NOTES POUR UN COURS POST-DEA

ALAIN YGER, Bordeaux 1996

ASPECTS ANALYTIQUES DU PROCESSUS DE DIVISION
Chapitre 1

Holomorphie et courants

1.1. Distributions et courants dans $\mathbb{R}^M$.

Étant donné un ouvert $\Omega$ de $\mathbb{R}^M$, on peut définir une topologie sur l'espace $\mathcal{D}(\Omega)$ des fonctions de classe $C^\infty$ et à support compact dans $\Omega$. Pour cette topologie, une suite $(\varphi_n)$ converge vers $\varphi$ si tous les éléments de la suite (et par conséquent aussi $\varphi$) sont à support dans un même compact $K$ (ce qui signifie: sont nulles hors de $K$) de $\Omega$, et si, pour chaque $p \in \mathbb{N}$, la suite

$$\mathcal{N}_{K,p}(\varphi_n - \varphi) := \sup_{x \in K} \sum_{k \in \mathbb{N}^M, |k| \leq p} |D^k(\varphi_n - \varphi)(x)|, \quad n = 0, 1, \ldots,$$

tend vers 0 lorsque $n$ tend vers l'infini; On convient ici de noter la longueur d'un multi-indice $k = (k_1, \ldots, k_M)$ par $|k| = k_1 + \cdots + k_M$, et de désigner par $D^k$ l'opérateur différentiel

$$D^k = \frac{\partial |k|}{\partial x_1^{k_1} \cdots \partial x_M^{k_M}}.$$

Le dual de $\mathcal{D}(\Omega)$, équipé de cette topologie, est l'espace des distributions $\mathcal{D}'(\Omega)$. Ainsi, une distribution $T$ sur $\Omega$ est une forme linéaire sur $\mathcal{D}(\Omega)$ telle que pour tout ouvert relativement compact $U$ de $\Omega$, pour toute fonction test $\varphi$ de support dans $U$, on ait

$$| \langle T, \varphi \rangle | \leq C(U) \mathcal{N}_{T, p(U)}(\varphi)$$

pour des constantes $C(U) > 0$ et $p(U) \in \mathbb{N}$ appropriées; une suite $(T_n)$ de distributions converge vers une distribution $T$ si pour toute fonction test $\varphi \in \mathcal{D}(\Omega)$, $\langle T_n, \varphi \rangle$ converge vers $\langle T, \varphi \rangle$ (ici $\langle , \rangle$ désigne le crochet de dualité). On peut dériver les distributions, selon les conventions de l'intégration par parties

$$\langle D^k(T), \varphi \rangle := (-1)^{|k|} \langle T, D^k(\varphi) \rangle$$

et considérer les espaces

$$\mathcal{A}^q(\Omega) := \mathcal{D}'(\Omega) \otimes \mathbb{C} \Lambda^q(\Omega), \quad q = 0, 1, \ldots, M,$$

où $\Lambda^q(\Omega)$ désigne le $\mathbb{C}$-espace vectoriel des $q$-formes différentielles à coefficients constants sur $\Omega$. Ainsi les opérations du calcul extérieur passent elles de la hiérarchie des $\Lambda^q(\Omega)$, $q = 0, \ldots, M$, à celle des espaces $\mathcal{A}^q(\Omega)$ selon les règles habituelles du calcul extérieur. On a ainsi la suite de De Rham

$$\mathcal{A}^0(\Omega) = \mathcal{D}'(\Omega) \hookrightarrow \mathcal{A}^1(\Omega) \rightharpoonup \mathcal{A}^2(\Omega) \rightharpoonup \cdots \rightharpoonup \mathcal{A}^M(\Omega) \rightharpoonup 0$$

où $d$ est l'opérateur de la linéaire défini par

$$d(T \omega) = \left( \sum_{k=1}^M \frac{\partial T}{\partial x_k} dx_k \right) \wedge \omega$$
lorsque ω ∈ Λ^q(Ω). On peut ainsi définir les groupes (additifs) de cohomologie de De Rham:

\[ H^q(\Omega, \mathbb{C}) = \frac{\text{Ker } d : \mathcal{A}^q(\Omega) \to \mathcal{A}^{q+1}(\Omega)}{\text{Im } d : \mathcal{A}^{q-1}(\Omega) \to \mathcal{A}^q(\Omega)}, \quad q = 1, \ldots, M, \]

avec la convention \( \mathcal{A}^{M+1}(\Omega) = \{0\} \). Ces groupes mesurent le défaut d’exactitude de la suite de De Rham.

Par définition, l’espace \( \mathcal{A}^q(\Omega) \) sera l’espace des \( q \)-courants sur \( \Omega \). Dans le cas particulier où \( \Omega \) est un ouvert de \( \mathbb{C}^n \) (que l’on identifie à \( \mathbb{R}^{2n} \)), on peut définir les formes différentielles

\[ dz_j = dx_j + idy_j, \quad d\bar{z}_j = dx_j - idy_j, \quad j = 1, \ldots, n \]

et, lorsque \( 0 \leq p, q \leq n \), les espaces de \( (p,q) \) courants sur \( \Omega \), comme

\[ \mathcal{A}^{(p,q)}(\Omega) := \mathcal{D}'(\Omega) \otimes_{\mathbb{C}} \Lambda^{(p,q)}(\Omega) \]

où \( \Lambda^{(p,q)}(\Omega) \) est le \( \mathbb{C} \)-sous-espace de \( \Lambda^{p+q}(\Omega) \) engendré par les formes du type:

\[ \bigwedge_{i\in I} dz_i \wedge \bigwedge_{j\in J} d\bar{z}_j, \quad \#I = p, \quad \#J = q. \]

On peut décomposer \( d \) comme la somme de deux opérateurs linéaires \( \partial \) et \( \overline{\partial} \) avec

\[ \partial(T\omega) := \frac{1}{2} \left( \sum_{k=1}^M \frac{\partial T}{\partial x_k} - i \frac{\partial T}{\partial y_k} \right) dz_k \wedge \omega \]

\[ \overline{\partial}(T\omega) := \frac{1}{2} \left( \sum_{k=1}^M \frac{\partial T}{\partial x_k} + i \frac{\partial T}{\partial y_k} \right) d\bar{z}_k \wedge \omega \]

et définir ainsi le complexe de Dolbeault:

\[
\begin{array}{cccccccccccc}
\downarrow \partial & \ldots & \downarrow \partial & \ldots \\
\mathcal{A}(p-1,0) & \overrightarrow{\partial} & \mathcal{A}(p-1,1) & \overrightarrow{\partial} & \mathcal{A}(p-1,q) & \overrightarrow{\partial} & \mathcal{A}(p-1,q+1) & \overrightarrow{\partial} & \cdots & \overrightarrow{\partial} & \mathcal{A}(p-1,n) & \overrightarrow{\partial} & 0 \\
\downarrow \partial & \ldots & \downarrow \partial \ldots \\
\mathcal{A}(p,0) & \overrightarrow{\partial} & \mathcal{A}(p,1) & \overrightarrow{\partial} & \mathcal{A}(p,q) & \overrightarrow{\partial} & \mathcal{A}(p,q+1) & \overrightarrow{\partial} & \cdots & \overrightarrow{\partial} & \mathcal{A}(p,n) & \overrightarrow{\partial} & 0 \\
\downarrow \partial & \ldots & \downarrow \partial \ldots \\
\mathcal{A}(p+1,0) & \overrightarrow{\partial} & \mathcal{A}(p+1,1) & \overrightarrow{\partial} & \mathcal{A}(p+1,q) & \overrightarrow{\partial} & \mathcal{A}(p+1,q+1) & \overrightarrow{\partial} & \cdots & \overrightarrow{\partial} & \mathcal{A}(p+1,n) & \overrightarrow{\partial} & 0 \\
\downarrow \partial & \ldots & \downarrow \partial \ldots
\end{array}
\]

(on a écrit \( \mathcal{A}^{(p,q)} \) au lieu de \( \mathcal{A}^{(p,q)}(\Omega) \) pour ne pas alourdir l’écriture).

On peut équiper naturellement les espaces \( \mathcal{A}^q(\Omega) \) (\( 0 \leq q \leq M \)) ou, dans le cas complexe, \( \mathcal{A}^{(p,q)}(\Omega) \), \( 0 \leq p, q \leq n \), de topologies.

Pour cela, il suffit d’interpréter dans le premier cas (cas réel) un élément de \( \mathcal{A}^q(\Omega) \) comme une forme linéaire sur l’espace des \( (M-q) \)-formes différentielles sur \( \Omega \) à coefficients dans
\( D(\Omega) \). Si \( \varphi \) est une telle forme et \( T \) un \( q \) courant du type \( S\omega \), où \( \omega \in \Lambda^q(\Omega) \), l'action de la dualité se traduit par

\[
<T, \varphi> = \int_{\Omega} S\omega \wedge \varphi = \langle S, \xi \rangle,
\]

si \( \omega \wedge \varphi = \xi dx_1 \wedge \cdots \wedge dx_M \).

Dans le second cas (cas complexe), on interprète un élément de \( A^{(p,q)}(\Omega) \) comme une forme linéaire sur l'espace des \( (n-p, n-q) \) formes à coefficients dans \( D(\Omega) \), c'est à dire les combinaisons linéaires de formes du type

\[
\theta \wedge \bigwedge_{i \in I} dz_i \wedge \bigwedge_{j \in J} dz_j, \quad \#I = n-p, \quad \#J = n-q, \quad \theta \in D(\Omega).
\]

Le crochet de dualité dans ce second cas entre \( T = S\omega \), où \( \omega \in \Lambda^{(p,q)}(\Omega) \) et \( \varphi \) sera

\[
<T, \varphi> = \langle S, \xi \rangle,
\]

si \( \omega \wedge \varphi = \xi dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n \). Cela suppose une convention d'orientation de \( \mathbb{C}^n \), qui sera celle pour laquelle l'intégrale de \( \xi dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n \) correspond à

\[
\int_{\Omega} \xi dm_{2n},
\]

où \( m_{2n} \) est la mesure de Lebesgue sur \( \mathbb{R}^{2n} \).

Les topologies sur les espaces de formes différentielles (toutes induites naturellement par la topologie dont on a équipé \( D(\Omega) \), car tous ces espaces sont des \( D(\Omega) \)-modules libres), induisent des topologies sur leurs duals, exactement comme la topologie de \( D(\Omega) \) induit une topologie sur \( D'(\Omega) \).

1.2. Formule de Stokes et de Bochner-Martinelli ; le test d'holomorphie en termes de courants.

Étant donné un ouvert \( \Omega \) de \( \mathbb{C}^n \), on appelle fonction holomorphe dans \( \Omega \) toute fonction \( f \) de \( \Omega \) dans \( \mathbb{C} \) admettant au voisinage de tout point \( z_0 = (z_{01}, \ldots, z_{0n}) \) de \( \Omega \) un développement en série de puissances de \( z - z_0 \), i.e

\[
f(z) = \sum_{k \in \mathbb{N}^n} a_k(z_0)(z_1 - z_{01})^{k_1} \cdots (z_n - z_{0n})^{k_n}, \quad z \in \mathcal{V}_{z_0},
\]

où \( \mathcal{V}_{z_0} \) est un voisinage de \( z_0 \), avec

\[
\sum_{k \in \mathbb{N}^n} |a_k| r^{|k|} < \infty
\]

pour un certain \( r = r(z_0) > 0 \). Comme on le vérifie aisément, on a dans ce cas:

\[
a_k(z_0) = \frac{1}{(2\pi i)^n} \int_{[0,2\pi]^{2n}} f(z_0 + (\rho_1 e^{i\theta_1}, \ldots, \rho_n e^{i\theta_n})) e^{-ik\theta} d\theta_1 \cdots d\theta_n = \frac{1}{(2\pi i)^n} \int_{\{k_1 - z_{01} = \rho_1\} \times \cdots \times \{k_n - z_{0n} = \rho_n\}} \frac{f(\zeta) d\zeta_1 \wedge \cdots \wedge d\zeta_n}{(\zeta_1 - z_{01})^{k_1+1} \cdots (\zeta_n - z_{0n})^{k_n+1}},
\]

