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Abstract

The aim of this lecture, through the problem of deciding in poly-
nomial time the existence of a common zero for a system of algebraic
equations, is to present how algebraic, analytic or geometric points of
view may complement each other respect to a still unsolved but fonda-
mental problem which was submitted to mathematicians by computer
scientists or formal calculus specialists. This talk adresses a large audi-
ence, which does not need a priori to be too familiar with the subject ;
it intends mainly to be an humble call for the decompartmentalization
(respect to objectives as well as methods) which appears to be more
and more necessary nowadays in mathematical research.

I would like to take the opportunity of this manuscript to thank
warmly Prof. Adelina Fabiano, Prof. Jacques Guenot, and all mem-
bers of the Laboratorio di Applicazioni dalla Matematica all’Ingegneria
(University of Calabria) and to tell them once more how conferences
or courses in such places as Cosenza, Camigliatello or Diamante have
inspired reflexions about this work.

1 An introduction to the problem P = NP

Problems of algorithmic nature lead to the introduction of the naive concept
of machine over some commutative, unitary and ordered ring A. Such a ring



A appears as a model for the world where elements on which the machine
acts lie.

Models of rings that one meets the most frequently are Z or Z[zy, ..., z,
R or Rzy,...,xs] ; one will also consider the case of rings with positive
characteristic, such as Z, or Z,[z1,...,xs] ; nevertheless, we stick for the
moment to the frame of characteristic zero, which looks to us to be the
natural setting for ideas of analytic or algebraic nature to coexist.

Following the presentation of this concept such as it has been introduced
in [10], a machine over A corresponds (provided one sticks to the finitely
dimensional case) to the following set of data :

To a

To a

a space of inputs (generally A’ for some | € N¥)
a space of outputs (generally A™ for some n € IN¥)
a space of transient states (generally A™ for some m € IN¥)

a graph with NV nodes, node 1 being the unique entry node, other nodes
being classified into exit nodes, computation nodes or branching nodes.

computation node k, one may associate :

an arrow of the graph pointing towards the next node 5(k)

a polynomial map g, from the space of transient states into itself.
branching node k, one may associate :

two arrows of the graph which respectively point towards the nodes

A7 (k) and 5~ (k)

a polynomial map hy from the space of transient states into A (here
the fact that A is an ordered ring plays a capital role), which switches
the machine either to the node S7(k) when hg(state) > 0 or to the
node 3 (k) when hy(state) < 0.

To any ezit node, one may associate a unique linear map S from the space of
transient spaces into the space of outputs ; the unique entry node 1 is paired

with

an arrow of the graph pointing towards (1)
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e an injective linear map I from the space of inputs into the space of
transient states.

One may enlarge this concept by getting free from the constraint that repre-
sents the finiteness of dimension, that is suppose I,n € IN U {00} ; the price
to pay is to take as space of transient states the space N x IN x AN and
introduce in the graph a new class of nodes (nodes of the fifth class) ; such
a node (labelled for example as k) corresponds to the following data :

e an arrow of the graph that points towards the node 3(k)

e a map g = g, from the space of transient states into itself whose action
consists in the transformation of the state
i
(7”]: Loy X1y -eey Ty, )
into the state |
J
(i: ja Ly L1y eeny gy )

If there is no natural order relation on the ring (for example when A = C or
A =7, with p prime, the case p = 2 leading to the familiar context of Turing
machines), one may replace the decision protocol that switches the machine
at the level of a branching node (labelled as k) by the following one :

e if hy(state) = 0, the machine switches towards the node 5 (k)

o if hy(state) # 0, it switches towards the node 51 (k).

Given a machine M over the ring A and some element e in the space of
inputs, the machine is said to stop when initiated at e when, as soon as it
starts with e as input, then some ezit node is reached after some minimal time
Ty (e) (time being indexed with the number of steps the machine proceeds) ;
whenever e is such an entry, the cost of the machine (when initiated in e) is
by definition the quantity

CM(G) = TM(G) X hM(e) y

where hs(e) denotes the maximal “height” of all elements in the ring A which
have been involved in all transient states which appear as intermediate states



before the machine reaches the ezit node that will lead to the output s,/(e)
(in the output space) within the time T, (e).

Therefore, it is necessary to introduce a notion of “height” on the ring A.
When A = Z, such a notion of height is chosen so that the corresponding
cost function refers to the concept of entropy that quantifies chaos in physics
or thermodynamics ; one takes as height of some integer a € Z the number
of bits that are necessary to code it ; one can define for example the height
of a € Z as

h(a) :=logy(la| + 1) or log(ja| +1).

For rational numbers (or even algebraic numbers), one can immediately ex-
tend this notion of height : for example, if x = a/b, a € Z, b € Z* (in the
reduced form) the height of 2 will be max(h(a), h(b)) ; when z is an algebraic
number, h(z) will be the sum of the logarithm of the degree of x, together
with the maximum of the logarithmic heights of all integer coefficients in-
volved in the expression of the minimal polynomial of z over Q. These are
just naives definitions for the logarithmic height (in the arithmetic context)
that we will make more rigorous later in section 3. When A = R, one decides
that the height of any real number equals 1, which reflects the obvious fact
that the cost of the multiplication by a real number is independent of its size.

We now have within hands all elements in order to be able to define what
is a decision problem over some ring A and precise two classes of decision
problems, namely the P class and the NP class.

