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Abstract

We use a D-module approach to discuss positive examples for the
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proximation to the Coleff-Herrera residual currents (in the complete
intersection case.) Our results provide also asymptotic developments
for these integrals.
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1 Introduction.

Let f1, . . . , fp be p holomorphic functions in a neighborhood V of the origin
in Cn (p ≤ n), defining in this neighborhood a complete intersection. It is
known from [12] that the limits

lim
δ 7→0

1

(2πi)p

∫

|fj(ζ)|=εj(δ)

1≤j≤p

ϕ

f1 . . . fp

, ϕ ∈ Dn,n−p(V ) (1.1)

exist when δ 7→ (ε1(δ), . . . , εp(δ)) is an admissible path, that is

lim
δ 7→0

εj(δ)

εm
j+1(δ)

= 0 for any j ∈ {1, . . . , p− 1} and any m ∈ N. (1.2)

The semianalytic chain {|f1| = ε1, . . . , |f1| = εp} is oriented here as the Shilov
boundary {|ζ1| = ε1, . . . , |ζp| = εp} of the polydisk as in the usual Cauchy
formula (see [13] , chapter 6.) Moreover, it was shown in [12] that the above
limit (1.1) does not depend on the admissible path but just (in an alternating
way) on the ordering of the indexation for f1, . . . , fp. Moreover it defines a
(0, p) current on V denoted as

ϕ 7→< ∂̄
1

f1

∧ . . . ∧ ∂̄
1

fp

, ϕ > (1.3)

When ϕ is a ∂̄-closed (n, n−p) form, it follows from the Stokes’ formula that
the almost everywhere defined function

(ε1, . . . , εp) 7→ I(ε1, . . . , εp; ϕ) =
1

(2πi)p

∫

|fj(ζ)|=εj
1≤j≤p

ϕ

f1 . . . fp

(1.4)

is constant for ε = (ε1, . . . , εp) close to 0, and therefore admits trivially a
limit when ε tends to 0. The question that arises naturally is whether the
unrestricted limit

lim
ε7→0

∫

|fj(ζ)|=εj
1≤j≤p

ϕ

f1 . . . fp

(1.5)

(the right hand side being almost everywhere defined by Sard’s theorem)
exists when ϕ is an arbitrary element in Dn,n−p(V ).
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A counterexample due to M.Passare and A.Tsikh in [18] gives a negative
answer to this question, even when p = 2, and f1, f2 define the origin as an
isolated zero. It fails for example for the mapping defined by

(C2, 0)
(f1,f2)−→ (C2, 0)

(z1, z2) −→ (z4
1 , z

2
1 + z2

2 + z3
1) . (1.6)

More striking counterexamples have been given recently by J. E. Björk in
[10], section 7.2. The unrestricted continuity of (1.5) at the origin is not true
for the map

(C2, 0)
(f1,f2)−→ (C2, 0)

(z1, z2) −→ (zm
1 , z3

2 + z1 + z2
1) , (1.7)

where m is any strictly positive integer. In the last example note that one
has df2(0) 6= 0, so that the answer to the question when n = p = 2 may be
negative even if one of the functions (f1, f2) is a coordinate!
The existence of such a rich family of counterexamples motivates the search
for positive cases. In this direction J. E. Björk proved in [10], section 7.3, that
for p = n = 2, the unrestricted limit (1.5) exists when f1, f2 are homogeneous
polynomials.
When p = 1, there is no problem for the existence of the unrestricted limit
[12]. Furthermore, in this case, we have a much more precise result. One can
show that for any ϕ ∈ D(n,n−1)(V ), the function

ε −→ 1

2πi

∫

|f |=ε

ϕ

f

admits an asymptotic development in the basis (1, εα(log ε)β), α ∈ Q+∗, β ∈
N. This is a consequence of the fact that the sheaf DV [λ]fλ is coherent as a
DV -module (see [9], theorem 6.1.9.) Such a coherence property implies (see
[14]) the existence of an operator of the form

λM −
M∑

k=1

λM−kQk(z, ∂) (1.8)
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that annihilates fλ. As a consequence, we get the rapid decrease of the
analytic continuation of the function

λ 7→ J(λ; ϕ) := λ
∫
|f |2(λ−1)∂f ∧ ϕ = λ

∞∫

0

sλ−1I(s; ϕ)ds

on vertical lines γ + iR. This result, combined with the fact that the roots
of the Bernstein-Sato polynomial are strictly negative rational numbers [14]
and with the classical formula for the inversion of the Mellin-Transform,
shows (as it was pointed out by J. E. Björk) the existence of an asymptotic
development in the sense of the Barlet-Maire [1, 2] for the function

ε −→ I(ϕ; ε) =
1

2πi

∫

|f |=ε

ϕ

f
when ϕ ∈ Dn,n−1(V ) .

One just needs to move to the left, step by step (thanks to the Cauchy
formula ) the line integral

1

2iπ

∫

γ+iR

J(λ; ϕ)

λ
ε−λdλ.

In this paper we will give sufficient conditions which ensure the rapid de-
crease on the vertical lines γ + iRp (γ := (γ1, . . . , γp) ∈ Rp) of the analytic
continuation of the function

λ ∈ Cp J(·;ϕ)−→ (−1)p(p−1)/2λ1...λp

(2iπ)p

∫ |f1|2(λ1−1) . . . |fp|2(λp−1)∂f1 ∧ . . . ∧ ∂fp

= λ1 . . . λp

∫
[0,∞[p

sλ1−1
1 . . . sλp−1

p I(s; ϕ)ds. (1.9)

The natural sufficient condition for that is the coherence of the DV -sheaf of
modules DV [λ1, . . . , λp]f

λ1
1 · · · fλp

p . Such a condition is for example fullfilled
when (f1, . . . , fp) define a morphism without blowing up in codimension 0,
with the additional hypothesis

df1 ∧ . . . ∧ dfp = 0 implies f1 · · · fp = 0 . (1.10)

This happens for example when (f1, . . . , fp) define an isolated singularity at
the origin together with the additional hypothesis (1.10). Such a condition
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is also fullfilled for examples of the following form

f : (C3, 0) −→ (C2, 0)

(z1, z2, z3) −→ (z2
1 − z2

2z3, z2) (1.11)

introduced in [7], section 3.1 (here there is a nonisolated singularity.)
When the coherence condition is valid, the unrestricted limit (1.5) exists.
This shows that Björk’s example (1.7) appears as an example where the
module DCn,0[λ1, λ2]z

λ1
1 fλ2

2 fails to be of finite type as a DCn,0-module.
We will also deduce that under such hypothesis, there is an asymptotic devel-
opment with respect to the basis of functions (1, τα(log τ)β), α ∈ Q+∗, β ∈ N
for the function

τ −→ Θ(τ ; ϕ) :=
(−1)

p(p−1)
2

(2πi)p
p!τ

∫

V

∂f1 ∧ . . . ∧ ∂fp ∧ ϕ

(
p∑

j=1
|fj|2 + τ)p+1

(1.12)

which satisfies also [20] the equality

Θ(0; ϕ) =< ∂̄
1

f
, ϕ > .