(1.1)
pourvu que les $\rho_i$ soient assez petits pour que l'on ait à la fois $\rho_i \leq r(z_0)$ et \(|\zeta_j - z_0| \leq \rho_j, \ j = 1, \ldots, n\) \(\subset \Omega\). Comme une fonction holomorphe de \(n\) variables est clairement séparément holomorphe en chaque des variables, on a d'abord que $\Delta(0; \rho) := \{||\zeta_j - z_0|| \leq \rho_j, \ j = 1, \ldots, n\} \subset \Omega$, la formule de représentation de Cauchy à l'intérieur du polydisc $\Delta(0; \rho_1, \ldots, \rho_n)$, soit
\[
 f(z) = \frac{1}{(2\pi)^n} \int_{||\zeta_1 - z_0|| = \rho_1 \times \cdots \times ||\zeta_n - z_0|| = \rho_n} \frac{f(\zeta)d\zeta_1 \wedge \cdots \wedge d\zeta_n}{(\zeta_1 - z_1) \cdots (\zeta_n - z_n)}, \quad z \in \Delta(0; \rho). \quad (1.2)
\]

De cette formule de Cauchy, on déduit immédiatement (via le théorème de dérivation de Lebesgue), que toute fonction holomorphe dans $\Omega$ est de classe $C^\infty$ et vérifie le système d'équations aux dérivées partielles que l'on écrira sous forme "condensée"
\[
 \overline{\partial} f \equiv \frac{1}{2} \sum_{k=1}^n \left( \frac{\partial f}{\partial x_k} + i \frac{\partial f}{\partial y_k} \right) d\bar{\zeta}_k \equiv 0 \text{ dans } \Omega. \quad (1.3)
\]

Comme on le vérifie par un calcul facile, si l'on note $\omega_n$ la forme différentielle
\[
 \omega_n(\zeta) := \frac{\left( \sum_{k=1}^n (-1)^{k-1} \zeta_k \wedge d\zeta_j \right) \wedge d\zeta_1 \wedge \cdots \wedge d\zeta_n}{(\zeta_1^2 + \cdots + \zeta_n^2)^n},
\]
on a, pour tout $z$ dans $\Omega$,
\[
 d\zeta \omega_n(\zeta - z) = \overline{\partial} \zeta \omega_n(\zeta - z) \equiv 0 \text{ dans } \Omega \setminus \{z\}.
\]

On a donc aussi, pour toute fonction holomorphe dans $\Omega$,
\[
 d(f \omega_n(\zeta - z)) \equiv 0 \text{ dans } \Omega \setminus \{z\}.
\]

Si $U$ désigne un ouvert borné de $\mathbb{C}^n$ dont l'adhérence est incluse dans $\Omega$ et dont la frontière est régulière (disons $C^1$) par morceaux, au sens où l'on peut appliquer le théorème de Stokes, on a alors, pour tout $z_0 \in U$, pour tout $\varepsilon$ tel que
\[
 \overline{D}(z_0, \varepsilon) := \{||\zeta - z_0|| \leq \varepsilon\} \subset U,\]
pour toute fonction $f$ holomorphe dans $\Omega$,
\[
 \int_{||\zeta - z_0|| = \varepsilon} f(\zeta) \omega_n(\zeta - z_0) = \int_{\partial U} f(\zeta) \omega_n(\zeta - z_0) \quad (1.4)
\]
a cause de la formule de Stokes. Si l'on écrit le membre de droite en coordonnées polaires, i. e. on paramétrise $\{||\zeta - z_0|| = \varepsilon\}$ par
\[
 \zeta_1 = z_{01} + \rho_1 e^{i\theta_1}, \ldots, \zeta_n = z_{0n} + \rho_n e^{i\theta_n}, \quad \rho_1^2 + \cdots + \rho_n^2 = \varepsilon,
\]
on voit que
\[
 \varepsilon \mapsto \int_{||\zeta - z_0|| = \varepsilon} f(\zeta) \omega_n(\zeta - z_0)
\]
est une constante (ce n'est pas une surprise à cause de la formule de Stokes), et que cette constante vaut en fait
\[
 \int_{||\zeta - z_0|| = \varepsilon} f(\zeta) \omega_n(\zeta - z_0) = (2i\pi)^n \frac{f(z_0)}{(n-1)!} (-1)^{\frac{n(n-1)}{2}}.
\]

Nous pouvons donc énoncer la proposition
Proposition 1.1 (Formules de Bochner-Martinelli). Soit $f$ une fonction holomorphe de $n$ variables dans $\Omega$, ouvert de $\mathbb{C}^n$, et $U$ un ouvert de $\mathbb{C}^n$ dont l’adhérence est incluse dans $\Omega$ et la frontière assez régulière pour que s’applique le théorème de Stokes; on a alors, pour tout $z \in U$,

$$f(z) = \frac{(n-1)!(-1)^{\frac{n(n-1)}{2}}}{(2i\pi)^n} \int_{\partial U} f(\zeta) \omega_n(\zeta - z)$$

et, par dérivation sous le signe somme

$$\frac{\partial^{\lfloor k \rfloor}}{\partial z_j^{k_j}} [f](z) = \frac{(n+|k| - 1)!(-1)^{\frac{n(n-1)}{2}}}{(2i\pi)^n} \int_{\partial U} f(\zeta) \omega_n,_{k}(\zeta - z_0)$$

avec

$$\omega_n,_{k}(\zeta) := \prod_{j=1}^{n} \frac{\left(\sum_{k=1}^{n}(-1)^{k-1} \zeta_k \wedge \bigwedge_{j \neq k} d\zeta_j\right) \wedge d\zeta_1 \wedge \cdots \wedge d\zeta_n}{(|\zeta_1|^2 + \cdots + |\zeta_n|^2)^{n+|k|}}$$

lorsque $k$ est un multi-indice et

$$\frac{\partial}{\partial z_j} := \frac{1}{2} \left( \frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j} \right), \quad j = 1, \ldots, n.$$

Si $\varphi$ est seulement une fonction de classe $C^1$ dans $\Omega$ (à valeurs dans $\mathbb{C}$), nous pouvons écrire, toujours grâce à la formule de Stokes, pour tout $U$ comme dans la proposition 1.1, pour tout $z \in U$, pour tout $\epsilon$ tel que $\overline{D(z, \epsilon)} \subset U$,

$$\int_{\{ \xi - z \vert = \epsilon \}} \varphi(\zeta) \omega_n(\zeta - z) = \int_{\partial U} \varphi(\zeta) \omega_n(\zeta - z) - \int_{\{ \xi \in U, \| \xi - z \| \geq \epsilon \}} d\varphi \wedge \omega_n(\zeta - z) = \int_{\partial U} \varphi(\zeta) \omega_n(\zeta - z) - \int_{\{ \xi \in U, \| \xi - z \| \geq \epsilon \}} \overline{\partial} \varphi \wedge \omega_n(\zeta - z).$$

Comme on le remarque aisément

$$\int_{U} \| \overline{\partial} \varphi \wedge \omega_n(\zeta - z) \| < \infty;$$

du théorème de Lebesgue, il résulte alors que l’on a aussi, en faisant tendre $\epsilon$ vers 0

$$\lim_{\epsilon \to 0} \int_{\{ \xi - z \vert = \epsilon \}} \varphi(\zeta) \omega_n(\zeta - z) = \int_{\partial U} \varphi(\zeta) \omega_n(\zeta - z) - \int_{U} d\varphi \wedge \omega_n(\zeta - z), \quad z \in U.$$ (1.6)

En supposant (ce qui ne nuit en rien au problème car on peut régulariser et s’affranchir en fin de compte de cette régularisation) que $\varphi$ est $C^\infty$ et en écrivant le développement en
série de Taylor de $\varphi$ au voisinage de $z$, puis en intégrant ce développement terme à terme, on voit que, pour $\varepsilon > 0$

$$\int_{||\zeta - z|| = \varepsilon} \varphi(\zeta) \omega_n(\zeta - z) = \int_{||\zeta - z|| = \varepsilon} \tilde{\varphi}_z(\zeta) \omega_n(\zeta - z)$$

où

$$\tilde{\varphi}_z(\zeta) : = \sum_{k \in \mathbb{N}^n} \frac{1}{k_1! \cdots k_n!} \frac{\partial^{\mid k \mid}}{\partial z_j^{k_j}} [\varphi](z)(\zeta_1 - z_1)^{k_1} \cdots (\zeta_n - z_n)^{k_n}$$

représente la “partie holomorphe” du développement de Taylor de $\varphi$ en $z$. Si l’on utilise la proposition 1.1, on voit donc que

$$\varphi(z) = \frac{(-1)^{n(n-1)/2}}{(2i\pi)^n} (n - 1)! \lim_{\varepsilon \to 0} \int_{||\zeta - z|| = \varepsilon} \varphi(\zeta) \omega_n(\zeta - z).$$

On peut donc déduire de cela la

**Proposition 1.2.** Soit $\varphi$ une fonction de classe $C^1$ d’un ouvert $\Omega$ de $\mathbb{C}^n$ et à valeurs dans $\mathbb{C}$, $U$ un ouvert de $\mathbb{C}^n$ dont l’adhérence est incluse dans $\Omega$ et la frontière assez régulière pour que s’applique le théorème de Stokes ; on a alors, pour tout $z \in U$,

$$\varphi(z) = \frac{(-1)^{n(n-1)/2}}{(2i\pi)^n} (n - 1)! \left( \int_{\partial U} \varphi(\zeta) \omega_n(\zeta - z) - \int_{U} \overline{\partial} \varphi \wedge \omega_n(\zeta - z) \right). \quad (1.7)$$

Comme corollaire très important de cette proposition, nous avons le

**Théorème 1.3 (hypoelleptivité du $\overline{\partial}$).** Soit $S$ une distribution dans un ouvert $\Omega$ de $\mathbb{C}^n$, telle que $\overline{\partial}S \equiv 0$ ; alors il existe une fonction $f = f_S$, holomorphe dans $\Omega$ et telle que, pour tout $\varphi \in D(\Omega)$,

$$< S, \varphi > = \int_{\Omega} f_S(\zeta) \varphi(\zeta) d\mathcal{M}_{2n}(\zeta).$$

si $m_{2n}$ désigne la mesure de Lebesgue en dimension $2n$.

**Preuve.** Soit $z_0$ un point de $\Omega$, avec $\overline{\partial}(z_0, r) \subset \Omega$, et $\varphi_0$ une fonction $C^\infty$ identiquement égale à 1 au voisinage de $\overline{\partial}(z_0, r)$ et à support dans $\Omega$. Si l’on dénote par $\tilde{\omega}_n$ le courant (de type $(n, n-1)$) sur $\mathbb{C}^n$ défini par la forme à coefficients localement intégrables $\omega_n$, on a, au sens des courants (cela vient de la proposition 1.2)

$$\overline{\partial} \tilde{\omega}_n = \delta_0 dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n.$$ \quad (1.8)

On peut définir la convolution entre $\tilde{\omega}_n$ et une distribution $\tilde{S}$ à support compact dans $\mathbb{C}^n$. Il s’agit du courant de type $(n, n-1)$ qui agit sur une forme test $\varphi = \theta d\overline{\zeta}_j$ (de type $(0, 1)$) par

$$< \tilde{S} \ast \tilde{\omega}_n, \varphi > = (-1)^n \int_{\mathbb{C}^n} \frac{\overline{\tilde{S}(u)}(\zeta + u)}{||\zeta||^{2n}} < \tilde{S}(u), \theta(\zeta + u) > d\overline{\zeta} \wedge d\zeta,$$
avec la notation standard \( d\mathcal{C} \wedge d\zeta = d\mathcal{C}_1 \wedge \cdots \wedge d\mathcal{C}_n \wedge d\zeta_1 \wedge \cdots \wedge d\zeta_n \). Ce courant vérifie automatiquement, comme conséquence de (1.8),

\[
\overline{\partial}(\mathcal{S} \ast \mathcal{\omega}_n) = \mathcal{S} dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n.
\]

On peut donc écrire, dans \( D(z_0, r) \), au sens courants:

\[
S dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n = \phi_0 S dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n = \overline{\partial}(\phi_0 S \ast \mathcal{\omega}_n) = (S \overline{\partial} \phi_0) \ast \mathcal{\omega}_n.
\]

Mais on peut écrire, si \( \mathcal{S} = S \overline{\partial} \phi_0 \),

\[
\mathcal{S} \ast \mathcal{\omega}_n = \mathcal{S} \ast (\phi_0 \mathcal{\omega}_n) + \mathcal{S} \ast ((1 - \phi_0) \mathcal{\omega}_n),
\]

où \( \psi_0 \) est une fonction test de \( \mathcal{D}(\Omega) \), de support dans \( \mathcal{D}(0, r) \), et telle que \( \psi_0 \equiv 1 \) pour \( ||\zeta|| \leq r/2 \). Comme \( \mathcal{S} \) est à support compact et que \( (1 - \psi_0) \mathcal{\omega} \) est une fonction de classe \( \mathcal{C}^\infty \) (on a fait “sauter” la singularité en l’origine), le courant \( \mathcal{S} \ast ((1 - \psi_0) \mathcal{\omega}_n) \) est un courant du type \( \theta d\mathcal{C} \wedge d\zeta \), avec \( \theta \in \mathcal{C}^\infty(\mathbb{C}^n) \). D’autre part, le courant

\[
\mathcal{S} \ast \psi_0 \mathcal{\omega}_n
\]

est lui un courant de support dans \( \{ z, ||z - z_0|| \geq r/2 \} \), et ainsi \( \mathcal{S} \) coïncide avec une fonction \( \mathcal{C}^\infty \) au voisinage de \( z_0 \).