A decision problem over A is a pair of subsets (X, Xyes) ; Xyes C X, of the
space A' (here [ may be finite or infinite) ; such a space A’ will play the
role of the space of inputs for some machine over A. What we will call an
algorithm solving the decision problem will be a machine M which can be
initiated from any input e € X, which eventually stops when initiated from
such an element, providing then an output sys(e) such that :

su(e) =1 <= e € Xy.
We will focuse on three important decision problems :

e The problem which consists in deciding whether a given collection of m
polynomials Py, ..., P, € C[X{, ..., X;;] generates a proper ideal or not,
which is equivalent to check whether, yes or no, the system of algebraic
equations {Py(¢) = --- = P,(¢) = 0} has a solution in C". For this
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problem, the ring is C, but one may as well consider any commutative
integral domain A, such as Z, Z[zy, ..., z;], Z,[®1, ..., 4| ; a proper ideal
means in this case proper in K[Xj, ..., X,,|, where K is the fraction field
of A. This decision problem is known as Hilbert’s zeroes problem or the
algebraic nullstellensatz.

e Given a collection of m + 1 polynomials in C[X7, ..., X,|, Py, ..., P,
decide whether P lies, yes or no, in the ideal generated by Py, ..., P, in
C[X1, ..., X;] (notice that here again, one can replace C by any commu-
tative integral domain A). This problem is known as the membership
problem.

e Given a symetric matrix [dy |1<k,<n With coefficients in ]0, +o00[ and a
strictly positive real number d, decide whether, yes or no, there is a
cycle o in the symetric group S,, such that

One may interpret the matrix [di;]i<ki<n as a table indicating mu-
tual distances between n cities, which is the reason why this decision
problem is known as the travelling salesman problem.

As soon as the ring A can be equipped with a notion of height (such is the
case for R, C, Z, Z,, to which one can also add s transcendental algebraically
independent parameters), one may introduce two classes among the category
of decision problems over A, namely the P and N P-classes :

e a decision problem (X, Xy) over the ring A is said to be in the P-class
(“P” for “decidable in Polynomial time”) if there exists an algorithm
that solves it and is such that the M over A which does the job satisfies

dg e N, 3C >0, Ve € X, Cy(e) < C(L(e) + h(e))?,

where L is the lenght function, that is L(e) denotes the number of non
zero elements in the input data e € A!, 1 <1 < oo, and h is the height
function which was introduced earlier ;

e a decision problem (X, X) over the ring A is said to be in the NP-
class (“NP” for “decidable in Non deterministic Polynomial time”) if
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there exist two integers [,I' € IN U {oco}, a machine M over A with
input space E(M) such that X x A" ¢ E(M) C Al x A" (A" playing
the role of the probality space) such that

— the machine eventually stops when it is initiated at any (e, w) in
X x AY

— sar(e,w) € {0,1} for any (e,w) € X x A

—su(e,w) =14 =€ € Xyes

— there exist ¢ € IN, C > 0 such that, for any e in Xy, one can
find an element w € A", such that sy(e,w) = 1 and

Cule,w) < C(L(e) + h(e))?.

A decision problem (X, Xyes) over A is said to be N P-complete if
e on one hand, it lies in the N P-class over A ;

e on the other hand, given any problem (j(v , j(vyes) in the N P-class over
A, one can find a map v from X into X such that

—P(e) € Xyes <= € € Xyes

— 1) happens to be the restriction to X of the function sy; which
corresponds to some machine M over A that operates in polynomial
time ;
one can see this second clause as some universal property within the
category of decision problems in the N P-class over A.

It is clear that the P-class over A is a subclass of the N P-class over A. The
travelling salesman problem appears to be an example of a problem in the
NP-class over R (see [10], proposition 3). On the other hand, very little is
known about the natural following question : is the inclusion P C NP strict
or not 7 What is known as the classical logic conjecture P # NP is the one
that asserts that the class P over Z, is strictly included in the N P-class over
Z ; one can also state analog conjectures for rings such as Z, C,... One could
call it the “classical” conjecture when A = Z,, the “arithmetic” conjecture
when A =7, the “algebraic” conjecture when A = C.

We know from [10] that the algebraic nullstellensatz problem is N P-complete
over C (this holds in fact over any commutative field) ; therefore, to prove the

6



conjecture P # N P over C amounts to prove that the algebraic nullstellensatz
problem over C cannot be solved (over C) in polynomial time. This remains
an open question, which will be the corner stone (it may be better to say
the stumbling block) around which the sequel of our talk is organized. Such
is the case for the nullstellensatz problem over Zs ; the classical conjecture
P # NP can be reformulated saying that the problem to decide whether a
collection of m algebraic equations in n variables with coefficients in Z, has a
solution (or not) in (Z2)™ cannot (generally speaking) be solved in polynomial
time.

Another interesting class to which belongs the algebraic nullstellensatz prob-
lem is the BP P-class (which means it is a decision problem that can be solved
by some stochastic machine with some bounded probabilistic risk of error).
To be more concrete, given a collection of m polynomials in n variables with
complex (resp. integer) coefficients, with degrees bounded by D, there exists
a machine over C (resp. a Turing machine) which allows to test (with a risk
of error one can estimate in D‘Do(n)) whether, yes or no, these polynomials
have a common zero in C" (]28], section 7.2). One can also underline that
the conjecture
NP C BPP is a false assertion

(in the classical case, that is Z,) implies
NP#£P,

over C. If one keeps in mind that, from the pratical point of view, P and BPP
almost represent the same class, one can see why the solution of NP # P
over C would provide some hint towards the problem P wversus NP in the
classical case (that is over Zy). This shows that to settle such problems within
some algebrico-analytic (A = C) or arithmetic (A = Z) frame may as well
give some insight towards the formal problem itself (see [35] for more details
or references respect to these various aspects).

2 How far the solution to problems like “null-
stellensatz” or “membership” could be ef-
fective before 1988 7

Though “Let’s eliminate elimination” appeared either as a joke, either as
some kind of advertizing slogan, in mathematics since the fifties, it remains
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that it was elimination theory (through a method initiated by Hilbert, then
developped by Greta Hermann in 1926 [22], for a more modern presentation
see also [33]) that provided the first effective solution (and the only one for
many years) to the algebraic nullstellensatz decision problem over C.