Moreover, when p = 2, using the results of C.Sabbah [21], we will interpret
this result in terms of geometric invariants related to the discriminant of
(f1, f2) as a germ of curve in (C2, 0).
The organization of the paper will be as follows; in section 2, we will recall
a few basic results related to b-functions associated to a system of germs
(f1, . . . , fp) in nO defining a germ of complete intersection. Such b-functions
will provide us with some way to express the analytic continuation of the
function

λ = (λ1, . . . , λp) −→ J(λ; ϕ)

from the half plane {<λ1 > 1, . . . ,<λp > 1} to a meromorphic function in
Cp. In §3 we will analyze under which condition one can find a system of
Kashiwara operators of the form (1.8) which annihilate fλ1

1 . . . fλp
p . Finally,

in §4 we will prove some positive results with respect to the existence of the
unrestricted limit (1.5). In the final section we will study the possibility to
get an asymptotic development for the function τ 7→ Θ(τ ; ϕ) in (1.12).
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2 About b-functions.

The existence of functional equations of the Bernstein-Sato type for the prod-
ucts fλ1

1 . . . fλp
p was proved simultaneously by C. Sabbah in [21] and by B.

Lichtin in [16]. Given a collection of germs of holomorphic functions f1, . . . , fp

in nO, there is a finite set L of linear forms with coefficients in N jointly
coprime, and a collection (bL)L∈L of polynomials in one complex variable,
together with p operators Q1, . . . ,Qp in DCn,0[λ1, . . . , λp] such that

∏

L∈L
bL(L(λ))fλ1

1 · · · fλp
p = Qk(λ)[fλ1

1 · · · fλk+1
k · · · fλp

p ], k = 1, . . . , p . (2.1)

As soon as we have a set of relations of the form (2.1), we deduce by a
standard iteration an identity of the following type

B(λ1, . . . , λp)f
λ1
1 · · · fλp

p = Q(λ)[fλ1+1
1 · · · fλp+1

p ], (2.2)

where Q ∈ DCn,0[λ1, . . . , λp] and B(λ) is

B(λ) = b(λ1, . . . , λp)b(λ1 + 1, . . . , λp) . . . b(λ1 + 1, . . . , λp + 1) (2.3)

where b(λ) =
∏

L∈L
bL(L(λ)) as in (2.1). A relation of the form (2.2) is usually

known as a Bernstein- Sato relation for fλ1
1 · · · fλp

p . When p = 1, we know that
the ideal of the polynomials B(λ) involved in any relation of the form (2.2) is
principal and admits a generator called a Bernstein-Sato polynomial, which
has λ + 1 as a factor. When p > 1, both properties fail in general, the ideal
of such B is not principal, and there is no reason why λi +1, for i = 1, . . . , p,
should divide such a polynomial B. Consider for example the case n = p = 2,
and take f1(z1, z2) = zα1

1 zβ1
2 , f2(z1, z2) = zα2

1 zβ2
2 , α1α2β1β2 6= 0. Nevertheless,

it is of some interest to point out that for p = 2 we have the following
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Proposition 2.1 Let f1, f2 ∈ nO define a germ of complete intersection.
Then any polynomial B(λ1, λ2) involved in a Bernstein-Sato relation for
fλ1

1 fλ2
2 admits λ1 + 1, λ2 + 1 as factors.

Proof. The proof curiously follows from the nontriviality of the Coleff-
Herrera residual current. Let us take some representatives for f1, f2 defined
in a neighborhood V of the origin where we have a Bernstein-Sato relation
of the form (2.2) for some B. Then, by the local duality theorem [22], there
is some element ϕ ∈ Dn,n−2(V ) such that

< ∂̄
1

f1

∧ ∂̄
1

f2

, ϕ > 6= 0.

We also know from [4], section 5, that for such a form ϕ, the function J̃
defined by

λ
J̃−→ J(λ1 + 1, λ2 + 1; ϕ) =

(λ1 + 1)(λ2 + 1)

4π2

∫
|f1|2λ1|f2|2λ2∂f1 ∧ ∂f2 ∧ ϕ

is holomorphic in a product of half-planes

{<λ1 > −1− ε, <λ2 > −1− ε}
for ε > 0 sufficiently small. From the functional equation (2.2) used twice (B̄
denotes the polynomial obtained from B after conjugation of all coefficients),
it follows that

J̃(λ1, λ2) =
(λ1 + 1)(λ2 + 1)

4π2B(λ)B̄(λ)

∫
|f1|2(λ1+1)|f2|2(λ2+1)ψ (2.4)

for some ψ ∈ D(n,n)(V ). We now consider the identity (2.4) near the critical
point (−1,−1). From the Gauss lemma in the factorial ring nO(−1,−1), any
irreducible factor of B(λ) or of B̄(λ) distinct from (λ1 + 1) or (λ2 + 1) has
to divide the holomorphic function

(λ1, λ2) −→
∫
|f1|2(λ1+1)|f2|2(λ2+1)ψ.

Suppose now that (λ1 + 1) does not divide B(λ). Then it does not divide
B̄(λ) either. Therefore B(λ)B̄(λ) necessarily divides

(λ2 + 1)
∫
|f1|2(λ1+1)|f2|2(λ2+1)ψ ,
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so that in this case, we have near (−1,−1), the following identity

J̃(λ1, λ2) = (λ1 + 1)Ĵ(λ1, λ2),

where Ĵ is a holomorphic function. Therefore, we would have

J(0; ϕ) =< ∂̄
1

f1

∧ ∂̄
1

f2

, ϕ >= 0 ,

which is a contradiction. So (λ1 + 1) divides B(λ) and so does (λ2 + 1). The
proof is complete. ♦

Dealing with the meromorphic continuation of currents instead of distri-
butions, there may be cancellation of some polar divisors. Such is the case for
the function λ 7→ J(λ; ϕ) we are interested in. We recall from [4], Proposition
3.6 and Proposition 3.18, the following

Proposition 2.2 Let f1, f2 be two holomorphic functions in n-variables in
a neighborhood V of the origin. Then, for any ϕ ∈ Dn,n−2(V ), the polar set
of the function

λ −→ J(λ; ϕ)

in included in a union of hyperplanes (independent of ϕ) of the form

mL,1(λ1 + k) + mL,2(λ2 + k) + mL,0 = 0 , k ∈ N∗ , (2.5)

where the vectors (mL,0,mL,1,mL,2), L ∈ L, lie in a finite subset of N3

(indexed by L) with mL,1, mL,2 ∈ N, and mL,0 ∈ N∗ for any L.

