ∧ (∂ζS
[l0+1])n−1−m ∧ (∂ζQλ)m(z, ζ)

m! < s[l0+1](z, ζ), ζ − z >n−m
, m = 0, . . . , p

(among which is ∂ϕ[l0] ∧ Ψl0(z, ·)) have coefficients in D(V ). This follows from the fact that (5.3) (with
l = l0 + 1) is satisfied for z in some neighborhood of ̂[Kl0 ]V and z in the support of ∂ϕ[l0]. As in the zero
dimensional case, it can be shown that the function

λ
Ξh,l07→ −(−1)p(p−1)/2 λp

(2iπ)n

∫

ζ∈V

h|f |2(λ−1)∂f ∧ ∂ϕ[l0] ∧Ψl0(z, ζ) ∧G(z, ζ)

can be continued as a meromorphic function in the whole complex plane; its poles (as shown in [5], chapter
3, Proposition 3.6 and Theorem 3.18), are in <(λ) < 0 and

Ξh,l0(0) = − (−1)p(p−1)/2

(2iπ)n−p

〈 p∧

j=1

∂(1/fj), h(·)∂ϕ[l0] ∧Ψl0(z, ·) ∧G(z, ·)
〉

.

It is clear again (from Atiyah’s theorem [2]) that both sides of (5.14) (considered as functions of the
complex parameter λ) have analytic continuations to C as meromorphic functions. We take the analytic
continuations of both sides and identify their values at λ = 0. Thanks to the choice of Φ, one can show
(exactly as in pages 74 to 79 in [5]) that one gets from (5.14), for z in some neighborhhood of ̂[Kl0 ]V , a
formula of the form

h(z) =
p∑

j=1

hj(z)fj(z) + r(z),

where the hj are holomorphic in this neighborhood and

r(z) = − (−1)p(p−1)/2

(2iπ)n−p

〈
∂(1/f1) ∧ · · · ∧ ∂(1/fp), h(·)∂ϕ[l0] ∧Ψl0(z, ·) ∧G(z, ζ)

〉
.

As in the preceeding proof, the hypothesis on T implies

< T, h >=
∫

Kl0

h(z)dµ0(z) =
∫

Kl0

r(z)dµ0(z).

Applying Fubini theorem as at the end of the proof of Proposition 5.1 leads to

< T, h >=< ∂(1/f1) ∧ · · · ∧ ∂(1/fp), hηT >,

where ηT is the (n, n− p) form

ηT (ζ) =

= −Cp∂ϕ[l0](ζ) ∧
∫

Kl0

(
S[l0+1] ∧ (∂ζS

[l0+1])n−p−1(z, ζ)
< s[l0+1](z, ζ), ζ − z >n−p

)
∧G(z, ζ)dµ0(z)
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We now are left with the proof of (5.12). For z in some neighborhhood U of ̂[Kl0 ]V and ζ in some
neighborhood Ũ of Supp(∂ϕ[l0]), one has

< s[l0+1](z, ζ), ζ − z > 6= 0.

Let us write, on U × Ũ ,

Σ(z, ζ) :=
S[l0+1](z, ζ)

< s[l0+1](z, ζ), ζ − z >
=

n∑

k=1

σk(z, ζ)dζk.

It is clear than on U × Ũ ,
n∑

k=1

σk(ζk − zk) ≡ 1,

which implies, for (z, ζ) ∈ U × Ũ ,
n∑

k=1

(ζk − zk)∂ζσk(z, ζ) ≡ 0. (5.15)

Let us state now the following technical lemma.

