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1 Introduction

Integral representations and residues provide a very powerful tool to inves-
tigate functions and compute integrals. For instance one can represent by
residue integrals the number of roots of a system of algebraic equations,
the roots themselves, the solutions of differential equations, and many spe-
cial functions of mathematical physics. Construction of residues is naturally
connected with analytic sets ; therefore residue theory interfers very deeply
with algebraic geometry. For this reason residues have been playing in the
last years an important role in computational effectivity problems within the
frame of computer algebra.

There exist two different approaches towards the concept of multidimensional
residue theory. The first one, so called classical, is connected with integra-
tion of closed differential forms over cycles ; the other one, so called current-
approach, has to do with integration of smooth differential forms which are
not necesseraly closed. The approach towards the concept in its classical vari-
ant appeared in 1887 with H. Poincaré, but took form only in the fifties when
G. de Rham invented the notion of iterated indefinite integral. At the same
time the notion of the current came out, and, thanks to the investigations
of P. Dolbeault, who pointed out the important role of the d-operator, one
began to formalize the current approach towards multidimensional residue
theory. From the point of view of general current (or distribution) theory,
residue currents and principal values of integrals (which are very closely re-
lated) are just examples of currents, but very important and constructive
ones indeed. Their role in distribution theory could be compared to the role
of numbers such as e and 7 in real analytic number theory.

The class of residue currents contains the classical Dirac’s delta-function as
well as its generalization, the integration current over some analytic set. For
analytic sets of codimension 1, the so-called integration current [Z;] along
the divisor Zy = {f = 0} of the holomorphic function f can be described as
follows thanks to Poincaré-Lelong formula :

1 —
90 log|[I” = 12]. (L.1)

This means that in order to define the action of the delta-function with
support the set of solutions of some equation f = 0 in n variables on some
differential test form with bidegree (n—1,n—1), one has to multiply 0d¢/2mi
with the locally integrable function log|f|?.
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Taking first the action of the 0 operator on the logarithmic function, one can
rewrite the Poincaré-Lelong formula as
Lo ndf = (7] (12
2m - f A '
In fact the relation between (1.1) and (1.2) lies in Stokes’s formula and may
be expressed (in terms of the action on some (n — 1,n — 1) test form ¢) as

1 1

= L .. 1
=¢ g

Here comes an important question :
does the current 91/ f] exist ?

One has to remark that (1.3) guarantees its existence in presence of the
weight factor df. In 1971, M. Herrera and D. Lieberman [49] proved the
existence of d[1/f] using Hironaka’s desingularisation theorem. Curiously,
it remains unknown whether there exists some simple proof of such a fact
without using desingularization.

The next step in the theory of residue currents was achieved by Coleff & Her-
rera [26]. They introduced the residue current associated to several functions
fi, -+, fm, which is denoted as

=r1 ~r1

a[fl] /\.../\a[fm].
Nevertheless, such a current inherit good properties only in the case fi, ..., fm
define a complete intersection, i.e the codimension of the set of common ze-
roes f1(0) in the ambient manifold equals the number of functions, that
is m. In order to turn around the inherent disadvantage of the Coleff-
Herrera current (which construction is based on the Cauchy kernel), one
introduced in the last ten years various alternative approaches (more in-
spired by the Bochner-Martinelli kernels, generally speaking the Cauchy-
Fantappié kernels). In fact, the cycle on which one integrates the Cauchy
kernel, that is {|z1] = €1,..., |za| = €,}, depends on n free parameters,
namely €y, ..., €,, while the Bochner-Martinelli kernel is integrated on spheres
such as {|z1/2+...4|z.|? = €}, € being in this case the only parameter. Such
circumstances allow the application of one parameter asymptotic approaches,
which are usually deduced from multivariate ones by averaging.
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The theoretical part of the following survey is inspired by the philosophy we
just mentionned above ; since one knows how some very important algebraic
or geometric notions (as the multiplicity of intersection) are much more dif-
ficult to handle in the non complete intersection case than in the complete
one, it seemed important to articulate this survey about the recent devel-
opments, together with some of their applications, of residue theory from
the current point of view, focusing particularly on these asymptotic various
aspects, in the complete as well as non complete intersection case. Some
of the applications we took to support our objectives came from the some-
how unexpected role complex analysis may play respect to the study of very
classical problems, such as membership or nullstellensatz in polynomial alge-
bra ; which is not so much a surprize since one knows how concepts such as
trace or duality remain central. In fact, analysis brought also quite powerful
tools, also quite inherent to physics, such as Mellin transforms, or even the
quite new concept of amoeba. The study of meromorphy or holomorphy on
singular analytic sets appeals also deeply to the current approach of residue
theory, to the trace formula, to Lagrange interpolation, and it looked to us
as another illuminating example to illustrate our presentation.

Of course, the field was so large and there were so many developments in the
past ten years (in such various domains as toric geometry, sparse polynomial
algebra, study of special functions, especially the hypergeometric ones) that
we had to make drastic choices in the presentation. Nevertheless, we hope this
survey will play the role of a modest invitation for the reader to enter more
deeply in such an interesting area (for itself as well as for its applications).

Aknowledgments Both authors were partially supported by the French
Ministry of Education, through the P.A.S.T program. The first author
thanks also for the partial support the Russian fundation for Basic Research,
grant 00-15-96140.



2 Residue integral and Coleff-Herrera residue
current

2.1 Residue integral ; advantages and disadvantages

One way to express the classical residue of a one variable meromorphic (1, 0)
form h(z)dz/f at a polar point a € C is to represent it as the integral

/ h(z) dz

zal=e f(2)

where € is sufficiently small. The circle of integration |z — a| = € may of
course be replaced by some other path of integration, as for instance the
path {z € U, : |f(2)| = €}, where U, is a small neighborhood of the point
a not containing any other zero of the function f. With such a choice for
the path of integration the notion of residue has been extended to the n-
dimensional case : one can consider instead of the meromorphic integrand
hdz/f a 2n — 1-semimeromorphic differential form (i.e the quotient ¢/ f of
some smooth 2n — 1-differential form ¢ by some holomorphic function f) and
take formally the limit of the integral

i

when ¢ tends to zero. But when n > 1, the path of integration is nomore
compact, therfore, one has to consider in the numerator compactly supported
differential forms. So, if f: X — C is a holomorphic function defined on a n-
dimensional complex manifold X', then, for any smooth compactly supported
test form with degree 2n — 1 in D**~(X), the limit

. 2
R = lim =
1) = By s

should be considered as the action on ¢ by the current 9[1/ f] we mentionned
in the introduction. The first proof of the existence of such a residue current
was given by Herrera & Lieberman [49] in 1971.

Theorem 2.1 [49] For any ¢ € D*"~Y(X), the limit Rs(p) erists and this
action defines a (0, 1)-current, i.e a continuous linear functional on D**1(X),
which takes nonzero values only on (n,n — 1)-forms ¢ € D" 1(X).
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In order to generalize this result to some holomorphic mapping

f:(fla"'af’rn): X%Cma

Coleff & Herrera considered ([26], 1978) the integral

I(e) = Y peD™M(X), (2.1)
Teé) flfm

over the tube T.(f) = {|f1|* = €1, .-, | fm|* = €m}. We shall use the following :

Definition 2.1 The integral I(e) = I (e1, ..., €) is called the residue integral
or residue function.

As we will see later, the behaviour of the residue integral near the origin
€ = 0 carries some significant information about the zero set f *(0) of the
mapping f as well as about the structure of this mapping near f'(0). At
the same time it is easy to write down, and these are the advantages of the
defined residue integral. But the point is that the residue function will not
in general have a well defined limit at the origin € = 0. Let us show this by
the simple example of the mapping f:C? — C? with fi = 21, fo = z120. If
we take ¢ = @(z) dz; A dzo, we obtain the residue function

1 @(¢) d¢i A dGy
0=y | Tag

IC1|=¢€1
IC2|=¢€2/€1

and we see that if one approaches the origin following a path § — €(4) along
which €;/¢; — oo, then the domain of integration will be disjoint from the
compact support of ¢ for e5/€; sufficiently large, so that the limit of I}p will
be zero ; on the other hand, choosing a path along which e5/e; — 0 will yield
the limit 9,,%(0, 0).

So, the above example emphasizes the fact that residue integral has an essen-
tial disadvantage which is usually inherent to functions in several variables
when studied from the asymptotical point of view. This is related to the fact
that for non complete intersection mappings f:C" — C™ (when the zero
set f71(0) has dimension bigger then n — m) there are various approaches
towards the study of f~1(0) (considered as an intersection of supports of



divisors) from the point of view of intersection theory. But the curious situ-
ation revealing the noncontinuous property of the residue function at ¢ = 0
may also appear in the complete intersection case, which is a case where all
intersection theories provide the same notion of multiplicity. We will discuss
this question in the next subsection.

Collef & Herrera suggested to consider the limit of the residue function along
a special, so called “admissible”, path € = €(d) such that

10
limey,(0) =0, and lim &) =
s 5 (5 )7
for any positive integer g. They proved the following theorem :

Theorem 2.2 [26] For any “admissible” path § — €(8), the limit

Rilg)=lm [ P o e D). (2.2)

Tes(f)

exists and defines a (0, m)-current which is independent of the particular
choice of “admissible” path.

We will use also for the current defined in (2.2) the notation
~rl =r1
Ry =0|—|AN...0|—]|.
f [ f1] [ fm]
Up to now, all existing proofs of this theorem are based on Hironaka’s desin-

gularisation theorem (see [26, 71, 88]). In the complete intersection case
(m = n), we will give a new proof without using Hironaka’s theorem.

2.2 Complete intersection case f:C" — C"

Holomorphic mappings f : C" — C" defining a complete intersection are
locally proper mappings ; we will use in an essential way this property. In
this case the residue function looks like the integral

I(e) = / hdzi A ... Ndz,

Te(f)



over the tube T.(f) = {|fi]*> = €1, |fa]* = €n}, where h = h(z,2) is a
smooth compactly supported function. The problem of defining residue cur-
rents has a local nature, due to the existence of partitions of unity, hence we
can restrict the tube 7.(f) to some small neighborhood U, of an isolated zero
a € f71(0). Now we do not have to worry anymore about the compactness
property for the support of the fuction h. In the case when A is holomorphic
near ¢ our integral does not depend of € and coinsides with the Grothendieck
residue [44, 88].

In fact, for complete intersection mappings f : C* — C", we prove here
a stronger result than Coleff & Herrera’s theorem 2.2. Let us consider our
“reservoir” of pathes ¢ — ¢(d) for the definition of the residue integral (2.2)
as the set of “parabolic” pathes

e(8) = €,(5) = (o%, ..., 5™)

with positive fixed numbers %, ..., ¢,. The admissible pathes which lie in this
collection and fit with the Coleff & Herrera approach are those for which
> .. >t,.

Theorem 2.3 Let f: C" — C" be a complete intersection. There exist
finitely many hyperplanes dividing the positive octant R’ into the finite set

{C,} of n-dimensional cones such that for any t €C, (here C, denotes the
interior of C,) the limits

/ hdz A ... Ndz,

lim
6—0
Te, (f)

exist and is independent both ont € C, and of v.

Remark. Using the desingularisation theorem in [71], it was proved that
even in the non complete intersection case, the “reservoir” of parabolic pathes
ensures the partition of the positive octant into a finite number of cones such

that the limits (2.4) are the same for ¢ remaining in some fixed C,, but the
value then depends on v.

We will give the proof of this theorem in the next subsection introducing for
that the notion of germ of amoeba. Here we consider an example for which

the unrestricted limit
lim 7 (e)

e—0
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does not exist, in order to emphasize the possible troubles the residue integral
is responsible for. Because of theorem 2.3, the unpleasant behaviour of the
residue integral I(e) may appear only when the path § — loge(d) crosses the
boundary of some cone C),. The example we propose below was originally
constructed in [75] ; then, in [17], another example disproving continuity of
the residue integral was given.

Let us consider the mapping f: C2 — C? given by the polynomials
g g

hiz) =21, fale) =21 + 25 + 21

Let further ¢ be a smooth compactly supported (2, 0)-form which in a neigh-
borhood of the origin is equal to

© = Zy fa(2) dz1 A dzo.

With these choices of f and ¢ = hdz; A dzo the residue function looks like

1 2
_ —dz1 Ndzy.
(2mi)? /fl‘ =e1 f1 f (27ri)2/ efl=a g AR 02

|f2|=¢ |22422+23|=¢2

After the birational coordinate change z; = u, 2o = uv we can write

( ﬂ—l) [u2 (v +14u)|=¢2 u

Proposition 2.1 For any fized positive number ¢ # 1 one has
lim I(6*, c0?) = 0.
0—0
Proof. In view of (2.5) we are led to the following iterated integral:

52 1 du
ety = 2 (- ) )
(0%, ") 2mi /|u|:(5 2mi /v2+1+u| vdv ut’ (2:6)

We denote the inner integral by J(u) and apply to it the following version of
the trace formula :

/|g(v)|:c¢(v) o= /|w:c

10

Tr[g](w) dw,



where g(v) is a holomorphic function whose level set |g(v)| = ¢ is a p-fold
branched covering over the circle |w| = ¢, and

Triy/g](w

i@b/g] UJ

with vj(w) denoting the different pre-images in g *({w}). In our case we
take g among the family of functions v — g¢,(v) = v? + 1 + u, depending on
the parameter u, and we have for such g, vj(w) = +y/w — (1 + u). We get

1 1 v
- ‘d::——/ Tr [ )(w) d
J(U) 21 /|1;2+1+u|:cv v 21 |lw|=c [21}](’11)) v

and hence

/ Vw — ( 1+u (2.7)
= 270 Jjwi=e \/Tu)

where the integrand should be understood as |w — (1 + u)|/(w — (1 + u)),
and is hence independent of the choice of branch of the square root. From
(2.7) it follows that, if ¢ # 1, the function u +— J(u) is real-analytic in a
neighborhood of the origin, and therefore the limit

lim J(w) du

60 Jju|=5 u*

is a finite complex number. Now, in view of the factor §2 in formula (2.6) we
reach the desired conclusion and Proposition 1 is proved.

Proposition 2.2
lim I(6*,6%) #0.
d—0

Proof. Comparing to the equations (2.6) and (2.7), we have

1(5%,6) = 52/ T o, (2.8)

271 Jju|=s u*

where

/ Vw_ (2.9)
2m |w|= 1\/7
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Here again the integrand is equal to |w — (14 u)|/(w — (1+u)) and from this
it is straight forward to check that the integral (2.9) is actually a function
only of the modulus |1 + u|. So if we denote |1 + u| by ¢ we have reduced
ourselves to the study of the integral

1 Vw—t
Jue

:% w—t

dw (2.10)

for real parameters ¢t > 0, and it is related to the previous integral J(u) via
the simple formula I(|1 + u|) = J(u). We need two lemmas ; for their proof

we refer to [75].

Lemma 2.1 The integral (2.10) is a piecewise real-analytic continuous func-
tion fort > 0. It is explicitly given by

F[_%a%;l;ﬁ]a 0§t<17

with (a)o =1, (a)p, =a(a+1)---(a+n—1) and similary for b and c.

Using lemma 2.1, we shall next describe the asymptotic behaviour of our
function I(t) at the point ¢ = 1 (we will denote the two expressions I, (%),
depending on the fact that t <1 or ¢ > 1).

Lemma 2.2 In a (real) neighborhood of the point t = 1 the functions I (t)
admit representations

L:(t) = Az (t) log |[t* — 1| + Bx(1), (2.11)

the functions Ax, By being analytic with the properties
(i) Az(t) = (t* = 1)/2n + O[(#* — 1)?] ast— 1,
(1) B-(1) = B4 (1) = I(1).
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Proof of proposition 2.2, continued. We recall that we have to find the
limit of the function (2.8) as 6 — 0, with the integrated function J(u) being
equal to the function I(|1 + ul|), described in Lemma 2.1. According to the
lemma we can represent the function I(t) as a series

() = boft) + 3 {an(t) - (7 = 1" log 2 = 1] + ba(0)- (2~ 1",

where the coefficients a,,, b, are piecewise constant functions taking only two
values :

a,(t) =

a;, t<l1, by, t<1,
5 |

at, t>1, bt, t>1.

Moreover, properties (i) and (¢) imply that the first two coefficients are truly
constant :

bo(t) =by =1I(1), ai(t)=1/27.

We can therefore write

Jw) = I(1+u)
- %+%#H+UF—UMQH+UP—H+de+MMH+uP—D
+O([[1+ul? = 1177,
where

by, [1+u| <1,
i+ =
bf, 1+ul>1
(actually, the exponent 3/2 above can be replaced by any number < 2).

We have thus written J(u) as a sum of four terms. Let us first show that the
first, third and fourth terms all give null contribution to the limit of 7(§%, §2).
This is obvious for the first term, which is just the constant by. The fourth
term is also easy to handle. Indeed, on the circle of integration v = Je®,
0 < ¢ <2m, we have [1+u|? —1=05(2cos¢ + §), and hence

du 2 QO (6%/%) dop
2 1 2 _ /2y 2 _ g2 / . _
5'4ﬁou|+m P =0 | e 0, as8 0

Let us next consider the contribution of the third term :

13



1
[14ul<1 u
N d(2cos ¢+ 9)
=1 000 [ g s 0
T e,

3mw/2
=2b 0 // cos ¢(cos 3¢ — isin3¢) dp = 0.
/2

Similarly,

+ 2

6—0 4
[14u/>1 u

w/2
=2b] i / ) cos ¢(cos 3¢ — isin3¢)dp = 0.
2

—T

This takes care of the third term.