Remark 2.1. The proposition implies that if we write

J(λ; ϕ) =
λ1λ2

4π2B(λ− 1)B̄(λ− 1)

∫
|f1|2λ1|f2|2λ2ψ,

then all the factors of B(λ− 1)B̄(λ− 1) which are different from λ1, λ2 and
not of the form (2.5) necesserilly divide in {<λ1 > −ε, <λ2 > −ε} the
holomorphic function

λ −→
∫

V
‖f1‖2λ1‖f2‖2λ2ψ.
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We conclude this section with a direct analogue of Kashiwara’s theorem
about the rationality of the roots of the Bernstein-Sato polynomial in the case
where fλ is replaced by fλ1

1 . . . fλp
p and f1, . . . , fp define what is known as a

minimal defining system. Let us state the definition, originally introduced
by A.Tsikh in [22].

Definition 2.1 Let f1, . . . , fp be p holomorphic functions in an open neigh-
borhood V ⊂ Cn of the origin so that fj(0) = 0 for every j = 1, . . . , p.
Assume also that the collection {f1, . . . fp} defines a complete intersection,
that is, the analytic set

A = f−1(0) =
p⋂

j=1

{z ∈ Cn , fj(z) = 0}

has dimension n − p. The system {f1, . . . , fp} is called a minimal defining
system if and only if the set

Sing (A) := {z ∈ A , df(z) := df1 ∧ . . . ∧ dfp(z) = 0}

is a nowhere dense subset of A.

Remark 2.2. If f = (f1, . . . , fp) is a minimal defining system, the set
Sing (A) coincides exactly with the set of singular points of the analytic set
A = f−1(0) (which justifies our terminology); in particular, the set of singular
points of the analytic set f−1(0) is in this case a closed analytic subvariety
(which is not true in general for an arbitrary analytic set.)

Example 2.1. Let (f1, . . . , fp) : V → Cp be a holomorphic mapping in V
such that f(0) = 0 and on each irreducible component of the analytic set
f−1(0) in V , at least one (p, p) minor of the Jacobian matrix does not vanish
identically. Then {f1, . . . , fp} is a minimal defining system in V . Note that
if p = n and f−1(0) = {0}, f is a minimal defining system if and only if
df(0) 6= 0.

Let {f1, . . . , fp} be a minimal defining system about the origin in Cn.
Since the set of singular points of {f1 = f2 = . . . = fp = 0} ∩ V coincides
exactly with the closed analytic subvariety

S := Sing (A) = {z ∈ V, f1 = . . . = fp = 0, df = 0} ,
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one can apply Hironaka’s theorem and construct a resolution of singularities

π : X −→ V ,

where π is proper, realizes a biholomorphism between X \π−1(S) and V \S,
and is such that π−1(S) is an hypersurface with normal crossings. Since all
π∗fj vanish in π−1(S), it follows from the Nullstellensatz that in any local
chart on X one can write for every j = 1, . . . , p,

π∗fj(w) = uj(w)w
αj1

1 . . . wαjn
n , (2.6)

where the αji, j = 1, . . . , p, i = 1, . . . , n are positive integers and the uj,
j = 1, . . . , n, non vanishing holomorphic functions.
Let Fj := π∗fj, j = 1, . . . , p. Our purpose here is to study the relation
between the coherent sheaves DXF λ1

1 . . . F λp
p and DV fλ1

1 . . . fλp
p .

If we consider V as a complex n-manifold, let us define the two sheaves of
modules

Ω−1
V = Hom(ΩV , nO),

where ΩV is the sheaf of holomorphic forms of degree n on V and

DV←X = π−1(DV ⊗OV
Ω−1

V )⊗ ΩX ,

where ΩX is the sheaf of holomorphic forms with degree n on X . The above
module DV←X has the structure of (π−1DV ,DX )-bimodule. The integration
of the coherent module DXF λ1

1 . . . F λp
p on X ([8], [14]) is defined to be the

DV -module

R =

0∫
DXF λ1

1 . . . F λp
p = R0φ∗(DV←X ⊗DX DXF λ1

1 . . . F λp
p )

where R0 denotes the first derived functor of DV←X .
It follows from Theorem 4.2 [14] that the sheaf of left DV - modules R is a
coherent sheaf of left DV -modules and is isomorphic to DV fλ1

1 . . . fλp
p outside

S. Moreover, as was noted in [8, 14], the coherent sheaf of left DV -modules
R has a global section u so that

DV u = DV [λ1, . . . , λp]u ⊂
0∫
DXF λ1

1 . . . F λp
p . (2.7)
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The last relation is an equality on V \ S because π : X \ π−1(S) → V \ S
is a biholomorphism. Let us describe the construction of the global section
u as it is given in [8], p. 245. On V , we have the globally defined n-form
dz = dz1 ∧ . . . ∧ dzn. Its pulback π∗(dz) is a globally defined n-form on
manifold X . By Proposition 2.12.6 in [8], p. 239, there exists a global section

in
0∫
iX (DX ) denoted by [π∗(dz)]. Consider now the DX -linear homomorphism

η : DX → DXF λ1
1 . . . F λp

p which is constructed by linear extension of the map

1X → F λ1
1 . . . F λp

p . Since integration of modules corresponds to the action of

a covariant functor, η induces a DV -linear sheaf homomorphism η̃ from
0∫ DX

into R. We define u as u := η̃([φ∗(dZ)]). Under the minimal defining system
condition, we have the following refined version of a result from [14, 8]

Lemma 2.1 Let {f1, . . . , fp} be a minimal defining system in V . Then the
coherent sheaf of DV - modules R/Du, where u has been constructed above,
is equal to zero.

Proof. Recall that R ∼= Du on V \ S (since π is a biholomorphism between
X \ π−1(S) and V \ S.) On the other hand, S corresponds to the set of
singular points of the set V ∩ f−1(0) for which we constructed our resolution
of singularities X π→ V . Our minimal defining system condition ensures that
any point z ∈ S is a limit point of a sequence {zn}n of regular points of
f−1(0). This implies that for any point in S, dimz Rz/(DV u)z = 0, where Rz

and (DV u)z are sections of the corresponding sheaves at the point z, since for
z /∈ S, the eqality R = DV u holds. Since every non-zero finitely generated
DV -module has dimension bigger or equal to n, we get the desired result. ♦

We now continue with the introduction of p holomorphic parameters,
t1, . . . , tp, in order to deal first with what we will call the quasi-homogeneous
case.

Lemma 2.2 Let {f1, . . . , fp} be a minimal defining system in some open
neighborhhood V of the origin in Cn. Consider in V ×Cp (where coordinates
are denoted as (z, t)) the holomorphic functions

(z1, . . . , zn, t1, . . . , tp) 7→ gj(z, t) := tjfj(z) , j = 1, . . . , p.

Then the system (g1, . . . , gp) is a minimal defining system in V ×Cp.
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Proof. Immediate by direct verification. ♦
Consider now the map

φ := (π, Id) : X ×Cp −→ V ×Cp .