It is well known (since Hilbert) that, given m polynomials Py,..., P, in n
variables with coefficients in some field K, the two following assertions are
equivalent :

e (i) the polynomials P;, j = 1, ..., m, have no common root in Kn, where

K denotes some integral closure of the field K ;

e (i1) there exist polynomials Q1, ..., @ € K[X7, ..., X;;] such that

The proof lies on the following fact : if py, ..., pyr are M polynomials in one
variable with coefficients in some integral domain A such that p; is monic,
the fact that pq,..., p,, have a common root in Frac A is equivalent to the
fact that the polynomial

Sylv (p1,p1 + Yopa + -+ + Yupm) € AlYs, ..., Y]

(Sylvester resultant of p; and p; + Yopo +- - -+ Yaspas) is identically zero ; this
allows to eliminate variables one after each other ; the best bound one can
obtain from this elimination method respect to the degrees of the polynomials
@, involved in (2.1) (in general) is precisely the bound that was obtained by
Greta Hermann, that is

maxdeg Q; < 2(2D)*"", D :=maxdeg P;. (2.2)

Note that if D = 2 and n = 100, such a doubly exponential bound is huge
(2 x 42) | This resultat of Greta Hermann, combined with the fact that
the search of polynomials @); satisfying (2.1) once the degrees have been
precised amounts to solve a system of linear equations over K (this system
being compatible, what ensures as a safeguard Hermann’s result), shows that
though there exists indeed some algorithm to solve the algebraic nullstellen-
satz decision problem over C, the complexity of such an algorithm appears
to be doubly exponential. The cost Cys(e) over some input e is controlled in
Cexp(exp(C(l(e)+h(e)))) if one goes bact to the lenght and height concepts
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that we introduced above ; this remains true whether we think about the
problem over C or Z (that is in algebraic or arithmetic terms), because of the
well known linear algebra principle that asserts that any compatible linear
system of equations with coefficients in a given field admits necesseraly a so-
lution with coefficients in this field. Looking at the problem over C, the size
L(e) + h(e) of an input e = (P, ..., P,,) whose coefficients are polynomials in
C[Xy, ..., X,,] with respective degrees Dy, ..., D, is

I

L(e) + h(e) = 1+§;(HEZDZ>

looking at the problem over Z, one has also to take into account h(e), which
is the maximum of all log(1 + |c|), where « runs over the family of all non

zero coefficients of all the polynomials entries of e (which are in this case in
Z[ X1, ., Xi])-

As for the membership problem (of which the Hilbert’s zeroes decision prob-
lem appears as a by-product), things look at first glance more difficult to get
under control from the effectiveness point of view : actually, in 1988, E. Mayr
and A. Mayer, in a momentous paper (since it put a final point to some hopes
one could have), were able to generate, given any integer D > 5, any integer
k > 1, a collection of 10k 41 binomials in 10k variables, Fip, ..., Fp 10k, With
integer coefficients, with degrees bounded by D, such as, for any D and any
k, X, belongs to the ideal (Fp, ..., Fp 10x), but

10k
X1 = ZFD’ij - maxdeng Z (D — )2k_1 . (23)

§=0

There was on the other hand already a telescopic example of the same kind
(even simpler, which was introduced or re-introduced around 1985 by D.W.
Masser and P. Philippon) about the nullstellensatz problem itself : whenever
D is a strictly positive integer and P, ..., P, are the n polynomials in n
variables

) = XP, RB(X)=X,-XP ..
Pnfl(X) = anQ_XnD_la Pn(X):l_anle?_l,

then

1=P@Q+-+ P,Q, = maxdegQ; > D" — D" (2.4)
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here is a “negative” example respect to the hope to solve Hilbert’s zeroes
decision problem within sub-exponential time ; one can also modify such an
example taking P, := H — X, 1XP~!, where H € N*, H > 2 and then
conclude that there is no hope to find any non zero integer a such that
a=PQ + ...+ PQn Q; € Z[Xy,...,X,] and that, at the same time,
log(|a| + 1) has less than D"~ 'log H as order of magnitude (see [21, 19] for
such questions about low bounds, which are also intimely connected with the
search for measures of approximation in transcendance theory) ; note that
one can even replace D"~! by D™ if one is more careful (see [29], example
3.10).

Anyway, there remains always an important gap between low bounds (2.4)
and upper bounds (2.2) respect to the nullstellensatz problem over C or Z.
Such a gap does not exist any more if one thinks of the membership problem :
there is no such gap between upper bounds of the Hermann’s type (2.2) (let
us assume here the solution of the membership problem can be carried with
similar degree estimates, which is not totally evident, since the problem looks
harder since it is an algebraic problem than the Hilbert’s zeros problem which
is a geometric one) and low bounds (2.3).

3 From the algebraic vision to the geometric
or analytic perceptions : the unexpected

“discovery” of D. W. Brownawell and J.
Kollar

A natural reflex for one who faces the problem to decide whether m poly-
nomials P, ..., P, in n variables with complex coefficients have a common
zero or no is to transpose such a question into a problem of geometric na-
ture (which intrinsically it is indeed). Unfortunately, geometric objects are
usually more easy to handle (respect to the search for effectiveness, degree
bounds, even size estimates,...) in a compact environment, that is working
on a compact algebraic variety, than in the affine setting ; natural candidates
for the compact environment are the projective space P"(C) (dealing with
degree estimates to quantify effectiveness) or any toric projective smooth (or
at least simplicial) variety associated with some fan whose cones are such
their union covers R" (dealing with volume estimates of Newton polyedra
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as quantifiers for the effectiveness), equipped with an action of the torus
T := (C*)" on it.