What remains to be shown is that the second term, which contains the log-
arithm, gives a non-zero contribution to the limit. We have

lim I(6*,6%) = lim-—

52 / (1/2m) (11 +ul* = 1) log ||l +ul* — 1] du
|u|=0

50 -0 271 u3 U
.1 27 (2cos ¢+ 6) log(§]2cos ¢+ 4|)

Observe now that the limit of the last integral does not change if we remove
from it the factor ¢ inside the logarithm. This is because the integral of
(2cos ¢ + 6)/e>® is equal to zero. After the removal of this factor § the
integrand will be a uniformly bounded family of continuous functions, and
so by Lebesgue’s theorem we may perform the limit procedure inside the
integral and obtain :

_ 1 27 cos ¢ log |2 cos @
4 52y _
(151—13%1(5 9%) = 27r2/o e3id dg-

Expanding the function log | cos ¢| as a Fourier series we get

o _ o0 (_ )n—l
gleosg| =3 ——

n=1

cos2no,
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containing even frequencies only. Therefore the product cos ¢ log |2 cos ¢| is
equal to the uniformly convergent series

00 (_ )n—l
cos ¢ log|2cos | = >

n=1

(cos(2n + 1) + cos(2n — 1)¢),

in which cos 3¢ appears with the coefficient 1/4. All the other odd harmonics

cos(2n — 1)¢ are orthogonal to e, and we get
lim I(6*,6%) = 1ol cos3pe ¥ dp =
30 ’ 212 Jo 4

Proposition 2.2 follows.

2 1
/ cos’3pdp = — .
0 8m

82

2.3 Proof of theorem 2.3

In order to prove theorem 2.3, one can assume without loss of generality one
is in the local situation when the mapping f: C" — C" is holomorphic at the
origin 0 in C" with isolated zero the origin. Letting f(z) = w, we apply for
the residue integral I(e;) the trace formula

hd duwn
I(e)) = / Tr [ willA...A ;" , (2.12)
Te (w) ! "

where J; is the Jacobian of f, the integration set being the skeleton

Te,(w) = {|wi] = €1,1(6), -, (wn| = €n(d)},
and . i
THZJZEJEKZWD

being the trace function with {z*(w), v = 1,...,u} = f~*({w}) where u
denotes the multiplicity of f. It is well known that in case h is holomorphic,
the trace function w — Tr [h/Jf](w) is also holomorphic [4], [88]. By Cauchy
formula one has in this case

I(e) =Tr [%](0) .

We shall see below that in order to prove theorem 2.3 (that is considering
the set of pathes § — ¢,(d)), it is enough to take h(z,Zz) as a polynomial in z
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and Z. Remark that the singular points of the trace function belong to the
discriminant set o(w) = 0 of the mapping f, where

o(w) = H T3 (w))

Since the integration set in the trace formula is the skeleton defined by the
radius-vector (ey, ..., €,), it is important to know how this vector is located
respect to the image of discriminant set on the Reinhardt diagram in coordi-
nates |wi|, ..., |w,|. One can see better how this image looks like after taking
the one-to-one logarithmic transformation. In such a way will arise the no-
tion of germ of amoeba. Recall first the classical notion of amoeba : the
amoeba Ap of a Laurent polynomial P(z) (or of the algebraic hypersurface
P~1(0)) is defined as the image of the hypersurface P~*(0) under the map

LOg : (ZI: . .,Zn) = (10g|Z1|, .- ,10g|2n|)

The notion of amoeba was introduced in [39] and studied in details in [37].
We need to generalize the following two statements about the geometry of
amoebas.

Statement 1. The complement R" \ Ap consists of finitely many connected
components which are open and convex ; these components are in bijective
correspondence with the different Laurent series expansions centered at the
origin for the rational function 1/P.

Let Np be the Newton polytope of P.

Statement 2. Let {E} be the family of all connected components of R™\ Ap.
There exists an injective function v : {E} — Z" N Np such that the cone C,
which is dual to Np at the point v = v(E) coincides with the recession cone
of E ; that is, for any u € E one has u+ C, C E and no strictly larger cone
15 contained in E.

Now we consider instead of polynomial function a germ of holomorphic func-
tion o in O¢» , with o(0) = 0. In this case we define the germ of amoeba as
the image Log (07 (0) N B,), where B, is a ball of (arbitrary) small radius
r centered at 0. Denote by R, the image Log (B,). The same arguments
which were used in [39] and [37] imply the following properties for a germ of
amoeba.

Statement 1°’. There exists 7 > 0 such that for the germ A, in B, with
r < ro the complement R.\ A, consists of finitely many components which are
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open and convex ; moreover such components are in bijective correspondence
with the different Laurent series erpansions centered at the origin for the
meromorphic function 1/o.

Denote as suppo the set of exponents of monomials which are effetively
present in the Taylor series of o (about the origin) ; let I, be the Newton
diagramm of o, that is the union of all bounded faces of the polyhedron

N, = convex hull [ U {e+R} ] .

aEsupp o

Statement 2’. Let A, be the germ of amoeba of o in B,, with r < 1, and
let {E} be the family of all connected components of R, \ A,. There exists
an injective function v : {E} — Z" N T, such that the cone C, which is dual
to N, at the point v = v(E) coincides with the recession cone of E.

Remark that the map Log is the composition of two maps :

m : (21,..,20) € (C\O)" = (|1, .-y |2n]) € RY
l=1log : RT — R",

Denote as A, the image m(f~'(0)NB,) and call it the preamoeba. We have a
one-to-one correspondence {E} — {E} between the connected components
corresponding to the preamoeba A, and those corresponding to the amoeba

A,

Now we can prove theorem 2.3 as follows : we prove that the n-dimensional
cones C, which appear in statement 2’ (in connection with the germ of
amoeba of the discriminant o at the origin in Cj;) as the dual cones at
the vertices of N, are in fact the cones we need to formulate our assertion.
In order to do so, notice first that the union of such cones gives a decomposi-
tion of the positive octant R . Furthermore, any “parabolic” path ¢ — ()

with ¢ ECi, can be tangent at most with some finite order to the coordinate
hyperplanes of R, and the preamoeba A,. It follows thus that for the such
pathes the denominator o(w) w; ... w, in the trace formula (2.12) has finite
order respect to the parameter 6. But this means it is enough (in order to
prove the theorem) to consider for A some monomial function h(z,z) = 222,
Since the inverse images 2’ (w) are algebroidal functions which are holomor-
phic outside the discriminant set, they admit a Puiseux expansion in any
logarithmic convex domain such as Log™! (E,), v = 1,..., u. Consequently
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the trace Tr[22Z°/J;] can be expanded as the sum of a series (in w) of
monomials of the form w*w'|w|?, where k € Z", 1 € N" and ¢ € Q. Finally,
thanks to the trace formula (2.12), we get that the nontrivial contribution in
the limit of the residue integral I(e;(d)) comes from the holomorphic part of
h. This explains why the limits (2.4) exist for any “parabolic” path § — €;(0)

with ¢t €C, for some v and why these limits are the same when ¢ remains in

the same C, ; moreover the value is independent of v. <

2.4 The Mellin transform of a residue function

Let X be a n-dimensional complex manifold. Recall that given some holo-
morphic mapping f: X — C™ (m < n) and some test form ¢ € D™""™(X),
one can associate to these data a residue function € — I(¢) = I7(e) from R’}
to C defined as the integral

! 4
9= Gripm ), i fm

over the tube T, = {z € X; |f1(2)|* = €1, ..., |fm(2)|? = em} ;note that for
the sake of convenience we take here |f;|> = ¢; in the definition of the tubes,
while before there was no square.

The Mellin transform of the function I}p is given as the function
A TN = /R e & de, (2.13)

where A = (A1,...,\;,) € C™ is a complex vector and

& de = ei‘l_l e ef‘nm_l deir A ... ANdey, .

The Mellin transform is a m-dimensional integral of an integrand which itself
is given by some (2n — m)-dimensional integral. It may therefore be in a
natural way represented as a 2n-dimensional integral.

Proposition 2.3 [75] The Mellin transform of the residue function associ-
ated to a holomorphic mapping f: X — C™ may be expressed as an integral
over X as follows :

1
(2mi)™

LF(\) = /X [FPODAf A, (2.14)

18



with the vector notations

|f‘2(/\—1) — |f1‘2(x\1—1) "'|fm\2(’\”_1) , W ::d_ﬁ/\.../\df—m.

Some information about the Mellin transform of the residue integral implies
the following theorem (which can be proved using desingularization theo-
rem) :

Theorem 2.4 [74] The Mellin transform T'; defined by (2.13) is holomorphic
for Re X in RY' and has a meromorphic continuation to all of C™. There is a
finite collection of non-zero vectors a* in N™, depending only on f and on the
support of ¢, such that the poles of F?, which are all simple, are contained in
the hyperplanes (a*,\) = —m, m € N (here (a*,\) denotes the usual scalar
product). In particular, near the origin one has

re()) = QN
/ |Kzzm(a JA) - (aFm ) N)

where the ckx are constants and Q is a finite sum of functions with simple
poles along fewer than m hyperplanes.

In case the mapping f defines a complete intersection, one can say a lot more
about the structure of the polar set of the function Ff.

Theorem 2.5 [8, 75| If f: X — C™ defines a complete intersection in X,
i.e. dim f71(0) = n—m, then in a neighborhood of the origin A = 0 the func-
tion F? can have (simple) poles only along the coordinate hyperplanes A; = 0.
In other words, for a complete intersection the function A+ Ay -+ Ay I (A)
1s holomorphic near the origin.

In the case m = n, the last theorem follows from theorem 2.3 : indeed by
theorem 2.3, the residue function is (at the infinitesimal level) a continuous
function, since along almost all approaches towards the origin ¢ = 0 in C",
it has the same limits. But obviously for such function the Mellin transform
may be singular near A = 0 only on the coordinate lines. We will mention
in section 3.1 an alternative way to get this result in the non absolute case
m < n (f defining a complete intersection).
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In the noncomplete intersection case € +— I(€) is (still at the infinitesimal
level) piecewice constant (see the remark following theorem 2.3) and its
Mellin transform has a finite number of polar hyperplanes near the origin.

One has the following

Corollary 2.1 In the complete intersection case, the residue current is re-
lated with the Mellin transform of the residue integral by the formula

Ryl9) =M+ M TFO)| .

2.5 Principal value of the residue current

There exists another current which is intimely related to the residue current,
namely the principal value current. In the simplest case, it is defined for the
meromorphic function 1/f on the manifold X and can be introduced as the
limit .
. ¥
o)t [
< f > —0J{f1>¢ f

for any test 2n test form ¢ (as before, here n = dim (X')). The existence
of the last limit was proved in [49]. The fundamental relation between this
principal value current and the residue current Ry consists in the formula

_1
9l=] = Ry (2.15)
f
which is an avatar of Stokes’s formula :

1 . I 4
Ol ¢)=—lim — =lim - =Ry,
< [f] (p> 6—>0/{f|>6} f 0 J{|f|=¢} f iy, o)

for any (n,n — 1) test form ¢. In particular relation (2.15) shows that the
residue current Ry is 0-closed.

One can combine the two procedures of taking the residues and principal
values. There are two ways to do this. Let

f=f1,efm) : X=C™, g= (91, qr) : X = CF
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two holomorphic mappings on X. One can introduce the notion of the prin-
cipal value of the residue current R; with respect to g (acting on a (n, n—m)-
test form) as the limit

Ry By(¢) = lim £

2.16
6_)0"" T€(6);T(6)(f’g) (fl--fm)(gl--gk) ( )

where

Te(d);T(J)(f: g) = {|fz| = 61'(6)7 1= 17 ey T |g]| > Tj(6)7 .7 = ]-a )k} )
here 6 — €(J) and § — 7(J) are pathes towards zero.
Theorem 2.6 [26, 71| One has the three following properties :

e i) For any “admissible” path § — (e(5),7(5)) in R the limit (2.16)
exists and defines a (0, m)-current independently of the particular choice
of the “admissible” paths.

e ii) If k=1 then
O(P,Ry) = Ry, (2.17)
from which it follows that the Coleff-Herrera current R; is O-closed ;

e iii) If k =1 then the principal value current PyR; is represented as an
iterated limat

) . 2
P,R; = lim lim
ST S0 0)=0 I () (Frovefom) (91---98)

Property i7i) is the basic one when one deals with residues currents. One
gets a similar property when considering another notion of principal value.
To do this remark that in (2.16), the integration set is the intersection of the
“residual” tube T,(f) with the set

D,(9) ={lgj| > 7555 =1,...k}.

The last tube is the intersection of the sets |g;| > 7;, and when £ > 1 it is not
an exterior domain for the zero set g~ '(0). In order to get some definition of
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some principal value on the analytic set f~!(0) respect to the analytic subset
F710) N g~*(0), we consider instead of the tube D, (g) the following one :

D, (g) = L_Jl{\gj\ > T;}.

Now we introduce the following special limit (let us keep for it the same
notation) :

_ 1 »
P,R; = lim / Ty (2.18)

Te(f)ND-(9)

Theorem 2.7 [86] One has the three following properties :

e i) The limit (2.16) exists for any “admissible” path and defines the
current of bidegree (n,n —m) ;

e i) In case f defines a complete intersection, with
dim (f71(0) N g7*(0)) < dim (f7(0),
one has Ry = PyR; ;

e iii) The two above currents can be represented, acting on a test form
©, as the iterated limit
Ry(¢) = P,Ry(¢) = Jim lim [ z

01—0d2—0 flfm ’
Te(s5)(F)NDr5,)(9)

where €(81),7(02) are admissible pathes.

This theorem allows to describe the structure of the residue current R in the
case f defines a reduced complete intesection, i.e df = dfiA...Adf,, # 0 almost
everywhere on A = f~1(0). In this case the singular part of A coincides with
the set (see proposition 5.1)

{zeA;df(z) =0} ={z€ A; J; =0, I =m},

where J; = 0f/0zr is the Jacobian of f with respect to the variables z; =
(Ziy -+ Zi,,)- For a semimeromorphic form ¢/ fi...fm, ¢ € D™"™(X), one
can define the residue form in the sense of Leray resw = ¢/df| 4, which can
be written on the subset Uy = {z € A; J; # 0} as




Theorem 2.8 [86] If f : X — C™ defines a reduced complete intersection
A = f10), then the residue current associated with f can be reduced to the
principal value on A by the formula

Ry(p) = (2mi)" Pas( )
where Py ; is the principal value on A respect to the map J = (Jr : |I| = m),
i.e.
e\ @
PA”’(J) =5 / d
AND.5)(J)

In the case m = 1 there is a more precise description of Ry due to P. Dolbeault
(see [32] and subsection 3.2 below). Remark also that the last theorem will
be used essentially in the last section when studying holomorphic forms on
analytic varieties.

3 Residue currents of the Bochner-Martinelli
type
3.1 An alternative construction of residue currents

Let fi, ..., fm be m holomorphic functions in some open set V' C C", || f||* be
the real analytic function in V' defined as

AP o= 1A+ [ ol

and
C(f) := {e > 0; ¢ is a critical value of ||f|*};

let also, for any ordered subset Z = {iy,...,5,} C {1...,m} with cardinal
r < min(m,n), Q(f; Z) be the (0, r)-differential form defined as

T

Qf s 7) = V0T AT
= =

(note that such a form depends in some alternate way on the ordering of
indices in 7). For any m € {1, ...,n} and any € > 0, we will denote as %, (€?)
the m — 1-dimensional open simplex

Em(GQ) = {(tl, ,tm) E]O,-I—oo[m; 4 tt, = 62}
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and do,, 2 the normalized m — 1-dimensional Lebesgue measure on ¥,,(€2).
When m < n and fi, ..., f,,, define a complete intersection in V', then one can
show that for any (n,n — m)-test form ¢ which is closed in a neighborhood
of f710):={CeV; fi(¢) =...= fn(¢) = 0}, the function defined for any
€ >0, ¢ ¢ C(f) sufficiently small (depending on ¢) by

m(m—1)

(-1)7 =z (m-1)! 1
DS P ) L) LN AP P
Fitte m}(6 g (2¢m)m €2m Jflp=e (f; 1 m}) A g
1 ¢
- : — L\ dopme(n?, ..., n?
/(n?,...,n?n)eAm(ez) [(2171’)7” I fl"'fm] moe2 (15 -+ Thn)
f1_\_f711
|fm‘=77m

is almost everywhere constant and equal to

(AB7. ).

=1

Such a remark suggests a possible definition of residue currents in the non-
complete intersection situation ; in fact, ideas arising again from toric geom-
etry allow the following theorem [76] :

Theorem 3.1 Let fi,..., fin be m holomorphic functions in some open subset
V c C", r < min(n,m), and T := {iy,...,i,} be some ordered subset of

{1,...,m} ; for any element @ € D™ 7(V), the limit when € tends to zero
outside C(f) of

N ) e e (S DI _
Jf;I(ea (P) = (QZT)T GTT Af”zzez Q(fa I) N

exists ; moreover, one defines this way the action of a (0,r)-current Tf.z on
V', with support on V(f) ; one has Tf.z = 0 when r < m; := codim f~*(0) ;
moreover, when m < n, B

8[Tf;{17"'7m}] = 0;

finally, KT;.z = 0 for any subset T with cardinal between m; and min(m,n)
and any function h holomorphic in some neighborhood of f~1(0) in V, such
that h =0 on f~1(0).
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The basic idea supporting this proposition can be understood if one looks at
the normal crossing case, when V' is a neighborhood of the origin in C" and
each fi,..., fu is of the form

fi(2) = ui(z) 217" - 20

where u; is an invertible element in H(V) and o; = (a;j1, ..., ajp) is in N" ;
let A be the closed convex hull of

m

U{e; +RY}

j=1

and X the corresponding equivalence relation between elements in R’ : {:,%51
if and only if Tra(§) = Tra(&’), where

Tra(6) = {0 €A, <&d>= min < &, > ¥

the set of all closures of the equivalence classes for this relation is a fan X(A)
(see for example [5]), which can be refined in order that all cones are simple
ones, so that the corresponding toric variety X is a n- dimensional complex
manifold ; local charts correspond to different copies of C" which are glued to-
gether via invertible monoidal transformations from the n-dimensional torus
T" into itself. Since the union of the cones in this fan is R}, the projection
map I : X — C" (which is monoidal when expressed in local coordinates in
each chart) is a proper map ; the key fact here is that in such a local chart
(with local coordinates ¢y, ..., t,), one can write || f||* as

I IF12(2) = |u(@) o ()
where p is a monomial and v some real analytic strictly positive function (in
the local chart).