If we set X ′ := X ×Cp and S ′ := S ×Cp, then φ induces a biholomorphism
from X ′ \ φ−1(S ′) into V ′ \ S ′. Let Gj := φ∗gj, 1 ≤ j ≤ p, that is, in a local
chart

Gj(w, t) = tjuj(w)w
αj1

1 · · ·wαjn
n , j = 1, . . . , p . (2.8)

It follows from the quasi-homogeneous form of the gj (and the Gj), due to the
additional variables tj, that the multiplication operators by λ1, . . . , λp induce
D-linear actions on the DV×Cp (resp. DX ′) -sheaves of modules DV×Cpgλ

(resp. DX ′Gλ.) Direct computations based on the simple expressions (2.8)
for the Gj in local charts on X ′ show that we have the following

Lemma 2.3 There exists a polynomial bG(λ1, . . . , λp) ∈ C[λ1, . . . , λp], prod-
uct of affine forms

mL,0 +
p∑

j=1

mL,jλj , L ∈ L, mL,0 ∈ N∗, (mL,1, . . . , mL,p) ∈ Np .

such that

bG(λ1, . . . , λp)G
λ1
1 . . . Gλp

p ∈ DX ′Gλ1+1
1 · · ·Gλp+1

p . (2.9)

If we look at the polynomial bG(λ1, . . . , λp) as a sheaf homomorphism from
the DX ′-module DX ′Gλ1

1 . . . Gλp
p into DX ′Gλ1+1

1 . . . Gλp+1
p , then the question

that arises naturally is what is its range. Let us describe it here. Let OX ′
be the sheaf of rings of germs of holomorphic functions on the manifold X ′.
Consider also the sheaf of rings OX ′ [G−1

1 , . . . , G−1
p ] whose stalk at the point

x0 ∈ X ′ is

OX ′,x0 [G
−1
1 , . . . , G−1

p ] = {hG−v1
1 · · ·G−vp

p |h ∈ OX ′,x0 , vj ∈ Z, 1 ≤ j ≤ p} .

Introducing new variables (λ1, . . . , λp) = λ, we consider also

OX ′ [G−1
1 , . . . , G−1

p , λ] := OX ′ [G−1
1 , . . . , G−1

p ][λ1, . . . , λp] .
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This is also a sheaf of rings on X ′ whose stalk at x0 ∈ X is the ring of poly-
nomials in λ with coefficients in OX ′,x0 [G

−1
1 , . . . , G−1

p ]. If Gλ := Gλ1
1 . . . Gλp

p ,
then the action of the differential operators ∂′l, l = 1, . . . , n + p on X ′ (ex-
pressed in local coordinates (w, t)) on elements in OX ′ [G−1, λ]Gλ is defined
as follows

∂′l(G
−v1
1 . . . G−vp

p hGλ) =
(
∂′lh

p∏

i=1

G−vi
i − h

p∑

j=1

vj∂l(Gj)G
−vj−1
j

∏

i6=j

G−vi
i

+ h
p∑

j=1

λj∂
′
l(Gj)G

−1
j

p∏

i=1

G−vi
i

)
Gλ . (2.10)

This action induces a C[λ1, . . . , λp] linear mapping from OX ′ [G−1, λ]Gλ into
itself; it induces on OX ′ [G−1, λ]Gλ a structure of DX ′ module. We can define
also the action on OX ′ [G−1, λ]Gλ of the operator

∇ : OX ′ [G−1, λ]Gλ −→ OX ′ [G−1, λ]Gλ

as follows

∇
(
(

∑

k∈Np

λkψk)G
λ
)

=
( ∑

k∈Np

(λ + 1)kψk

)
G1 · · ·GpG

λ (2.11)

(here λk := λk1
1 · · ·λkp

p .) Since DX ′Gλ is a submodule of OX ′ [G−1, λ]Gλ, we
can conclude that

Lemma 2.4 The mapping ∇ : DX ′Gλ1
1 · · ·Gλp

p → DX ′Gλ1+1
1 · · ·Gλp+1

p is DX ′
linear and injective.

Since∇ isDX ′-linear, it follows from (2.9) that bG(λ1, . . . , λp)G
λ ∈ ∇(DX ′Gλ).

But ∇ is also injective, therefore there exists a DX ′-linear sheaf homomor-
phism ψ on DX ′Gλ such that bG(λ1, . . . , λp) = ∇ψ.

We recall here that the passage from DX ′Gλ to its direct sheaf image
R̃ arises from a covariant functor from the category of sheaves of left DX ′-
modules to the category of sheaves of DV×Cp-modules. Hence the sheaf
homomorphisms ∇, ψ, bG(λ1, . . . , λp) induce DV×Cp-linear sheaf homomor-

phisms on R̃ = Dũ (the existence of ũ follows from Lemma 2.1 and Lemma
2.2, we consider just the minimal defining system g instead of f .) Therefore

bG(λ1, . . . , λp)R̃ = (∇ψ)R̃ = ∇(ψR̃) ⊂ ∇R̃ = ∇Dũ . (2.12)
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We claim now that there exists a DV×Cp-linear sheaf homomorphism from
DV×Cpũ onto DV×Cpgλ1

1 . . . gλp
p : just define a map that takes ũ to gλ1

1 . . . gλp
p

and then extend linearly. This map has the desired property ([8], p.246.)
Therefore, combining the above assertions, we get bG(λ1, . . . , λp)R̃ ⊂ DV×Cpũ
and hence by the above epimorphism, we conclude that, as germs at the ori-
gin

bG(λ1, . . . , λp)g
λ1
1 · · · gλp

p ∈ ∇(DCn+p,0g
λ1
1 . . . gλp

p ) = DCn+p,0g
λ1+1
1 . . . gλp+1

p .

Hence we have proved the following form of the Bernstein-Sato relations

Proposition 2.3 Let {f1, . . . , fp} be a minimal defining system in V . Define
in V ×Cp the system (g1, . . . , gp), where gj(z, t) := tjfj(z), j = 1, . . . , p. Then
there exists an operator Q(z, t, ∂z, ∂t) ∈ DCn+p,0 and a polynomial bg = bG in
C[λ1, . . . , λp], which is a product of affine forms

mL,0 +
p∑

j=1

mL,jλj , mL,0 ∈ N∗, mL,j ∈ N ,

such that

bg(λ1, . . . , λp)g
λ1
1 · · · gλp

p = Q(z, t, ∂z, ∂t)g
λ1+1
1 · · · gλp+1

p ,

the identity being understood in terms of germs at the origin.

Repeating verbatim the argument in [8] we deduce

Proposition 2.4 Let (f1, . . . , fp) be a minimal defining system about the
origin in Cn. Then there exists a neighborhood ω of the origin, a polynomial

B(λ) =
∏

L∈L
(mL,0 +

p∑

j=1

mL,jλj)

where mL,0 ∈ N∗, mL,1, . . . , mL,p ∈ N, such that

B(λ)fλ1
1 . . . fλp

p ∈ DV [λ1, . . . , λp]f
λ1+1
1 · · · fλp+1

p

14



3 About Kashiwara’s functional equations

Let us recall that if f is a function of n-variables holomorphic in a neighbor-
hood V of the origin, such that f(0) = 0 and df = 0 implies f = 0, then
the DV [λ]-module DV [λ]fλ is a coherent DV -module. From this, it follows,
if V0 ⊂⊂ V , that for some q ∈ N,

DV0 [λ]fλ ⊂
q∑

k=0

λkDV0f
λ.