Il est classique qu’une fonction \( \mathcal{C}^\infty \) d’une variable qui satisfait les équations de Cauchy-Riemann est holomorphe. Ainsi la fonction \( f_S \) qui représente \( \mathcal{S} \) dans \( \Omega \) est elle séparément holomorphe. On en déduit que si \( z_0 \in \Omega \) et si les \( \rho_i, i = 1, \ldots, n \), sont tels que le polydisque \( \Delta(z_0; \rho) \subset \Omega \), alors, pour tout \( z \) intérieur à ce polydisque, on a la formule de Cauchy

\[
f_S(z) = \frac{1}{(2\pi)^n} \int_{\{ |\zeta_1 - z_0| = \rho_1 \} \times \cdots \times \{ |\zeta_n - z_0| = \rho_n \}} \frac{f_S(\zeta) d\zeta_1 \wedge \cdots \wedge d\zeta_n}{(\zeta_1 - z_1) \cdots (\zeta_n - z_n)}
\]

(ce via une simple itération de la formule à une variable, plus une application du théorème de Fubini pour faire apparaître l’intégrale multiple); en développant le noyau en série sous l’intégrale, comme

\[
\frac{1}{\prod_{j=1}^{n} (\zeta_j - z_j)} = \prod_{j=1}^{n} \left( \sum_{k=0}^{\infty} \frac{(z_j - z_{0j})^k}{(\zeta_j - z_{0j})^{k+1}} \right),
\]

on voit que \( f_S \) à un développement en série absolument convergente de puissances de \( z - z_0 \) au voisinage de tout point \( z_0 \) de \( \Omega \). Ceci montre que \( f_S \) est holomorphe dans \( \Omega \). \( \diamond \)

**Remarque.** Une remarque très simple à une variable complète ce résultat en ce qui concerne les fonctions méromorphes: si \( W \) est un sous ensemble discret d’un ouvert \( \Omega \) de \( \mathbb{C} \), une fonction holomorphe \( f \) sur \( \Omega \setminus W \) n’a que des singularités polaires (ou de première espèce) le long de \( W \) si et seulement si il existe une distribution \( S \) sur \( \Omega \) coïncidant avec
f sur \( \Omega \setminus W \); ces singularités sont éliminables si et seulement si la distribution \( S \) satisfait \( \partial S \equiv 0 \). Nous dériverons plus tard ce point de vue à plusieurs variables. Ce sera ce point de vue qui nous conduira à la définition des espaces de formes "méromorphes" sur une sous-variété (avec singularités éventuelles) d’un ouvert de \( \mathbb{C}^n \), ainsi que celle des formes "holomorphes" sur cette même sous variété.

1.3. Préparation et division locale par une fonction holomorphe de plusieurs variables.

Lorsque se pose le problème de la division d’une fonction holomorphe \( h \) (de \( n \) variables) par une fonction holomorphe \( f \) au voisinage d’un point où \( f \) s’anule, division avec ou sans reste, il est judicieux dans un premier temps de "préparer" les données, c’est à dire ici le diviseur \( f \). Pour cela, on a le théorème de préparation de Weierstrass:

**Théorème 1.4.** Soit \( f \) une fonction holomorphe de \( n \) variables dans un voisinage \( V \) de \( 0 \), telle que \( f(0) = 0 \). On suppose (ce qui est toujours possible après un éventuel changement linéaire de coordonnées), que \( z_n \mapsto f(0, \ldots, 0, z_n) \) n’est pas la fonction identiquement nulle au voisinage de 0. Il existe alors \( r > 0 \), \( R > 0 \) tels que le polydisque \( \overline{\Delta}_n(0; r, \ldots, r, R) \subset V \), un entier \( p > 0 \), \( p \) fonctions \( u_1, \ldots, u_p \) des \( n-1 \) variables \( z' := (z_1, \ldots, z_{n-1}) \) holomorphes dans \( \Delta_{n-1}(0; r, \ldots, r) \), nulles en 0, et telles que dans \( \Delta(0; r, \ldots, r, R) \), on puisse écrire

\[
f(z) = u(z)(z_n^p - \sum_{k=1}^{p} u_k(z') z_n^{-k}), \quad (1.9)
\]

où \( u \) est une fonction holomorphe sans zéro dans le polydisque \( \Delta_n(0; r, \ldots, r, R) \).

**Preuve.** On se donne \( R \) tel que, sur \( \{|z_n| = R\} \), on ait \( |f(0, \ldots, 0, z_n)| \geq \rho > 0 \) (ceci est possible car les zéros d’une fonction holomorphe non identiquement nulle sont isolés); bien sûr, \( R \) doit être choisi assez petit pour que la fonction \( z_n \mapsto f(0, \ldots, 0, z_n) \) soit bien définie dans ce disque complexe. Si \( r \) est convenablement choisi, on a, pour tout \( z' \in \Delta_{n-1}(0; r) \),

\[
\min_{|z_n| = R} |f(z', z_n)| \geq \rho / 2\pi.
\]

De plus, on peut faire en sorte que le polydisque fermé \( \overline{\Delta}_n(0; r, \ldots, r, R) \) soit inclus dans \( V \). D’après le théorème de Rouché, le nombre de zéros de

\[
z_n \mapsto f(z', z_n)
\]

dans le disque \( \overline{D}(0, R) \) reste constant et égal à \( p \) lorsque \( z' \in \Delta_{n-1}(0; r) \). Si l’on note ces zéros \((\alpha_1(z'), \ldots, \alpha_p(z'))\) (dans le désordre), on a, pour tout entier \( k > 1 \), grâce au théorème des résidus

\[
S_k(z) := \sum_{j=1}^{p} \alpha_j(z')^k = \frac{1}{2i\pi} \int_{|z_n| = R} z_n^k \frac{\partial f}{\partial z_n}(z', z_n) f(z', z_n) dz_n,
\]

ce qui montre que les fonctions \( S_k \), et par conséquent également les fonctions symétriques \( \sigma_k \) des \( \alpha_j \) (en vertu des classiques formules de Newton), sont des fonctions holomorphes.
de \( z' \) dans le polydisque \( \Delta_{n-1}(\overline{Q}; r) \) (il suffit d’appliquer le théorème d’holomorphie sous le signe somme de Lebesgue). On peut donc considérer

\[
(z', z_n) \mapsto g(z', z_n) := z'^p_n - \sigma_1(z') z'^{p-1}_n + \cdots + (-1)^p \sigma_p(z');
\]

Cette fonction est une fonction séparément holomorphe et continue, donc une fonction holomorphe de toutes les variables \((z', z_n)\) dans le polydisque \(\Delta_n(\overline{Q}; r_1, \ldots, r, R)\). De plus, les fonctions \(\sigma_j, j = 1, \ldots, p\), sont toutes nulles en \(\overline{Q}\) et, quitte à raffiner le choix de \(r\), on peut supposer que, pour tout \(z' \in \Delta_{n-1}(\overline{Q}; r)\), on a

\[
\min_{|z_n|=R} |g(z', z_n)| \geq \frac{R^p}{2}.
\]

Pour \(z'\) fixé dans \(\Delta(\overline{Q}; r)\), la fonction

\[
z_n \mapsto \frac{f(z', z_n)}{g(z', z_n)}
\]

est holomorphe (et sans zéros) dans \(D(0, R)\) et continue dans \(\overline{D}(0, R)\). De plus, si

\[z_1, \ldots, z_j, \ldots, z_{n-1}, z_n,\]

sont fixés, la fonction

\[t \mapsto f(z_1, \ldots, z_{j-1}, t, z_{j+1}, \ldots, z_n)\]

est holomorphe dans \(D(0, r)\). En appliquant le principe du maximum (pour les fonctions holomorphes d’une variable dans le disque de rayon \(R\)), on voit que pour tout \(z \in \Delta_n(\overline{Q}; r, \ldots, r, R)\),

\[
\frac{|f(z)|}{|g(z)|} \leq 2 \frac{\max_{\Delta_n(\overline{Q}; r, \ldots, r, R)} |f(z)|}{R^p}
\]

Et par conséquent que la fonction \(f/g\) est bornée. Comme elle est séparément holomorphe, on peut utiliser la formule de Cauchy de manière itérative, puis le théorème de Fubini (applicable puisque la fonction \(f/g\) est bornée) pour en déduire que \(f/g\) est holomorphe dans \(\Delta_n(\overline{Q}; r, \ldots, r, R)\). Cette fonction \(u = f/g\) ne s’annule pas dans ce polydisque et notre théorème de préparation est démontré. ◯

**Application 1 (division locale avec reste).** Si \(h\) est une fonction holomorphe au voisinage de ce polydisque privilégié \(\Delta_n(\overline{Q}; r, \ldots, r, R)\), on peut utiliser la formule de Cauchy pour écrire, pour tout \(z' \in \Delta_{n-1}(\overline{Q}; r)\), pour tout \(z_n\) dans \(D(0, R)\),

\[
h(z', z_n) = h(z) = \frac{1}{2\pi i} \int_{|t|=R} \frac{h(z', t)dt}{(t-z_n)} = \frac{1}{2\pi i} \int_{|t|=R} \frac{h(z', t)g(z', t)dt}{g(z', t)(t-z_n)} = \frac{1}{2\pi i} \int_{|t|=R} \frac{h(z', t)(g(z', t) - g(z', z_n))dt}{g(z', t)(t-z_n)} + \frac{1}{2\pi i} \int_{|t|=R} \frac{h(z', t)dt}{g(z', t)(t-z_n)}
\]

\[
= g(z)q(h; z) + r(h; z) = f(z) \frac{g(h; z)}{u(z)} + r(h; z),
\]

\[
(1.10)
\]
où
\[
q(h; z) := \frac{1}{2i\pi} \int_{|t|=R} \frac{h(z', t)dt}{g(z', t)(t - z_n)}
\]
(c’est une fonction holomorphe dans \(\Delta_n(\Omega; r, \ldots, r, R)\) car séparément holomorphe et localement bornée) et (puisque
\[
\frac{g(z', t) - g(z', z_n)}{t - z_n} = \sum_{j=0}^{p-1} r_j(h; z', t)z_n^j,
\]
où les \(r_j(h; \cdot)\) sont des fonctions holomorphes dans \(\Delta_n(\Omega; r, \ldots, r, R)\)
\[
r(h; z) = \sum_{j=0}^{p-1} \left( \frac{1}{2i\pi} \int_{|t|=R} \frac{h(z', t)r_j(z', t)dt}{g(z', t)} \right)z_n^j.
\] (1.11)

La formule (1.10) est donc clairement une formule de division avec reste car l’on vérifie immédiatement que le reste \(r(h; \cdot)\) est nul lorsque \(h\) est de la forme \(vf\) avec \(v\) holomorphe au voisinage de \(\Delta_n(\Omega; r, \ldots, r, R)\); en effet, on a alors aussi \(h = wg\) avec \(w\) holomorphe dans ce même polydisque et une application du théorème des résidus à une variable (pour l’évaluation des intégrales de contour dans (1.11)) conduit à \(r(h; \cdot) \equiv 0\).