Combining this idea with standard technics involving resolution of singu-
larities for the hypersurface {f; ... f,, = 0}, one can prove that the Mellin
transform of

EHJf;I(G; QO),
that is
oo 1
/\|—>/ e Jr.z(e; o) de,
0
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is a meromorphic function in C, with no pole at A = 0, and uniform rapid
decrease in vertical strips, which implies theorem 3.1, thanks to the Mellin
inversion formula.

One can notice that the action of such a residue current 7,7, when r =
r(Z) < min(m,n) on a (n,n — r)-test form in V' can be also expressed as

r(r—1)

()™ APAQS D A
(2im) Tli%l+/v 1712 (AR + )t

<Tf;Ia §0> =
in particular, when m < n,

[ —

(—1)m(n;_1)m' T '/\1 afi e

YD 2 ™ = :
(2im)™ oot Jv ([[f|P + )

<Tf;{17-“7m} ’ SD) =

therefore, still in the particular case where m < n and Z = {1,...,m}, the
['-type meromorphic function

m(m—1)
_1)T m . m
A, s Am) € C™ > T9(\ ::7( [T 1712575 A df; A
( 1 ) f( ) (27,7T)m ‘/Vj_1|f]| ]{\1 fJ ¥

(note that such a function an be uniformly estimated in C(L)(1+||Im A||)N®)
when |[Im A|| goes to 400 in any strip L = {||Re A|| < T'}) is involved in the
expression of the action of (T, (1, m}, ¢) through the multivariate Mellin-
Barnes transformation ([76], theorem 2.2) :

Theorem 3.2 Let fi,..., fmn be m functions holomorphic in some open subset
VcC" (n>m)and (71, Ym) in ]0,1[™ ; then, for any test-form ¢ in
D™ (V), one has

m

. 1 e
(Tt 1,my» ) = lim /WRMT (s + D[ TI T = sx)] T9(s)ds,

o0+ (24m)™ i

where |s| := sy + -+ S, and ds :=dsy - - - dsy,.

An example ([76], proposition 3.1). As an example, we may point here the
monomial case (m = n), where

fi(z) = 2l =1,
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in this case, if d denotes the codimension of the real closed cone
{xERnﬂ <O‘/j’ .T) Zoajzlaana £C1++$n So}a

where o', ..., @™ denote the column vectors of the matrix A = [a;;], one has
Tf.q1,..ny = 0 when d = 0 ; otherwise, if 1 <d <n,

d n 1 d_
Trirmmy = /\ Lw] /\ (—"é)'F(|<d+1|2""a|Cn|2)a

J
j=1 j=d+1 C;"a‘ G

with |af| := aq;+ -+ anj, j = 1,...,n, F being the hypergeometric function

F(Gara s G 1= g /R,,dnrl— W) I 1G> a,

j=d+1

where, for A € C" with ' := (Ar,..., Ag) and X' = (Agy1,..., An), 4 (N") is
the j’th component of the vector £(\") = A*(0',\") ; in the extreme case
d=n,

A |
Tf;{l,...,n} = /\ 8 |:TJ|] -

J

When m < n and (fy, ..., fm) define a complete intersection, we have :

Theorem 3.3 ([76]) In the complete intersection case (m = n = my),
all Bochner-Martinelli currents T,z are zero, except the current Ty (1, m)
which coincides with the Coleff-Herrera current.

The second assertion of this proposition is not immediate and its actual proof
involves arguments inspired by the proof of the fibered residue formula [26].
It would be essntial to find a proof inspired by the arguments developped for
exampe in the proof of theorem 2.3 (section 2.3).

Therefore, when m < n, though the unconditional limit

I L 14
im . —r
Myt =04 (2077 )™ fie o fm
|f1_|_%711
| fm|=nm
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does not exist in general (see section 2.2) even when fi, ..., f,, define a com-
plete intersection, the limit when € tends to zero of the average

1 / © ] \ ,
. | dop (07, ..., 1,
‘/(Tlf,..-m?n)eAm(@) [(QW)m il Ffrooe fm e (m )

[ fm|=nm

always exists ; one has already seen the reason for this in the absolute case
m = n in section 2 (see the statement in theorem 2.3 and its proof in section
2.3). One of the advantages of this alternative approach to the Coleff-Herrera
current (apart from the fact that it extends to the non-complete intersection
case) is that it provides a one parameter approximation (namely e instead
of (11, ...,Mm)), which allows to turn around the difficulties arising from the
Passare-Tsikh counterexample [75]. In the non-complete intersection case
(still with m < n), it provides a d-closed (0, m)-current (namely T, 1. m})
with support f~'(0) (instead of the essential intersection in the Coleff-Herrera
construction [26]), depending in an alternate way on the ordering of fi, ..., fi,
(which is not the case for the Coleff-Herrera currents) ; the averaging method
which is proposed here needs to be compared to the averaging method pro-
posed by M. Passare in [72, 73].

A key property of the Coleff-Herrera current in the complete intersection case
[71] is the fact that one has, for any h € H(V),

m

h A\ E[i_] =0<= h € (fi,fm) ;
= i

on the other hand, as a consequence of the transformation law, one has also
in this case that for any (¢, ..., gm) € N™,

gt Ao

1
= 5

These two properties suggest in the non-complete intersection case the idea
to extend the construction proposed in theorem 3.1, replacing the Bochner-
Martinelli section (f{/||f||% -.-» fm/||f]|?) that has been used by the section

(ﬁ\fﬂ% f_m|fm\2qm)
[ |V | A

1= Adlz].

(3.1)
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where ¢ = (¢1, ..., ¢m) € N™ and
1£17 = X 1f @D
i=1

This has been done in [12] ; it amounts essentially to replace || f||* by || f||> and
the Bochner-Martinelli forms Q(f; Z), where Z denotes an ordered subset of
{1,...,m} with cardinal r, by the forms :

Qf: T q) (H qn) Z ] 1fzqu +1 /\d[f q”+1

1
i= lséj

The corresponding current 7.7, is defined as follows [12] : for any (n,n—r)
test-form ¢ with compact support in V/,

(—1)"=2 (r = 1)) 1

< f3Ziq> SD> (2“_(_),,- 61_1)% €2r I7l2=e (f7 ) q) 2

when m < n and (fi, ..., fm) define a complete intersection, one has

™ _rl
Ty q1,myie = Tri1,my;o = /_\ a[f_J] /

this can be obtained repeating the argument developped in the case ¢ = 0 in
[76] (theorem 4.1) ; it means that in the complete intersection case, the action
of the Coleff-Herrera current on a (n,n — m)-test form ¢ can be expressed
(independently of ¢ € IN) as

j=1
1 @
= llm - / 7‘| do. 2 ,',’2’ '”’772 ’
€20 J(nd, ) €EAM 4 (€2) l(?zw)m e fifom moge2 (T )
\fm\ =NMm

where ¥,, ,(¢?) denotes the m — 1-dimensional open simplex

Yma(€)) = {(t1, oy tn) €]0, +00[™; tITT 4o it = 2}
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and doy, . the normalized m — 1-dimensional Lebesgue measure on it ;
moreover, in the particular case m = n, one has

<Tf;{1,---,m};qa ©)
1 m
=1im,7/ |S‘F s|+1) (1 —s)|T% (s)ds,
i [ g™ TSl D[ ITT0 = 5] 1)

=0+ (247) il

where
r%,(s) = [ T1(g; + D] T%((qr + D51, - (@ + 1)5m ) ;

j=1
so the fact that T}.( . m);q is independent of ¢ when fi,..., f, define a
complete intersection implies that in this case, for any (n,n — m)-test form

in V, the function
5= (A1, Am) = TF(A)

has only simple poles along the divisors {\; = 0},...,{\,, = 0} and that
the action on ¢ of the Coleff-Herrera current equals then the Leray iter-
ated residue at the origin in C™ (respect to these divisors) of the (m,0)-
meromorphic form

[E(s)dsi A ... Ndsp;

this gives an alternative approach to the statement in theorem 2.5.

Besides the fact that such currents T,z,, with ¢ € N™,
Zc{1,..,m}, mg<r(Z) <min(m,n),
inherit the same properties than in theorem 3.1, one can add that
hTt,7,4 =0

for any h € H(V) such that for any point z in V, one has that

(ILst")h.

lies in the integral closure (in O¢r ,) of the r-th power of the ideal generated
by the f;-’jﬂ, j=1,...,m

Exactly as for the Coleff-Herrera construction, which can be carried on any
reduced analytic set, Bochner-Martinelli currents such as the T%;z,,, where
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f = (f1, .., fm) is a collection of holomorphic functions in V' and Z is an
ordered subset of {1,...,m} with cardinal » < min(m, n), may be multiplied
in some natural way with integration currents on analytic sets ; namely, if A is
a closed analytic subset in V' (with pure dimension n—m4, 1 < my < n—1),
and 4 denotes the geometric integration current on A,

ba= Y basdzyANdzs,

all distribution-coefficients ¢4, are regular holonomic [17], so that, given
fi, .y frm holomorphic in V' (such that dim(ANV(f)) < n—ma = dim A)
and zp in AN V/(f), there exists (see [16], chapter 3), for each J C {1,...,n}
with cardinal m 4, a Bernstein-Sato functional equation

9 9
¢’ a¢’
this allow the possibility [13] to define, for any subset Z with cardinal r,
r < min(m,n — my), restricted residual currents

Q10 (¢, MIFIPC @645] = breeW[IF1? @], bizo € CIXT;

Tyiz;q Noa -

r(r—1)

(=)™

r—1)!

[nfnz(“”énfnz NO(F3 T: q) Ao

A=0

r—1)! 1
= lim — / QUf;Z;9) N (-
: W0 anisi—er (f3Z; 9 A ()

(taking the meromorphic continuation, then the value at A = 0, in the first
definition, the second being naturally connected to it via the Mellin trans-
form, the limit here been taken when € tends to 0 outside a negligible set in
10, +00]).

3.2 Division formulas and Bochner-Martinelli residue
currents

Let m,n € N, m > n ; let fi,..., fu, be m holomorphic functions in some

pseudoconvex domain V in C" and U, ...,U,, be m planar domains with

piecewise smooth boundaries such that U; CC f;(V) ; let W be a connected
composent of the analytic polyedron

{CE V; f](g) € Uj’j: 15""m}

31



such as the faces of W intersect in general position (that is, for any subset Z
of {1,...,m} with cardinal r, the intersection of the r faces

Yi, = {C e W; le(C) € 8Uzl s fil’ (C) S Uil' for I' 7é l}, = 1,...,7,

defines a piecewise smooth 2n — r-dimensional real-analytic cycle in V') ; the
natural orientation on V induces an orientation on each of the n-dimensional
edges Yiy,..in = YirN--.NYi,, 1 <43 < ... <4y < m, which form the skeleton
of W let a;;, 1 <i<m,1<j<n benm holomorphic functions in V' x V'
such that

FO) — 10 =X i) (G- 2), (€O VXV

then, one can reproduce (in W) any holomorphic function » € H(W) which
extends continuously to W with the well known Cauchy-Weil integral repre-
sentation formula [92] :

1 h©) A (30346 0dss)
. (32)

h(C) = 7o "
(2im) 1§i1<2.<z'n§m/”1 ----- in l;Il(fil(f)—fiz(C))

l

In the particular case where Uj is a disc D(0,r;), one can derive from (3.2)
the Weil expansion theorem :

Theorem 3.4 ([92]) Any function h holomorphic in W and continuous on
W admits in W the series expansion

n

hE) A (3 a0 (€ C)dty)
MO = G 22 / =

1<i1 <.<in<m keN™ ¥ Yitsin I1 £ ()
=1

<O - £ Q)

(3.3)

such a development being normally convergent on any compact subset of W.

The key difficulty which is inherent to Cauchy-Weil’s formula (3.2) lies in the
fact that for any subset {i1, ...,1,} C {1, ..., m}, 744, represents a portion of

32



an analytic cycle. Connecting integral formulas via Dolbeault isomorphism
(see for example [46]) leads to some infinitesimal versions of the Cauchy-
Weil formula in its expanded form (3.3), where Bochner-Martinelli residual
currents are involved ; subfamilies {f;,..., fi,} extracted from the family
{f1, -, fm} will now be considered instead of the pieces of cycles i, . ;.

In the algebraic context (fi,..., f, being a quasi-regular sequence in some
commutative A-algebra R such that R/fR is finitely generated projective
module, see [62], section 3, theorem 3.6), all residue symbols

rdXi; N---NdX,

Res Ert1
f11+ afrl:n+1

, keN",
are simultaneously defined via an algebraic trace formula. In our analytic
situation (f, ..., fr, being m holomorphic functions in some open subset V' C
C™), such that m; = codim f~!(0), one can attach to any choice of ¢ € N™
(that is any choice of a Bochner-Martinelli section such as (3.1)) a collection
of residual currents indexed by Z, Z C {1,...,n} and k € IN™ defined as
follows : if Z := {iy,...,%,}, my <7 < min(n,m), Tf.;., is the (n,n —r)
current in V' defined as

Tf. 1, =
(Tfiziq: ) (227r) kyle- k!
xlim s | (H|f|2q“f VU T ) A
e—0 e2(r+lkl) 1 fl12=e 1 )

where |k| := ky + - - - + kp,, for any test-form ¢ € D™"~™(V). When m < n
and fi,..., f,, define a complete intersection one has

le”c;{l,---,m};q /\3[ l_c+1] Vg, ke N™.

Such objects were already introduced (acting on d-forms) in [70].

It is interesting to note that when m; = n (which corresponds to the frame
of Cauchy-Weil’s formulas (3.2) or (3.3)), then, for any subset Z = {iy, ..., i, }
of {1,...,m} with cardinal n, for any ¢,k € IN™, one has

f,I,q ( Z QaIk‘,q C [a]>dC1A/\an;

aeV(f
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which confers an algebraic character to these currents in case f~'(0) is dis-
crete.

Let now r, R,e > 0, n > m and {fi, ..., fm} be m holomorphic functions in n
variables defining a zero set f~*(0) with codimension my in

Ur+€,R+€ = {C = (Zaw) € Cn_mf X Cmf ) ||Z|| <r+ €, ||’U)|| < R+ 6}

such that the projection m : { = z from f~1(0) NUy e rie to C*~™ is proper
and that

{Cef0); llzll <r+e, R< fJwl| < R+ €} = 0;

let

. 1 2.7 2
Let also aj, 7 = 1,...,m, ¢ = 1,...,m be a matrix of n X m holomorphic
functions in 2n variables (&, () = (u,v; 2, w) in Upye rie X Urter+e Such that

£:(6) = 1:(0) = iaﬁ(ﬁ, OE—¢), i=1,.,m (3.4)

and .
Az(§7C) :Za’]’t(§7 C) d§]7 1= 177m

7j=1
Let ¢ € D,({||z]| < 7 + €}), such that ¢ = 1 in a neighborhood of {||z|| <
r} and ¥ € Dy, ({|lw]| < R + €}), such that ©» = 1 in a neighborhood of
{||w|| < R} ; then, one can derive from division formulas based on the use of
weighted Bochner-Martinelli kernels (in the spirit of [14, 71, 7]) the following
generalization of Cauchy-Weil’s formula (in its expanded form (3.2)) :

Theorem 3.5 [12, 94| For any h holomorphic in U i gte, for any ¢ € N™,
one has the following version of Cauchy-Weil’s expansion in U, g :

h(¢) =

m k S A (A A(EQ)
Y Y X (Thre hlen —
REN™ r=myf I={iy,...,ir} <U'a U — z>
|k|<N 1<i1<...<ip<m

) 4(0)
(3.5)
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modulo the ideal (fi,..., fm)Y in H(U.g) for any N € N* ; moreover, if
f(0) = 0, the series above is normally convergent in some U, , with n suffi-
ciently small.

In the particular case my = 0, one can formulate this result as follows :

Theorem 3.6 [94] If f1, ..., fm are m holomorphic functions with a finite set
of common zeroes f~1(0) in some bounded pseudoconver open subset V.C C"
and aj, 1 =1,...,m, j =1,...,n, are n X m holomorphic functions such that
(3.4) holds in' V x V, then for any h € H(V), for any N € N*, one has

=Y X (Tfzgh (/\ Ai(€,0)) F(Q) (3.6)

ﬁcele 1<i1<...<ip<m =1

3

modulo the ideal (fi,..., fm)Y in H(V).

An example of application. As an interesting example where one would
expect such division formulas to be involved, we take here the opportunity
to mention the following result, which does not happen to be so well known :

Theorem 3.7 Let fi,..., f, be n germs of holomorphic functions in n vari-
ables at the origin of C", such that f1(0) = ... = fu(0) = 0 and J be
the Jacobian determinant of fi,..., fn ; then J € (f1,..., fu) if and only if
dim V' (f) > 0.