The concept of infinity is achieved in such a compact environment either as
some hyperplane in the projective space (namely the hyperplane {z, = 0}
if [zg : ... : x,] are taken as the homogeneous coordinates of a point in
P"(C), the affine space C" being the open set {zy # 0}), either as a union
of supports of toric Weil divisors (indexed by the one-dimensional cones of
the fan or, which is the same, by the homogeneous coordinates involved in
the homogeneous coordinate ring, attached to the toric variety, [13]) in the
toric case. It is important to notice that in either of these two situations,
there is another vision of the concept of infinity, through the perception of
it that would have any observator living in the affine space (C" in the first
case, T™ in the second case) ; this alternative vision of infinity seems more
in accordance with the analyst’s point of view, we will come back to this
remark later on.

Let us put ourselves for the moment in the projective context. Polynomials
P, ..., P, define m cycles Zi,...,Z,, in the projective space P"(C) ; decide
whether P, ..., P, do have, yes or no, a common zero in C" amounts to
decide whether, yes or no, the supports of these cycles intersect elsewhere
than at infinity.

Intesection theory, such as it has been developped in the proper case, then
in the improper case by Fulton [16] or by P. Vogel and more recently the
Cracow school (see for example [37]) leads to the definition of an intersection
cycle Z1 e ...0 7, ; the only elements that appear in such constructions —it
is not surprizing since they are of geometric nature— are those that geometry
may identify (may be equipped with multiplicities that can be reached as
Lelong numbers through analytic tools) ; anything which in the algebraic
decomposition of an ideal depends on what we call an embedded component
will not be taken into account in such a geometric construction or, if it
happens to be, it will be in a such a way that dealing with it is controlled
by the “geometrically visible” part of the ideal, which corresponds to the
isolated primes in its decomposition ; let us recall that if

Piy.y Ps

are the prime ideals involved in the decomposition of some ideal (in one
of the noetherian rings C|xy, ..., Z,|, C[X1,..., X,], or the ring of germs of
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holomorphic functions in n variables at some point in C" for example), the
isolated primes correspond to minimal elements (respect to the inclusion) in
the family {P;, ..., Ps} ; the union of their zero sets materializes the “visible”
part of the ideal, if one thinks in terms of the correspondence ideals versus
cycles. Control of multiplicities (which appears to be the main ingredient if
one thinks about effectivity in terms of degree estimates) in such an intersec-
tion process relies basically on Bézout theorem, that is on a multiplicative
operation.

Even though one loses (through the construction process of the intersection
cycle) some significative part of the algebraic information that carries the
structure of the homogeneous ideal generated by the homogeneizations of
the P;, j = 1, ..., m, one keeps track of some algebrico-geometric information,
lying in the concept of apparent contour which was so familiar to geometers
(such as Gaspard Monge who formalized it and the Italian algebraic geometry
school) or even painters. One of the key concepts that emerged, as soon as
one realized it could cost less (from the effectivity point of view) to look for
inequalities (as an analyst looking at infinity from the affine space would do)
instead of algebraic identities (as one does in classical elimination theory, or
thinking about infinity in algebraic terms), was the concept of Chow ideal ;
such a concept is intimely linked with the geometric concepts of apparent
contour and polar varieties.

Let us recall briefly how the Chow ideal of a purely dimensional k-cycle Z,
0 <k <ninP*(C), at a point z of its support. In order to simplify, we will
assume that P"(C) is replaced by some local chart U C C™ about the origin
(corresponding to a neighborhood of z in P"(C)). Suppose Z =}, o;C; and
let |Z| be the support of Z, that is the union of irreducible analytic subsets
C;. Let m be alinear surjective map from C" to C**! such that 0 is an isolated
point in Ker 7 N |Z| (such a map = is called an admissible projection) ; there
exists a neighborhood W of 0 in C" such that the restriction of 7 to WN|Z| is
a proper map from W N |Z| into 7(W). One can associate to any irreducible
component C; that contains 0 a positive integer pi, ¢, which is the number
of sheets of the covering

T esom - C;iNnW — m(W)

(such a number i, ¢, can be as well understood in analytic terms as a Lelong
number). Then, by Remmert’s theorem, the projection 7(C; N W) is a k-
dimensional analytic subset of (W), that is an hypersurface, which can be
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defined by some irreducible equation f, in 7(W) (in a neighborhood of 0) ;
one can lift up to W such an equation and define some analytic function in
W (which may have been somehow restricted) as

F(m,z): z+— waj (m(z))%Hmei

Considering all possible admissible projections, one constructs an ideal in the
ring of germs of holomorphic functions at the origin in C" (namely the ideal
generated by all the germs of the different F'(w,-) as 7w runs over the set of
all admissible projections) ; this is the so called Chow ideal of the cycle C
at x (or at least its transcription in a local chart about x).

In particular, one can associate to the cycle Z; o ... e 7, the ideal sheaf
T(Z,@--- 0 Zy)H

on P"(C) ; the partial return from this algebrico-geometric object to the
algebraic object which consists in the ideal sheaf

(I(Zl)a ’I(Zm))

is realized thanks to a result due to Ewa Cygan [14] that one may formulate in
two different ways, one of algebraic nature, the other one of analytic nature :

e At any point z in the intersection of the supports of the m cycles Z;,
j=1,...,m, the ideal Z°¥(Z, o - - - @ Z,,,) lies in the integral closure of
the ideal generated by the different Z,(Z;), j =1,...,m ;

Y

e whenever (p,;;); denotes, for any j = 1,...,m, a set of generators for
the ideal Z,(Z;), j = 1,...,m, there exist Cy > 0, W, neighborhood of
z in P"(C), such that

Yy € W, max[pe;u(y)] > Cod(y, |21 N ... 0| Z )8 (122
s

As we already mentionned it, Bézout theorem implies that if
D >Dy>--->Dp,

are the respective degrees of the polynomials Py, ..., P,,, the degree of the
intersection-cycle Z; @ --- o Z,, is bounded from above by D; -« Dpinm),
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which implies that one has also, for any x in the intersection of the supports
of the m cycles Z;, j = 1,...,m, and the p;;, 7 = 1,...,m, Cy and W, as
above

Yy € W, Hﬁx Pz,ia(y)| > Cod(y, | Z1|N...N \Zm|)D1'"Dmi“("‘m) ;

It was another result, of more analytic nature, that was used by D. W.
Brownawell in 1988 to complete such a picture and show that there exists
an algorithm within simply exponential time (instead of doubly exponential
time) in order to solve the decision nullstellensatz problem over C. As we
mentionned it in Ewa Cygan’s result (first formulation), the notion of integral
closure of an ideal is deeply connected with the “analytic perception” of this
ideal, namely its Chow ideal. Let us recall this notion of integral closure :
given a commutative ring A and some ideal I, an element a € I belongs to
the integral closure of I in A (this is also an ideal somewhere between I and
its radical) if and only if a satisfies some relation of integral dependency of
the form :

a +ya 4+ +yy =0, y;€l,j=1,..,N, NeN*.