**Application 2 (inegalité de Lojasiewicz locale).** Supposons que \(f\) soit une fonction holomorphe de \(n\) variables dans un voisinage de \(\Omega\) et que \(\Delta(\Omega; r, \ldots, r, R) = \Delta\) soit un voisinage dans lequel on peut préparer \(f\) suivant le théorème 1.4. Alors, il existe une constante \(\gamma\) telle que, pour tout \(z\) dans \(\Delta\), on ait
\[
|f(z)| \geq \gamma d(z, \{f = 0\} \cap \Delta)^m,
\] (1.12)
où \(d\) désigne la fonction *distance*. En effet, si \(z\) est un point de \(\Delta\) tel que \(|f(z)| \leq \epsilon\), on a, pour au moins un \(j \in \{1, \ldots, p\},
\[
|z_n - \alpha_j(z')| \leq \left( \frac{\epsilon}{\min |u|} \right)^\frac{1}{m}.
\]
Le point \((z', \alpha_j(z'))\) est un point de \(\{f = 0\}\) dont la distance à \(z\) est au plus \(\left( \frac{\epsilon}{\min |u|} \right)^\frac{1}{m}\), d’où le résultat (1.12). On verra ultérieurement pourquoi une telle inégalité reste valable lorsque \(f\) est remplacé par un système de fonctions holomorphes \(f_1, \ldots, f_m\).

**1.4. Représentations intégrales pour les fonctions holomorphes de plusieurs variables complexes.**

Dans cette section, \(U\) désigne un ouvert borné de \(\mathbb{C}^n\) dont la frontière est suffisamment régulière (disons se paramètre par morceaux avec des nappes \(C^1\)). On se donne une fonction \(f\) de classe \(C^1\) dans \(U\), ainsi qu’une fonction \(s\) de \(U \times U\) dans \(\mathbb{C}^n\) telle que, pour toute
partie \( \omega \) relativement compacte dans \( U \), il existe des constantes \( c(\omega) > 0 \) et \( C(\omega) \geq 0 \) telles que

\[
\forall z \in \omega, \forall \zeta \in \overline{U}, \quad \left| \sum_{j=1}^{n} s_j(z, \zeta)(\zeta_j - z_j) \right| = \left| < s(z, \zeta), \zeta - z > \right| \geq c(\omega)\|z - \zeta\|^2 \quad (1.13')
\]

et

\[
\forall z \in \omega, \forall \zeta \in \overline{U}, \quad \|s(z, \zeta)\| \leq C(\omega)\|z - \zeta\|. \quad (1.13'')
\]

Notons que l'on a, pour tout \( z \in U \), pour tout \( \zeta \in \partial U \),

\[
< s(z, \zeta), z - \zeta > \neq 0.
\]

Un candidat typique pour une telle fonction \( s \) est par exemple

\[
s_0(z, \zeta) = \overline{\zeta} - \overline{z},
\]

mais il y a bien sûr d'autres choix. Notons

\[
\tilde{s}(z, \zeta) = \left( \frac{s_1(z, \zeta)}{\zeta_1 - z_1}, \ldots, \frac{s_n(z, \zeta)}{\zeta_n - z_n} \right), \quad z \in U, \ \zeta \in \overline{U}, \ \zeta \neq z
\]

et \( K_s(z, \zeta) \) la \( n-1 \)-forme différentielle à coefficients de classe \( C^1 \) dans \( (U \times \overline{U}) \setminus \{z = \zeta\} \), définie par:

\[
K_s(z, \zeta) := (-1)^{\frac{n(n-1)}{2}}(n-1)\left(\sum_{k=1}^{n}(-1)^{k-1}\bigwedge_{j \neq k} d\tilde{s}_j \right) \wedge d\zeta.
\]

Un calcul immédiat, basé sur la formule de Stokes, nous assure la

**Proposition 1.5.** Soit \( z \) dans \( U \) et \( \epsilon \) tel que \( \{\zeta, \ | \zeta - z| \leq \epsilon \} \subset U \). Alors, on a

\[
\frac{1}{(2i\pi)^n} \int_{\{\zeta, \ |\zeta - z| = \epsilon \}} K_s(z, \zeta) = \left( \frac{(-1)^{\frac{n(n-1)}{2}}(n-1)!}{(2i\pi)^n} \right) \int_{\{\zeta, \ |\zeta - z| = \epsilon \}} \omega_n(\zeta - z). \quad (1.14)
\]

**Preuve.** Notons \( \tilde{s}_0 \) la fonction définie dans \( C^n \times C^n \) privé de sa diagonale par

\[
\tilde{s}_0(z, \zeta) := \left( \frac{s_{01}(z, \zeta)}{\zeta_1 - z_1}, \ldots, \frac{s_{0n}(z, \zeta)}{\zeta_n - z_n} \right).
\]

Sur \([0, 1] \times \{\zeta, \ |\zeta - z| = \epsilon \},\) on peut considérer la forme différentielle

\[
(t, \zeta) \mapsto \sigma(t, z, \zeta) := \sum_{k=1}^{n} (-1)^{k-1}(t\tilde{s}_k(z, \zeta) + (1-t)\tilde{s}_0 k(z, \zeta)) \bigwedge_{j \neq k} (t\tilde{s}_j(z, \zeta) + (1-t)d\tilde{s}_0 j(z, \zeta)) \wedge d\zeta.
\]

(1.15)
Comme on a l'identité
\[ <t \tilde{s}(z, \zeta) + (1 - t) \tilde{s}_0(z, \zeta), \zeta - z> \equiv 1, \]
la forme différentielle (1.15) est d-fermée et l'on a, par Stokes
\[
\int_{\partial([0,1] \times \{z, ||\zeta - z||=\varepsilon\})} d_{*} \sigma(t, z, \zeta) = 0 = \int_{\{z, ||\zeta - z||=\varepsilon\}} \sum_{k=1}^{n}(1)^{k-1} \tilde{s}_k \bigwedge_{j \neq k} d\tilde{s}_j \wedge d\zeta - \int_{\{z, ||\zeta - z||=\varepsilon\}} \sum_{k=1}^{n}(1)^{k-1} \tilde{s}_0 \bigwedge_{j \neq k} d\tilde{s}_0 \wedge d\zeta.
\]
On en déduit le résultat. Remarquons que l'on pouvait remplacer la frontière de la boule de centre \(z\) et de rayon \(\varepsilon\) par la frontière d'un ouvert relativement compact, d'adhérence dans \(U\), contenant \(z\) comme point intérieur, et à frontière assez régulière (disons encore ici \(C^1\) par morceaux). ◦

Il suit de cette proposition que l'on a la

**Proposition 1.6.** Soit \(z\) dans \(U\) et \(s\) comme précédemment. Pour toute fonction \(\varphi\) continue au voisinage de \(z\), on a

\[
\varphi(z) = \lim_{\varepsilon \to 0} \frac{(-1)^{n(n-1)}(n-1)!}{(2\pi)^n} \int_{\{z, ||\zeta - z||=\varepsilon\}} \varphi \sum_{k=1}^{n}(1)^{k-1} \tilde{s}_k(z, \zeta) \bigwedge_{j \neq k} d\tilde{s}_j(z, \zeta) \wedge d\zeta = \frac{1}{(2\pi)^n} \lim_{\varepsilon \to 0} \int_{\{z, ||\zeta - z||=\varepsilon\}} \varphi S(z, \zeta) \wedge (\overline{\partial S}(z, \zeta))^{n-1} < s(z, \zeta), \zeta - z >^n \quad \text{où} \quad S(z, \zeta) := \sum_{k=1}^{n} s_k(z, \zeta) d\zeta_k.
\]

**Preuve.** Il suffit de remarquer que les coefficients de la forme différentielle

\[
\zeta \mapsto \sum_{k=1}^{n}(1)^{k-1} \tilde{s}_k(z, \zeta) \bigwedge_{j \neq k} d\tilde{s}_j(z, \zeta) \wedge d\zeta = \frac{(-1)^{n(n-1)}(n-1)!}{(2\pi)^n} S(z, \zeta) \wedge (\overline{\partial S}(z, \zeta))^{n-1} < s(z, \zeta), \zeta - z >^n
\]

sont en \(O_{z}(||\zeta - z||^{1-2n})\) suivant (1.13). Comme la surface de la sphère de centre \(z\) et de rayon \(\varepsilon\) est en \(e^{2n-1}\), on en déduit le résultat en utilisant d'une part la proposition 1.5, puis la proposition 1.1 pour la fonction constante (au voisinage de \(z\)) \(f = \varphi(z)\), enfin il faut que \(\varphi(\zeta) = \varphi(z) + \varepsilon_z(\zeta)\), avec \(\lim_{\zeta \to z} \varepsilon_z(\zeta) = 0\). ◦

On se donne maintenant \(M\) fonctions \(q_1, \ldots, q_M\), où

\[
(z, \zeta) \mapsto q_j(z, \zeta) = (q_{j1}(z, \zeta), \ldots, q_{jn}(z, \zeta))
\]

que l'on qualifiera de *poids*, définies dans \(U \times \overline{U}\), à valeurs dans \(C^n\), de classe \(C^1\) par rapport à la seconde variable \(\zeta\), ainsi qu'une fonction entière \(\Gamma\) de \(N\) variables, telle que \(\Gamma(1, \ldots, 1) = 1\). On notera de manière abrégée, pour tout multi-indice \(\alpha = (\alpha_1, \ldots, \alpha_N) \in \mathbb{N}^N\),

\[
\Gamma^\alpha(z, \zeta) := [D_1^{\alpha_1} \cdots D_N^{\alpha_N} G](1 + < q_1(z, \zeta), z - \zeta >, \cdots, 1 + < q_N(z, \zeta), z - \zeta >).
\]

13
On notera aussi, par analogie avec la notation utilisée pour \( S \),

\[ Q_j(z, \zeta) = \sum_{k=1}^{n} q_{jk}(z, \zeta) d\zeta_k, \quad j = 1, \ldots, n. \]

À un tel système de poids, correspond la version pondérée suivante du noyau \( K_s \); il s'agit de la forme différentielle \( K_{s,q,\Gamma} \) définie dans \( U \times \overline{U} \) privé de \( \{\zeta = z\} \) par

\[
K_{s,q,\Gamma}(z, \zeta) := \sum_{\alpha_0 + \ldots + \alpha_N = n-1} \frac{G^{(\alpha_1, \ldots, \alpha_N)}(z, \zeta)}{\alpha_1! \cdots \alpha_n!} S(z, \zeta) \wedge (\overline{\partial} S(z, \zeta))^{\alpha_0} \wedge \bigwedge_{l=1}^{N} (\overline{\partial} Q_j(z, \zeta))^{\alpha_l},
\]

avec

\[
\tilde{S}(z, \zeta) := \sum_{k=1}^{n} \tilde{s}_k(z, \zeta) d\zeta_k.
\]

Le cas \( Q_1 = \cdots = Q_N = 0 \) et \( G = 1 \) correspond au noyau \( K_s \); lorsque \( s = s_0 \), il s'agit du noyau classique de Bochner-Martinelli. Compte tenu de l'identité

\[ <\tilde{S}, \zeta - z > = 1, \]

un calcul extérieur facile conduit la formule

\[ d\zeta K_{s,q,\Gamma}(z, \zeta) = P_{s,q,\Gamma}(z, \zeta), \quad z, \zeta \in U, \quad \zeta \neq z, \quad (1.16) \]

où

\[ P_{s,q,\Gamma}(z, \zeta) := - \sum_{\alpha_0 + \ldots + \alpha_N = n} \frac{\Gamma^{(\alpha_1, \ldots, \alpha_N)}(z, \zeta)}{\alpha_1! \cdots \alpha_n!} \bigwedge_{l=1}^{N} (\overline{\partial} Q_j(z, \zeta))^{\alpha_l}. \quad (1.17) \]

On peut alors énoncer une version pondérée des formules de représentation intégrale (Proposition 1.2) sous la forme de la

**Proposition 1.7 (Formules de Bochner-Martinelli pondérées).** Soit \( U \) un ouvert borné de \( \mathbb{C}^n \) de frontière assez régulière (disons \( C^1 \) par morceaux) pour que l'on puisse appliquer le théorème de Stokes, \( s \) et les \( q_j, G_j \), \( j = 1, \ldots, N \) comme précédemment. Pour tout \( z \in U \), pour toute fonction \( \varphi \) de classe \( C^1 \) dans \( \overline{U} \), on a la formule de représentation

\[ \varphi(z) = \frac{1}{(2\pi i)^n} \left( \int_{\partial U} \varphi(\zeta) K_{s,q,\Gamma}(z, \zeta) + \int_{U} \varphi(\zeta) P_{s,q,\Gamma}(z, \zeta) - \int_{U} \overline{\partial} \varphi(\zeta) \wedge K_{s,q,\Gamma}(z, \zeta) \right). \]

(1.17)

Dans le cas particulier où \( f \) est holomorphe dans \( U \), continue sur \( \overline{U} \), on a la formule de représentation

\[ f(z) = \frac{1}{(2\pi i)^n} \left( \int_{\partial U} f(\zeta) K_{s,q,\Gamma}(z, \zeta) + \int_{U} f(\zeta) P_{s,q,\Gamma}(z, \zeta) \right) \quad (1.18) \]
qui, notons le, ne fait intervenir que les valeurs de s sur $U \times \mathcal{V}$, où $\mathcal{V}$ est la trace sur $\overline{U}$ d’un voisinage de la frontière de $U$.