The fact that J cannot lie in (fi, ..., f,) when the origin is an isolated zero
is a consequence of the formula which was established in section 2,

~ ol N odzZ; Ndz;

AN B[+] Ader A Adzy = multe(f) 6 \ T2

i 2

i=1

and of the local duality theorem. The reciprocal assertion is more unex-
pected ; in fact, what is easy to deduce from theorem 3.6 is that one has
always

MJ C (f17 "'7fn)7

where M denotes the maximal ideal in Od:“,o ; this happens to be a classical
fact in residue theory, namely that the Jacobian determinant of a regular
sequence (fi,..., f) € Ogn lies in the socle of the ideal (fi,..., fn) ; the
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fact that when dim V(f) > 0, one has in fact J € (fi, ..., f,) follows from
this remark, combined with the use of Krull’s theorem (this was noticed by
M. Hickel) ; the corresponding global result amounts to [90]. It remains an
interesting problem to extract from theorem 3.6 an explicit division formula
for J in (f1, ..., f») when dim f~1(0) > 0 ; such a formula can be derived from
Euler’s identity in the homogeneous case [68, 83] ; in the general situation,
it could be done only under some additional hypothesis [12] ; it seems likeky
that the proof of such a division formula would provide a better understand-
ing of the algebraic properties of Bochner-Martinelli residue currents.

Given any closed ideal in the space of analytic functions on a n-dimensional
Stein manifold &', it is known that any analytic functional 7" € H'(V') such
that 1" = 0 for any h € I can be represented by some element 7" € D'(V)
which satisfies AT = 0 (this identity being understood now from the dis-
tribution point of view) ; the question remains whether such T can be de-
scribed in terms of residual currents attached to the ideal I. Since the initial
developments of the theory, structure problems related to such currents ob-
jects, together with their eventual relation with the noetherian operators of
Ehrenpreis-Palamodov have been extensively studied [31, 32] ; complete an-
swers have been given in the discrete case and the normal crossings case ;
less precise answers have also been proposed to describe the structure of the
Coleff-Herrera current in the complete intersection case (see [29]). For ex-
ample, if m = 1 and f € H(V), one can describe the action of the residual
current 9(1/f) on the (n,n — 1) test-form

=D @idC AN N\dG =" pidC Ad{y
i=1 1] i=1
as
11 n _
<6H L) =20 > Dy VP (95dG A dCy)
f j=1 k
where the D) are differential operators with holomorphic coefficients, the

VP, ; are the images through the canonical injection of some principal value
distributions on the irreducible branches of f~1(0) (see [32], theorem 6.4.3).

When I is an ideal of H(X) which is defined as a complete intersection (let
say by f1, ..., fm which are holomorphic functions in V'), then, for any analytic
functional T € H'(V') such that AT = 0, for any Stein neighborhood U of a
carrier K of T, one can find [30, 86] an element ¢ € D™"~™(U) such that :
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o Yhe H(V),T(h) = <jiK15[fij] Aeor, hY

° ESOT = Zl fj Dn,n—m-i—l(v) :
J:

this shows the crucial role of residue currents in the complete intersection
case and the necessity to clarify their relations with noetherian operators
attached to the ideal. In the non complete intersection case, the situation
is more involved ; what can be proved is the following result, valid in the
locally Cohen-Macaulay situation :

Theorem 3.8 [30] Let X be a n dimensional Stein manifold and I a closed
ideal in H(V') such that Ox ,/Ix , is a Cohen-Macaulay ring with fized codi-
mension m for any z in the zero set of I ; let T € H'(V) such that IT =0
(in the sense of analytic functionals). Then one can find a compactly sup-
ported residual current T such that IT =0 (in the sense of currents) and
T(h) = T(h) for any h € H(V) ; moreover, given any complete intersection
ideal (fy, ..., fm) containing I, one can find T with the form

m

= 3:15[f9] Aoy,
where
* prs€ [(fh-- m) 2 1] DV
* dpr = f DV,

Jj=

Note that in the discrete case m = n, one can also realize T in terms of the
currents TJ’?;I; ¢» With Z of cardinal n, which have been constructed previously
in this section. Nevertheless, we would like to point that the approach devel-
opped for the proof of theorem 3.8 (and which is inspired from the notion of
linkage in algebraic geometry) is different from the direct division approach
where Bochner-Martinelli kernels are involved. Let us quote the following
result obtained by M. Méo :

Theorem 3.9 [67] Let fi,..., fm be m holomorphic functions in a neigh-
borhhood of the origin in C" such that V(fi,..., fm) is an irreducible an-
alytic set with codimension my ; if my < n, let puy be the multiplicity of
(f1y -y fm) at any generic (smooth) point of V(fi,..., fm) ; if my = n (that
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is V(f) = {0}), let s be the multiplicity in the sense of Serre of the pri-
mary ideal (f1, ..., fm), that is also the multiplicity of f = (f1, ..., fn), where
fi, ..., fn are n linear generic combinations of the f;’s ; then one has the
following factorization formula for the integration current on [V (fi, ..., fm)] :

" dz; \dz;

i=1

when my =n
21

my
= > Tr.z A N\dfi, when my<n,

1<i1 <o <im  <m =1

which can be seen as a generalization to the non-complete intersection case of
Poincaré-Lelong equation (here 8¢ denotes the Dirac distribution on f~1(0)).

As we will see in subsection 6.3, a similar formula exists in case (f1,..., fm)
define a purely mg-codimensional cycle which is not irreducible anymore ;
note that the multiplicities involved in the right-hand side of such a gen-
eralized Poincaré-Lelong formula are the Hilbert-Samuel multiplicities : for
example, in the discrete case f1(0) = {0}, the integration current we may
represent with such a formula does not change if (fi,..., fn) is replaced by
any ideal (fy, ..., f,) with the same integral closure, for example any ideal
(f1, -y fn), where fi,..., f, are n generic linear combinations of fi,..., f.
On the other hand, in [59], M. Lejeune-Jalabert gave an explicit formula,
given some primary ideal (f1,..., f) in Ogn, to express the dimension of

the quotient space Ogr o/ (f1, ..., frm) a8
1
2] o)
fi

where (f1, ..., f) denotes an arbitrary regular sequence in (f1, ..., fr) and wy,
(depending of the f;’s) is computed from a free resolution R (with length n)
of O¢n o/ (f1, -, fm) using explicitely some morphism «, of complexes from
the Koszul resolution A* O”n,o to R. deduced from the inclusion ( fis s fn) C
(f1, -, fm)- From this, the following question arises, given a primary ideal

(f15-, fm) in Ogn o : can one choose some convenient ¢ in formula (3.6) so
that :

Ql

dim (Od}",o/(fl’ ’fm)) - < -nl

e such a formula could reproduce the membership of A to (f1, ..., fm) ?
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e for any notion of multiplicity at the origin y; (dynamical, algebraic such
as the dimension of the quotient space, or more analytic such as the
multiplicity in the sense of Serre, which would be the more plausible),
one has, for any h € Ogn ,

prh = X (Thag (A (0))?

1<i1 <eon<in <m
Note that a good test example would be the ideal

I:= (2] — 22,25 — 22, 2122, 2123, 2123)
in Od:3,0’ where one can check easily that
3. 92
hel [;5] [hg] =0 Vge O,

SN0

Also the Cauchy-Weil formula (3.2), besides its ambivalence in the case
m > n, needs certainly to be better understood. Note that our construc-
tion of Bochner-Martinelli residue currents with various sections correspond
to various averaging inside the process that lead to the construction of resid-
ual currents of the Coleff-Herrera type (as developped in section 2). One
could think also about averaging over the different choices of the sections
or even consider for example the parameters (qi, ..., ¢,) that quantify in our
examples the choice of sections as complex parameters, then use at this new
level analytic continuation techniques in order to realize new residual objects
thanks to residue calculus (dealing now with meromorphic functions of q).
Here again, one should insist on the new lightening of such ideas that could
bring the theory of amoebas (in the spirit of section 2.3).

4 Applications to the effective Nullstellensatz

4.1 About the effectivity of the geometric Hilbert’s
Nullstellensatz

Let us state here the classical Hilbert’s zeroes theorem, also known as the
Hilbert’s Nullstellensatz :
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Theorem 4.1 Let K be a commutative field of arbitrary characteristic and
Py, ..., P, Q, be m+1 elements in the polynomial algebra K[ X, ..., X,| such
that Q = 0 on the set of common zeroes of P, ..., P, in K", where K is an

algebraically closed extension of K ; then one can find an integer M € N
and polynomials Q1, ..., Qm in K[X71, ..., X;;] such that

QY(X) = QuX)Pi(X) + -+ + Qum(X) P (X) . (4.1)

Note that proving such an assertion (when the number n of variables is
arbitrary) amounts to prove it when Q = 1 and P, ..., P, have no common
zeroes in some algebraically closed extension K of K. This is based on what
is known as the “Rabinowitz trick” : let us assume () vanishes on the set of
common zeroes of P, ..., P, in K" ; this implies that the polynomials

1= XoQ(X1, ., X0), Pr( Xy, o0y X0) s oovy Prn(X1, ey, Xim)

(considered as elements in K[Xj, ..., X;,]) have no common zeroes in K"
assuming that Hilbert’s Nullstellensatz holds in this particular situation, one
can find polynomials Q, ..., @, in K[Xy, ..., X,,| such that

1=Qo(Xog, .., Xp) (1— X0 Q(X1, ..., Xn))+§: Q;(Xo, -y X)) Pi(X1, oy Xp) ;
j=1

substituting 1/Q to X, and then raising denominators leads to an algebraic
identity of the form (4.1). Given m polynomials P, ..., P, in K[X}, ..., X,]
which define a nonproper ideal in K[X, ..., X,,] (thatis 1 € (P, ..., Py)), any
polynomial identity of the form

1= f:Qj(Xl, e Xp) Pi(Xq, .., X)), Q5 € K[Xq, ..., X,] (4.2)
j=1

is known as a Bézout identity ; so what the trick of Rabinowitz says is that
solving Hilbert’s Nullstellensatz explicitely in K[X7, ..., X;] amounts to solve
a Bézout identity in K[Xy, ..., X,].

A crucial problem related to Hilbert’s Nullstellensatz (or solving Bézout
identity) is to give an explicit bound (in terms of the entries Pi, ..., Pp,
namely of their degrees or the affine geometric degree of the polynomial map
P = (P,...,P,) from K" to K") on M and on the degrees of polynomials
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Q1, -, Qp, involved in (4.1) or (4.2). The first explicit bound respect to the
effectivity for Bézout identity was proposed by G. Hermann [48] following
a method based on elimination theory ; Hermann’s bound (for a particular
solution of (4.2) starting from entries (P, ..., P,,) such that 1 € (P, ..., Py,))
is

deg@Q; <2(2D)*"", j=1,..,m

where D = maxdeg P;. The first fundamental decisive progress towards ef-
fectivity in Hilbert’s Nullstellensatz (or Bézout identity) was made by D. W.
Brownawell in 1988 in the case IK = C (that is essentially the characteristic
zero case). For an exhaustive list of references about the beginning of the
story and the pionneer work of D. W. Brownawell and J. Kollar, we would like
to point out the survey paper [84]). Brownawell’s original method combines
the theory developped by Y. Nesterenko around Chow forms with the search
for inequalities instead of identitities, then division with L?-estimates in mul-
tivariate complex analysis (namely Briangon-Skoda theorem [21], which sev-
eral years later will be transposed to a algebraic context as Lipman-Sathaye-
Teissier theorem [63, 64]) in order to obtain estimates of the form

max deg ; < 3min(n, m) pD™RMm) i =1 m,

for candidates @; involved in a Bézout identity (4.2) when D is the maximal
degrees of polynomial entries (P, ..., P,) such that 1 € (P, ..., P;,) ; note
that analytic tools (namely Briangon-Skoda’s theorem or explicit weighted
Bochner-Martinelli formulas) where already present in this original proof. A
few monthes later, J. Kollar proposed in [54] a geometric method (based on
the use of local cohomology, but one could also re-interpret it in terms of
Koszul complexes) that lead to a prime power version of Hilbert’s Nullstel-
lensatz :

Theorem 4.2 (J. Kollar [54], D. W. Brownawell [23]) Let K be a commu-
tative field and Py, ..., P, be m elements in K[ X1, ..., X;;], such that

deg P, > deg Py > - -+ > deg P, > deg P,

and U(P) is the homogeneous ideal in K[ Xy, ..., X,,] generated by the homo-
geneous polynomials

deg P; Xl X’n .
,PJ(X(),,XR) = XO & JPj(YO,...,YO), ] :1,...,m.
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Suppose that D,_,41 > 3, where p := min(n,m), p := height (U(P)) > 1 ;
then, one can find elements Ui, ...,U, in Ass(U(P)), together with positive
integers eq, ..., €., such that

(Xo,.., X Huef CUP

with .
Zej <Dy---D
§=0

in particular, if Q € rad (P, ..., Py), one can find Qq, ..., Qm € K[ X1, ..., X,]
such that

and
dengQjSeo-l—----l—e,ng---Du, ]=1,,m

Under the same hypothesis on the entries P;’s and their degrees, S. Ji, J.
Kollar, B. Shiffman derived from such a result Lojasiewicz inegalities, as-
suming K was algebraically closed and equipped with some absolute value ;
namely, if P~1(0) denotes the set of common zeroes of the P;’s in K", one
has

max [P;(z)] 2

(4.3)

(min (1, distance |z, P—l((])]) ) Dy--Dy,
(T +1=1) '

Since our aim here is to focuse on the role of multidimensional residue cal-
culus, we will insist on the original approach of D. W. Brownawell : get first
precise Lojasiewicz inequalities, then go from inequalities to identities using
several variables complex analysis tools.

Let us note here that in the very particular case where m =n and Py, ..., P,
define a discrete (hence finite) variety in K", there is a simple way (closer to
the ideas we developped previously in this survey) to show that there exist
constants ¢ > 0 and K > 0 such that for any z € K, |z| > K, one has

BE S o on,,
% Tm 2 T 4

42



this was already noticed in [54] : consider the homogeneous polynomials P;
(defined as the homogenizations of the P;’s, j = 1,...,n) and the functions
fi,--., fn which correspond to the functions P;(¢) expressed in affine coor-
dinates near some point in the hyperplane zy = 0. Let 7 : Z — C" be the
normalized blow-up of P"(C) with center the ideal generated by the f;. It
follows from Bézout’s theorem that at least one f; o m vanishes to an order
less or equal to D, - - - D,, along each component of the exceptional divisor of
the normalized blow-up, which implies (4.4).

Geometric intersection theory methods in the complex case K = C [89,
27, 55] lead to a direct geometric proof of precise local Lojasiewicz type
inequalities in the more involved situation where P, ..., P, do not define
a zero-dimensional variety : more generally, if [y, ..., [,, denote m unmixed
ideals in C[X1, ..., X,], and (P;;), is a set of generators for I;, then, for any
bounded set B € C", there is a constant ¢(B) such that for any z € B,

ﬁ deg I;
max |P;(2)| > cd(z, V(L1 ..., In)) =,
%,J

where V (I, ..., I,) denote the algebraic variety defined by (11, ..., I,) and the
degree of an unmixed ideal I is defined as the degree of the corresponding
cycle (multiplicities being taken into account). We refer to the paper of
J. Kollar [55] for a survey of this geometric approach. Note that Kollar’s
approach in [55] has been extended in [33] to the case when P"(C) is replaced
by a smooth projective variety.

Of course, obtaining local Lojasiewicz type inequalities is a problem of differ-
ent nature than obtaining global Lojasiewicz type inequalities, such as (4.3)
(these are consequences from the prime power version of Hilbert’s Nullstellen-
satz) or (4.4) (here a direct geometric global argument in used). Nevertheless,
in the spirit of (4.4), global Lojasiewicz inequalities may be established inde-
pendently of a prime power version of Hilbert’s Nullstellensatz ; one has to
combine intersection theory technics [38] with methods adapted to the study
of singularities [85]. We refer to [27] and to [51] for such a direct approach.
Moreover, there is path between Lojasiewicz inequalities (obtained as above
through geometric arguments issued from intersection theory combined with
methods issued from the field of singularities) and effectivity for the Hilbert’s
Nullstellensatz. Let us illustrate this with some illuminating example (which
will be fundamental for us later on), where Py, Pi, ..., P, are n 4+ 1 elements
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in C[X4, ..., X,,] without common zeroes in C" and such that (4.4) holds for
some convenient constants ¢, K. If one expresses affine coordinates in terms
of homogeneous ones, it follows from (4.4) that h := (F*"P* considered as
a germ in Ogn+1 o, is in the integral closure of the ideal Z(P) generated in
Ocn-ﬂ,o by the P;, j = 0,...,n, that is satisfies a relation of integral depen-

dency
hM+@1hM71++(DM—1h+(I>M:()7 (DJEI(P)]v jzla:Ma

one knows then from Lipman-Sathaye theorem [63, 64] (which extends to any
regular local ring Briangon-Skoda’s theorem [21]) that

I(P) CI(P) c I(P),

where [ < n is the minimal number of elements in Z which generate a reduc-
tion of this homogeneous ideal. Therefore, we have ¢"Pr € Z(P) ; if we
now go back to the affine coordinates, we deduce a Bézout identity

k=1

To summarize here this approach towards effectivity for the Bézout identity
via intersection theory geometric methods combined with Briancon-Skoda’s
(or Lipman-Sathaye’s) theorem, we will quote a recent result of M. Hickel
([51], theorem 5.1) :

Theorem 4.3 Let K an algebraically closed field and P, ..., P, be m ele-
ments in K[ X1, ..., X,,] with degrees less than D such that1 € (P, ..., P,,) ; let
[ be the minimal number of generators for a reduction of the ideal U = U(P)
generated by the homogenizations of the P;’s in K[[Xo,...,X,]] ; one can
define, in terms of the normalized blowing-up with center the ideal sheaf in
Opn (k) generated by the homogenizations of the P;’s and the invariants con-
structed in [85], a positive rational number vs(U) bounded from above by
D, ---D,, where j := min(n,m), such that :

e There ezist polynomials Q1, ..., Qm in K[ X1, ..., X,,] such that

1= ZQ]-P]-, lr<nj:2>£n deg(P;Q;) < lmax(ve(U), D) ; (4.6)
i=1 =I=
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e for any set of polynomials {Q1, ..., Qm} involved in a Bézout identity of
the form (4.6), one has
max deg P;Q; > max(v,(U), D).