Whenever A is a regular local ring with dimension k£ and [ is any ideal in
A, the integral closure of I* lies in I (moreover, for any p € IN*, the integral
closure of I¥7P~1 lies in I?). When A is the ring O,, of germs of holomorphic
functions at the origin in C" and I is generated by monomials, this result is
an easy consequence of Caratheodory’s theorem which asserts than, in any
affine n-dimensional real space, any element in the convex enveloppe of a
subset can be realized as a barycentric combination of at most n + 1 ele-
ments from this subset. Which means that it is (in this very particular case)
a result from convex analysis which helps to build the expected bridge be-
tween the realization of inequalities of analytic nature (such as in the second
formulation of E. Cygan’s theorem) and that of algebraic identities (such as
the effectiveness of the membership of one element to an ideal). What is very
deep is that this key result about the integral closure of a monomial ideal
has been extended to any ideal in the ring O, by Joél Briancon et Henri
Skoda en 1974 [9], and seven years later, transposed to the more general
setting of ideals in regular local rings by J. Lipman, B. Teissier, A. Sataye en
1981 [31, 30] (note that the arguments used in [31] are inspired by analytic
ideas and that there does not exist yet any crystal-clear proof, let say for
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example a proof inspired by combinatorics arguments, of the fundamental,
but somehow mysterious, Lipman-Sataye-Teissier theorem.

The result obtained by D. W. Brownawell in 1988 in (8] can be stated as
follows : given m polynomials in C[Xj, ..., X,,| with respective degrees D; >
Dy > --- > D, without any common zero in C", there exist m polynomials
Q1, -y @ with degree at most nD; - - - Dyin(n,m) such that

1=PQi1+...+ P.Qnm. (3.5)

Note that the factor n here comes from Briancon-Skoda’s theorem. A similar
result (with a proof based on the use of cohomology with supports, which
was also later rephrased by P. Philippon using as main tool the notion of
Koszul complex) was obtained one year later by J. Kollar : when Py, ..., P,
define a proper ideal in C[Xj, ..., X,,], one can always achieve (3.5) with Q;
which degrees are bounded from above by

min(n,m)

I max(3,D;).

=1

It follows that the Hilbert’s zeroes decision problem over C can always be
solved within simply, instead of double, exponential time ; upper bounds
essentially fit with lower bounds (2.4). Such a result came as a surprize
since the Mayr-Meyer example seemed to close the possibility to get under
the upper bounds (2.2) that were suggested by G. Hermann. It could also
have come as good news towards a proof that the nullstellenstatz decision
problem could be in the P-class over C ; this did not really happen to be the
case, since different hints (issued from the arithmetic or algorithmic point of
view) are in favor of the fact that it is not (so that P # NP over C would
be true). Nevertheless, the fundamental results of D. W. Brownawell and J.
Kolldr, which are also presented in some revisited form in [26, 23] (in the light
of new developments in intersection theory which occured in the nineties),
became the motivation for a lot of questions, which were linked in particular
to the transposition of these results to the arithmetic setting, that is when
A is a commutative infinite ring equipped with a notion of height (such as
Z,Z[x1, ..., xs), Lp|x1, ..., 5]). We will develop results in such directions in the
next section.

As for the membership problem over C, respect to its complexity, it seems
inexorably knock against lower bounds involved in the Mayr-Meyer example.
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Nevertheless, the Euclidean division algorithm found its accomplishment in
Buchberger’s method (developped around 1970), leading to the construction,
for any ideal in K[Xj, ..., X;;], K being a commutative field and the set of
monomials being equipped with some ordering structure (such as the lexi-
cographic one), of a standard base (or Grébner base) for the ideal (for an
introduction to these notions, see for example [12] or [1]).

Therefore, since the knowledge of a standard basis for some ideal I implies
the possibility to solve at once any division problem where only I is involved
(for example decide if, yes or no, some given polynomial @) belongs to I, that
is answer to the membership problem), it is clear that Mayr-Meyer’s example
shows that one cannot give in general a reasonable control on the complexity
of Buchberger’s algorithm. Nevertheless, it is important to underline how
ideas which, since the early seventies, were key tools in the algorithmic car-
rying out of Weierstrass division theorem (see A. Galligo’s thesis in 1973
[17]) have also played a fundamental role, as much from the point of view
of formal calculus than geometry of singularities ; the same ideas where also
those which subtend Hironaka’s proof in 1969 of resolution of singularities in
characteristic zero (in the algebraic and analytic settings).