**Preuve.** On se contente d’écrire la formule de Stokes dans une couronne $\overline{U} \setminus \{\zeta, ||\zeta - z|| < \varepsilon\}$. En utilisant (1.16), on obtient

$$
\frac{1}{(2i\pi)^n} \int_{\{\zeta, ||\zeta - z|| = \varepsilon\}} \varphi(\zeta)K_{s,q,\Gamma} = \frac{1}{(2i\pi)^n} \left( \int_{\partial U} \varphi(\zeta)K_{s,q,\Gamma}(z, \zeta) + \int_{U} \varphi(\zeta)P_{s,q,\Gamma}(z, \zeta) - \int_{U} \overline{\partial} \varphi(\zeta) \wedge K_{s,q,\Gamma}(z, \zeta) \right).
$$

On remarque enfin que l’on a,

$$
K_{s,q,\Gamma} = K_s + \Phi_{s,q,\Gamma}(z, \zeta)
$$

où

$$
\lim_{\varepsilon \to 0} \varepsilon^{2n-1} \max_{\zeta, ||\zeta - z|| = \varepsilon} ||\Phi_{s,q,\Gamma}(z, \zeta)|| = 0.
$$

Comme $\varphi$ est continue, donc bornée au voisinage de $z$, on obtient, en faisant tendre $\varepsilon$ vers $0$ et en utilisant la proposition 1.6, la formule (1.17).

1.5. *Représentations intégrales des formes différentielles.*

L’objectif de cette section est (toujours en vue de questions de division) d’étendre aux formes différentielles et non plus aux fonctions les formules de représentation (1.17) et (1.18); on dira qu’une $(p,q)$ forme définie dans un ouvert $U$ de $\mathbb{C}^n$ est holomorphe (ou encore *de première espèce*) si elle est à coefficients de classe $C^1$ dans $U$ et solution (au sens des courants)$^2$ du système

$$
\overline{\partial} \varphi \equiv 0.
$$

L’idée repose sur un truc naïf pour dégiser la singularité du noyau de Bochner-Martinelli. On remarque que, si $\zeta \neq z$,

$$
\frac{(n-1)!}{||\zeta - z||^{2n}} = \int_0^\infty e^{-t||\zeta - z||^2} t^{n-1} dt,
$$

ce qui permet d’écrire

$$
K_0(z, \zeta) = (-1)^{n(n-1)/2} \left( \int_0^\infty e^{-t||\zeta - z||^2} t^{n-1} dt \right) \wedge (\sum_{k=1}^n (-1)^k (\zeta_k - z_k) \wedge d\zeta_k) \wedge d\zeta.
$$

---


$^2$ En fait, on peut se contenter (comme on le verra à la lumière des formules de ce paragraphe) de supposer $\varphi$ à coefficients continus ou même localement intégrables avec, au sens des courants, $\partial \varphi = 0$; cela relève encore de l’hypoellipticité du $\overline{\partial}$. 

15
Or, si l'on considère la forme différentielle
\[(u, v) \mapsto A(u, v) := (-1)^{n(n-1)/2} e^{<u,v>} du_1 \land \cdots \land du_n \land dv_1 \land \cdots \land dv_n\]
sur \(\mathbb{C}^n \times \mathbb{C}^n\), son pull back \(\mathcal{N}\) sur \((\mathbb{C}^n \times \mathbb{C}^n) \times [0, \infty[\) par
\[\Phi_0 : (\zeta, z, t) \mapsto (-t(\zeta - z), \zeta - z)\]
s'écrit sous la forme
\[dt \land N(\zeta, z, t) + N'(\zeta, z, t),\]
où \(N'\) ne contient pas \(dt\), avec:
\[N(\zeta, z, t) = (-1)^{n(n-1)/2} \exp(<s_0, \zeta - z>) t^{n-1} \left( \sum_{k=1}^{n} (-1)^{k-1} s_{0k}(z, \zeta) \land_{j \neq k} d\bar{s}_{0j} \right) \land_{j=1}^{n} (d\zeta_j - dz_j)\]

avec \(s_0(z, \zeta) = \bar{\zeta} - z\). Plus généralement, on peut aussi utiliser une fonction \(s\) de classe \(C^1\) de \(\overline{U} \times \overline{U}\) dans \(\mathbb{C}^n\) telle que soient satisfaites les conditions (1.13) et transporter la forme \(A\) en une forme \(\mathcal{N}_s\) sur \(\mathbb{C}^n \times \mathbb{C}^n \times [0, \infty[\) s’écrit
\[\mathcal{N}_s = \mathcal{N}_s(\zeta, z, t) \land dt + \mathcal{N}'_s(\zeta, z, t)\]
par pull-back via
\[\Phi_s : (\zeta, z, t) \mapsto (ts(z), \zeta - z) ;\]
Dans ce cas, on a
\[N_s(\zeta, z, t) = \]
\[= -(-1)^{n(n-1)/2} \exp(t < s(z, \zeta), \zeta - z>) t^{n-1} \left( \sum_{k=1}^{n} (-1)^{k-1} s_k \land_{j \neq k} ds_j \right) \land_{j=1}^{n} (d\zeta_j - dz_j) .\]

On peut aussi s’octroyer encore plus de liberté, et introduire un poids \(q : \overline{U} \times \overline{U} \mapsto \mathbb{C}^n\), auquel on demande d’être de classe \(C^1\) dans \(\overline{U} \times \overline{U}\), et, tel que, pour chaque valeur de \(\zeta\),
\[z \mapsto q(z, \zeta)\]
soit holomorphe en \(z\) dans \(U\). On transforme alors la forme \(A\) par pull-back via cette fois
\[\Phi_{s,q} : (\zeta, z, t) \mapsto (ts(z, \zeta) + q(z, \zeta), \zeta - z),\]
toujours en une forme \(\mathcal{N}_{s,q}\) sur \(\mathbb{C}^n \times \mathbb{C}^n \times [0, \infty[\), qui s’écrit
\[\mathcal{N}_{s,q}(\zeta, z, t) = dt \land \mathcal{N}_{s,q}(\zeta, z, t) + \mathcal{N}'_{s,q}(\zeta, z, t) ,\]

16
avec, par un calcul simple
\[
N_{s,q}(\zeta, z, t) = \\
= (-1)^{\frac{n(n-1)}{2}} \exp <q + ts, \zeta - z > t^{n-1} \left( \sum_{k=1}^{n} (-1)^{k-1} s_k \wedge ds_j \right) \wedge (d\zeta_j - dz_j) + \\
+ \sum_{k=0}^{n-2} t^k a_k(\zeta, z).
\]

Si l'on note \( \eta_n \) la forme différentielle sur \( \mathbb{C}^n \) définie par
\[
\eta_n(u) = \sum_{k=1}^{n} (-1)^{k-1} u_k \wedge du_j, ,
\]
on a en fait
\[
N_{s,q}(\zeta, z, t) = (-1)^{\frac{n(n-1)}{2}} \exp <q + ts, \zeta - z > \eta_n(s, q + ts) \wedge (d\zeta_1 - dz_1) \wedge \cdots \wedge (d\zeta_n - dz_n).
\]
et un calcul immédiat donne
\[
(n-1)! N_{s,q}(\zeta, z, t) = - \exp <q + ts, \zeta - z > S \wedge (dQ + tdS)^{n-1} = \\
= - \exp <q + ts, \zeta - z> \left( \sum_{k=0}^{n-1} \binom{n-1}{k} S \wedge dQ^k \wedge (dS)^{n-1-k} \right)
\]
avec les définitions suivantes pour \( S \) et \( Q \)
\[
S(z, \zeta) = \sum_{k=1}^{n} s_k(z, \zeta)(d\zeta_k - dz_k)
\]
\[
Q(z, \zeta) = \sum_{k=1}^{n} q_k(z, \zeta)(d\zeta_k - dz_k).
\]

On définit maintenant un noyau \( \tilde{K}_{s,q} \) en "intégrant" la forme différentielle \( dt \wedge N_{s,q} \) par rapport à \( t \) sur \([0, \infty[\); ce calcul nous conduit à
\[
K(z, \zeta) := - \int_{0}^{\infty} N_{s,q}(z, \zeta, t) \wedge dt = \\
= \exp <q, z - \zeta> \sum_{k=0}^{n-1} \frac{1}{k!} S \wedge (dQ)^k \wedge (dS)^{n-1-k} <s, \zeta - z>^{n-k}
\]
et fait réapparaître un noyau singulier. On remarque que, si \( q = 0 \), on retrouve (mis à part que \( S \) est remplacé par \( \tilde{S} \) et qu'il s'agit d'une forme dans \( \overline{U} \times \overline{U} \) privé de la diagonale, et non

17
d'une forme dans $U$ privé du point $z$) le noyau de Bochner-Martinelli $K_s$ correspondant à la section $s$ du paragraphe précédent. 

Comme la forme $(u, v) \mapsto \exp(<u, v>)du \land dv$ est fermée dans $C^1 \times C^1$, il en est de même des formes obtenues par pull-back sur $C^n \times C^n \times [0, \infty[$. Ainsi, si l'on calcule hors de la diagonale de $\overline{U} \times \overline{U}$,

$$
\begin{align*}
    d_{\zeta, z} K_{s, q} &= -\int_0^\infty d_{\zeta, z} N_{s, q}(z, \zeta, t) = \int_0^\infty d_t N'_{s, q}(z, \zeta, t) = -N'_{s, q}(z, \zeta, t) \\
    &= -\exp <q, \zeta - z > \eta(q) \land (d\zeta_1 - dz_1) \land \cdots \land (d\zeta_n - dz_n) \\
    &= \frac{1}{n!} \exp <q, \zeta - z > (d\mathcal Q)^n.
\end{align*}
$$

Fait à souligner (et crucial par la suite), cette forme différentielle ne présente plus de singularités sur la diagonale de $\overline{U} \times \overline{U}$. Il est enfin possible de "moyenniser" de telles constructions en considérant un poids à paramètres

$$
q_\lambda = \lambda_1 q_1 + \cdots + \lambda_N q_N
$$

(les paramètres étant les $\lambda_j > 0$ et les $q_j$ étant des poids différents construits sur le modèle de $\mathcal Q$), et une distribution arbitraire $\gamma$ (toute de même Laplace-transformable) sur $[0, \infty[^N$, de transformée de Laplace $\Gamma$ valant $1$ en $(1, \ldots, 1)$; on pose alors

$$
K_{s, q, \gamma} := \int_{[0, \infty[^N} T(\lambda)e^{-\lambda_1 - \cdots - \lambda_N} K_{s, q_\lambda}.
$$

Un calcul facile nous donne

$$
K_{s, q, \gamma} =
$$

$$
= \sum_{\alpha_0 + \cdots + \alpha_N = n-1} \frac{\Gamma(\alpha_1, \ldots, \alpha_N)(z, \zeta)}{\alpha_1! \cdots \alpha_N!} S(z, \zeta) \land (dS(z, \zeta))^{\alpha_0} \land \bigwedge_{i=1}^N (dQ_j(z, \zeta))^{\alpha_i}
$$

et

$$
P_{s, q, \gamma} := d_{\zeta, z} K_{s, q, \gamma} = -\sum_{\alpha_1 + \cdots + \alpha_N = n} \frac{\Gamma(\alpha_1, \ldots, \alpha_N)(z, \zeta)}{\alpha_1! \cdots \alpha_N!} \bigwedge_{i=1}^N (dQ_j(z, \zeta))^{\alpha_i},
$$

où $\Gamma$ est la transformée de Laplace de la distribution $\gamma$.

Considérons maintenant une $(p, q)$ forme $f$ dans $\overline{U}$, à coefficients de classe $C^1$ dans $\overline{U}$. Afin de représenter cette forme (comme nous avons su représenter les fonctions au paragraphe précédent), nous allons utiliser une forme test $\varphi$ de type $(n - p, n - q)$, de classe $C^\infty$, et à support compact inclus dans l'ouvert $U$ de $C^n$ dans lequel nous travaillons. L'idée est de tester contre cette forme test un candidat second membre à la représentation intégrale de la forme $f$. 