1<j<n

Note that there are situations where v (U) and D* are comparable : such
is the case in the example (see for example [68], volume II, section 411)

PI(X):XlDa PZ(X) = XI_XQDa e
Po(X)=X, - X2, P(X) = 1-X, X!

n—1>
where max(deg(Q;P;)) > D" — D™ ! for any Bézout identity (4.6).

One should also mention that J. Kollar in [55] extended (based on the ap-
proach via local Lojasiecicz inequalities) the effectivity results respect to the
Bézout identity to the case when P, ..., P, were replaced by unmixed ideals
L, ... I, in K[Xi, ..., X,], K being an arbitrary algebraically closed commu-
tative field : for example, if Iy, ..., I, have no common zero in K", then, one
can find F; € I;, j =1,...,m, such that 1 = F} + ...+ F};, and

deg F; < (n+1) [[ deg ;.

=1

All the results we quoted above provide an effective solution to the geometric
version of Hilbert’s Nullstellensatz : “geometric” since one is interested only
into degree estimates for M or the degrees of the @;’s in (4.1) in terms of
the geometric degree of (P, ..., P,,) (following Kolldr’s approach in [55]) or
multiplicities attached to the minimal primes in the decomposition of the
ideal U (P) (in the spirit of [54, 23]), or even geometric invariants attached to
the normalized blowing-up at infinity [51]. Since the Hilbert’s Nullstellensatz
over C is known to be an NP-complete decision problem over C [82], such
results could be interesting steps towards the solution of the conjecture P =
(?) NP ; of course they need to be more explicit from the algorithmic point
of view and here comes the reason why multivariate residue calculus interfers
and brings some complementary insight on such questions.

As far as analytic ideas (inspired either by multivariate residue calculus or
developments around integral kernels of Bochner-Martinelli type) are con-
cerned, it appears that Briangon-Skoda’s theorem [21] or its algebraic com-
panion Lipman-Sathaye-Teissier theorem [63, 64] play a fundamental role

45



(see for example [35, 51]) ; we will just point here three results which take
their significance from the fact that we know from Mayr-Meyer’s classical
example [66] that the membership problem (test explicitely whether a given
polynomial @ is in some ideal (P, ..., Py,) or not and write it explicitely in
this ideal if it is) cannot be solved in polynomial time (degree estimates are
are in D?" where D is the maximal degree of the P;’s) ; analytic ideas in-
spired the first of these results (relate to Briangon-Skoda’s theorem division
formulas developped in section 3.2), while residue currents lie behind the two
other ones :

Theorem 4.4 [3, 51| Let Py, ..., P, be m polynomials in n variables with
respective degrees D1 < Dy < --- < D,, = D and @) in the integral closure of
(P, ..., Py) in C[Xy, ..., X,] ; then, one can find polynomials Q1, ..., Qm such
that

Qmin(n+im) _ Z Q,P; (4.7)
j=1

and

Dy Dy ifm<n

. 1
deg P;Q; < min(n +1,m) |deg @ + { min(D", Dy - -+ Dy /DP") if m > n

Division interpolation formulas obtained from expanded versions of Cauchy-
Weil’s formula (see section 3) lead to explicit division formulas of the form
(4.7) ; this is the reason to think such formulaes could be used in effectivity
questions to make explicit the “black box” which represents Briancon-Skoda’s
theorem.

Our second example covers a very peculiar situation respect to the mem-
bership problem, the situation where K = C, m = n, and P, ..., P, are n
elements in C[Xj, ..., X,,] such that the zero set of U(P) lies in C" (there
are no common zeroes at infinity) ; then, one has the following result, due
to Max Nother when n = 2 (he called it the Af + Bg theorem [69]), which
inspired a lot of further geometric developments (see for example [81, 44]) :

Theorem 4.5 Let P, ..., P, be n elements in C[Xq,..., X,] as above and
Q € (Py,..., B,) ; then there are polynomials @1, ..., Q, such that

Q= Zn: Q; P
j=1
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and deg Q; + deg P; = deg( for any j =1,...,n.

A geometric proof for Noether’s theorem involving multidimensional residue
theory can be found in [87], section 7.20 ; one can also find a somehow more
algebraic proof in [91], corollary 4.1 ; both proofs use technics based on
multidimensional residue calculus ; here are the different steps :

e first use a deformation argument (using for example as deformation
parameter the homogeneous additional variable zy when going from the
affine setting to the projective one) to show that, for any o € IN" such
that oy + -4+, < Dy +---+ D, — n, one has

(A a[%] L CHAGA L A dGy) = 0;
j=1 47

note that this deformation argument was extended to the case where

the homogeneous parts of higher degree of the P;’s (after some weighted

process of homogenization) define the origin as an isolated zero [25] ;

polynomials could be replaced by Laurent polynomial and the process

of weighted homogenization by the process of toric homogenization ;

e then represent () thanks to the Cauchy-Weil’s formula (in its expanded
form (3.2)) inside some connected polyedron

W::{|P1|<R1a---a|Pn|<Rn}

which contains all common zeroes of Py, ..., P, ;

e finally remark that the expansion one obtains does not contain terms in
PY(z)...P%2z) (since Q lies in (P, ..., P,) and 9[1/P] is annihilated by
(P, ..., P,), so by @) and truncates automatically where it should do
in order to provide the algebraic identity in the theorem with the right
estimates deg P;Q; < degQ, j=1,...,n;

e alternatively, one could also re-interpret the conclusion of the first step

just saying that, if Q, P;,..., P, denote the homogenizations of Q), Py, ..., P,,

one has
1 1

Qg[w] /\L\lg[ﬁj] =0;

the duality theorem implies that Q lies in the ideal (239", Py, ..., P,),
from which one can conclude (for degree reasons) that @ € (P, ..., Py).
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Our last example is related to the effectiveness of the membership problem
in case the entries P, ..., P, € C[Xy, ..., X,,| define a complete intersection in
C" ; in this case, it follows easily from the prime power version of Hilbert’s
Nullstellensatz that if @ € (P, ..., Py,) and Q denotes its homogenization,
then, if D; =deg P, > --- > deg Py, and v =#{j <m —1; D; = 2},

QXM PP ey (P,

which implies that one can find a division formula

Q=> Q;P;, degPQ; <degQ+(3/2)'D;---D,,.

=1

On the other hand, as it was noticed by A. Dickenstein et C. Sessa in [28], the
membership test to decide whether some given polynomial Q € C[X7, ..., X,,]
belongs to (P, ..., P,,) or not can be performed via residue currents, since we
know it is equivalent to decide whether the current

|
ANlg] =0

Il

or not ; it is natural to think that the membership problem can be explicitely
solved (as we will see in the next section) thanks to residue formulas (via the
Cauchy-Weil’s representation formula).

4.2 How multidimensional residue theory fits in the
picture

Let K = C and A be an affine algebraic subvariety of C" with pure dimension
m € {0...,n} ; given m polynomials py, ..., p,, (with p='(0) as set of common
zeroes in C") such that

dim (Anp~(0)) =0,

one can define the Coleff-Herrera current

A D) A4

j=1
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where [A] denotes the geometric integration current [60] on A (which means
multiplicities are not taken into account) ; such a current can be expressed
(via the Bochner-Martinelli approach, see section 3) as

(=1)

m(m—1)

(m—1)!

s [t (A ) ala

)
A=0

where ||p||? := |p1|*+. . .+ |pm|?, and the notation [ - |- means that one con-
siders the current-valued expression for Re A >> 1, follows the meromorphic
continuation (as a current valued function of A) and takes the value at A =0
(which happens not to be a pole) ; our choice to present here the Bochner-
Martinelli approach to the Coleff-Herrera current is deliberate since such an
approach will be quite helpful towards the solution of some effectivity ques-
tions ; in order to fit with the notations used in algebraic multidimensional
theory (we will come back to the correspondences in the next subsection),
we will denote the action of this current as follows :

€ D™O(C") — Res [ v ] :
? ( ) D1y Pm A

note that such a current can be written as

0 0
z Z Qa,[(a—z’l,...,a) dZ[/\dE,

aep~1(0)NA 1<i1<...<lp—m<n

where the Q, ;(0/0z) are differential operators with constant coefficients,
which confers to its action an algebraic character. For any (k1, ..., k) € IN™,
one can also define the (n — m, n)-current in C"

. m,0 (i ¥
'Rg’p €D O(C )l—>ReS |:plf1+1"",pfnm+1 |
and the C*(C")-left-module
Sap =y, C(C")-RY,

kEN™

A fundamental tool associated to the role of multidimensional residue calcu-
lus in commutative algebra happens to be the classical transformation law
which appears to be in the algebraic context (see [44], chapter 7) a formu-
lation in a particular setting of H. Wiebe’s theorem ; the extension to the
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current setting can be found for example in [29] ; the more general version
we propose here (and which plays an important role in effectivity questions)
is due to A. M. Kytmanov [58] ; the presentation we give amounts to [19]
and [11], remark 2.3.

Theorem 4.6 Let (p1,...,pm) and (P, ...pm) be two collections of elements
in C[X1, ..., X,,] such that the algebraic varieties AN p~'(0), ANp~(0) are
discrete and

pi(z) =D hji(2)pj(z) VzeA, i=1,...,m, (4.8)

=1

<

where the hj;, 1 <1i,7 <m are elements in C[Xy,...,X,]. Let
Yaps = aptXap

and ow,p, ow,, the homomorphisms of C®(C")-modules from the polynomial
ring C®(C")[Y1, ..., Y] to 4,4 such that

oap Y. YEm] = kil k! R
oap [V VI = kil k! RE

forany k = (k1, ..., kn) € N™ ; then, for any element ® € C*(C")[Y1, ..., Yu],
one has

0ap[®(Y)] =det H- 045 [®(H-Y)], (4.9)

where H := [hji)1<ij<m.

Remark 1. It is important to notice here that the expression of Rf  in
terms of the currents RYy 5, with I € N™ and Iy + ... + Iy = k1 + ... + kp,
involves only fictive divisions by k! := k¢!...k;,! ; this remark will be crucial
to extend multidimensional calculus based on such a tool to the positive
characteristic setting.

Remark 2. One can state the same result in the analytic context, that is
when the p;’s and the p;’s are holomorphic functions in some open set U C
C™, A a closed purely dimensional analytic subset of U such that dim(p~*(0)N
A) = dim(p '(0) N A) < 0 and there exist holomorphic functions hj; in U
such that (4.8) holds.
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Given A (an affine or projective m-dimensional algebraic variety embedded
in some algebraic ambient manifold) and py, ..., p,,, regular in some neighbor-
hood of A and defining (as zero set in A) a finite subset of A, we will denote
with the symbol

Res [

P13 Pm
the total sum of residues on A respect to the polynomial map p.

A

The second key observation that supports the interest of multidimensional
residue calculus towards applications in effectivity problems is that some of
the formulas it involves (such for example as the transformation law) may be
expressed in the affine context, not (as it is usually the case) in a projective
(or complete) context (which is more familiar to algebraist geometers).

Let us take an illuminating example : as a consequence of residue theorem
on a smooth compact algebraic variety (here P"(C)), a famous result which
amounts to C.G.J. Jacobi [52] asserts that whenever py,...,p,,q are n + 1
polynomials such that the supports of the Cartier divisors Dy,...,D,, induced
by the p;’s in P"(C) do not intersect on the hyperplane at infinity and

degq < Zdegpj -n
=1
(which means that the polar set of the (n,0)-rational form

dXi N NdX,
P1...Dn

Q(Xl, ceey X’n)

lies entirely in the union of the supports of the divisors D;), then one has

¢(X)dXiN...NdX,
P15 P o

Res =0

(note that py, ..., p, define automatically a discrete, hence finite, variety in the
affine space C"). The same holds if C" is replaced by the n-dimensional torus
T := (C")", p1, ..., pn by Laurent polynomials with respective Newton polye-
dra Aq, ..., A,, and P"(C) by a smooth projective toric variety X' (Aq, ..., A,)
compatible with the fan associated to the polyedron A; + ...+ A, : when
P1, .., P, Satisfy the D. Bernstein conditions [15] (that is the supports of the
Cartier divisors D, induced by the P;’s on X intersect only in T), then for
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any Laurent polynomial @) in n-variables which support lies in the (relative)
interior of A; + ...+ A, it was proved by A. Khovanskii [53] when the sup-
ports of the D; intersect transversally (in fact, such an hypothesis may be
omitted, see [24]) that

dX aXy,
Piy----; Pn i

In the same vein, if A denotes a purely m-codimensional algebraic variety in
C" (with Zariski closure A in P"(C)) and p, ..., p,, are m polynomials in n
variables such that the supports of the Cartier divisors D; that are induced
by the p;’s in P"(C) are such that

DyN...Nn D, NACC",

then, it follows from Stokes’s formula that for any polynomial ¢ such that

degg < D degp; —m,

=1

one has XV dx X
Res[q() 1AL ANdX,

e
P15 Pm m

this result, which appears to be the analytic companion to the algebraic
residue theorem has been extensively used towards very interesting geometric
applications (in the spirit of Cayley-Bacharach theorem) such as in [57, 43,
44].

The strength of residue calculus is that it allows to transpose the results we
mentionned to an affine setting, namely to weaken the drastic condition re-
lated to the geometric configuration of the supports of the Cartier divisors D;
respect to the divisor at infinity (on P"(C), on the toric variety X' (Aq, ..., A,)
or on A) ; the weaker alternative hypothesis will usually be a properness as-
sumption for the polynomial map p ; note that such an hypothesis can be
checked by an observator looking at infinity from the affine space ; here are
two results corresponding to the three situations mentionned above.

Theorem 4.7 ([91, 13]) Let A be a m-purely dimensional algebraic subva-
riety in C" ; let py,...,pm be m elements in C[Xy, ..., X,] such that there
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exists m strictly positive rational numbers 01, ...,0n, (with 6; < degp, for
j=1,...,m) and ¢ > 0 such that

e Pi)]
tsism 2|

>c, zeW, [z >>1;
then, for any q € C[Xq, ..., X, such that

degg <> 6, —m,

J=1

one has
¢(X)dXiA...NdX,

Res [ ] =0.

D1, Pm A
Theorem 4.8 ([91]) Let py,...,pn be n Laurent polynomials in n variables
with respective Newton polyedra A4, ..., A, ; assume that there are compact
convez sets 0y, ..., On (with vec(d1+...+0,) = vec(A1+...+Ay) and §; C A,
forj=1,...,n) and ¢ > 0 such that

(e
I o)

1<5<n [exp(xgl%x(g, Re())] >c, [Red][>>1;
€0;

then, for any Laurent polynomial q such that the support of q lies in the
(relative) interior of 61 + ... + Oy,

axy aXy
Res[q(X) Xl/\"'/\Xn] _0.
P1;--3Pn 1

The transformation law, together with such vanishing results in the affine
context for total sums of residues, combine with Cauchy’s formula in order
to provide immediately an explicit solution for the Hilbert’s Nullstellensatz ;
this is not really a surprize since Cauchy’s formula can be seen as the ana-
lytic transcription of Kronecker’s duality formula : suppose for example that
P1, .-, Pn are n polynomials defining a proper polynomial map from C" to
C" such that the hypothesis in theorem 4.7 are fulfilled (here m = n and
A =C"), with degp; = D; > 0,j =1,..,n. Let hj;, 1 < j k < n ben?
polynomials in 2n variables (X,Y") such that

n

pi(X) —pi(Y) =) hu(X,Y)(X;-Y;), i=1,..,n

=1
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(one can find such hj; using either divided differences, keeping track of the
subfield in which the coefficients of the p;’s lie, either Taylor’s formula) ; let
also

Ho(X,Y) := det [hyi(X, Y)]Km(n _ T XY
(a8 S Dyt + D

then one can write, combining Cauchy’s formula, the transformation law (for
m=mn, A=C" and ® = 1) and theorem 4.7 (for m =n, A =C") :

. [ dX
I PR
R | Ho(X,Y)dX ]
o _pl(X)_pl(Y)a"-:pn(X)_pn(Y) (ol
= Res Ho(-, V) dX +
L P1y--+3Pn "
XX
+ Z Z 704,,3 Res [ n1+1 un+1 Yﬂp(Y)l‘,
a,BENT WENT | #£0 Y4 [N 1) ol
lal+|B|<D1++Dn—n (u+1,6)<|a|+D+n
(4.10)

where we used the abridged notations
dX =dXqiN---NdX,, X=X X2 p(Y)* =pi (V)" - -p, (V)i

What is essential here (and which will appear again in our section about
Abel’s theorem) is that what should be a priori an analytic formula (with
nothing but a formal meaning) truncates automatically in order to become
an algebraic identity (combining Cauchy’s theorem, the transformation law
and theorem 4.8, one can state an analog formula for n Laurent polynomials
Pi, .-, P that fulfill the hypothesis of theorem 4.8, as soon as all convex
polyedra d;, j = 1,...,n, contain the origin as an interior point, see [91],
section 4). If now py € C[Xj, ..., X,,] is such that p, ..., p, have no common
zeros in C" and

Po(X) = oY) = 3 ap(X, Y) (X, — V),

j=1

o4



one can transform formula (4.10) into a Bézout identity 1 = pogo + - - - + Pngn
for (po, ..., pn) just noticing that

Res [H"( Y) dX] =3"(=1) Res l po(X) dX] pi(Y),  (411)
P1s---sPn Igm j=0 Piy---3Pn ol

where Hj;, j = 1,...,n is deduced from H, after replacing the column vector
with index j by the column vector (ag, ..., @ng). Such a formula appeared in
[10] (inspired by analytic technics in connection with the search for explicit
deconvolution formulaes in signal analysis) and was transposed later to an
algebraic frame [11].