Therefore one can find a functional equation of the form

(
λq+1 −

q∑

k=0

λkQk(z, ∂)
)
fλ = 0, (3.1)

where the operators Qk, k = 0, . . . , q are global sections of DV0 , that is we
can find an operator of the form (1.8) with M = q + 1 that annihilates fλ.
We will use the following immediate extension of this result

Proposition 3.1 Let f1, . . . , fp be p holomorphic functions in some neigh-
borhood of the origin, such that the DV [λ1, . . . , λp]-module

DV [λ1, . . . , λp]f
λ1
1 . . . fλp

p

is a coherent DV -module. Then, given any V0 ⊂⊂ V , there are p operators
of the form

λM
j − ∑

k∈Np

k1+...+kp≤M−1

λk1
1 · · ·λkp

p Qj,k(z, ∂) , j = 1, . . . , p (3.2)

(where the Qj,k are global sections of DV0) which annihilate fλ1
1 . . . fλp

p on V0.

Proof. Multiplications by λ1, . . . , λp act as a DV -linear operators on the
module DV [λ]fλ1

1 . . . fλp
p . Hence, it follows from the coherence that, given

V0 ⊂⊂ V , there exists some integer q ∈ N such that

DV [λ1, . . . , λp]f
λ1
1 . . . fλp

p ⊂ ∑
k∈Np

k1+...+kp≤q

λkDV fλ1
1 . . . fλp

p .

15



Therefore, we have in particular, for any j ∈ {1, . . . , p},
λq+1

j fλ1
1 . . . fλp

p ∈ ∑
k∈Np

k1+...+kp≤q

λkDV fλ1
1 . . . fλp

p ,

This provides us with the set of operators we are looking for (take M = q+1)
and concludes the proof of the proposition. ♦

In the case p = 1, assuming f(0) = 0 and that in V , df = 0 implies
f = 0, the algebraic dependency of f over its jacobian ideal implies [14] a
much more precise result; in fact, in this case, the annihilator of fλ on V
contains an operator of the form

λM −
M∑

k=1

λM−kQk(z, ∂z),

deg∂Qk ≤ k, k = 1, . . . , M, (3.3)

where Qk(z, ∂) ∈ DV . Such a result relies on the description of the character-
istic variety of the DV×C-module DV×C(tf)λ, where t is an additional variable
[2, 8, 14]. In [7], H. Biosca and H. Meynadier have extended this result of
M. Kashiwara (the existence of operators of the form (3.3) in the annihilator
of fλ) to the case p > 1, when f1, . . . , fp define a complete intersection in a
neighborhood V of the origin in Cn. Their result relies on the description
of the two characteristic varieties Wf (resp. W#

f ) of DV fλ1
1 . . . fλp

p , consid-

ered as a DV -module, (resp. of DV [λ1, . . . , λp]f
λ1
1 . . . fλp

p , considered as a
DV [λ1, . . . , λp] module.) Namely

Wf = {(z,
p∑

j=1

λjdfj, z ∈ V, df 6= 0, λ ∈ Cp}

W#
f = {(z,

p∑

j=1

λjdfj, λ1f1(z), . . . , λpfp(z)), z ∈ V, df 6= 0, λ ∈ Cp}.

The finiteness of the projection map

Π : W#
f −→ Wf (3.4)

implies that the stalk DCn,0[λ1, . . . , λp]f
λ1
1 . . . fλp

p is of finite type as a DCn,0-
module, which is enough to ensure the existence of a set of operators of the
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form (3.2), everything being understood at the level of stalks at the origin.
In fact, the finiteness of this projection map implies much more, as it appears
in the following result from [7]

Proposition 3.2 Let (f1, . . . , fp) define a germ of complete intersection at

the origin in Cn. The projection map Π from W#
f into Wf is a finite mor-

phism if and only if, for any j = 1, . . . , p, the annihilator of fλ1
1 · · · fλp

p

contains an operator of the form

λ
Mj

j −
Mj∑

k=1

Qj,k(z, ∂z, λ)λ
Mj−k
j

where the Qj,k, j = 1, . . . , p, k = 1, . . . , Mj, are elements in DCn,0[λ] such
that deg∂,λQj,k ≤ k for any j ∈ {1, . . . , p}, k = 1, . . . , Mj, and the homoge-
neous part of degree k in Qj,k being λ-free.

Let us give the following example (found in [7])

Example 3.1. For the mapping

f : C3 −→ C2

(z1, z2, z3) −→ (z2
1 − z2

2z3, z2) ,

one can check here the finiteness of the projection morphism Π.

Remark 3.1. The finiteness of the projection morphism Π, as noticed in [7],
implies that the germ of the set of critical points is necesseraly included in
the hypersurface f1 . . . fp = 0 (which means that f1 . . . fp lies in the radical
of the Jacobian ideal.) For example

(z1, z2) −→ (z1, z
2
1 + z2

2)

fails to satisfy these requirements. The finiteness of the morphism Π appears
as a sufficient condition for the coherence of the sheaf DV [λ1, . . . , λp]f

λ (for
some convenient neighborhood V of the origin) as a DV -module. Nevertheless
the condition is certainly too strong.
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4 Some positive results on the existence of

the unrestricted limit (1.5)

In this section f1, . . . fp are p holomorphic functions defining a complete in-
tersection in a neighborhood V of the origin in Cn.

Theorem 4.1 Assume that the DV [λ1, λ2]-module DV [λ1, λ2]f
λ1
1 fλ2

2 is a co-
herent DV -module. Then the unrestricted limit

lim
ε7→0

∫

|f1(z)|=ε1
|f2(z)|=ε2

ϕ

f1f2

(4.1)

exists for any ϕ ∈ Dn,n−p(V ).

Proof. Consider the Mellin Transform of

(ε1, ε2) −→ I(ε; ϕ) =
1

(2πi)2

∫

|f1(ζ)|=ε1
|f2(ζ)|=ε2

ϕ

f1f2

This is exactly ( for <λ1 >> 1,<λ2 >> 1) the function

λ −→ J(λ; ϕ) =
λ1λ2

4π2

∫

V

|f1|2(λ1−1)|f2|2(λ2−1)∂f1 ∧ ∂f2 ∧ ϕ.