18
Comme on l’a signalé plutôt, les singularités du noyau $K$ (nous ommettons pour simplifier les choses les indices indiquant la dépendance en la section $s$ et les poids $q$, $g$) sont en $||\zeta - z||^{1-2n}$ et sont donc intégrables dans $\overline{U} \times \overline{U}$. On peut donc affirmer, via le théorème de convergence dominée de Lebesgue, que, si

$$U_\varepsilon := (U \times U) \ \setminus \ \{((\zeta, z) \in U \times U, \ ||\zeta - z|| < \varepsilon\},$$

alors

$$\lim_{\varepsilon \to 0} \int_{U_\varepsilon} d\varphi(z) \wedge f(\zeta) \wedge K(z, \zeta) = \int_{U \times U} d\varphi(z) \wedge f(\zeta) \wedge K(z, \zeta).$$

et

$$\lim_{\varepsilon \to 0} \int_{U_\varepsilon} \varphi(z) \wedge df(\zeta) \wedge K(z, \zeta) = \int_{U \times U} \varphi(z) \wedge df(\zeta) \wedge K(z, \zeta).$$

Si l'on applique la formule de Stokes dans $\overline{U} \times \overline{U}$, on a

$$\int_{\partial(\overline{U} \times \overline{U})} \varphi(z) \wedge f(\zeta) \wedge K(z, \zeta) =$$

$$= \int_{U_\varepsilon} d\varphi(z) \wedge f(\zeta) \wedge K(z, \zeta) + (-1)^{p+q} \int_{U_\varepsilon} \varphi(z) \wedge df(\zeta) \wedge K(z, \zeta) +$$

$$+ \int_{U_\varepsilon} \varphi(z) \wedge f(\zeta) \wedge P(z, \zeta) + \int_{||\zeta - z|| = \varepsilon} \varphi(z) \wedge f(\zeta) \wedge K(z, \zeta).$$

Le terme intéressant à étudier (lorsque $\varepsilon$ tend vers 0) est le terme

$$\int_{||\zeta - z|| = \varepsilon} \varphi(z) \wedge f(\zeta) \wedge K(z, \zeta).$$

Les calculs que nous avons fait auparavant nous assurent que sur tout compact de $U \times U$,

$$K(z, \zeta) = \frac{S(z, \zeta) \wedge dS^{n-1}(z, \zeta)}{<s(z, \zeta), \zeta - z>^{n}} + O(||\zeta - z||^{2-2n}),$$

le 0 étant uniforme sur le compact. Cela nous conduit à remarquer que l'on a

$$\lim_{\varepsilon \to 0} \int_{||\zeta - z|| = \varepsilon} \varphi(z) \wedge f(\zeta) \wedge K(z, \zeta) = \lim_{\varepsilon \to 0} \int_{||\zeta - z|| = \varepsilon} \varphi(z) \wedge f(\zeta) \wedge \frac{S(z, \zeta) \wedge (dS(z, \zeta))^{n-1}}{<s(z, \zeta), \zeta - z>^{n}}.$$

Pour calculer cette limite, on remarque tout d'abord que l'on peut introduire

$$\tilde{S}(z, \zeta) = \frac{S(z, \zeta)}{<s, \zeta - z>},$$

et remarquer que

$$\int_{||\zeta - z|| = \varepsilon} \varphi(z) \wedge f(\zeta) \wedge \frac{S(z, \zeta) \wedge dS^{n-1}(z, \zeta)}{<s(z, \zeta), \zeta - z>^{n}} = \int_{||\zeta - z|| = \varepsilon} \varphi(z) \wedge f(\zeta) \wedge \tilde{S}(z, \zeta) \wedge (d\tilde{S}(z, \zeta))^{n-1}.$$
En utilisant l'argument d'homotopie déjà développé précédemment, on peut écrire

\[
\int_{||\zeta - z||=\varepsilon} \varphi(z) \wedge f(\zeta) \wedge \frac{S \wedge dS^{n-1}}{\langle s, \zeta - z \rangle^n} = \int_{||\zeta - z||=\varepsilon} \varphi(z) \wedge f(\zeta) \wedge \frac{S_0 \wedge dS_0^{n-1}}{\langle s_0, \zeta - z \rangle^n} + \int_{\{||\zeta - z||=\varepsilon\} \times [0,1]} d(\varphi(z) \wedge f(\zeta)) \wedge H(\zeta, z, \lambda),
\]

où \(s_0 = s_0(z, \zeta) = \overline{\zeta - z}\) et \(S_0\) est la forme correspondante et \(H\) est la forme

\[
H := d(\varphi(\zeta) \wedge f(z)) \wedge \frac{\lambda S + (1 - \lambda)S_0 \wedge (\lambda dS + (1 - \lambda)dS_0 + (dS - dS_0) \wedge d\lambda)^{n-1}}{(\lambda < s, \zeta - z > + (1 - \lambda) < s_0, \zeta - z >)^n}.
\]

Seul d'ailleurs le coefficient de \(d\lambda\) dans le développement de \(H\) intervient dans la contribution de \(H\) à l'intégrale

\[
\int_{\{||\zeta - z||=\varepsilon\} \times [0,1]} d(\varphi(z) \wedge f(\zeta) \wedge H(\zeta, z, \lambda)).
\]

Si l'on développe, on voit que ce coefficient présente des singularités en \(O(||\zeta - z||^{2-2m})\), qui donc seront absorbées par le volume de la portion de surface \(\{||\zeta - z||=\epsilon\}\) qui lui est en \(\epsilon^{2m-1}\). On voit donc que la limite

\[
\lim_{\varepsilon \to 0} \int_{||\zeta - z||=\varepsilon} \varphi(z) \wedge f(\zeta) \wedge K(z, \zeta)
\]

est aussi

\[
\lim_{\varepsilon \to 0} \int_{||\zeta - z||=\varepsilon} \varphi(z) \wedge f(\zeta) \wedge \frac{S_0 \wedge dS_0^{n-1}}{\langle s_0, \zeta - z \rangle^n}.
\]

Nous ne ferons pas ici ce dernier passage à la limite, tout à fait analogue à celui que nous avons effectué pour les fonctions, on obtient, en suivant par exemple les calculs dans l'article de N. Ovrelid *, pages 143-144:

\[
\lim_{\varepsilon \to 0} \int_{||\zeta - z||=\varepsilon} \varphi(z) \wedge f(\zeta) \wedge \frac{S_0 \wedge dS_0^{n-1}}{\langle s_0, \zeta - z \rangle^n} = (2i\pi)^n \int_U \varphi(z) \wedge f(\zeta).
\]

Maintenant, nous avons aussi

\[
\int_{U \times U} d\varphi(z) \wedge f(\zeta) \wedge K(z, \zeta) = (-1)^{p+q+1} \int_{\zeta \in U} \varphi(z) dz \left( \int_U f(z) \wedge K(z, \zeta) \right),
\]

l'action de l'opérateur différentiel étant entendue au sens des distributions.

---

Si l’on fait tendre maintenant $\epsilon$ vers 0 dans la formule (1.19) en se souvenant que $\varphi$ est nulle au bord de $U$ (et même dans un voisinage de ce bord), on obtient
\[
\int_U \varphi(z) \wedge \int_{\partial U} f(z) \wedge K(z, \zeta) =
\]
\[
= (-1)^{p+q} \int_U \varphi(z) \wedge \left( \int_U \bar{\partial} f(\zeta) \wedge K(z, \zeta) - d_z \left( \int_U f(\zeta) \wedge K(z, \zeta) \right) \right) +
\]
\[
+ \int_U \varphi(z) \wedge \int_U f(\zeta) \wedge P(z, \zeta) + (2i\pi)^n \int_U \varphi(z) \wedge f(z).
\]
Cette formule fournit une formule de représentation pour les $(p, q)$ formes de classe $C^1$ dans $U$. En ce qui concerne les $(0, 0)$ formes, on retrouve la formule obtenue précédemment.

Cette formule est intéressante dans le cas particulier des $(p, 0)$-formes, car dans ce cas, elle nous fournit la formule de représentation suivante
\[
f(z) = \frac{1}{(2i\pi)^n} \left( \int_{\partial U} f(z) \wedge K_{p, 0}(z, \zeta) + (-1)^{p+1} \int_U \bar{\partial} f \wedge K_{p, 0}(z, \zeta) - \int_U f(z) \wedge P_{p, 0}(z, \zeta) \right),
\]
formula qui devient, si la forme est de première espèce, c’est à dire satisfait $\bar{\partial} f \equiv 0$,
\[
f(z) = \frac{1}{(2i\pi)^n} \left( \int_{\partial U} f(z) \wedge K_{p, 0}(z, \zeta) - \int_U f(z) \wedge P_{p, 0}(z, \zeta) \right),
\]
ou l’on désigne par $K_{p, 0}$ la composante de type $(p, 0)$ en $z$ et $(n - p, n - 1)$ en $\zeta$ de $K$, et $P_{p, 0}$ la composante de type $(p, 0)$ en $z$ et $(n - p, n)$ en $\zeta$ dans le noyau $P$. Lorsque $q$ est positif, la formule est plus complexe, mais par contre le fait que $P$ ne contient pas dans son écriture de formes du type $d\zeta_k$ implique que l’on a alors la formule de représentation
\[
f(z) = \frac{1}{(2i\pi)^n} \left( \int_{\partial U} f(z) \wedge K_{(p, q)}(z, \zeta) + (-1)^{p+q+1} \int_U \bar{\partial} f \wedge K_{p, 0}(z, \zeta)
\]
\[
+ (-1)^{p+q} \bar{\partial} z \int_U f(z) \wedge K_{p, q-1}(z, \zeta) \right),
\]
où $K_{p, q}$ la composante de type $(p, q)$ en $z$ et $(n - p, n - 1 - q)$ en $\zeta$ de $K$. Notons dans cette formule (1.21) que le terme
\[
\bar{\partial} z \int_U f(z) \wedge K_{p, q-1}(z, \zeta)
\]
est entendu à priori au sens des distributions, étant entendu qu’en fait, l’objet obtenu est, de part la validité de la formule, une forme à coefficients fonctionnels.

Ces formules constituent (avec la possibilité de varier le choix de la section $s$, des poids $q_1, \ldots, q_N$, et de la fonction entière $g$) afin, comme on le verra plus tard, de les adapter à des problèmes de division avec ou non contrôle de croissance.
Chapitre 2
La division

2.1. Diviseurs de Hefer et Bézoutiens d’un système de fonctions holomorphes dans un ouvert convexe de $\mathbb{C}^n$.

Si $f$ est une fonction holomorphe dans un ouvert convexe $U$ de $\mathbb{C}^n$, continue sur $\overline{U}$, on peut, grâce à la formule de Taylor avec reste intégral, écrire, lorsque $\zeta$ et $z$ sont deux points de $U$

$$f(z) - f(\zeta) = \int_0^1 \frac{d}{dt}f(\zeta(1-t) + tz)dt = \sum_{k=1}^n (z_k - \zeta_k)g_k(z, \zeta), \quad (2,1)$$

les fonctions $g_k$ étant holomorphes dans $U \times U$ et continues jusqu’au bord. Ainsi, on peut associer à toute fonction holomorphe dans $U$ des forme différentielles

$$G_f(z, \zeta) = \sum_{k=1}^n g_k(z, \zeta)d\zeta_k$$

$$G_f(z, \zeta) = \sum_{k=1}^n g_k(z, \zeta)(d\zeta_k - dz_k)$$

Ces formes joueront un rôle important dans les mécanismes de division que nous introduirons ultérieurement. On se souvient par exemple que le noyau $K_{s,q,r}$ intervenant dans les formules de représentation intégrale du type (1.20) ou (1.21) fait apparaître des expressions du type

$$\tilde{S} \wedge (d\tilde{S})^{a_0-1} \wedge dQ^{a_1} \wedge \cdots \wedge dQ^{a_N}$$

avec $a_0 + \cdots + a_N = n - 1$, la forme

$$\tilde{S} = \sum_{k=1}^n \tilde{s}_k(z, \zeta)(d\zeta_k - dz_k)$$

étant construite à partir d’une section de Bochner-Martinelli, c’est à dire une fonction $\tilde{s}$ définie hors de la diagonale de $U \times U$ et satisfaisant, là où elle est définie, l’identité algébrique

$$< \tilde{s}(z, \zeta), \zeta - z > \equiv 1. \quad (2.1)$$

Or nous avons ainsi le petit lemme d’algèbre linéaire suivant

**Lemme 2.1.** Dans $(U \times U) \setminus \{\zeta = z\}$ on a, si

$$G := \sum_{k=1}^n g_k(z, \zeta)(d\zeta_k - dz_k),$$

$$(d\tilde{S})^{n-1} \wedge G = (f(\zeta) - f(z)) \sum_{l=1}^n \tilde{s}_l \left( \sum_{1 \leq k \leq n, k \neq l} d\tilde{s}_k \wedge (d\zeta_k - dz_k) \right)^{n-1} \wedge (d\zeta_l - dz_l) =$$

$$= (f(\zeta) - f(z))\Xi(z, \zeta),$$

22
où ξ est une forme de type \((n, n - 1)\) en \(ζ\) et \((n, 0)\) en \(z\) telle que
\[dξ = 0.\]