Lemma 5.5. Let U × Ũ a product of open sets in Cn ×Cn. Let σ = (σ1, . . . , σn) a C∞ map from U × Ũ
in Cn such that

n∑

k=1

(ζk − zk)σk(z, ζ) ≡ 1, (z, ζ) ∈ U × Ũ (5.16)

and the σk are holomorphic with respect to the z variables. Let f1, . . . , fp be p functions holomorphic in U

and (gj,k) 1≤j≤p

1≤k≤n
a matrix of holomorphic functions in U × Ũ such that, for any j ∈ {1, . . . , p}, one has

fj(ζ)− fj(z) =
n∑

k=1

gj,k(z, ζ)(ζk − zk), (z, ζ) ∈ U × Ũ . (5.17)

Let gj , j = 1, . . . , p the differential forms

gj(z, ζ) :=
n∑

k=1

gj,k(z, ζ)dζk.

For any ordered subset J ⊂ {1, . . . , p}, such that #J = m, 1 ≤ m ≤ p, one can find a list of forms UJ
j , j ∈ J ,

UJ
j,l, j, l ∈ J, j 6= l, UJ

j,l,r, j, l, r ∈ J , l 6= j, r 6= j, l, and so on, with C∞ coefficients holomorphic with respect
to the z variables, such that

(
n∑

k=1

∂ζσk(z, ζ) ∧ dζk)

)n−m

∧

∧

j∈J

gj(z, ζ)


 =

∑

j∈J

(fj(ζ)− fj(z))UJ
j

∂ζU
J
j =

∑
l∈J

l 6=j

(fl(ζ)− fl(z))UJ
j,l(z, ζ), j ∈ J

∂ζU
J
j,l =

∑
r∈J

r 6=j,l

(fr(ζ)− fr(z))UJ
j,l,r(z, ζ), j, l ∈ J, j 6= l, · · ·

Proof. The proof is a proof by induction on m = #J . We start with m = 1. From the condition (5.16) on σ,
it is clear that for any z ∈ U , for any ζ ∈ Ũ , z 6= ζ. For any point (z, ζ) in U × Ũ , there exists t ∈ {1, . . . , n}
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such that zt − ζt remains different from zero in a neightborhood. Fix t ∈ {1, . . . , n} and consider a point in
U × Ũ such that, in a neighborhood of (z, ζ), ζt 6= zt (for some t ∈ {1, . . . , n}). In thi neighborhood of (z, ζ),
one can write

(
n∑

k=1

∂ζσk ∧ dζk

)n−1

∧ g1(z, ζ) =

=
( ∑

1≤k≤n

k 6=t

∂ζσk ∧
(
dζk − ζk − zk

ζt − zt
dζt

))n−1

∧ g1

= (−1)
(n−1)(n−2)

2 (n− 1)
( ∧

1≤k≤n

k 6=t

∂ζσk

)
∧

( ∧

1≤k≤n

k 6=t

(dζk − ζk − zk

ζt − zt
dζt)

)
∧ g1

= (−1)
n−1)(n−2)

2 +n−t(n− 1)
( ∧

1≤k≤n

k 6=t

∂ζσk

)
∧ (

∆(z, ζ)dζ1 ∧ · · · dζn

)

where ∆(z, ζ) is the determinant

∆(z, ζ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . 0 g1,1(z, ζ) 0 . . 0
0 1 . 0 g1,2(z, ζ) 0 . . 0
0 0 1 . . . . . 0
. . . . . . . . .

− ζ1−z1
ζt−zt

. . . g1,t(z, ζ) . . . − ζn−zn

ζt−zt

0 . . . . 1 0 . 0
. . . . . . . . .
0 . . 0 g1,n−1(z, ζ) 0 . 1 0
0 . . 0 g1,n(z, ζ) 0 . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that this determinant is preserved if one adds to the row Lt with index t the linear combination
∑

1≤k≤n

k 6=t

ζk − zk

ζt − zt
Lk.