We know that because of the existence of the set of equations of the form
(2.1) and of Proposition 2.2, the function λ −→ J(λ; ϕ) can be continued as
a meromorphic function in the whole of C2, the polar set being a union of
hyperplanes of the form

mL,0 + mL,1(λ1 + k) + mL,2(λ2 + k) = 0, k ∈ N

mL,0 ∈ N∗, mL,1,mL,2 ∈ N, for any L ∈ L,

where L is a finite set as in Proposition 2.2. Denote by λ 7→ J(λ; ϕ) this mero-
morphic continuation. It follows from Proposition 3.2 that for any (γ1, γ2)
such that

mL,0 + mL,1(γ1 + k) + mL,2(γ2 + k) 6= 0,
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for any L ∈ L and any k ∈ N, the function

(y1, y2) −→ J(γ1 + iy1, γ2 + iy2; ϕ)

is in the space S(R2) of rapidly decreasing smooth functions. By Mellin
formula, we get for ε1 > 0, ε2 > 0

I(ε; ϕ) =
1

(2πi)2

∫

γ0
1+iR

∫

γ0
2+iR

J(λ, ϕ)

λ1λ2

ε−λ1
1 ε−λ2

2 dλ1dλ2,

where γ0
1 , γ

0
2 are strictly positive numbers which are chosen large enough.

Moving γ1, γ2 towards the origin (this we can do because of the Cauchy
formula), using the uniform rapid decrease of

(y1, y2) −→ J(γ1 + iy1, γ2 + iy2; ϕ),

when γ1, γ2) ∈ [−δ1, γ
0
1 ] × [−δ2, γ

0
2 ] and the fact that all mL,0 are strictly

positive we get that for δ1, δ2 small enough

I(ε; ϕ) =
1

(2πi)2

∫

γ0
1+iR

∫

−δ2+iR

J(λ; ϕ)ε−λ1
1 ε−λ2

2

dλ1dλ2

λ1λ2

+

+
1

2πi

∫

γ0
1+iR

J(λ1, 0; ϕ)ε−λ1
dλ1

λ1

=

=
1

(2iπ)2

∫

−δ1+iR

∫

−δ2+iR
J(λ; ϕ)ε−λ1

1 ε−λ2
2

dλ1dλ2

λ1λ2

+

+
1

2πi

( ∫

−δ1+iR

J(λ1, 0; ϕ)ε−λ1
1

dλ1

λ1

−
∫

−δ2+iR
J(0, λ2; ϕ)ε−λ2

2

dλ2

λ2

)
+ J(0; ϕ) .

(4.2)

Since the function

(ε1, ε2) −→
∫

−δ1+iR

∫

−δ2+iR

J(λ, ϕ)ε−λ1
1 ε−λ2

2

dλ1dλ2

λ1λ2
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can be estimated by Cεδ1
1 εδ2

2 , due to the rapid decrease of λ −→ J(λ; ϕ) on
the line λ1 = −δ1 + iR, λ2 = −δ2 + iR, and the functions

ε1 7→
∫

−δ1+iR

J(λ1, 0; ϕ)ε−λ1
1

dλ1

λ1

ε2 7→
∫

−δ2+iR
J(0, λ2; ϕ)ε−λ2

2

dλ2

λ2

are estimated respectively by Cεδ1
1 and Cεδ2

2 for similar reasons, we get that

lim
ε 7→0

I(ε1, ε2; ϕ) = lim
ε7→0

< ∂̄
1

f1

∧ ∂̄
1

f2

, J(λ, ϕ)ελ1
1 ε−λ2

2 >0

= J(0; ϕ) =< ∂̄
1

f1

∧ ∂̄
1

f2

, ϕ > .

This ends the proof of Theorem 4.1. ♦
Example 4.1. An important example where we know that the stalk of
the sheaf at the origin DCn,0[λ1, . . . , λp]f

λ1
1 . . . fλp

p is of finite type over DCn,0

(and therefore we can apply the previous result when V is a sufficiently small
neighborhood of the origin) corresponds to the case when the projection map

Π : W#
f −→ Wf

introduced in (3.4) is finite (see [7], section 3.) We can therefore state the
following

Corollary 4.1 Let (f1, f2) two elements in nO which define a germ of com-

plete intersection. Assume that the projection map W#
f

Π−→ Wf introduced
in (3.5) satisfies Π−1(0) = {0}. Then there exists a neighborhood V of the
origin such that, for any ϕ ∈ Dn,n−2(V ),

lim
ε1 7→0
ε2 7→0

1

(2πi)2

∫

|f1(ζ)|=ε1
|f2(ζ)|=ε2

ϕ

f1f2

=< ∂̄
1

f1

∧ ∂̄
1

f2

, ϕ > (4.3)

Example 4.2. For example, if n = 3 and m ∈ N∗, we have, for any ϕ in
D3,1(V ), where V is a sufficiently small neighborhood of the origin in C3

lim
ε1 7→0
ε2 7→0

1

(2πi)2

∫

|ζ2
1
−ζ2

2
ζ3|=ε1

|ζm
2
|=ε2

ϕ

ζm
2 (ζ2

1 − ζ2
2ζ3)

=< ∂̄
1

(ζ2
1 − ζ2

2ζ3)
∧ ∂̄

1

ζm
2

, ϕ > .
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Remark 4.1. In Bjork’s example (1.7) where f1(z1, z2) = z1, f2(z1, z2) =

z3
2 + z1 + z2

1 , since we know from [9], sec.7.2, that the unrestricted limit
does not exist, we are sure that the stalk DC2,0[λ1, λ2]z

λ1
1 (z3

2 + z1 + z2
1)

λ2 is
not of finite type as a DC2,0-module. In fact, in the codimension 2 case, any
negative example for the unrestricted continuity of (1.5) provides an example
of non-coherence for the sheaf DV [λ1, λ2]f

λ1
1 fλ2

2 as a DV -module.

Example 4.3. Corollary 4.1 holds if the germ (f1, f2) satisfies the Sabbah-
Loeser conditions

df1 ∧ df2 = 0 =⇒ f1 · f2 = 0 (4.4)

(f1, f2) has no blowing up in codimension 0 (4.5)

For example these conditions are fulfilled if (f1, f2) define a complete inter-
section with isolated singularity, with the additional constraint

df1 ∧ df2 = 0 =⇒ f1 · f2 = 0.

Note that the unrestricted limit (1.5) may exist even if the coherence condi-
tion is not fulfilled. In this direction we have already mentionned the exam-
ple of J. E. Björk in [9] where f1, f2 are homogeneous polynomials. When
f1(z1, z2) = z1, f2(z) = z2

1 + z2
2 (these are homogeneous, so that the unre-

stricted limit (1.5) exists for any test form in D2,0(C2)), one can show that
there are test forms in D(n,n−2)(V ), where V is any arbitrary neighborhhood
of the origin, for which the rapid decrease of the function

λ 7→ J(λ; ϕ)

cannot be realized (this can be seen using the proper map π : X 7→ V ,
where X is the toric variety corresponding to the convex hull of {(0, 1) +
[0,∞[2} ∪ {(1, 0) + [0,∞[2}.) For such an example, the coherence condition
in Proposition 3.1 is certainly not fulfilled.