Of course, such a Bézout identity has been obtained under drastic conditions
on the entries (namely py, ..., p, define a proper map in C") ; what is inter-
esting here is that it does not cost too much to construct, given a collection
of n polynomials Py, ..., P, € C[X1, ..., X,,] defining a discrete variety in C", a
proper map (pi, ..., p,) with explicit (and quite easily constructible in terms
of complexity) polynomials p; € (P, ..., P,) ; in fact, we have the following
lemma :

Lemma 4.1 ([11], section 4) Let P, ..., P, be n polynomials with degree D
defining a normal family in C[Xy, ..., X, (any subfamily defines a complete
intersection in C™) such that there exists N € N, N > D, so that for any
€ > 0, there exists cc > 0 such that

> |27V for ||z|| >> 1; (4.12)

then, if & = (&5,...,&) is a generic element in (P"(C)*)", the polynomial
map (Pex 1, ---, Perm), Wwhere

pei(2) = (&, )N PP
is such that for any € > 0, there exists c.(£*) > 0 such that

max [pe5(2)| 2 e6) 0] For |12 >> 1 (4.13)

conversely, as soon as (Pes 1, ..., Pern) Satisfies the above assertion (4.13) for
some &* € (P™(C)*)™, then, for any € > 0, there exists cc > 0 such that (4.12)
holds.
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The same combination as above of Cauchy’s formula (as a realisation of
Kronecker’s duality formula), the transformation law and theorem 4.7 (in
the case m = n, A = C") gives the following companion lemma, relating
multidimensional residue calculus and Lojasiewicz inequalities (which were so
important as we pointed in section 4.1 in the second approach we developped
towards geometric Nullstellensatz) :

Lemma 4.2 Letp = (p1, ..., pn) be a polynomial map from C" to C", defining
a non empty 0-dimensional algebraic subvariety in C" ; the two following
assertions are equivalent :

e for any € > 0, there exists cc > 0 such that

) 1—e¢ .
max Ipi(2)| > cllol ™ for |12l >> 1

e for any o, f € N" such that oy + ... + a,, < B1+ ...+ Bn,

X*dX
Res 1 =0.
p,fl—i— JREER] pg"—'—l ol

These two lemmas (combined together) show how multidimensional residue
calculus fits into the general frame we presented in section 4.1 : suppose one
wants to solve the Bézout identity

=Y aon (1.14)
j=1

starting with a collection of entries (P, ..., Py,) (m > n) such that (P, ..., P,)
fit with the hypothesis in lemma 4.1 (with some N € N, N > degP, = ... =
deg P,). Once Lojasiewicz inequalities (4.12) have been translated (thanks
to lemma 4.1 and lemma 4.2 combined together) in terms of the vanishing of
a list of residue symbols, one has essentially two possibilities to get Q1, -.., Qm
solving (4.14) :

e cither use the “black box” which is Lipman-Sathaye’s theorem (here in
fact Briangon-Skoda’s theorem since we are in the complex setting) and
conclude as in section 4.1 ;

o cither take £&* € (P"(C)*)" generic, form (pi,...,pn) = (Pex 1, - Pexn)s
construct a linear combination py = pgo of Pi, ..., Py, which does not
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vanish on V(pg« 1, ..., pern) and then recover (in terms of residue sym-
bols, as explained from (4.10) and (4.11)) an explicit Bézout identity
for (pe+0,Per 15 -, Pex ), therefore for (P, ..., Pp).

The second approach keeps track of some arithmetic information on the en-
tries, if there is one (for example if Py, ..., P, are assumed to have all their
coefficients in Z or in the ring of integers of some number field), while the
first one of course does not. The fact that this approach was the first one to
lead to an effective arithmetic Nullstellensatz with (not quite, but almost)
sharp bounds ([10, 11]) as we will explain in the next section does not come
as a surprize, since we know today that any elimination procedure leading
to optimality in the algorithmic approach appears to be based on the algo-
rithmic elimination “d la Kronecker” (or multivariate residue calculus, which
amounts basically to the same thing), even though it may use intensively
other duality ideas (such as polarization for example).

The important role of multidimensional residue calculus respect to explicit
solutions for the Bézout identity (therefore Hilbert’s Nullstellensatz) in the
complex case is connected with a crucial result for which we will propose a
global and a local version. The global version of this statement (which previ-
ously existed using a geometric approach, see [1, 88]) amounts to M. Hickel
and J. Y. Boyer ([20], proposition 5.1), who pointed out the algebraic aspect
of this result and noticed its connection with the Cauchy-Weil formula :

Theorem 4.9 Let P = (P, ..., P,) be a dominant polynomial map from C"
to C" ; then, for u = (u1,...,un) generic, (P, — uy,..., Py — uy,) define a
complete intersection in C" and, for any Q € C[X, ..., X,], the almost ev-
erywhere defined map

Q(X)dX

Ui, ..., Un) — Res
( Lo n) Pl—ul,...,Pn—un ol

extends to a rational map Fpg in (uy,...,u,) ; the polynomial map P is

proper if and only if for any j = 1,..,n, Fp xp € Cluy, ..., u,|, where D :=
=y

deg P +---+degP,—n+1.

Here is the local companion of this result :

Theorem 4.10 Let h, fi,..., fn be n + 1 germs of holomorphic functions
in n variables at the origin in C", such that fi,..., fn define a reqular se-
quence in Ogn  ; let, for any r € Ogny, Firp;r be the formal power series in

o7



Cllury vy un]]

kn .
n

R*lrde A ... A d¢,
Ff”“"(u)::ZReSO[ FRAL fhat ]”Ilclu

keN™

then, the two following assertions are equivalent :
e h belongs to the integral closure of (f1, ..., fu) in the local ring O¢n g 5

e there exists N € N such that for any r € Ogn, Fpp,r corresponds
to the development at the origin of a rational function Fi(u)/Fy(u) of
(U1, ..., Uy) with no pole at uw = 0, Fy independent of r, and

max(deg F;,deg F5) < N .

Since we could not find a precise reference for this result, we will sketch here
its proof. In order to prove that the first assertion implies the second one,
one just uses the fact since A is in the integral closure of (fi, ..., f,,), it satisfies
a relation of integral dependency

M
B3 (Y apofft ... fimpM Tk =0

=g
one can easily deduce from that that the coefficients of the formal power
series Iy, obey a difference equation, which shows this formal power series
corresponds to the development at the origin of a rational function ; the
fact that this rational function has no pole at 0 follows from the fact that
|h| < C||f|| in a neighborhood of 0, which shows that, for some convenient
choice of n; > 0,...,m, > 0 and for ||u|| sufficiently small (depending on 7),
one has in fact :

1 (O r(Q)dGi A ... AdGn
B TGO - )

|fm‘ =Nm

Ff,h;r(“) =

clearly, the degree of the numerator and denominator of the rational function
Fyp,, are bounded by N = 2M (independently of r) ; also the denominator
of Fyp,, is independent on r. Converserly, if

Fu)y=1+ Y &ul.. . ul,
la|<N
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one can check that, for any r € O¢n j, for any [ € IN" such that |I[ = 2N,

2N ul q1 qn 2N—k
r(h + % (X &ft.. fi)h )dg
k:l qENT

lal=k
Res —_0-
0 FEFL L flatl 03
n

this implies (thanks to the local duality theorem) that, for any such [ € N"
with [I] = 2N, one has

N
B3 (5 St R (A A
k=1

gENT
la|=Fk

since (fi, ..., fn) is a regular sequence, we have (see for example an argument
by M. Hochster in [64])

(fla""fn)2N+1 = ﬂ ( F?"'afrll.n)’

leNT
[l|=2N+n

so that
h2N+Z Z §q . f!In h’2N g (fl:"'afn)2N+la

— gEN”
la|=Fk

which gives a relation of integral dependency for h over (fi, ..., fn)-

Remark. If (f1,..., fn) and (g1, ..., g,) are two regular sequences in the local
ring O¢n 5, one can see easily (from theorem 4.10) that for any r € Og¢n ,
the two formal power series :

ReSO |: TdC :| — Z ReSO I:Tgl kgj_l Cl /\ /\ CTL] u’fl o ufln
f —ug kEN" fl 1 ... f’,/fn—l—l

rd¢ _ TR dG A NG g, .

Resy [g—uf] = keZN"ReSO[ T gt [ufr . uf

correspond to the developments at the origin of rational functions with no
pole at (0,...,0) ; note that a formal application of the transformation law
would lead (taking r =g;...¢9,) to

Res, [glf-;gggdg ] _ ﬁResO [ flf._. J:ngg]
_ ﬁReso [fl .g.._f%dé] ;
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it remains an open interesting question to deduce (using some combinatorial
argument) from the fact that both

we Reso [92 9] and s Resy [0 I

correspond (as formal power series) to the developments at the origin of
rational functions with no pole at (0, ..., 0), together with the formal identity
above, that in fact (as we know it is indeed true)

Reso [ 171 ] = s, [ #1200

J—ug g—uf =0

(as formal power series) ; this would provide a combinatorial proof of Lipman-
Sathaye’s theorem [63] (namely in that case fi... f, € (g1,-..,9,) as well as
91---9n € (f1, .-, fn)) which would be free of analytic estimates (compared
to the approaches in [21] or [64]). Since the role of such a theorem is cru-
cial respect to the way multidimensional calculus interfers with interpolation
or division problems in commutative algebra, it would clarify the intrinsic
nature of such a result, together with its deep relation with residue calculus.

As a conclusion for this subsection, one should add that the method which
was proposed in this survey to solve the Bézout identity can be transposed
to the different examples we proposed at the end of section 3.1 to illus-
trate the membership problem, namely the Af 4+ Bg theorem of M. Noether
and the membership problem in C[Xj, ..., X;,] when the polynomial entries
(P, ..., Py) define a regular sequence. For the first example (extending M.
Noether’s theorem to the case where P = (P, ..., P,) is a proper polynomial
map from C" to C"), we refer to [36, 91], section 4 ; respect to the second
example (entries defining a complete intersection), we refer to [9, 28, 34].

4.3 Multivariate residue calculus and arithmetic divi-
sion theory

The first reason why multidimensional residue calculus plays a role in arith-
metic intersection theory (such as it has been developped in the last decade
following the pionner paper of S. J. Arakelov through the active work of
many people [41, 18]) lies in the fact it interfers with the “factorisation” of
the integration current associated to a cycle in P"(C) (note we mentionned
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this key fact in our introduction since the guideline of this survey is the
Poincaré-Lelong formula (1.1).

Given m homogeneous polynomials P4, ..., P,, in C[Xo, ..., X;,] such that the
ideal Z = (P4, ..., Pm) defines a purely mp-codimensional projective algebraic
cycle A(Z) in P"(C) (here m — mp < n, note also that only the isolated
primary components of Z are involved in this definition), one introduces
the integration current [A(Z)] as follows : if I'y,...,T'; denote the connected
components of |A(Z)| \ |A(Z)|sing,

(A, ¢) =3 W, ) /F o peDTIII(PRO),

=1

where, for each [ =1, ...,t, u(Z, z,,) denotes the Hilbert-Samuel multiplicity
of Z at a generic point z,, of the branch I';. A normalized Green current G 4
attached to the cycle A = A(Z) is a (mp — 1, mp — 1)-current in P*(C) such
that :

e Sing Supp(G4) C |4| ;
e dd°G 4+ [A] = (deg A) w™?, where w is the Kéhler form attached to the
Fubini-Study metric on P"(C) ;

e H(G4) =0, where H denotes the harmonic projection.

As it already appears in one variable through Jensen’s formula (written for a
polynomial P with integer coefficients), normalized Green currents play a cru-
cial role in arithmetic intersection theory since they are explicitely involved in
the analytic contribution to the logarithmic height of arithmetic cycles (the
product formula shows that indeed, as in Jensen’s formula, a balance between
some arithmetic contribution and some analytic one is necessary in order to
get an intrinsic notion) ; namely, if Py, ..., P, are homogeneous polynomials
in Z[Xo, ..., X;;] (that is define an arithmetic cycle Z in Proj Z[ Xy, ..., Xy])
and if u* is a generic point in (IP"(C))* with integer coordinates such that

{lzo : ... : 2] € |Z(C)]; (u*, 2) =0} =0,

so that (P, ..., Pm, (u, -)) define a zero-dimensional arithmetic cycle

Z v {7},

T prime
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then

deg Z(C
h(Z):= Y v;logr+——-—= eg

T prime

n l
1
)y oyt / Goe . (4.15)
enskimid 2
The arithmetic Bézout theorem (see [18])

h(Zl L] ZQ) S h(Zl)deng + h(Zg)deng + H(dlm Z1 y dim Zg) deg Z1 deg ZQ

(of course, the intersection product between arithmetic cycles Z; and Z
needs to be correctly defined, which has been done in [41]) controls arithmetic
intersection theory.

“Explicit” expressions for (or at least procedures to recover) the integration
current [Z] = [A(Z] in terms of generators Py, ..., P, for the ideal 7 lead
to the following : through a standard argument developped in [18], lemma
1.2.2 and section 5.1, one can multiply in P"(C) x P"(C) the integration
current on V(Z) x P"(C) (where V(Z) denotes the support of the cycle A(Z))
with the Levine form [45] for the diagonal submanifold in P"(C) x P"(C)
and therefore obtain that way explicit constructions (in terms of Py, ..., Py,)
for normalized Green currents attached to the cycle Z ; this provides closed
formulas in terms of Py, ..., P,, for the analytic contribution in the expression
of the logarithmic height of the arithmetic cycle Z(Py, ..., Pn,) attached to
the ideal generated 'Pj'-s when these polynomials have integer coefficients. Let
us formulate a procedure to express the integration current [Z] attached to
some homogeneous ideal which is given in terms of its generators.

Theorem 4.11 ([12], Theorem 3.1) Let r € {1,...,n} and Pi,..., Py be
m homogeneous polynomials (with respective degrees D;, j = 1,...,s, D =
max D;) defining a purely codimension mp cycle Z = A(Z) in P"(C) ; let
£* be a generic element in (P"(C))* and Py, ..., Py, be mp linear generic
combinations of the polynomials (&*, -YP~PiP;, j = 1,..,m ; let M € N,
M > mpD™" ; let F, ..., Fyypim the functions on P"(C) defined in homoge-
neous coordinates as :

Pi(z)
Fi([zo ¢ ...t zn]) = ”]”D, j=1,...mp
Pl (2) ,
F}([Z()Zn]) = W, _]:mp+1,...,mp+m;



then, one has

mp — 1)!
7)==
(2im)me
mp—1
<[ AIFIEO DB FIE AGIFIPA Y A O, AOF,
1< <ipp-1 =1 A=0

1<y <mp+m

where |F[[2 := B2 4+ -+ | Fropom .

When we express it in some local chart on P"(C), for example the affine space
C" = {20 # 0}, such a formula involves the action of Bochner-Martinelli
type residual currents (as defined in section 3) ; so the construction of the
normalized Green current also does ; when Z = (Py, ..., P,,) is a primary
ideal (that is |Z| is irreducible), it follows from M. Méo’s result [67] (as a
consequence of Poincaré-Lelong formula)

1 1 -
7] = il)\@%""‘l d0p A d°Op A (5ddOp) 1]
A=0

ol
- ;[A@; (idd @p)LO,

where n P (2)]?
(2
@’P([Z() .l Zn]) 2:Zﬁ,
j=1 [El
which provides in this particular case a simpler formula.

Besides its role in arithmetic intersection theory, one could expect from
multivariate residue calculus that it controls “arithmetic division theory”.
As we have already seen in section 3.2, residue currents of the Bochner-
Martinelli type are explicitely involved in division-interpolation formulas of
the Lagrange-Kronecker’s type (which can be seen as expanded forms of the
Cauchy-Weil formula). In fact, once again, an intelligent combination of the
transformation law (may be with some variants) and theorem 4.7 allows the
possibility to get some good control on the logarithmic size of a residue sym-
bol whose entries are polynomials with coefficients in the ring of integers of
some number field ; one should emphasize again the affine aspect of the sit-
uation, compared to the projective setting in which arithmetic intersection
theory is usually settled [41, 18].
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To convince the reader, we propose here to describe a sequence of transforma-
tions that give the possibility to get good estimates for a residue symbol with
entries in Z[ X1, ..., X,,]. Let p1, ..., p, be n polynomials in Z[ X1, ..., X,,] defin-
ing a 0-dimensional variety V(p1,...,p,) in C", with degp; =d;, j =1,...,n
and ¢ € Z[Xq, ..., X;;] ; suppose that all log|vy|, where v denotes a non zero
coefficient of any of the p;’s are bounded by A ; then the residue symbol

r(X)dX ]
P1,--5Pn

is a rational number (this is again an easy consequence of the transformation
law) p/v, p € Z, v € Z* (after reduction) ; our goal here is to estimate
max(log |u|,log|v|) in terms of di, ..., dn, h,d, h(q), where d = deggq, h(q)
being the maximum of all log|v|, v being a coefficient of ¢. First, one in-
troduces a deformation method (inspired for example by [4]) : let A be a
complex generic parametrer and

Pid(X) = AXF T 4 pi(X), j=1,.0n

Res

let A(:, A) be the jacobian determinant of the polynomial map (p1 a, ..., Pn,2)

and M = (dy +1) -+ (dp + 1) ; if V(pra,oer Pup) = {, ., M} then, for
any j = 1,...,n, the Newton sums Sji, ..., Sju of the finite set {a,\], el a%)}

can be expressed immediately as

Sik(X) = Ro | 27 A(2 /\)ﬁ > H(A_fil)“’], k=0,..,M,
Zp" aeNm =1
|| <k

where R is the functional which assigns to any Laurent series in the variables
z = (21,...,2n) the coefficient of its free term [1]. We deduce from these
expressions (and from the Newton relations connecting Newton sums and
elementary symetric functions) explicit relations of integral dependency for
X1, ..., Xy, over C(A)[p1, -, Pn,x], namely polynomial identities of the form :

M
Y apMNAXIT 4+ pi(X), . AX T 4 p (X)) XM =0, (4.16)
k=0

j=1,...,n, where aj; € Z[\, Y7, ..., Y] (in this argument we use the fact that

we work in characteristic 0) ; introducing n additional complex parameters
U1, .., Uy, relations (4.16) can be rewritten as polynomial identities

Q](X]’u’ )\) = ZQ]l(Xap(X)aua)\)(pl —u—+ )\deH—l)’ .7 = ]-a ey T
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where Q; € Z[T,u,\] and Qj; € Z[X,Y,u,\| ; let v;, j = 1,...,n be the
valuation of (); as a polynomial in (u, ) and (¢, wy, ..., w,) be n + 2 generic
complex parameters so that

Qj(Xj,twl, ...,twn, two) = t"j[Uj(w,Xj) — ﬂ/J(t, w, XJ)] 5 ] = 1, N,

where U; € Z[s,T] and V; € Z[t,w, X;] ; note that up to here, all these
constructions are easy to handle from the computional point of view ; here
comes the crucial point, which is an avatar of the transformation law : since
we have the polynomial identities

Vi [U]('LU, X]) - tVy(t, w, X])] = Z le(X,p, t’LU) (pl — t(wl _ onldl-Fl)) ’
=1

j=1,...,n, we deduce from a variant of the transformation law ([11], propo-
sition 2.5) the key identities between residual symbols (for generic w) :

[ q(X)dX
Res

P1;---3DPn
[ ¢(X)dt NdX

= Res
|t ;1 — t(wl - oniiH-l)’ <oy Pn — t(wn - ong"H)
' det[Quu(X, p(X), tw)] g(X) dt A dX

= Res
_tlﬂ"', Ul(w>X1) - tvl(ta waX1)7 ) Un(w’Xn) - tVn(t, w’X")

et|Qu (X, p(X), )] ( I1 V3(t w, X,)") a(X) de n.dX

|’Icc\€§N|Z\ t1+|u|7|k‘a Ul (wa Xl)kl+1: teey Un(wa Xn)kn+1
(4.17)

The right-hand side of (4.17) can be computed using either Euclidean divi-
sion, either explicit formulas as in [1] ; these computations provide a rational
function in w, with integer coefficients  such that any log|vy| can be roughly
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estimated in k(n) M (M + d)h ; from (4.17), we know that this rational func-
tion in ®(w)/¥(w), where &, ¥ € Zw| equals in fact a rational number,
which is precisely the residue symbol we are looking for.