If one uses formula (5.17), one can see that in this new determinant, the line Lt is now replaced by the line

L̃t = (0, · · · , 0,
f1(ζ)− f1(z)

ζt − zt
, 0, · · · , 0)

where the single nonzero term is at position t. Therefore, one has

(−1)n−t∆(z, ζ)
∧

1≤k≤n

dζk =
f1(ζ)− f1(z)

ζt − zt

( ∧

1≤k≤n

k 6=t

dζk

)
∧ dζt ,

so that
( ∑

1≤k≤n

k 6=t

∂ζσk ∧
(

dζk − ζk − zk

ζt − zt
dζt

))n−1

∧ g1 =

=
(

f1(ζ)− f1(z)
ζt − zt

)
(−1)

(n−1)(n−2)
2 (n− 1)

( ∧

1≤k≤n

k 6=t

∂ζσk

)
∧

( ∧

1≤k≤n

k 6=t

dζk

)
∧ dζt

=
(

f1(ζ)− f1(z)
ζt − zt

)( ∑

1≤k≤n

k 6=t

∂ζσk ∧ dζk

)n−1

∧ dζt. (5.18)
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This formula can be rewritten as
( ∑

k=1

∂ζσk ∧ dζk

)n−1

∧ g1(z, ζ) =
(

f1(z)− f1(ζ)
ζt − zt

)
Ξt(z, ζ). (5.19)

Outside the set Ft where (ζt − zt)σt(z, ζ) = 0, we have
(∑

k=1

∂ζσk ∧ dζk

)n−1

∧ g1(z, ζ) =
(

f1(z)− f1(ζ)∑n
t=1(ζt − zt)σt(z, ζ)

)
σt(z, ζ)Ξt(z, ζ).

Using the standard rule about proportions that asserts that if

A

B
=

C

D
,

we have also
A

B
=

C

D
=

A + C

B + D
,

we get, combining formulas of the form (5.19) for all different values of t, that outside the union of the Ft,
t = 1, . . . , n, we have

(∑

k=1

∂ζσk ∧ dζk

)n−1

∧ g1(z, ζ) =
f1(ζ)− f1(z)∑n

t=1(ζt − zt)σt(z, ζ)

(
n∑

t=1

σtΞt(z, ζ)

)

=(f1(ζ)− f1(z))
( n∑

t=1

σtΞt(z, ζ)
)

.

Such a formula holds everywhere by continuity. Now, one can see at once that

∂ζ

[
n∑

t=1

σtΞt

]
=

n∑
t=1

(∂ζσt ∧ dζt) ∧
( ∑

1≤k≤n

k 6=t

∂ζσk ∧ dζk

)n−1

=


 ∑

1≤k≤n

∂ζσk ∧ dζk




n

= 0.

This is our statement in the case m = 1. The proof of the inductive step from m − 1 to m is exactly the
same computation. Suppose the elements in J are in increasing order and that #J = m. Let us denote as
κn the constant

κn := (−1)(n−m)(n−m−1)/2

(
n
m

)
.

Then, one has
( n∑

k=1

∂ζσk(z, ζ) ∧ dζk

)n−m

∧
( ∧

j∈J

gjl
(z, ζ)

)
=

= κn

∑

1≤k1<k2<···<kn−m≤n

kj 6=t

( n−m∧

j=1

∂ζσkj

)
∧

( n−m∧

j=1

(
dζkj −

ζkj − zkj

ζt − zt
dζt

))
∧

∧
( m∧

l=1

gjl
(z, ζ)

)

= κn

∑

1≤k1<k2<···<kn−m≤n

kj 6=t

ε(k)
( n−m∧

j=1

∂ζσkj

)
∧∆k,t(z, ζ)

n∧

j=1

dζj
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where ε(k) is a convenient sign and ∆k,t is the determinant constructed exactly like ∆ except that the
columns labelled with q1, . . . , qm ({q1, . . . , qm} = {1, . . . , n} \ {k1, . . . , kn−m}) are respectively replaced by
the columns 



gjl,1

.

.

.
gjl,n


 , l = 1, . . . , m .