One should also mention, respect to the membership problem over C, that
very recently, M. Hickel in [23], refining an anterior result due to F. Amoroso
[2], proved that if Py,..., P, € C[Xy,...,X,] were m polynomials with re-
spective degrees Dy > --- > D,, and Q € (P, ..., P;,), then one can find m
polynomials @1, ..., Q,, such that

Q" =PiQi+ ...+ PnQn

with

maxdeg Q; < n(deg@ + D - - - Diintn,m)) -
Such a result shows again the strenght of Briancon-Skoda’s theorem ; though
simply exponential bounds cannot be reached for the effectiveness of the
membership, it is always possible to express Q™ in the ideal (P, ..., Py,) with
simply exponential degree estimates for the ;’s as soon as @ lies locally in
the integral closure of the ideal I, that is when the analytic inequality

[Q(2)] < C(z) max |P;(z)]

1<j<m

is valid in C" for some locally bounded function C.
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4 How interpolation and duality tools can be
used towards solving Hilbert’s zeroes prob-
lem

Two brilliant ideas (also and even mainly developped in applied mathematics)
put under a new light (within the decade 1990-2000) algebraic or arithmetic
questions relative to the solution of the two decision problems (nullstellen-
satz and membership) we mentionned in previous sections. One should better
speak about the “rediscovery” of a whole circle of ideas that had been exten-
sively developped between the end of the ninetieth century or and the begin-
ning of the twentieth century by mathematicians such as Cayley, Kronecker,
Jacobi or Macaulay. O. Netto’s treatise of algebra [34] contains moreover a
lot of ideas that one will find exploited again almost one century later. These
two ideas are

e Lagrange’s interpolation formula (used as a division formula as well as
an interpolation formula) ;

e the duality principle (which lies also behind basic concepts in applied
mathematics such those of distributions and currents) ; one should also
mention the geometric concept of polarization, which appears as an-
other realization of such a duality principle and that Radon transform
illustrates so well in the applied field.

Lagrange’s interpolation formula provides an alternative solution to the reso-
lution of Bézout identity in C[X] (besides the classical euclidean algorithm) ;
if P; and P, are two polynomials in C[X] without common zero in C, then

1:P1£p2(1/P1; )+P2£P1(]-/P2a ')7

where Lp,(1/F;; -) is the Lagrange interpolator 1/P; at the zeroes (which
may be multiple) of the polynomial P; (¢ # j). As for Cauchy’s formula (or
more generally in higher dimensions Cauchy-Fantappié formula),

(o) = 1 /| f(C)dC’

"~ 2im Jig—ai=e (—2

one can think about it as a duality formula (note that the concept of polar-
ization lies besides the interpretation of Cauchy-Fantappié transforms) ; the
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basic Cauchy formula in one variable may be rewritten as

_ f(Q)d¢ ]
(3(2), ) = Res | 11
so that the action of the Dirac mass at the point z on the test-object f can
be expressed as the action on the test-object f(()d( of the residual symbol

Res [ . ]

()—=
(such an action happens to be materialized ~but this is only the analytic
materialization of some true algebraic object— by the computation of a path
integral).

A second idea (also attributed to Lagrange) that one can aloso formulate in
such a formalism inspired by the duality concept is the following : whenever
P and @ are two polynomials in C[X] such that deg@ < degP — 2, then

Res [Q(;)df] =0.

One can re-read such a fact (thinking now in terms of differential geometry)
saying that the total sum of residues of the meromorphic differential form
Q/Pd( on the compact algebraic variety IP*(C) equals zero (note that this is
also a consequence of Stokes’s theorem) ; such a result becomes an index the-
orem, that already Jacobi in [24] knew how to transpose to a (still geometric)
multi-dimensional setting.

It is a combination of such various ideas which could be used as soon as 1991
to provide some arithmetic solution to the Hilberts’s zeroes decision problem
([5], [6]) ; such a solution gave an estimate (which was not optimal, but on
the way to be) respect non only to degrees, but also to heights, when the
problem was settled over some infinite integral unitary domain A that could
be equipped with a notion of (logarithmic) height : whenever Py, ..., P,, are m
polynomials in A[X], ..., X,,]| without common zeroes in some integral closure
of Frac A, with total degree at most D, there exist m polynomials @1, ..., @,
in A[Xy,...,X,], with degrees at most n(2n + 1)D", some element a € A*
such that
max(h(a), h(Q;)) < k(n)D"2(h +logm + D)

18



and
m
a = Z Pj Qj ,
7j=1
where h denotes the maximum of the logarithmic heights of all coefficients
involved in the input data P;, j =1,...,m.

The progressive elaboration (since 1990) of the logarithmic height concept,
together with the active development of arithmetic intersection theory follow-
ing the pionnier work of S. J. Arakelov [3], lead to the search for optimality
in the control of the effectiveness of the arithmetic nullstellensatz ; the last
step came very recently, and got to its achievement with the very recent work
of T. Krick, Luis-Miguel Pardo et Martin Sombra [29] ; their result refines
the estimate for the maximal degrees of the ();, which now becomes

maxdeg Q; < 4nD",

as well as the height estimates (now nearly optimal if one compares them
to the lower bounds D™ !log H for the telescopic Masser-Philippon example
suggested at the end of section 2) :

max(h(a), h(Q;)) < 4n(n+ 1)D"(h + logm + (n+ 7) log(n +1)D).

Arithmetic intersection theory, such as developped by G. Faltings, then J.
B. Bost, H. Gillet, C. Soulé [15, 18, 7], appears as a good illustration of
the complementarity between arithmetic, geometry and analysis ; such a
complementarity is already inherent in a well known formula, the product
formula : if | - |,, p prime, denotes the ultrametric absolute value on Q
normalized such that

im/nl, = prp(mtrp(n)

where 1,(k) means the exponent of p within the prime factorization of the
positive integer |k|, one has, for any non zero rational number z,

I lalp=—
Ty = ———
p premier ? ‘x|00 ’

where | - |, denotes the usual (archimedian) absolute value on Q ; such a
formula can be re-written

(I I=l) % [ale =1.

p premier
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The first factor here is of arithmetic nature, the second one of analytic nature.
The same kind of complementarity may be also suggested by some crucial
formula in pluricomplex potential theory, namely Jensen’s formula : if P is
an element in C[X],

n
o [0 =)

then
/log|P &7[d = log lag| + 3" max(0, log o)