What we sketched above reveals the interesting role of multivariate residue
calculus in the formulation of an effective arithmetic Nullstellensatz : in
fact, the first arithmetic Nullstellensatz followed D. W. Brownawell [22] and
J. Kolldr’s [54] results [10] ; analytic technics, centered around the extensive
use of Bochner-Martinelli kernels, made somehow difficult the transposition
of this result to a more algebraic setting (compared to the somehow less
effective alternative approach developped almost simultaneously with, as a
fundamental tool, Cauchy’s formula used as an algebraic trace formula) ;
nethertheless, this could be done some years later in [11] and lead to the
following theorem :

Theorem 4.12 ([11], section 6) Let P, ..., P, be m elements in Z[ X1, ..., X,],
m > n, with degrees in decreasing order and such that any log|y|, where
v 45 a coefficient of some Pj, is bounded by h ; assume that Pi,..., Py,

have no common zeroes in C" ; then, there exists vy € Z* and polynomi-
als Q1 ..., Qu € Z[ X7, ..., X)) such that

Yo = Z Q]I)] )
j=1

and

maxdeg P;Q; < n(n+1)*B+n(D—1)
max(log [], A(Q;)) < k(n)B*D?(h + nlog D + Dlogn + logm),
(4.18)

where
B::(3/2)LdegP1-.-dean, L=#{j<n—1;deng:2}’

D :=deg P, and k(n) is an explicit constant.
Analytic ideas may be transposed to an algebraic context (even working in
positive characteristic) so that theorem 4.12 remains essentially true when

one works with polynomials in an integral domain with infinite quotient field
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which can be equipped with a logarithmic size (for example (Z/pZ)[ry, ..., 71,
where 71,...,77 are transcendental independent parameters), for the gen-
eral statement, see theorem 6.1 in [11]). It remains a challenge to settle
an “ideal” version of this arithmetic Nullstellensatz : let Iy, ..., I,, m ideals
in Z[X1, ..., X,,] such that their logarithmic arithmetic sizes (in the sense of
arithmetic intersection theory) are bounded by h and their degrees by D ;
suppose that the zero sets V([;), j = 1,..,m, of I,..., I, in C" do not
intersect ; can one find Fy, ..., F,,,, F; € I; and vy € Z* such that

1 = ZFJ
j=1

with estimates of the form (4.18) for log |yo|, the logarithmic sizes (and the
degrees) of the F;’s 7 In order to do so, one should be able to state an
explicit restricted version of Hilbert’s Nullstellensatz, C" being replaced by
some algebraic subvariety W (theorem 4.7 would play again an essential role).
This would extend to the arithmetic context the results of J. Kolldr in [55].
Though residue technics do not lead to optimality respect to the bounds (still
due to their imperfection), sharp bounds were obtained very recently by T.
Krick, L. M. Pardo, M. Sombra in [56] for the arithmetic Nullstellensatz over
Z using a somehow different approach (where residue calculus methods are
hidden, but Kronecker’s ideas are present) ; pursuing the results obtained
previously towards a better algorithmic understanding of the path towards
effectivity (note a formula such as the formula obtained in [10] is very different
in nature from an algorithm) they proved the fundamental theorem we quote
here :

Theorem 4.13 Let Py, ..., P, be m > n elements in Z[ X1, ..., X,], with de-
grees less than D and such that any log |7y|, where 7y is a coefficient of some
P;, is bounded by h ; assume that Py, ..., Py, have no common zeroes in C" ;
then, there exists o € Z* and polynomials Q1, ..., Qm € Z[X1, ..., X,] such
that

Yo = Z Q]P] )
j=1
and

maxdeg P;Q); < 4nD"
max(log |0/, h(Q;)) < 4n(n + 1)D"(h + logm + (n + 7)log(n+ 1) D).
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The connection between the methods developped in this survey (involving
explicit tools in multidimensional residue calculus) and optimal results such
as theorem 4.13 remains to be understood, so that one could unify intersec-
tion theory (where Poincaré-Lelong formula plays a crucial role) and division
theory (where the Lagrange-Jacobi division-interpolation formula appears as
a fundamental tool) ; the role of results such as Lipman-Sathaye theorem
and their interpretation in terms of multidimensional residue calculus (from
the operational point of view) remains still unclear ; for example, a direct
proof of Briangon-Skoda theorem in the local ring Og» ; as a consequence of
theorems 4.6 and 4.10 would help to a better understanding of this role (in
the geometric, then arithmetic context).

5 Residue currents and holomorphy on ana-
lytic varieties

5.1 Universal denominator and discriminant

There are many ways to define holomorphic objects on non smooth analytic
varieties. A usual one suggests to define them as holomorphic objects on
the subset of regular points and ensure the holomorphicity property remains
preserved after normalization of the variety.

Let us start with the notion of weakly holomorphic function on an analytic set
A : afunction h is called weakly holomorphic if it is defined and holomorphic
at regular points of A and is locally bounded on A (that is, for any point 2
in A, there exists C(zp) > 0 such that |h(2)| < C(z) for any regular point z
inside some neighborhood of zp). One can say such a definition is intrinsic,
since it does not use the fact that A is embedded in some ambient manifold.
On the other hand, extrinsically defined functions on some analytic set A are
those which are restrictions to A of holomorphic functions in some ambient
manifold ; we shall call them strongly holomorphic functions. Thus, given
A analytic set embedded in some ambient manifold, a weakly holomorphic
function on A is strongly holomorphic if it admits an holomorphic extension
to the ambient manifold.

Let us give a couple of simple examples. As analytic set A, let us take first
the union of the complex coordinate lines in the space C?, that is, A =
{(21,22) € C?; 21 - 20 = 0}. The function h that is equal to one on the line
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{z1 = 0} and minus one on the line {2z, = 0} is weakly holomorphic on A and
does not admit an holomorphic (even continuous) extension to C? ; however,
it is the restriction of the meromorphic function

Z9 — 21

21,29) — .
(1:2) Z2+Z1

Here is another example : let A = {(z1, 20) € C*; 22 = 23} be a semicubic
parabola in C?, which admits the parametrisation z = (t) = (¢3,#?). The
mapping ¢ maps the complex plane (with complex coordinate ¢) one-to-one
onto the parabola A, and the inverse h =t = ¢~!(z) is a weakly holomorphic
function on A. Clearly, there is no holomorphic function H in a neighborhood
of the origin in C* such that H(t%,¢%) = ¢ (that is Ha = h) ; at the same
time the function h =t is the restriction to A of the meromorphic function
(Zl, 22) — 251/252.

In these examples, it did not occur as an accident that weakly holomorphic
functions on the analytic set A could be represented as restrictions to A of
some meromorphic functions in the ambient space (here C?). A well-known
theorem of Oka (see for example [50]) asserts that at least locally such a
fact holds for any purely dimensional analytic set. Moreover Oka’s theorem
claims that, given any point a € A, one can find a universal denominator for
weakly holomorphic functions, that is some function g which is holomorphic
in a neighborhood U of a in the ambient manifold and satisfies :

e ¢ does not vanish identically on any irreducible component of the ana-
lytic set A at the point a ;

e for any weakly holomorphic h on A in a neighborhood of a, the product
h = h- g can be extended holomorphically to a neighborhood of a in
the ambient manifold, that is, weakly holomorphic functions can be
represented locally as meromorphic functions with a unique (universal)
local denominator.

Let us describe the construction of the universal denominator. It is known
(see [42], p.72) that any analytic set A of pure codimension m (in some
ambient complex manifold X’) can be realized locally (in a convenient neigh-
borhood U,, of some arbitrary point ag) as the union of some irreducible
components of the complete intersection

A={C€U; fi¢) = . = fm(¢) = 0,

69



where df; A ... A df,, does not vanish identically on any component of A in
Uy,- Given the above notations, one has the following :

Theorem 5.1 For any set of indices T = (i1, ..., im) C (1, ...,n), the jacobian

determinant
Iy = a_f _ A(f1, -y fm)
dCI a(Cz'U e C’Lm)
has the property that, for any weakly holomorphic function h on A, the prod-
uct h - Jz locally at each point a € U,, can be holomorphically extended to
some neighborhood of a in the ambient manifold. Consequently, if the Ja-
cobian Jz s not identically zero on each irreducible component of A in U,,,
then it is a universal denominator at each point a € U,y N A ; in the case
when Uy, is a domain of holomorphy, Jr is a global universal denominator.

In case A is a complete intersection, the proof of this theorem is given in [88].
But in fact this proof remains valid in the general case. The proof follows
from the next lemma, which we will need also later. Since we are interested
in local properties of some analytic set A C C" (together with the functions
one wants to define on it), we may choose the coordinates

(= (zw) e C7™ x Cy

in the ambient space C" and the polycylinder U = U, x U,, such that 7 :
ANU — U, is a proper projection. Assume then that

ﬁ:{CEUZXUw;fl(Z,W):"':fm(Z,’lU):O}

and let D = {z € U,; 0(z) = 0} be the discriminant set of the projection
7|5, that is the image of the zero set {J = 0} under this projection, where

J is the Jacobian 0(f)/0(w).

Lemma 5.1 For any holomorphic function h € O(regA), there exists a
holomorphic continuation to U \ {(z,w) : o(z) = 0}. In the case when
h is locally bounded (i.e. weakly holomorphic) there ezrists a meromorphic
continuation to U.

Proof. It is based on the the usual Lagrange interpolation. Let

T ({2} ={¢"(2) = (. w(2)), v =1,...,N}.
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For the functions f; defining A we may write the Hefer expansions

m

filz,u) = fi(z,w) = Z (z,w,u)(u; —w;), i=1,...,m.

Let H(z,w,u) be the determinant of the matrix whose coefficients are the
coefficients hj; involved in such expansions. Assuming that the function h
is defined on all reg A (taking zero values on the components of A which do
not belong to A), consider the function

(z,w) — h(z,w) = Z h(z,w(”) (2)) H(z,w, w(“)(z)),

which is holomorphic in (U, \ {o = 0}) x U,. In fact, holomorphicity in
w € U, follows from the holomorphy of the coefficients h;; while holomor-
phicity in z € U, \ {o = 0} follows from the facts that on A\ {oc =0} Creg A
the variables z play the role of local coordinates (hence h depends from z
holomorphically), and that A is a symmetric function with respect to the
(multivalued) holomorphic functions z +— ¢¥(z) in U \ {¢ = 0}. The re-
striction h to A coincides with that of - J, where J = 9(f)/d(w), since the
determinant H(z, w"(2), w")(z)) equals J(()(2)) if j = v and zero if j # v.
Thus h = 2|4, where h is holomorphic in U \ {o = 0} since 7({J = 0}) =

When h is locally bounded, h is holomorphic in U (because of Riemann’s
theorem) and this concludes the proof of the lemma and of theorem 5.1.

Let us point also here how can be described the singular set of any reduced
complete intersections :

Proposition 5.1 [88] Let A be a complete intersection in some open set U
of C", defined as

A={CeU; fi(Q)="-= ful(¢) = 0}.

If the set _
J={CeA;0fi N...ANOfn(z) =0}

is nowhere dense in A, it coincides with the singular locus sing A.
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5.2 Holomorphic differential forms on analytic vari-
eties

Consider in some open set U C C" a closed analytic variety A with pure
dimension r. We want to decide which holomorphic differential forms 1 on
reg A should be considered as holomorphic on A. Of course, holomorphy on
reg A is a necessity for such forms ; but what kind of additional condition can
one suggest, for instance, instead of the condition of being locally bounded
that appears in the definition of weakly holomorphic functions.

Taking the distribution point of view, one can remark that, for ¢ < n —r,
any (g,0) holomorphic differential form ¢ on reg A defines a (g+n—7,n—7)
0-closed integration current on U \ sing A, namely

© — / YA, (5.1)

reg A

where ¢ runs over the subspace of (r — ¢, r)-test forms with support disjoint
from sing A.

Definition 5.1 A (q,0) holomorphic differential form ¢ € Q4(reg A) on the
reqular part of some closed analytic set A in an open subset U C C" is called
holomorphic on A if the integration current (5.1) admits a continuation to the

whole ambient manifold space D™~%"(U) as a 0-closed current. The family
of such forms is denoted by wi(A).

The family w?(A) coincides with the space of sections (on A) of the Barlet
sheaf [6] (see also [47], where definition 5.1 is proposed for the notion of
holomorphicity on A and compared to other possible definitions, together
with interesting applications). Let us give one among the definitions of this
sheaf. For this, recall that the Grothendieck dualizing module of the germ
(A, a) is defined as

Whe = Extm¢n (Oaas Qz’:na)

(here 7 = dim A, and m = n — r). In the case A is a reduced complete
intersection defined by functions fi, ..., fr, the module ), , is the following
free module of rank one :

dzl/\.../\dzn>

T —0 "
Waa = H4, (df1 A Ndf,
For 0 < ¢ < r one has then the following
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Definition 5.2 The sheaf w? is locally given by the fiber modules

q — r—q r .
WA = HomoA,a (QA,aa wA,a) )

equivalently, wf{l,a consists of all germs on A at a of (q,0) meromorphic forms
Y such that o A € Wy, for anyn € Q.

Note that this definition implies that the sections of wf% are meromorphic
differential forms, which means that for the class w?(A) of g-holomorphic
forms on A, one can generalize Oka’s theorem about the existence of a local
universal denominator (for the proof, see [6] and [47]). In the next subsection
we will give a more direct proof without using the desingularization.

So now, given ¢ € wi(A) (locally near any point a) one has ) = £/g with
some holomorphic (g,0) form £ in the ambient manifold and some holomor-
phic function g vanishing on sing A (£ and g being defined and holomorphic
in some neighborhood U of a). By the Herrera & Liberman theorem [49],
there is a natural continuation of the current (5.1) through the principal
value integral

[Who)=lm [ wrp peD () (5.2)
AN{|g|>€}

Let us clarify what means that such a current is 0-closed, or equivalently,
that ¢ is holomorphic on A. We know that the action of the 0 operator on
[¢] gives the residue current

@l ¢ =lim [ wAe

An{lgl=€}

with ¢ € D" %"}(U). For instance, when A is a curve (r = 1), this current
is the usual residue at the singular points a € sing A. Consequently, roughly
speaking, what we could have done is the following :

“define the (g, 0) holomorphic forms on A as forms ¢ € Q%(reg A) which have
no residues with respective to singular locus sing A”

Remark that such circumstances emphasize the difference between the no-
tions of weakly holomorphic functions and holomorphic forms even when
g = 0 : the holomorphy property depends on the embedding A C C" ;
in case this embedding is non proper, it is more sensible to it than the
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property of being weakly holomorphic. Let us give a simple example : let
A = {(z1,2) € C?; 22 = 23} be again the semicubic parabola in C? which
admits the parametrization z = ¢(t) = (¢3,%) ; consider the meromorphic
function ¢ = (22/21)|a = 1/t. Since on A one has dz; = 3t%dt, dzo = 2tdt,
we get for any test form ¢ = a;1(2)dz; + a2(2)dzy

p(2(t))

t

@l o) = [ =0.

|t|=e

Therefore we have to admit that 1/t is holomorphic on A but not weakly
holomorphic.