Changing the determinant ∆k just by adding to the t-th row the same linear combination of rows as before,
one can rewrite

ε(k)∆k,t(z, ζ)
n∧

j=1

dζj =
∑

j∈J

fj(ζ)− fj(z)
ζt − zt




n−m∧

j=1

∂ζσkj


 ∧Gj,t(z, ζ)

where Gj,t(z, ζ) is the form obtained from
∧

l∈J gl(z, ζ) by replacing gj by dζt. Therefore, adding all these
terms for all k and multiplying by the coefficient

(−1)(n−m)(n−m−1)/2

(
n
m

)
,

we get ( n∑

k=1

∂ζσk(z, ζ) ∧ dζk)
)n−m

∧
( ∧

j∈J

gj(z, ζ)
)

=
∑

j∈J

(fj(ζ)− fj(z))ΞJ
j,t, (5.20)

where

ΞJ
j,t :=

( ∑

1≤k≤n

k 6=t

∂ζσk ∧
(
dζk − ζk − zk

ζt − zt
dζt

))n−m

∧Gj,t .

Combining formulas of the form (5.20) for the different values of t, 1 ≤ t ≤ n, exactly as in the case m = 1,
we get ( n∑

k=1

∂ζσk(z, ζ) ∧ dζk)
)n−m

∧
( ∧

j∈J

gj(z, ζ)
)

=
∑

j∈J

(fj(ζ)− fj(z))UJ
j ,

where

UJ
j (z, ζ) =

n∑
t=1

σt

( ∑

1≤k≤n

k 6=t

∂ζσk ∧ dζk

)n−m

∧Gj,t(z, ζ)

= ±
n∑

t=1

σtdζt ∧
( ∑

1≤k≤n

∂ζσk ∧ dζk

)n−m

∧
( ∧

l∈J

l 6=j

gl(z, ζ)
)

One can see immediately that, for j ∈ J ,

∂ζU
J
j (z, ζ) = ±

( ∑

1≤k≤n

∂ζσk ∧ dζk

)n−m+1

∧
( ∧

l∈J

l 6=j

gl(z, ζ)
)

.

We now can use the inductive hypothesis to conclude to the proof of the lemma. ♦

We now go back to the proof of Proposition 5.3. Since S[l0+1]∧S[l0+1] ≡ 0, one can check that on U× Ũ ,

Σ ∧ (∂ζΣ)n−p−1 ≡ S[l0+1] ∧ (∂ζS
[l0+1])n−p−1(z, ζ)

< s[l0+1](z, ζ), ζ − z >n−p
.
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Therefore, on U × Ũ , one has

∂ζ

[(
S[l0+1] ∧ (∂ζS

[l0+1])n−p−1(z, ζ)
< s[l0+1](z, ζ), ζ − z >n−p

)
∧G(z, ζ)

]
≡

≡ (∂ζΣ(z, ζ))n−p ∧G(z, ζ).

From Lemma 5.5, one can conclude that in U × Ũ

∂ζ [Ψl0(z, ζ) ∧G(z, ζ)] =
p∑

j=1

(fj(ζ)− fj(z))ωj(z, ζ),

where the forms ωj are in En,n−p(U × Ũ) and have coefficients holomorphic in z. Since

∂ηT (ζ) = − (−1)
p(p−1)

2

(2iπ)n−p
∂ϕ[l0](ζ) ∧

∫

Kl0

∂ζ [Ψl0(z, ζ) ∧G(z, ζ)]dµ0(z)

and ∫

Kl0

fj(z)ωj(z, ζ)dµ0(z) = 0, j = 1, . . . , p

(this is the hypothesis on T and the fact that one can approach uniformly on Kl0 any holomorphic function
on U by elements in O(V )), we get

∂ηT (ζ) =
p∑

j=1

fj(ζ)ηT,j(ζ) (5.21)

for some differential forms ηT,j in Dn,n−p+1(V ). ♦

We now intend to give some representation formulas for analytic functionals orthogonal to some ideal
(again in O(V ), V being some pseudoconvex open subset in Cn) in the non complete intersection case. The
first result in this direction is related to the case when the number p of generators of the ideal is strictly
smaller than the dimension n. The statement is inspired by the statement of Proposition 5.3. Before stating
our first result, we need some preliminary notation. Let I be some ideal in O(V ),

√
I its radical (in O(V ))

and I its integral closure. We will denote as
√̃

IE0,0(V ) the ideal generated in E0,0(V ) by the conjugates of
all elements in

√
I.