2 =
here again, whenever P is a polynomial with integer coefficients, the left-hand
side of this identity reflects some analytic information, while the right-hand
side (that one can express, thanks to the product formula transposed from Q
to the more general setting of a number field, in terms of ultrametric absolute
values) carries an information of arithmetic nature. One should also notice
that, whenever P is an homogeneous polynomial in C[Xj, ..., X,,] with degree
D, the function
log | P|*

(which plays a role in Jensen’s formula in the one-dimensional setting) ap-
pears as a solution og Green’s equation

dd®log |P|* + [Z(P)] = Dw,

where w denotes the volume form in the projective space P"(C) and [Z(P)]
denotes the integration current (multiplicities been taken into account) on
the projective hypersurface {P = 0}, which amounts to another important
formula (which one also needs to transpose to the multi-variate case and to
read on P"(C) instead than in the affine setting), namely the following : if
P € C[X] admits a, ..., s (with respective multiplicities j1, ..., ps) as roots
in C, then, one has, in the sense of distributions, Lelong-Poincaré formula,
that is

Alog|P(z \—QWZ/L] o 5

where d,, denotes the Dirac mass at the pomt a; and A the Laplace operator.
In order to compute the logarithmic height of some arithmetic cycle with
codimension k in ProjZ[ Xy, ..., X,], one needs to intersect it with a generic
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projective subspace U which is defined in homogeneous coordinates [z : ... :
Tp,] as
U:={{W’z)="--= ("% 2) =0},

where the u; are generic integer coeflicients ; one gets that way a 0-dimen-
sional arithmetic cycle
Y. n it}

T,7T premier

whose logarithmic height will be defined as
> n.logT;

in order to balance such an arithmetic contribution and define some notion
of logarithmic height that could be intrinsic (that is independent of U), one
needs to add to this arithmetic expression the (analytic) contribution

1

- | G

2 /U z
where G denotes a (k — 1,k — 1)-current, with sngular support contained
in the support of Z, orthogonal to harmonic forms, and moreover solution of

Green’s equation
dd°Gz + [Z] = (deg Z) WF,

where [Z] means the integration current (multiplicities been taken into ac-
count) on the cycle Z (thought now as a geometric cycle instead of an arith-
metic cycle). The logarithmic height of the arithmetic cycle Z is then defined
as

1 J
;n710g7+§/(JGZ+ 5 ZZ

This is the height notion that one can put in the machinery leading to ef-
fectiveness in the solving of Bézout identity in the arithmetic (instead of
geometric) setting, that is over Z instead than over C. The key point about
such a notion of logarithmic height is that it leads to an arithmetic formula-
tion of Bézout’s theorem : the logarithmic height of the intersection of two
arithmetic cycles Z; and Z, (one such an intersection has been conveniently
defined) is bounded from above by

deg 71 h(Z,) + deg Zy h(Z1) + k(codim Z1, codim Z5) deg Z; deg Z, .
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Such a fundamental result plays a basic role respect to effectivity results re-
lated to the solution of the nullstellensatz problem over Z. What we wanted
mainly to point out through this very short presentation of concept of log-
arithmic height was the evident complementarity between the analytic and
arithmetic points of view ; in fact, one should better say between the geo-
metric and arithmetic points of view, since the concept of Green’s current
we just introduced appears to be intimately related to the contruction of
metrics on fiber bundels, in the spirit of the theory which was lined up by S.
J. Arakelov within the setting of algebraic curves.

5 Back to complexity problems

The fact that we have by now at our disposal quasi-optimal versions concern-
ing the effectiveness of Hilbert’s zeroes theorem, from the geometric point
of view and arithmetic point of view as well (in terms of a good control on
degrees or logarithmic heights as soon as the problem is settled over a ring
A equipped with some notion of height, either naive or more elaborate) hap-
pens to be only indirectly linked the question whether there could exist (yes
or no) a machine which could be able to solve such decision problems within
polynomial time.

Nevertheless, the fact that we know low bounds for degree or logarithmic size
estimates for the effective resolution of Bézout identity could give some hint
towards the idea that the Hilbert’s zeroes problem is not in the P-class over
C. We will refer later to more algorithmic hints towards the same direction.

Let us precise here a different point of view, more phrased in terms of com-
plexity. M. Shub and S. Smale proved in [36] that the Hilbert’s zeroes problem
over C being in the P-class would reflect on the complexity of a very familiar
sequence of integers, the sequence (k!)z>1. We need first to give a definition :

Définition 5.1 A sequence of integers (ay)r>1 s said to be “easy to com-
pute” if and only if there exists a sequence of “denominators” (my)g>1, an
integer q, such that there exists, for any k = 1, ..., a finite sequence of integers

(Tk1)o<i<n,, with
e Tor=1

® TN, k= Mk
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[ J Nk S (ln k)q
o any x1y, 1 <1 < Nj can be computed as x1; = T; ) ® T, with
0<4,5<1

and e means one among the three basic operations that are addition,
substraction and multiplication.

M. Shub et S. Smale’s result in [36] may be stated as follows :

Théoreme 5.1 If the Hilbert’s zeroes decision problem over C was in the
P-class, then the sequence (k!)g>1 would be easy to compute.

Such a notion of “simplicity” for a numerical sequence will lead us to some
different interpretation of questions connected with effectivity of problems
such as the Hilbert’s zeroes decision problem.