**Preuve.** On part de l'identité (2.1) que l'on différencie, ce qui donne
\[
\sum_{k=1}^{n}(ζ_k - z_k)dζ_k = -\sum_{k=1}^{n}s_k(dζ_k - dz_k).
\]
Si l'on fixe l'entier \(t\) entre 1 et \(n\) et que l'on suppose \(ζ_t \neq z_t\), on peut écrire, en utilisant
\[(ζ_t - z_t)dζ_t = -\sum_{1 \leq k \leq n, k \neq t} (ζ_k - z_k)dζ_k \text{ mod } (dζ_1 - dz_1, \ldots, dζ_n - dz_n),\]
on peut écrire
\[
\left(\sum_{k=1}^{n}dζ_k \wedge (dζ_k - dz_k)\right)^{n-1} \wedge G =
\]
\[
= \left(\sum_{1 \leq k \leq n, k \neq t} dζ_k \wedge (dζ_k - dz_k - \frac{ζ_k - z_k}{ζ_t - z_t}(dζ_t - dz_t))\right)^{n-1} \wedge G
\]
\[
=(-1)^{(n-1)(n-2)/2}(n-1)\left(\bigwedge_{1 \leq k \leq n, k \neq t} dζ_k \wedge (dζ_k - dz_k - \frac{ζ_k - z_k}{ζ_t - z_t}(dζ_t - dz_t))\right) \wedge G
\]
\[
=(-1)^{(n-1)(n-2)/2 + n-t}(n-1)\left(\bigwedge_{1 \leq k \leq n, k \neq t} dζ_k \wedge (Δ(z, ζ)d(ζ - z))\right)
\]
où \(Δ(z, ζ)\) est le déterminant

\[
Δ(z, ζ) := \begin{vmatrix}
1 & 0 & \ldots & 0 & g_1(z, ζ) & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & g_2(z, ζ) & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & \ldots & \ldots & \ldots & 0 \\
\ddots & \ddots \\
-\frac{ζ_t - z_t}{ζ_t - z_t} & \ldots & g_t(z, ζ) & \ldots & \ldots & \ldots & \ldots & \frac{ζ_t - z_t}{ζ_t - z_t} \\
0 & \ldots & \ldots & \ldots & 1 & 0 & \ldots & 0 \\
\ldots & \ldots \\
0 & \ldots & \ldots & \ldots & g_{n-1}(z, ζ) & 0 & 1 & 0 \\
0 & \ldots & \ldots & \ldots & g_n(z, ζ) & 0 & \ldots & 1
\end{vmatrix}
\]
et où nous avons noté, pour simplifier
\[
d(ζ - z) = \bigwedge_{k=1}^{n} (dζ_k - dz_k).
\]
Ce déterminant ne change pas si l’on ajoute à la ligne \( L_t \) (d’indice \( t \)) la combinaison linéaire

\[
\sum_{1 \leq k \leq n \atop k \neq t} \frac{\zeta_k - z_k}{\zeta_t - z_t} L_k.
\]

Mais alors, si nous utilisons l’identité qui nous a permis de définir les \( g_k \), à savoir

\[
f_k(z) - f_k(\zeta) = \sum_{k=1}^{n} g_k(z, \zeta)(z_k - \zeta_k),
\]

nous voyons que la ligne \( L_t \) dans ce nouveau déterminant est maintenant

\[
\tilde{L}_t = (0, \ldots, 0, \frac{f(\zeta) - f(z)}{\zeta_t - z_t}, 0, \ldots, 0).
\]

On a alors

\[
(-1)^{n-t} \Delta(z, \zeta)(d(\zeta - z)) = \frac{f(\zeta) - f(z)}{\zeta_t - z_t} \left( \bigwedge_{1 \leq k \leq n \atop k \neq t} d(\zeta_k - z_k) \right) \wedge d(\zeta_t - z_t),
\]

si bien que

\[
\left( \sum_{1 \leq k \leq n \atop k \neq t} d\tilde{s}_k \wedge \left( d\zeta_k - dz_k - \frac{\zeta_k - z_k}{\zeta_t - z_t} (d\zeta_t - dz_t) \right) \right)^{n-1} \wedge \mathbf{G} = \left( \frac{f(\zeta) - f(z)}{\zeta_t - z_t} \right) (-1)^{(n-1)(n-2)/2} (n-1) \left( \bigwedge_{1 \leq k \leq n \atop k \neq t} d\tilde{s}_k \right) \wedge \left( \bigwedge_{1 \leq k \leq n \atop k \neq t} (d\zeta_k - dz_k) \right) \wedge (d\zeta_t - dz_t) = \left( \frac{f(\zeta) - f(z)}{\zeta_t - z_t} \right) \left( \sum_{1 \leq k \leq n \atop k \neq t} d\tilde{s}_k \wedge (d\zeta_k - dz_k) \right)^{n-1} \wedge (d\zeta_t - dz_t). \]

On multiplie cette identité (valable hors de la diagonale et plus précisément là où \( \zeta_t \neq z_t \)) au numérateur et au dénominateur par \( \tilde{s}_t \) (ce qui est possible là où en plus \( \tilde{s}_t \neq 0 \)), puis on ajoute les identités obtenues en utilisant la classique règle des proportions:

\[
\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d},
\]

24
On obtient donc
\[
\left( \sum_{k=1}^{n} \, d\bar{z}_k \wedge (d\zeta_k - dz_k) \right)^{n-1} \wedge \mathbf{G} = \frac{f(\zeta) - f(z)}{\sum_{t=1}^{n} (\zeta_t - z_t) \sigma_t(z, \zeta)} \left( \sum_{t=1}^{n} \tilde{s}_t \Xi_t(z, \zeta) \right)
= (f(\zeta) - f(z)) \left( \sum_{t=1}^{n} \tilde{s}_t \Xi_t(z, \zeta) \right),
\]
ou
\[
\Xi_t = \left( \sum_{1 \leq k \leq n \atop k \neq t} \, d\bar{z}_k \wedge (d\zeta_k - dz_k) \right)^{n-1} \wedge (d\zeta_t - dz_t), \quad t = 1, \ldots, n.
\]
Cette identité reste valable dans $U \times U$ privé de sa diagonale. En différenciant, on obtient immédiatement, toujours dans $U \times U$ privé de la diagonale,
\[
d\Xi_t = \left( \sum_{1 \leq k \leq n \atop k \neq t} \, d\bar{z}_k \wedge (d\zeta_k - dz_k) \right)^{n} = 0
\]
du fait que
\[
\sum_{k=1}^{n} (\zeta_k - z_k) d\bar{z}_k \equiv 0 \text{ mod } (d\zeta_1 - dz_1, \ldots, d\zeta_n - dz_n).
\]
Ceci achève bien la preuve du lemme. \hfill \diamond

De fait, ce lemme peut être itéré, au prix de calcul d’algèbre linéaire du même type: par exemple, si $f_1$ et $f_2$ sont deux fonctions holomorphes dans $U$, et $\mathbf{G}_1$ et $\mathbf{G}_2$ les formes de Hefer correspondantes, on s’aperçoit, toujours en croisant les $\mathbf{G}_j$ avec la même forme $\tilde{\mathbf{S}}$ héritée d’une section de Bochner-Martinelli, qu’en dehors de la diagonale de $U \times U$, on a
\[
(d\tilde{\mathbf{S}})^{n-2} \wedge \mathbf{G}_1 \wedge \mathbf{G}_2 = (f_1(\zeta) - f_1(z)) \Xi_1 + (f_2(\zeta) - f_2(z)) \Xi_2
\]
avec
\[
d\Xi_1 = (f_2(\zeta) - f_2(z)) \Xi_{12}, \quad d\Xi_{12} = 0,
\]
\[
d\Xi_2 = (f_1(\zeta) - f_1(z)) \Xi_{21}, \quad d\Xi_{21} = 0,
\]
et ainsi de suite; par exemple, dans le cas de 3 fonctions, on a
\[
(d\tilde{\mathbf{S}})^{n-3} \wedge \mathbf{G}_1 \wedge \mathbf{G}_2 \wedge \mathbf{G}_3 = (f_1(\zeta) - f_1(z)) \Xi_1 + (f_2(\zeta) - f_2(z)) \Xi_2 + (f_3(\zeta) - f_3(z)) \Xi_3,
\]
avec
\[
d\Xi_1 = (f_2(\zeta) - f_2(z)) \Xi_{12} + (f_3(\zeta) - f_3(z)) \Xi_{13},
\]
\[
d\Xi_2 = (f_1(\zeta) - f_1(z)) \Xi_{21} + (f_3(\zeta) - f_3(z)) \Xi_{23},
\]
\[
d\Xi_3 = (f_1(\zeta) - f_1(z)) \Xi_{31} + (f_2(\zeta) - f_2(z)) \Xi_{32},
\]
25
et
\[d\mathcal{E}_{12} = (f_3(\zeta) - f_3(z))\mathcal{E}_{123}, \quad d\mathcal{E}_{123} = 0\]
\[d\mathcal{E}_{13} = (f_2(\zeta) - f_2(z))\mathcal{E}_{132}, \quad d\mathcal{E}_{132} = 0\]
\[d\mathcal{E}_{21} = (f_3(\zeta) - f_3(z))\mathcal{E}_{213}, \quad d\mathcal{E}_{213} = 0\]
\[d\mathcal{E}_{23} = (f_1(\zeta) - f_1(z))\mathcal{E}_{231}, \quad d\mathcal{E}_{231} = 0\]
\[d\mathcal{E}_{31} = (f_2(\zeta) - f_2(z))\mathcal{E}_{312}, \quad d\mathcal{E}_{312} = 0\]
\[d\mathcal{E}_{32} = (f_1(\zeta) - f_1(z))\mathcal{E}_{321}, \quad d\mathcal{E}_{321} = 0.\]

On omettra ici ces calculs fastidieux, que l'on peut trouver p. 209-214 de l'article [DGSY]*. Dans le cas limite où le nombre de fonctions \(f_j\) est égal à \(n\), on retrouve en fait les formules de Cramer: on a bien, pour tout \(j = 1, \ldots, n\), en résolvant un système de Cramer:

\[\begin{align*}(\zeta_j - z_j)^n \bigwedge_{k=1}^n G_k &= \sum_{l=1}^n (f_l(\zeta) - f_l(z)) G_1 \wedge \cdots \wedge d(\zeta_l - z_l) \wedge \cdots \wedge G_n.\end{align*}\]

On a donc

\[\bigwedge_{k=1}^n G_k = \sum_{l=1}^n (f_l(\zeta) - f_l(z)) \left( \sum_{j=1}^n G_1 \wedge \cdots \wedge d(\zeta_j - z_j) \wedge \cdots \wedge G_n \right) = \sum_{l=1}^n (f_l(\zeta) - f_l(z)) \mathcal{E}_l\]

et les calculs peuvent continuer concernant \(d\mathcal{E}_l\), \(l = 1, \ldots, n\), etc...

Le Bézoutien d’un système de 2 polynômes \((P_0, P_1)\) en 1 variable est par définition le polynôme en deux variables

\[\text{Béz}(P_0, P_1)(X, Y) := \frac{P_0(X)P_1(Y) - P_1(X)P_0(Y)}{X - Y} = \begin{vmatrix} P_0(X) & P_0(X) - P_0(Y) \\ P_1(X) & P_1(X) - P_1(Y) \end{vmatrix}.\]

Cette notion peut être étendu au cadre multi-variables, ainsi qu’au cadre transcendental.