Proposition 5.6. Let p < n and I be an ideal in O(V ) generated by f1, . . . , fp. For each m ∈ {1, . . . , p}
there is a family of ( p

m ) (0, k) currents Tm,J , J ⊂ {1, . . . , p}, #J = m, which are annihilated (as currents)

by the ideal I
mE0,0(V ) +

√̃
IE0,0(V ), such that any functional T orthogonal to I can be represented as

T (h) =
p∑

m=1

∑

J⊂{1,...,p}
< Tk,J , hη

(m,J)
T >, (5.22)

where, for any m, J , ηm,J
T ∈ Dn,n−m(V ) satisfies

∂η
(m,J)
T (ζ) =

∑

j∈J

fj(ζ)η(m,J)
T,j (ζ) (5.23)

for some elements η
(m,J)
T,j ∈ Dn,n−m+1(V ).

Proof. The proof is similar to the proofs of Proposition 5.1 and 5.2. Let T be an analytic functional
orthogonal to I = (f1, . . . , fp). There exists l0 ∈ N∗, some Radon measure µ0 supported by Kl0 , such that,
for any h ∈ O(V ),

< T, h >=
∫

Kl0

h(z)dµ0(z).
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Once again, we represent h in Kl0 using formula (5.4) for a convenient choice of q and Φ; q will at the
beginning depend on a complex parameter λ such that <(λ) >> 0; the (1,0) differential form associated to
q = qλ is now

Q̃(z, ζ) = Q̃λ(z, ζ) := ‖f(ζ)‖2λ

(∑p
j=1 fj(ζ)

∑n
k=1 gj,k(z, ζ)dζk

‖f(ζ‖2
)

,

where

‖f(ζ)‖2 :=
p∑

j=1

|fj(ζ)|2.

Note that from an immediate computation, we have

1+ < q̃λ(z, ζ), z − ζ >= 1− ‖f(ζ)‖2λ + ‖f(ζ)|2λ

∑p
j=1 fj(ζ)fj(z)
‖f(ζ)‖2 . (5.24)

We take Φ(t) = tp. For z in some neighborhood of [K̂l0 ]V , one has the following representation formula

h(z) = − 1
(2iπ)n

∫

ζ∈V

h∂ϕ[l0] ∧
( p∑

m=0

Γ(m)

m!
Σ ∧ (∂ζΣ)n−1−m ∧ (∂ζQ̃λ)m(z, ζ)

)
(5.25)

where

Σ(z, ζ) = Σ[l0+1](z, ζ) :=
S[l0+1](z, ζ)

< s[l0+1](z, ζ), ζ − z >
.

One can write the differential form which appears between brackets in the integrand (5.25) as

p∑
m=0

(
p
m

)
(1− ‖f(ζ)‖2λ)p−mΣ ∧ (∂ζΣ)n−1−m ∧ (∂ζQ̃λ)m(z, ζ)+

+
p∑

j=1

fj(z)θj(z, ζ;λ),

where the forms θj have coefficients in E0,0(U×Ũ), where U is a neighborhhod of ̂[Kl0 ]V and Ũ a neighborhood
of Supp(∂ϕ[l0]). Moreover, these coefficients are holomorphic in the z variables. Let Q̃0 be the differential
form

Q̃0(z, ζ) :=

∑p
j=1 fj(ζ)

∑n
k=1 gj,k(z, ζ)dζk

‖f(ζ‖2 .