5 About asymptotic developments

Let us recall the results relative to the case p = 1. Classical inversion theo-
rems about the Mellin Transform show that, since

λ −→ |f |λ

21



has a meromorphic continuation which is rapidly decreasing on vertical lines
γ + iR, then

ε −→ 1

2πi

∫

|f |=ε

ϕ

f

admits an analytic development near the origin in the basis (1, εα(log ε)β),
α ∈ Q+∗, β ∈ N. When p > 1, and f1, . . . , fp define a complete intersection in
a neighborhood V of the origin, we have under the hypothesis of Theorem 3.1,
a similar condition with respect to the rapid decrease on vertical lines γ+iRp

for the meromorphic continuation of the multivariable Mellin Transform of
the function ε 7→ I(ε; ϕ), when ϕ ∈ Dn,n−p(V ). Unfortunately, even in the
case p = 2, there remain considerable difficulties (see for example [3]) in order
to deduce from such a behavior some asymptotic developments for the

(ε1, ε2) −→ I(ε, ϕ)

in terms of (εα1
1 εα2

2 (log ε1)
β1(log ε2)

β2), α1, α2 ∈ Q, β1, β2 ∈ N. Trying to
avoid these difficulties, we attempted to study one parameter asymptotic
approximations to the residual currents associated to p functions. There are
two of them which are interesting (see [20]).

< ∂̄
1

f1

∧ . . . ∧ ∂̄
1

fp

, ϕ >= lim
ε7→0

cp

εp

∫

{‖f‖2=ε}∩V

p∑

1

(−1)k−1f̄kdfk ∧ ϕ (5.1)

< ∂̄
1

f1

∧ . . . ∧ ∂̄
1

fp

, ϕ >= lim
ε7→0

pcpτ
∫ ∂f1 ∧ · · · ∧ ∂fp ∧ ϕ

(‖f‖2 + τ)p+1
, (5.2)

where

cp :=
(−1)

p(p−1)
2 (p− 1)!

(2πi)p
.

As for the approach (5.1), we are reduced to classical problems in one variable,
since the one dimensional Mellin transform of

ε −→ cp

εp

∫

{‖f‖2=ε}∩V

p∑

k=1

(−1)k−1f̄kdfk ∧ ϕ
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is

λ −→ pcp

∫
‖f‖2(λ+1−p)∂f1 ∧ . . . ∂fp ∧ ϕ. (5.3)

The meromorphic function (5.3) has its poles in {γ ∈ Q, γ ≤ −1}; the pole
at −1 is simple and the value of the residue at −1 is

< ∂̄
1

f1

∧ . . . ∧ ∂̄
1

fp

, ϕ >

(see [20].) We get here, since there exists an operator

λM −
M−1∑

k=1

Qk(z, z̄, ∂, ∂̄)λk,

with C∞ coefficients that annihilates ‖f‖2λ, the rapid decrease on the vertical
lines for the function (5.3), and therefore , using the classical techniques de-
veloped by Jeanquartier, Barlet and Maire [11, 1, 2], we get the asymptotic
development for (5.1) (as a function of ε) in terms of the basis (1, εα(log ε)β),
α ∈ Q+∗, β ∈ N. More interesting from our point of view is the second ap-
proach (5.2) where the two dimensional Mellin Transform plays an important
intermediate role, even though we know also in this case (by a similar one
variable argument) the existence of an asymptotic development.

Proposition 5.1 Let f1, . . . , fp define a complete intersection in a neighbor-
hood V of the origin in Cn. Then, for any test form ϕ ∈ D(n,n−p)(V ), the
map

τ 7→ (−1)p(p−1)/2p!τ

(2iπ)p

∫

V

∂f1 ∧ · · · ∧ ∂fp ∧ ϕ

(‖f‖2 + τ)p+1

is continuous at the origin, takes the value

< ∂̄
1

f1

∧ . . . ∧ ∂̄
1

fp

, ϕ >

at τ = 0 and admits an asymptotic development in the basis (1, τα(log τ)β),
α ∈ Q+∗, β ∈ N about the origin. Moreover, if DV [λ]fλ is coherent as a DV -
sheaf of modules, then the coefficients in this development can be computed
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in terms of sums of Leray iterated residues at points in
⋃p

j=1{<λj ≤ −1} for
the function

λ 7→ (−1)p(p−1)/2Γ(|λ|+ p + 1)
∏p

j=1 Γ(−λj)J(λ + 1; ϕ)τ−|λ|−p

(2iπ)p
∏p

j=1(λj + 1)

(|λ| := λ1 + · · · + λp) along collections of p hyperplanes (with independent
directions) either of the form λj = q − 1, q ∈ N, j ∈ {1, . . . , p}, |λ| =
−p− 1− q, q ∈ N, or

mL,0 +
p∑

j=1

mL,j(λj + q) = 0 , q ∈ N

where

mL,0 +
p∑

j=1

mL,jλj

divides a Bernstein-Sato polynomial for fλ.

Proof. The existence of an asymptotic development is a standard thing; it
can be achieved under the sole hypothesis that (f1, . . . , fp) define a complete
intersection in V . For any ζ such that ‖f(ζ)‖2 6= 0, we may use the classical
formula: for any τ > 0

p!
τ

(‖f(ζ)‖2 + τ)p+1
=

1

2iπ

∫

−γ+iR
Γ(−s)Γ(p + 1 + s)‖f(ζ)‖2sτ−p−sds ,

where 0 < γ < p (see [5]). Let now ϕ ∈ Dn,n−p(V ). When γ is sufficiently
small, one can prove, using a resolution of singularities as in [4] , that
∫ ∫

V×{−γ+iR}
|Γ(−s)||Γ(p + 1 + s)|‖f(ζ)‖−2γ‖∂f1 ∧ · · · ∧ ∂fp ∧ ϕ‖|ds| < ∞ .

It follows from Fubini’s theorem that

p!(−1)p(p−1)/2τ

(2iπ)p

∫

V

∂f1 ∧ · · · ∧ ∂fp ∧ ϕ

(‖f(ζ‖2 + τ)p+1
=

=
1

(2iπ)

∫

−γ+iR
Γ(−s)Γ(p + 1 + s)F (λ; ϕ)τ−p−sds

(5.4)
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where

F (λ; ϕ) :=
(−1)p(p−1)/2

(2iπ)p

∫

V
‖f‖2s∂f1 ∧ · · · ∧ ∂fp ∧ ϕ .

We also know from [20] that the function

µ ∈ C 7→ F (µ; ϕ)

(defined for <µ > 0) admits a meromorphic continuation u 7→ F (u; ϕ) to
the whole complex plane, with poles in Q∩ ] −∞,−p]; moreover (see also
[20]), this analytic continuation satisfies uniform rapid decrease estimates at
infinity in any vertical strip [α, β] + iR which is free of poles. The pole at
−p is a simple one and the residue at this point equals

< ∂
1

f1

∧ · · · ∧ ∂
1

fp

, ϕ > .