What we did up to now (listing the results of D. W. Brownawell, J. Kollar,
C. A. Berenstein and A. Yger, T. Krick, L.M. Pardo and M. Sombra) was
to speak about effectivity mentionning in such problems (Bézout identity,
membership) how the degrees (or the logarithmic heights) of the outputs
were controlled in terms of the degrees (or the degrees and the logarithmic
heights) of the input data. Such estimates imply a bound from above for
the cost of a machine solving the corresponding decision problem, either
using a linear algebra argument (as soon as degree estimates are known, one
knows which linear system of equations to solve) or a direct formula as in
[5, 6] based generally speaking on a duality argument (such as multivariate
residue calculus). There are indeed over quantifiers in order to “measure”
the complexity of some input which consists of a matrix of polynomials in
n variables with coefficients either in C either in Z (or more generally in
some ring A that one can equip with a logarithmic height) : for example,
the convex hull of the supports of these polynomials (that is the convex hull
in (R")™ of the set of points in IN" corresponding to multi-exponents of
monomials which appear in the polynomial expressions) may be a quantifier
much more precise than the degree.

Another trick one can use to code the complexity of system of polynomial
inputs is to code the process itself of construction, then of evaluation, of the
different entries of the system : for example the polynomial

X2 —1e7[X]
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is quite easy to code this way, iterating the process X + X2 27 times,
though it has a doubly exponential degree ! Such an idea arose in the sev-
enties, through the works of J. Heintz, J. Morgenstern, C. P. Schnorr,...,
and intensively developped since then ; one can for example refer to the ref-
erences [27, 20, 19] in order to find both a presentation and a prospective
outlook about the role such an approach could have respect to diophantine
approximation questions (note that the different works of D. W. Brownawell,
D. W. Masser, P. Philippon, C. A Berenstein and A. Yger, F. Amoroso we
mentionned before took their motivations precisely around such questions).

The key notion here is the concept of straight line program with parameter
system F ; such a concept is inspired by the notion of “simplicity” (in the
sense it is easy to compute) of a numerical sequence. Such a program consists
in the following data : a graph G, paired with a list of instructions (all of
them defining some kind of protocol) one for each different entry gate of the
graph (let Q be such a list of instructions). If one works with a prescribed
number of variables n, the graph will present n + 1 entry gates labelled as
Xi,...,X, and 1. The depth of a node v of G denotes the length of the longest
path from v till one of the entry gates. One can label the nodes of the graph
by pairs (i, ), where 7 means the depth of the node and j another parameter
which is used to classify (in the lexicocraphic order <) nodes with depth
equal to some prescribed value i ; to each gate (i, j), one may associate some
operation

Qij = ( > A?J;Qns> ( > Bz'r,’stT’s) ;
(1,8)<1ex(%:7) (rs8)<iex(%7)

where A7?, B} are intermediate variables, so-called parameters of the pro-

gram, the @, , Q™° being polynomials pre-calculated at the nodes (r,s) of

the graph anterior to the node (i, 7). A polynomial f with integer coefficients

is said to be evaluated by such a program (parameters being taken in some

subset F of Z) if there exist a node (7,7) and some choices of parameters

A = (Ay)]) and B = (By)), with (r,5) <iex (k) <iex (4, 4) such that
f(Xl, ceey Xn) = Qi,j(A7 B, Xl, ceey Xn) .

One may define then the size s of the program (this is the size of the graph),
its depth d (this is the depth of the graph), and eventually, if F is a finite
subset of Z which has been precised since the beginning, the height of the
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program as the maximum of the naive logarithmic heights of all elements in

F.

One can solve then Hilbert’s zeroes decision problem for example in the fol-
lowing algorithmic terms (see [28]) : if Py,..., P, are m-polynomials in n
indeterminates with integer coefficients, with degree less than D > n, and
logarithmic height less than h, there exists Q1,...,@Qm € Z[X1,..., X,] and
a € Z* (which can be evaluated by a straight line program with size, depth,
height, respectively bounded by md®™, O(nlog D), max(D™, h)) such that

a:P1Q1+PQO

One could as well ask the same question (is there such a, @1, ..., @, 7) assum-
ing that entries P, ..., P, are also obtained through straight line programs
evaluations (the size, the depth and the height being respectively bounded by
s,d, h for the straight line programs which are concerned) ; can one estimate,
in terms of s,d, h, and other geometric parameters such as the affine degree
0 or algebraic such as the maximum of the degrees D, the lenght, the depth
or the height of a straight line program that allows the possibility to evaluate
polynomials (); involved in an algebraic identity which could allow to test
whether the answer to the decision problem is yes or no ? Yes, sometimes, if
we add some geometric constraint : for example, if Py, ..., P, are n polyno-
mials defining a discrete (hence finite) algebraic variety in C", there exists,
for any j € {1,...,n}, a straight line program with length in (nDds)°™M), with
logarithmic height in O(n(log(nD) + d) log ) which allows to evaluate some
polynomial P € Z[X;] vanishing at all common zeroes of P, ..., P, in C".

We should mention here that it has been recently proved (see [11]) that
any elimination procedure with natural universal properties inherits (in the
algorithmic terms we just mentionned) from a complexity at least simply
exponential. Any known elimination procedure leading to optimality in the
algorithmic approach appears to be based on the algorithmic elimination “a
la Kronecker” (or multivariate residue calculus, which amounts basically to
the same thing), even though it may use intensively other duality ideas (such
as polarization for example in [4]). Could not be that some hint towards an
algorithmic formulation of the statement P # NP over C 7

Let us point out as a conclusion to this lecture that mathematical ideas that
were pushed up to reach the optimal result of Krick-Pardo-Sombra [29] seem
by now get close to their limits. One could guess that it is now time to think
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about such complexity questions in terms of informatics (more precisely in
terms of programming language or pure logic). The ball’s now in the court of
formal calculus specialists and one could hope new ideas coming from such
world will lead to new progress respect to some key questions in diophantine
analysis which remain unsolved, such as the well known Schanuel’s conjec-
ture (which would imply in its simplest cases, that is in dimension two, the
algebraic independence over Q of e and , or log2 and log3). Here again,
one could hope that analysis or geometry would play, as it has been already
the case, but up to now unsuccessfully, the same role of “stimulus” it played
respect to effectivity or complexity problems that lie behind questions related
to such decision problems as nullstellensatz or membership over C or Z.
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