Clearly, for any m ∈ {1, . . . , p− 1},

[∂ζQ̃λ(z, ζ)]m =

= ‖f(ζ)‖2mλ

(
[∂ζQ̃0(z, ζ)]m + mλ

∂‖f‖2
‖f‖2 ∧ Q̃0(z, ζ) ∧ [∂ζQ̃0(z, ζ)]m−1

)

(5.26)

and
[∂ζQ̃λ(z, ζ)]p = p!(−1)p(p−1)/2λ‖f(ζ)‖2p(λ−1)G(z, ζ) ∧ ∂f(ζ) (5.27)

where, as before

G(z, ζ) :=
p∧

j=1

gj(z, ζ), ∂f(ζ) :=
p∧

j=1

∂fj(ζ).
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Let us write, for m ∈ {1, . . . , p},

Q̃0(z, ζ) ∧ [∂ζQ̃0(z, ζ)]m−1 =
∑

J⊂{1,...,p},#J=m

j1<j2<···<jm

Θm,J (ζ) ∧
( m∧

l=1

gjl
(z, ζ)

)
.

For any m ∈ {1, . . . , p}, for any J ⊂ {1, . . . , p}, the map

λ 7→ Λm,J (λ) := λ‖f‖2λ ∂‖f‖2
‖f‖2 ∧Θm,J (5.28)

has a meromorphic continuation as a map from C to ‘D0,m(V ). This follows from Atiyah’s theorem. We
denote as Tm,J the (0,m) current defined as the coefficient of λ0 in the Laurent expansion of (5.28) around
λ = 0. We now take the meromorphic continuation of both sides in formula (5.25) and identify the Laurent
coefficients at the origin. The formula one gets at this stage is

(2iπ)nh(z) =

= −
p∑

m=0

∑

J⊂{1,...,p}
#J=m

〈
γmTm,J , h∂ϕ[l0] ∧

[
Σ ∧ (∂ζΣ)n−1−m ∧ ( m∧

l=1

gjl

)]
(z, ·)

〉
+

+
p∑

j=1

hj(z)fj(z), (5.29)

where the hj are holomorphic functions in some neighborhhood of [K̂l0 ]V and

γm := m

∫ 1

0

um−1Φ(m)(1− u)du = m

(
p
m

) ∫ 1

0

um−1(1− u)p−mdu = 1

for this particular choice of Φ. We now use Fubini theorem and the fact that the functional T is orthogonal
to the ideal, so that one can write, for h ∈ O(V ),

T (h) =
p∑

m=1

∑

J⊂{1,...,p}
< Tm,J , hη

(m,J)
T >,

where
(2iπ)nη

(m,J)
T (·) :=

= −∂ϕ[l0] ∧
∫

Kl0

[
Σ[l0+1] ∧ (∂ζΣ[l0+1])n−1−m ∧ ( m∧

l=1

gjl

)]
(z, ·)dµ0(z).

As in the proof of Proposition 5.3,

∂η
(m,J)
T (ζ) =

=
1

(2iπ)n
∂ϕ[l0](ζ) ∧

∫

Kl0

[
(∂ζΣ[l0+1])n−m ∧ ( m∧

l=1

gjl

)]
(z, ζ)dµ0(z).

One can use again Lemma 5.5 (with the functions fj , j ∈ J), in order to prove the existence of smooth
differential forms η

(m,J)
T such that, for any m ∈ {1, . . . , p}, for any J ⊂ {1, . . . , p},

∂η
(m,J)
T (ζ) =

∑

j∈J

fj(ζ)η(m,J)
T,j (ζ).

30



In order to conclude the proof of the proposition, we need to prove that the currents Tm,J are orthogonal

(as currents) to I
mE0,0(V ) +

√̃
IE0,0(V ).