The poles of the function

s 7→ Γ(−s)Γ(p + 1 + s)

which lie in the half plane <s < −γ are −p− 1,−p− 2, . . .. If we apply the
uniform boundedness of µ 7→ F (µ; ϕ) on vertical strips in the complex plane
which are pole free for this function, we deduce, moving the line integral
in the right hand side of (5.4) step by step to the left, the existence of an
asymptotic development for (5.4) (as a function of τ) with respect to the
basis (1, τα(log τ)β), τ ∈ Q, α > 0, β ∈ N.

The interesting additional thing here is the relation between this asymp-
totic development and the description of the polar set of

(λ1, . . . , λp) 7→ J(λ; ϕ)

introduced in (1.9); such a polar set Sing (J) is (see [4], Proposition 3.6)
included in a collection of hyperplanes with equations

mL,0 +
p∑

j=1

mL,j(λj + k − 1) = 0 , k ∈ N

where the vectors
(mL,0, . . . ,mL,p) ∈ N∗ × (Np)∗
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are indexed by a finite set L. If we assume the coherence assumption, which
we will do from now on, we know that the function

(λ1, . . . , λp) 7→ J(λ; ϕ)

is uniformly rapidly decreasing (in the imaginary direction) in any vertical
strip K + iRp (where K is a compact subset in Rp) such that K does not
intersect Sing (J)∩R. For any ζ in V and any τ > 0 such that f1 · · · fp(ζ) 6=
0, we have also

p!τ

(‖f(ζ)‖2 + τ)p+1
=

=
1

(2iπ)p

∫

γ̃1+iR
· ·

∫

γ̃p+iR
Γ(p + 1− |s|)

p∏

j=1

Γ(sj)
p∏

j=1

|fj(ζ)|−2sjτ |s|−pds1 · ·dsp.

where the γ̃j are real numbers in ]0, 1[ such that γ̃1 + · · · + γ̃p < p and |s|
denotes s1 + · · ·+ sp. We may rewrite this as

p!τ

(‖f(ζ)‖2 + τ)p+1
=

=
1

(2iπ)p

∫

γ1+iR
· ·

∫

γp+iR
Γ(1 + |s|)

p∏

j=1

Γ(1− sj)
p∏

j=1

|fj(ζ)|2(sj−1)τ−|s|ds1 · ·dsp

where γj := 1 − γ̃j. If all γ̃j are close to zero (that is all γj close to 1), it
follows as before from Fubini’s theorem that, for any τ > 0,

p!(−1)p(p−1)/2τ

(2iπ)p

∫

V

∂f1 ∧ · · · ∧ ∂fp ∧ ϕ

(‖f(ζ‖2 + τ)p+1
=

=
1

(2iπ)p

∫

γ1+iR
· ·

∫

γp+iR
τ−|s|Γ(|s|+ 1)

p∏

j=1

Γ(1− sj)
J(s; ϕ)ds1 · ·dsp

s1 · ·sp

(5.5)

26



where λ 7→ J(λ; ϕ) is the function introduced in (1.9). The collection of real
hyperplanes in Rp

mL,0 +
p∑

j=1

mL,j(xj + k − 1) = 0 , k ∈ N , x ∈ Rp

together with the p + 1 families of hyperplanes x1 = k1 , k1 ∈ N, ..., xp =
kp , kp ∈ N, x1 + · · ·+xp = −1,−2, . . ., determine a decomposition of Rp into
cells. For any γ interior to each cell, one can define the integral

Ξ(γ; ϕ) :=
1

(2iπ)p

∫

γ1+iR
· ·

∫

γp+iR
τ−|s|Γ(|s|+1)

p∏

j=1

Γ(1− sj)
J(s; ϕ)ds1 · ·dsp

s1 · ·sp

.

Because of the uniform boundedness of λ 7→ J(λ; ϕ) on vertical strips K+iRp,
where K is any compact in Rp that lie in one of the cells, the function

γ 7→ Ξ(γ; ϕ)

is constant in each cell of the decomposition (this follows from Cauchy’s
formula.)

Let us just indicate how to proceed when p = 2. In this case, the situation is
a little easier since we know that λ1λ2J(λ; ϕ) is holomorphic near the origin
in C2. Starting with γ in the interior of the cell ∆0 := [0, 1] × [0, 1], we
proceed as in the proof of Theorem 4.1. We split

Ξ(γ; ϕ) =
∫

γ1+iR

∫

γ2+iR

ω(s, τ)

s1s2

into four terms; two of them correspond to the one dimensional integrals

∫

−δ1+iR
Ress2=0

ω(s, τ)

s1s2

and ∫

−δ2+iR
Ress1=0

ω(s, τ)

s1s2

.

The third one is ∫

−δ1+iR

∫

−δ2+iR

ω(s, τ)

s1s2

.
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and corresponds to the value of Ξ(γ; ϕ) when γ lies in the new cell ∆1 (con-
taining ] − δ, 0[2.) Finally, the fourth term is the evaluation of the iterated
residue of the meromorphic form ω(s, τ)/s1s2 with respect to the two divisors
s1 = 0, s2 = 0. The two first integrals have asymptotic developments in τ
which involve local iterated residues for the meromorphic form ω(s, τ)/s1s2

along pairs of divisors ({s1 = 0}, D2) at points such that <s1 < 0 (for the
first one) and along pairs of divisors (D1, {s2 = 0}) at points such that
<s2 < 0 (for the second one. This follows from Cauchy’s formula: we move
step by step to the left or the right a vertical line in the complex plane.) It
is clear how now one can continue this process, moving from ∆1 (across a
point where x1 + x2 achieves its minimum in ∆1) into one of the contiguous
cells. The situation is slightly different when one has to cross at a point
(ξ, η) ∈ R2 a line of the form x1 + x2 = −ρ, where ρ is a strictly positive
rational number (this did not happen in our first step here since the polar
set of s 7→ ω(s, τ)/s1s2 near the origin is just the union of the two axes.) In
this case, we use the Jordan lemma to express the corresponding integral as
the sum of all iterated residues of the meromorphic form

ω(s, τ)

s1s2

with respect to all pairs of divisors ({λ1 + λ2 = −ρ}, D), where D is any
hyperplane in the polar set of ω(s, τ)/s1s2 with slope distinct from −1, at
points which lie in one of the half lines in which the line x1 + x2 = −ρ is
divided by the point (ξ, η). Note that here, we have a contribution of the
form τ ρ ∑q−ρ

q=0 alq(ρ) logq τ , corresponding to an infinite sum of residues.
We therefore have some algorithmic way to get the asymptotic develop-

ment in terms of the description of the polar set of the meromorphic form

Γ(1− s1)Γ(1− s2)Γ(s1 + s2 + 1)τ−|s|J(s; ϕ)

s1s2

involved in the integral expression for Θ(τ ; ϕ). For more details on such a
method, one may refer to [20] (where the complete intersection hypothesis is
dropped). This completes the proof of our proposition. ♦
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