The fact we just mentionned that holomorphicity on A for differential forms
is a notion depending on the embedding A C C" will allow us to describe
later holomorphic forms on A as residues of meromorphic forms in the ambi-
ent space (see subsection 5.4). The point which ultimately depends (in the
most crucial way) on the embedding A C C" is to check whether (or not) an
holomorphic object on A admits an holomorphic continuation to the ambient
space. Residue currents provide some nice set of tools to solve such problem.
The criterion for continuation of weakly holomorphic functions was given in
[88] in the case A = {f; = ... = f,, = 0} is a reduced complete intersection.
One can transpose the proof of this criterion to the setting of (g, 0) holomor-
phic forms on A just replacing the symbol A (for some weakly holomorphic
function on A) by the symbol ¢ (for some (g, 0) holomorphic form on A), so
that one gets the following :

Theorem 5.2 Let A be a reduced complete intersection defined as
A= {CEU; i) =... = fulC) = 0}
in some open subset U C C". For any ¢ € w?(A), one has
Y € QY & [W/df] is 0 — closed,

where df = dfi A ... N\ df, and the current [%] s defined in the ambient
manifold U as by

Yoy = i d r—ar
g =l / e, peDTU).
An{jdf|>e}

([
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As it was pointed in [47], the same criterion holds for meromorphic forms
in U which admit a holomorphic restriction to reg A. The main points in
the proof of the theorem are Coleff & Herrera theorem [26] and Passare’s
result [71]. In subsection 5.4 we will show how to relate theorem 5.2 to other
questions.

5.3 Holomorphic forms on A are meromorphic in the
ambient space

We give in this section a proof of the generalization of Oka’s theorem we
mentionned in section 5.2.

Theorem 5.3 Let A be a purely n — m-dimensional closed analytic variety
in some open subset of C". Then, at least locally, there exists a universal
denominator for elements ¥ € wi(A), 0 < g < n —m ; for example, if A
can be realized as the family of some irreducible components of the complete
intersection

A:{C:(z’w)EU:UzXUwCCgimxcx;fl(C):"':fm(C):O}

such that the projection © : ANU — U, is proper, the discriminant o(z) of
T (as introduced in section 5.1) plays the role of universal denominator (in

the sense that any ¥ in wI(A) admits as a denominator some power of o).

In order to prove this theorem, we need some preliminary steps :

Let f(z,w) = (fi(z,w),..., fm(z,w)) be m holomorphic functions defining a
complete intersection in some neighborhood of the origin in C;~™ x C; such
that w — f(0,w) has an isolated zero at w = 0. Choose in the local algebra
Ow/{f(0,w)) some arbitrary monomial basis w®', ..., w*N.

Lemma 5.2 There exist polycylinders U, C C,"™, U, C C) centered re-
spectively at z = 0 and w = 0 such that for each 2% € U,, the monomi-
als {w*}, 1 form a basis of OU)/{f (29, w)). In fact, for any h in
O(U, x Uy), there erists a unique representation

h(z,w) = ex(2)w™ + (f(z,w)), e € OU,), (5.3)
k
where {f(z,w)) is the ideal generated by the system f in O(U, X Uy)
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Proof. Let us recall that given a regular sequence F' = (Fi,..., F,) in the
ring O, of germs of holomorphic functions in ¢ at the origin in C", the Weier-
strass satz claims (see [4], 5, or [87], 16.4) that if e,...,ex is a monomial
basis of O,/(F), then, for any g € Oy, there exist g; € O, j = 1,..., N, such
that

g(t) = gi(s)er(t) + ...+ gn(s)en(t), where s = F(t).
This means that

— §gk(s)ek(t) € (s— F(t)).

In particular, for s = F((), one has

9(t) = D gu(F(C))ex(t) € (F(s) = F(t)). (5.4)

k
We now propose to apply Cauchy-Weil’s formula in the analytic polyhedron
W ={|Fj(z,w)| <e j=1,...,n}
where

F(z,w) = (fi(z,w),..., fm(z,w), 21, ..., 2Zn-m) = (f(2, w), 2).

Using notations s = (u,v), t = (2,w) € C*" ™ x C™, it follows from this
formula that for any h € O(W)

1 h(u,v) H(u,v; 2, w) du A dv
M) = G | Tfew— o

r(w)

where H is the determinant of the matrix of some Hefer divisors respectively
associated to the F;’s and I'(W) denotes the skeleton of W, with the notations

)~ S wl= T Ue) ~ e, =)= T

It follows from (5.4) that one can write

H(u,v; z,w) = ng(u,v) w** mod (F(u,v) — F(z,w)),
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since, as it is easy to see, O,,,/F(z,w) ~ O,/ f(0,w). Now we have

1 h(u,v) ]Zj:gk( v)w ak) duyedgedv
h(z,w) = (2mi) / [f (u,v) — f(z,w)] [u— 2]

r(w)
1 h(u,v) (%gk(u, v)wo‘k) du A dv
R M 1) [ UG

rw)

This leads to (5.3) with

1 h(u,v) g (u,v) du A dv
w | ' ¢

271 "F(W) (u,v)] [u— 2]

ce(2) == (

Proof of theorem 5.3. We recall that on the manifold A\ {¢ = 0} variables
z can be used as local coordinates, so one can write in these coordinates

Y= ar(z,w)dz, (5.5)
|7|=q
where a; € O((U, \ {o = 0}) x Uy) ; this follows from the first part of the
proof of Lemma 5.1. Let, as before, for z € U, \ {o = 0},

) =" (R), v=1,.., N} ;

we will also extend the form 1 to reg A, setting ¢ = 0 on thr components of
A that do not belong to A. We need then the following lemma :

Lemma 5.3 The differential form 1 is meromorphic if and only if the trace

Trefgu] = 3 (X (9an)(z 0 (2)))dar

[T|=¢ Jj=1
is meromorphic for any holomorphic g € O(U).

Proof of Lemma 5.3. The trace of any meromorphic function is obviously
meromorphic. Therefore it is enough to prove that if for any g € O(U), the

traces
N

Tz [gar)(2) = 3" (gar) (2, w'(2))

=1
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are meromorphic, then each a; is meromorphic.

Let us choose the monomial basis w*, i = 1,..., N of the quotient space

Ow/{f1(0,w), ..., fm(0,w)).

We remark that the dimension of this quotient space equals N denotes the
cardinal of 7 !({z}z)) for z generic. Consider the following analog of Van-
dermonde’s determinant

)
2,7

W(2) = det [[w];]

where [w]; = (w¥(2))% denotes the value of the monomial w® (from the
basis) evaluated at the point w()(z). We remark that W(z) vanishes only on
the discriminant set D = {o = 0} : indeed, under the assumption W(z) = 0
for z ¢ D, the system of linear equations

Zb,[w‘“]a(z) :0, jzl,...,N

does have a nontrivial solution b = (by(2),...,bn(2)) ; hence the function
> bi(z)w® vanishes at any root w')(z) of the system f(z,w) = 0, and in
view of condition df (z,w)(2)) # 0, this function has to belong to the ideal
T = (fi(z,w), ..., fm(z,w)) ; but this is impossible, since {w*} form the
basis of O, ,,/T.

Denote now as s, the Newton sum

Sa(2) = ;[w(j)(z)]a, z€U,\{o=0}, a e N™

Let C* be the transposed of the matrix C' = [[wai]j] _and note that
j

i,
- t P
C C I:Sai+ajj|i,j ’
so that
2 _
W? = det [sa,1a,]
It means that the determinant det [saﬁaj] ~vanishes on the discriminant set
Z’]
D.
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Let us now conclude the proof of lemma 5.3 as follows. Since the function
ar € O((U, \ D) x U,) for any multi-index I in {1,...,n — m}, one can
represent (in U, \ D) by lemma 5.2 each a; as

ar(z,w) = ; bi(z) w* (mod ),

with b; € OU,\ D), i =1,...,N.

Consider the traces of g1 for the finite family of functions ¢ = w*. Our
assumption asserts that for any multi-index I in {1,...,n — m}, the traces

N
Tr[w®a;)(z) =Y bi(2)Sai4a;(2), 1=1,...,N
i=1

are all meromorphic. Since det [saﬁaj], _ # 0 is holomorphic, we conclude
2%

by Kramer’s rule that the b;(z) corresponding to each a; are meromorphic,

and Lemma 5.3 is therefore proved. ¢

Let us go back to the proof of theorem 5.3. Since ¥ is in w?(A), we know
that the (m + ¢,m) current in U \ sing A which action on a test form ¢ in
pr-m-en=m([J \ sing A) is given as

p = YA
reg A

can be extended as a (m + ¢, m) current T in U (with support on A) ; since
1) is holomorphic on reg A, this extension 7 is such that 07 is supported by
Ant Y(D).

Suppose 1 is not meromorphic. We now construct a sequence {¢x}2 , of test
forms such that ¢ vanishes on 7—1(D) at least with order k, and such that

(OT, ) #0, k=12, .. (5.6)

Since AT has a finite order and is supported by 7 1(D), this will lead to a
contradiction. For the construction of ¢, let us consider some multi-index
I such that the coefficient a; in (5.5) is not meromorphic. By lemma 5.3,
there exists a holomorphic function g for which the trace Tr[g - a;] is not
meromorphic. It is known ([1], 27) that, since this trace is holomorphic in
(U, \ D) x U,, it can be represented as a series

o0

Trlg-al)(z) = 3= a(2)0*(2),

k=—00
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where ¢, are pseudopolynomials with respective to z, ,, 1 with degree less
or equal than p—1 if we assume that coordinates = (21, ..., 2z, ;) have been
chosen in such a way that o(z), up to some invertible function, is a Weier-
strass polynomial with degree p in z,_,,.) Moreover, under our assumption,
cx(z) # 0 for an infinite number of negative indices k. Now we take

0e(Q) = 9(Q) 222X 65 (2) dor A By (') d7

where
q(k) = degzn_m c—k—l(z)
I: = {1,...,n—m}\I
ZI = (Zl, ce azn—m—l)

and ®,(2') is a compactly supported function which will be defined below.
Remark that we do not need to worry about the compactnes property of
the support respect to the coordinate z,_,, and w since the intersection of
AN a7Y(D) (which supports 97T) with {||2'|| < o} for & small enough is
compact. One has :

(O[], pr) = lim / Trlg - arl(2)22- 597 0 (2)% A dzp_m A Op(2')d2 A dZ'
|o|=¢

If we take into account the theorem on total residues with respect to variable
Zn—m, We get

(O[], o) = lim -1(2) - 2 dzpn_m N ®(2') d2' A dZ'
’ €20 J|o|=¢ O'(Z)
— o /(D A B2 d2 A d7 (5.7)

where Ag(2') is, in the pseudopolynomial ¢ j 1, the leading coefficient (that
q(k)

n—m—1-

D (2') = A(2') x(|2')

is the coefficient of z ) Now we set

where Yy is a smooth approximation of the characteristic function of the small
ball {|z'| < §}. It is clear that one can choose x such that integral (5.7) is
not zero.
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5.4 Holomorphic forms on A as residues of logarithmic
forms

Let us start with the simplest case when A is a reduced variety of codimension
one, i.e. a divisor D = {f = 0} in C". Here it is easy to see that any element

v =h(z)dz/df = h(z)dzy A ... Ndz,/df

of the Grothendieck dualizing module is a regular meromorphic form on A,
i.e a meromorphic form in the ambient space whose restriction to reg D is
holomorphic. Indeed, the set reg D is covered by the open sets

of

;= D= =1, ...
Ui={z€ 8z,-7é0}’2 sy T

and one has

Ch(2)dzn A Ndz AL N dzy,
ly, = (ay— DAL -
(%) D

aZZ'

These restrictions are compatible, which means they define a global differ-
ential form on reg D. At the same time we see that ¢ coincides with the
Poincaré residue of the meromorphic form

h(z)dzy A ... ANdzy,
f(z) '

We will see this is not indeed an accident and that for any complete intersec-
tion A, elements 1 € w9(A) are realized as residues of so-called logarithmic
forms. Such forms were introduced in [78] and [79] in order to generalize
Leray’s residue theory on polar sets with singularities. Thus J.-B. Poly [78]
remarked that the Leray residue (in the case of a smooth polar divisor) is
well defined for any (not necessarily d-closed) differential form w, as soon
as w and its differential dw have a simple pole along the hypersurface D.
The forms w with such properties were called logarithmic forms. Following
the paper [2], we introduce the notion of multi-logarithmic differential form.
Such a meromorphic differential form has poles along a divisor D = >, D;
such that A = %, D; is a reduced complete intersection. We then define
the residue form of a multi-logarithmic differential form as a generalization

w =
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of the corresponding definitions of J. Leray [61], J.-B. Poly [78] and K. Saito
[79]. The main statement asserts that there is a natural residue morphism
which maps the complex of the multi-logarithmic differential forms onto the
complex of differential forms which are holomorphic on A.

Let A be a reduced complete intersection in the domain U C C", realized as

the intersection
A=D,n...nD,

of divisors D; = {f; = 0}. Let Qf = (Qf,d),_,, . be the de Rham complex
of germs of holomorphic differential forms on U. Let

l/)\j:D1U...UD]-_1UDj+1U...UDm, j=1,...,m,

and Qf](*l/)\]) be the Op-module of meromorphic differential forms of degree
s consisting of all the differential (s, 0)-forms with polar divisor D;. Write
D; =0 for m =1, so that Qf,(xD;) = Q3.

Proposition 5.2 [2] Let w be a meromorphic differential s-form on U, such
that s > m, with poles along the divisor D = D1 U ...U D,,. The following
conditions are equivalent :

® i) fjwein:Qij(*l/)\i), fjdwéin:QsUH(*l/)\i), j=1,...,m;
i=1 i=1

e ii) There is a holomorphic function g which is not equal identically to
zero on every irreducible component of A, a holomorphic s — m-form §
and a meromorphic s-form n € Y, Q5 (*xD;) on U such that

_dh U
qw = i VAYRIAN [

As function g in the property i), one can use the universal denominator for
A. Any meromorphic differential s-form w on U satisfing one of the equivalent
conditions ) or i7) is called a logarithmic form, since after multiplication by
the universal denominator g, one can divide it by the logarithmic differential
form

dfi

f1 /\f—m

modulo form 7 (which gives no contribution to the residue of w). We shall de-
note the Oy ,-module of germs of multi-logarithmic s-forms at x as Qf; , (log A)
and the space of section of the corresponding sheaf as €, (log A).

NE+T.
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Definition 5.3 Keeping to the notations used in proposition 5.2, ii), the
restriction on A = D1 N ...N Dy, of the form £/g is called the residue form
of w, that s :

res w = =| .
gla
In case the D; are smooth divisors in general position, one can choose the
universal denominator as ¢ = 1, which implies that res w coincides in that
case with the residue form in Leray-Norguet theory. It is not difficult to check
the independence of res w respect to the choice of the universal denominator.
Remark here that the universal denominator originally introduced for weakly
holomorphic functions keeps its main property when used for differential
forms, namely :

“after multiplication of w by the universal denominator, one can forget divi-
sors may be singular and work only with holomorphic forms in the ambient
space.”

Theorem 5.4 [2] In case A is a reduced complete intersection of pure codi-
mension m, there is a natural one-to-one correspondence

res [Q%™ (log A)] +— wi(A)

between the set of residues of multi-logarithmic ¢+ m-forms and holomorphic
q forms on A.

In order to prove this theorem we need to summarize the main facts about
residue currents which were recalled in subsection 2.7. Let us assume that
the set defined by the system of equations

{9=fHi=...=fn=0}
in some open set of C" is a complete intersection and that fi,..., f,, define

A (as a reduced complete intersection). Then the residue current Ry and its
principal values PyR; respect to g have the following properties :

e 1) Rjlw]= PRlgw];

dfi dfm € _[€]] _[€ i
f/\___/\f—m/\g]_[g] A—[gl/\[A],Where[A]lsthe

integration current (holomorphic chain) on A ; in particular, when &
and ¢ are identically equal to the constant 1, then
df dfy ~[1 |1
R [—/\.../\—] = df /\...dfm/\al—] /\.../\8[—] = [A] ;
T fmd = fi F] =M

o 2) PR [
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e3) fiPbRy=0, j=1,...,m;

e 4)if U is a domain of holomorphy (or a Stein manifold) then for v € Oy,
one has
URfEO<:>U € (fla"'afm)OU )

in particular, this property is valid in the local rings Oy,, z € U.
Proof of theorem 5.4. Let w € Qf7"(log A), so that

w=—2" and ngﬁ/\.../\df—m/\f—kn,

freoo fm 1 fm
where «, £ are holomorphic and 7 satisfies condition i) of proposition 5.2.
In view of property 1) one has
d dfm,
MM:%&MMJWJEAWALAQ+%&P}
fi fm 9 g
The second summand corresponds to the current which is trivial by prop-
erty 3). Property 2) implies

defined as the residue resw = § of the multi-
A gla

logarithmic form w coincides with the residue current R 4[w] which is 0-closed.

Hence the current F]
g

Conversely, under the same assumptions, let £/g be a meromorphic form on
A, so that the corresponding current

<[¢], <p> =< E]

is 0-closed. Then, in view of property 2),

,g0>:1im §/\90, e eD*(U)
A e20JAn{|g/>e} g

_5l&ll —5(18
o_aL]A_a(L]AmD.
Since J[A] = 0, it follows from Leibnitz rule and property 2) that
0=8H /\[A]:&H /\dfl/\.../\dfm/\ali] /\.../\alil .
g g fi fm
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Property 4) yields

dfl/\/\dfm/\ge(gaflnafm)ggj+ma

that is,
dfi N o Ndf NE=ag— fim — ... — fulim s (5.8)
where o, 71, ...,Mm € QE™ are holomorphic forms on the domain U C C".

Here property 4) was used to compute the coefficients of the form £ Adf. Let
us consider the meromorphic form w = «/f; - -« f, ; we have

o df N+ fim+ ...+ fonm  dfs dfm
gw=g- = =———AN...N——ANE+n,
fifm fifm fi : 1
where no .
i LYY
n=>Y ———— €Y Q" D).
i=1 fi-fm i=1

This completes the proof of theorem 5.4.
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