This can be done with the use of resolution of singularities, as in the proof of Theorem 3.25 in [5] (from
which the whole proof of Proposition 5.7 is inspired). Clearly, the question is a local one. Let f := f1 · · · fp.
Let z(0) ∈ V . There exists some neighborhood Ω(z(0)), some n-dimensional analytic manifold X , together
with a proper map π : X 7→ Ω(z(0)) such that the restriction of π to X \ π∗f−1(0) is a biholomorphic map
over Ω(z(0)) \ f−1(0) and such that, for each x0 ∈ X , there are local coordinates w centered at x0, so that,
in a local chart around x0, one has, for each j ∈ {1, . . . , p},

π∗fj(w) = uj(w)wαj ,

where αj ∈ Nn and uj is a non-vanishing holomorphic function in the local chart. We next introduce, for
such a local chart, the Newton polyedron Γ+(α1, . . . , αp), defined as the convex hull of

p⋃

j=1

{αj + (R+)
n},

and the toric manifold X̃α = X (Γ+(α1, . . . , αp)) associated to it (see [24]). The projection map π̃α is a proper
map from X̃α to Cn; furthermore, this map is invertible from X̃α\π̃α({w1 · · ·wn = 0}) to Cn\{w1 · · ·wn = 0}.
In some local chart U in X̃α, all monomials π̃∗α(wα

j ), j = 1, . . . , p, are multiples of a distinguished one among
them, that we will denote M . So in such a chart, one can write, for j = 1, . . . , p,

(π̃∗α ◦ π)

[
f j

‖f‖2
]

=
θ

M
,

where θ is a smooth function. Similarly

(π̃∗α ◦ π)
[
∂‖f‖2
‖f‖2

]
= η1

∂M

M
+ η2,

where η1 is a smooth function (in the local chart) and η2 a smooth (0, 1) form. So that, for any J ⊂ {1, . . . , p},
one can write, for <(λ) >> 0,

(π̃∗α ◦ π)(Λm,J) = λ
|M |2mλ|ν|2mλ

Mm

(
σm,J ∧ ∂M

M
+ τm,J

)
,

where again σm,J is a smooth (0, p − 1) form (in the local chart), τm,J a smooth (0, p) form, and ν a
non-vanishing smooth function in the local chart. Now, if h ∈ I

mE0,0(V ), one has locally

|h(ζ)| ≤ C‖f(ζ)‖m,

so that, as it can be seen immediately, Mm divides (π̃∗α ◦ π)(h) in the local chart. Since a function of the
form

λ 7→ λ

∫ n

C

|M |2λ|ν|2λψ(t)dt ∧ dt

tj
,

(where ψ ∈ D(Cn), M is a monomial, ν a smooth function non-vanishing on Supp(ψ)) has a meromorphic
continuation which is holomorphic and vanishes at the origin, it is clear that any current Tm,J is annihilated

by h. If now h ∈ √̃IE0,0(V ), any coordinate function tl which appears in the expression of M is such that
tl divides (π̃∗α ◦ π)(h). Since a function of the form

λ 7→ λ

∫ n

C

|M |2λ|ν|2λψ(t)dt ∧ dt

Mm
,
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(where ψ ∈ D(Cn), M is a monomial, ν a smooth function non-vanishing on Supp(ψ)) has a meromorphic
continuation which is holomorphic and vanishes at the origin, it is clear that any current Tm,J is also
annihilated by h. ♦

The currents involved in this representation formula are not annihilated by the ideal I (as currents). So
we do not recover, with such a formula, the existence of a (n, n) compactly supported current S, which is
annihilated by the ideal as a current, such that, for any h ∈ O(V ), T (h) = S(h). This was the result stated
(and proved with cohomological methods) in section 2. Nevertheless, it seems interesting to remark that it is
possible, by a slight change in the method of proof of Proposition 5.6, to give another explicit representation
formula for the unique residual current extending a given functional orthogonal to an ideal with isolated
zeroes (see Proposition 4.2).

Proposition 5.7. Let I be some ideal in O(V ) generated by f1, . . . , fp (p ≥ n) and such that V (I) is
discrete. Any analytic functional T which is orthogonal to the ideal (as a functional) can be represented
with a compactly supported (n, n) current S which is orthogonal to the ideal as a current and can be
described in terms of the analytic continuation of λ 7→ ‖f‖2λ.

Proof. We follow exactly the same proof as in Proposition 5.6, except that we take Φ(t) = tn+1 instead of
Φ(t) = tp. We keep the same notations than in the proof of the mentioned proposition. Formula (5.29) is
now replaced by the following. For z ∈ [K̂l0 ], we have

(2iπ)nh(z) =

= −
n−1∑
m=0

∑

J⊂{1,...,p}
#J=m

〈
Tm,J , h∂ϕ[l0] ∧

[
Σ ∧ (∂ζΣ)n−1−m ∧ ( m∧

l=1

gjl

)]
(z, ·)

〉
+

+
∑

J⊂{1,...,p}
#J=n

< Tn,J , hϕ[l0]
n∧

l=1

gjl
> +

p∑

j=1

hj(z)fj(z), (5.30)

where the hj are holomorphic functions in some neighborhhood of [K̂l0 ]V . We have then the following
representation for T

T (h) =
n∑

m=1

∑

J⊂{1,...,p}
< Tm,J , hη

(m,J)
T >,

where
(2iπ)nη

(m,J)
T (·) :=

= −∂ϕ[l0] ∧
∫

Kl0

[
Σ[l0+1] ∧ (∂ζΣ[l0+1])n−1−m ∧ ( m∧

l=1

gjl

)]
(z, ·)dµ0(z)

for 1 ≤ m ≤ n− 1, J ⊂ {1, . . . , p}, #J = m and

η
(n,J)
T (·) :=

1
(2iπ)n

ϕ[l0](ζ)
∫

Kl0

(
n∧

l=1

gjl

)
(z, ·)dµ0(z)

for J ⊂ {1, . . . , p}, #J = n. Currents Tm,J for m ∈ {1, . . . , n} are orthogonal to
√̃

IE0,0(V ) (as currents).
So is the current

S =
n∑

m=1

∑

J⊂{1,...,p}
Tm,J ∧ η

(m,J)
T .

Since T is orthogonal to I as a functional and T and S coincide on O(V ), S(h) = 0 for any h ∈ I. Moreover,

as
√̃

I ·S = 0, it follows that supp(S) is a finite set contained in V (I). Then, for m sufficiently big, S(ϕ) = 0
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for any ϕ ∈ E0,0(V ) vanishing on V (I) up to order m. Now, the proof of S(h ϕ) = 0 for any h ∈ I
and ϕ ∈ E0,0(V ), follows by the same arguments as in the proof of Proposition 4.2. Namely, by means
of a partition of unity, me may assume that supp(ϕ) ∩ supp(S) is a single point P0. Let z1, . . . , zn and
the decomposition ϕ(z) = ϕ1(z) + ϕ2(z) + ϕ3(z) be as in (4.1). Then, S(h ϕ1) = 0 because ϕ1 ∈ O(V );

S(h ϕ2) = 0 because ϕ2 ∈
√̃

IE0,0(V ), and S(h ϕ3) = 0 by the choice of m. Therefore, we deduce that S is
orthogonal as a current to IE0,0(V ) and the proposition is proved. ♦
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rentielles de type (p, q) dans les variétés de Stein, Ann. Sci. Ec. Norm. Sup. Paris 20, 579-598 (1987)
[10] J. P. Demailly and M. Passare, Courants résiduels et classe fondamentale, to appear in: L’Enseignement
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[12] A. Dickenstein and C. Sessa, Résidus de formes méromorphes et cohomologie modérée, Actes du Colloque
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Paris, t. 315, Série I, p. 401-406 (1992)
[29] M. Passare, Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62,
75-152 (1988)
[30] M. Passare, A Calculus for Meromorphic Currents, Journal für reine und angewandte Mathematik 392,
p. 37-56 (1988)
[31] M. Passare and A. Tsikh, Defining the residue current of a complete intersection, to appear in Complex
Analysis, Harmonic Analysis and Applications, Pitman Research Notes in Mathematics, 347, Longman
Scientific and Technical, Harlow, UK, 1996.
[32] C. Peskine and L. Szpiro, Liaison des variétés algébriques, Inventiones math. 26, 271-302 (1974)
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