**Définition 2.1.** Si \(f_0, \ldots, f_n\) sont \(n + 1\) fonctions holomorphes de \(n\) variables dans un ouvert convexe * de \(\mathbb{C}^n\), alors, la fonction \((z, \zeta) \mapsto \text{Béz}(z, \zeta)\), holomorphe dans \(U \times U\), définie par

\[\sum_{k=0}^n (f_k dt + G_k) = \text{Béz}(z, \zeta) dt \wedge d(\zeta - z), (t, z, \zeta) \in \mathbb{C} \times U \times U,\]

* En fait, cette hypothèse sur le domaine n’est pas nécessaire; on peut trouver un système de diviseurs de Hefer pour une fonction holomorphe dans un domaine dès que celui-ci est pseudoconvexe, c’est-à-dire est un ouvert de Stein où l’on peut appliquer les théorèmes A et B de Cartan, voir pour ces notions le livre de Hörmander, *Complex Analysis in Several Variables*. 

26
est un Bézoutien de \((f_0, \ldots, f_n)\); il n’y a pas (sauf dans le cas \(n = 1\)) unicité d’un tel objet, car son choix dépend du système de diviseurs de Hefer choisi.

Étant donnés maintenant \(m \leq n\) et \(m\) fonctions holomorphes \(f_0, \ldots, f_{m-1}\) dans un ouvert convexe \(U\) de \(\mathbb{C}^n\), une section \(s\) de Bochner-Martinelli définie dans \(U \times U\) privé de sa diagonale, et un système de formes \(G_0, \ldots, G_{m-1}\) associé aux \(f_j\), il est naturel, compte tenu des calculs d’algèbre linéaire qui précèdent, d’appeler Bézoutien de \((f_0, \ldots, f_{m-1})\), l’application \((z, \zeta) \mapsto \text{Béz}(z, \zeta)\) définie hors de la diagonale de \(U \times U\) par

\[
\bigwedge_{k=0}^{m-1} (f_k dt + G_k) \wedge (dS)^{n-m-1} = \text{Béz}(z, \zeta)dt \wedge \Lambda(\zeta - z), \quad (t, z, \zeta) \in \mathbb{C} \times U \times U, \quad \zeta \neq z.
\]

Dans le cas \(m = n + 1\), on retrouve la notion précédente. Le choix dépend à la fois des diviseurs de Hefer et de la section \(s\) de Bochner-Martinelli.

2.2. Identités de Bézout via les formules intégrales.

La seconde raison qui explique l’importance des Bézoutiens tient aux identités algébriques du type:

\[
1 + \frac{1}{f(\zeta)} < g, z - \zeta > = \frac{f(z)}{f(\zeta)}.
\]

Du point de vue de l’analyse, une version approchée de cette formule consiste à écrire

\[
1 + \frac{\bar{f}}{|f|^2 + \epsilon} < g, z - \zeta > = \frac{\epsilon}{|f|^2 + \epsilon} + f(z) \frac{\bar{f}}{|f|^2 + \epsilon}
\]

ou, lorsque plusieurs fonctions sont en jeu (disons \(f_1, \ldots, f_N\)),

\[
1 + < g_\epsilon, z - \zeta > = \frac{\epsilon}{|f|^2 + \epsilon} + \sum_{k=1}^{n} \frac{\bar{f}_k(\zeta)f_k(z)}{|f|^2 + \epsilon}
\]

si l’on choisit \(g_\epsilon\) de manière à ce que la forme correspondante \(Q_\epsilon\) soit

\[
Q_\epsilon(z, \zeta) = \sum_{k=1}^{N} \frac{\bar{f}_kG^{(j)}(z, \zeta)}{|f|^2 + \epsilon}
\]

avec

\[
G^{(j)} := \sum_{k=1}^{n} g_{jk}d\zeta_k,
\]

les \(g_{jk}\) étant un vecteur de diviseurs de Hefer pour \(f_j, j = 1, \ldots, N\).

Lorsque \(f_1, \ldots, f_N\) n’ont aucun zéro commun dans l’ouvert \(U\) où elles sont holomorphes et sont continues dans \(U\), notre formule (1.21) fournit immédiatement, dans le cas où par exemple \(U\) est un ouvert convexe borné, une solution à un problème de division, à savoir
nous permet de construire $N$ fonctions $\tilde{f}_1, \ldots, \tilde{f}_N$ holomorphes dans la boule ouverte, et telles que
\[
1 = \tilde{f}_1(z)f_1(z) + \cdots + \tilde{f}_N(z)f_N(z), \quad z \in U. \tag{2.2}
\]
Une telle identité est une identité de Bézout analytique.

Voici comment l'on s'y prend dans ce cas. On choisit pour $s$ la fonction $(\zeta_1, \ldots, \zeta_n)$. Si $z$ est intérieur à $U$, on a $| < s, z > | < 1$ et donc $< s, \zeta - z > \neq 0$ pour $\zeta$ dans une couronne \{\(1 - \epsilon(z) \leq ||\zeta|| \leq 1\).\}. On a donc
\[
S(z, \zeta) = d||\zeta||^2.
\]
On prend aussi le poids $q$ de manière à ce que la forme correspondante
\[
\sum_{k=1}^{n} q_k(z, \zeta)d\zeta_k
\]
soit
\[
Q(z, \zeta) := \frac{\sum_{k=1}^{N} f_k g^{(j)}(z, \zeta)}{||f||^2},
\]
ôù les $g^{(j)}$ sont des formes construites à partir de systèmes de diviseurs de Hefer pour les $f_j$, $j = 1, \ldots, N$. On choisit comme fonction holomorphe $\Gamma$ le polynôme $P(t) = t^{n+1}$. Dans ce cas, les deux noyaux $K_{s,q,\Gamma}$ et $P_{s,q,\Gamma}$ de la formule (1.18) sont respectivement
\[
K_{s,q,P} = \sum_{\alpha_0 + \alpha_1 = n-1} \left( \frac{n+1}{n+1} \right) \left( \frac{< \overline{f(\zeta)} f(z) >}{||f||^2} \right)^{n+1-\alpha_1} \frac{d||\zeta||^2 \wedge (\overline{\partial}||\zeta||^2)^{\alpha_0} \wedge (dQ(z, \zeta) \alpha_1}{(||\zeta||^2 - < \overline{\zeta}, z >)^{\alpha_0 + 1}}
\]
et
\[
P_{s,q,P} = -(n+1) \left( \frac{< \overline{f(\zeta)} f(z) >}{||f||^2} \right) (dQ(z, \zeta))^n,
\]
avec les conventions standard
\[
< \overline{f(\zeta)} f(z) > : = \sum_{k=1}^{N} \overline{f_k(\zeta)} f_k(z)
\]
\[
< \overline{\zeta}, z > : = \sum_{k=1}^{n} \overline{\zeta_k} z_k.
\]
Il suffit de développer la formule
\[
1 = \frac{1}{(2\pi)^n} \left( \int_{\partial U} K_{s,q,P}(z, \zeta) - \int_{U} P_{s,q,P}(z, \zeta) \right). \tag{2.3}
\]
pour voir que l'on a bien une formule de la forme (2.2). 
Cette méthode fonctionne d'ailleurs aussi dans le cas global et se substitue dans ce cas à l'algorithme d'Euclide (ou à la théorie de l'élimination suivant que l'on se trouve à une ou plusieurs variables) pour montrer qu'étant donnés \( N \) polynômes en \( n \) variables sans zéros communs dans \( \mathbb{C}^n \), \( p_1, \ldots, p_N \), il existe \( N \) polynômes \( \tilde{p}_1, \ldots, \tilde{p}_N \) tels que

\[
1 = \sum_{k=1}^{N} \tilde{p}_k(z)p_k(z), \; z \in \mathbb{C}^n.
\]

Dans le cas où \( n = 1 \), on répète ce que l'on vient de faire, en introduisant la fonction

\[
q(z, \zeta) := \sum_{k=1}^{N} \frac{p_k(\zeta)}{||p(\zeta)||^2} \frac{p_k(z) - p_k(\zeta)}{z - \zeta}
\]

et la fonction \( \Gamma(t) = t^2 \). Si nous écrivons la formule (2.3) dans la boule de rayon \( R \) (toujours avec \( s = \zeta \)), nous obtenons

\[
1 = \frac{1}{2i\pi} \left( \int_{|z|=R} \frac{\langle< p_\zeta, p(z) \rangle \rangle^2}{||p||^2} \frac{dz}{(z - \zeta)} + 2 \int_{D(0,R)} \frac{\langle< p_\zeta, p(z) \rangle \rangle}{||p||^2} \bar{\zeta} q(z, \zeta) \wedge d\zeta \right).
\]

(2.4)

Deux estimations (faciles à vérifier si les polynômes ne sont pas tous constants) et qui sont, lorsque \( \zeta \) tend vers l'infini alors que \( z \) est fixé

\[
\frac{\langle< p_\zeta, p(z) \rangle \rangle}{||p(\zeta)||^2} = O\left(\frac{1}{||\zeta||}\right)
\]

et

\[
\bar{\zeta} q(z, \zeta) = \sum_{L=0}^{\max \deg p_j} u_L(\zeta) \bar{\zeta}^L d\zeta
\]

avec

\[
\sum ||u_L(\zeta)|| = O\left(\frac{1}{||\zeta||^2}\right)
\]

nous assurent que l'on peut, en faisant tendre \( R \) vers l'infini dans (2.4), obtenir l'identité polynomiale

\[
1 = \frac{1}{i\pi} \sum_{k=1}^{n} \sum_{L=0}^{\max \deg p_j} p_k(z)u_L(z) \left( \int_{\mathbb{C}} \frac{u_L \bar{p}_k}{||p||^2} \bar{\zeta} \wedge d\zeta \right)
\]

(toutes les intégrales ci-dessus sont convergentes).

Le cas de \( N \) polynômes en \( n \) variables ne se traite pas directement, tout du moins dans un premier temps: on sait (via la théorie de l'élimination, voir par exemple [VDW]*, qu'il existe, si les \( p_j \) n'ont pas de zéros communs) des polynômes \( \tilde{p}_1, \ldots, \tilde{p}_N \) tels que

\[
1 = \sum_{k=1}^{N} \tilde{p}_k(z)q_k(z), \; z \in \mathbb{C}^n.
\]

(2.5)

* Van der Waeden, Modern Algebra, Springer, 1979
On ne retiendra de cette formule que l’inégalité (obtenue grâce à Cauchy-Schwarz)

\[ ||p(\zeta)|| \geq \frac{\eta}{(1 + ||\zeta||^{\maxdeg q_j})}, \quad \zeta \in \mathbb{C}. \quad (2.6) \]

On utilise la formule (1.18), mais en prenant pour construire nos noyaux cette fois deux points \( q_1 \) et \( q_2 \) au lieu d’un. L’un est adapté au problème de division (nous voulons représenter 1 dans l’idéal engendré par les \( p_j \)), l’autre est adapté au problème du respect de la croissance (nous voulons des quotients \( \tilde{p}_j \) dans l’algèbre des polynômes). Nous prendrons

\[ q_2(\zeta, z) = q_2(\zeta) = \nabla(\log(1 + ||\zeta||^2)). \]

On a donc

\[ \overline{\partial} q_2 = \overline{\partial} \partial \log(1 + ||\zeta||^2). \]

Notons d’ailleurs que la forme

\[ \omega := -\frac{i}{2\pi} \partial \overline{\partial} \log(|z_0|^2 + |z_1|^2 + \cdots + |z_n|^2) \]

(exprimée ici en coordonnées homogènes) dans l’espace projectif \( \mathbb{P}^n(\mathbb{C}) \) est la (1, 1) forme définissant la structure Kählerienne de l’espace projectif. Ce n’est donc pas une surprise que de la retrouver, restreinte à l’espace affine, dans les formules que nous allons écrire. On a

\[ 1 + q_2, z - \zeta > = \frac{1 + \overline{\zeta}, z >}{1 + ||\zeta||^2}. \]

Les noyaux des formules deviennent, si l’on prend pour \( \Gamma \) le polynôme en deux variables \( P_M(t_1, t_2) = t_1^{n+1} t_2^M \), avec \( M \in \mathbb{N}^* \) (non encore fixé),

\[
K_{s,q,P,M} = \sum_{\alpha_0 + \alpha_1 + \alpha_2 = n-1} \binom{n+1}{\alpha_1} \binom{N}{\alpha_2} \binom{N-1-\alpha_1}{1} \binom{N-\alpha_2}{1}
\times \frac{d|\zeta|^2 \wedge (\overline{\partial} \partial ||\zeta||^2)^{\alpha_0} \wedge (dQ(z, \zeta))^{\alpha_1} \wedge (\overline{\partial} \partial \log(1 + ||\zeta||^2))^{\alpha_2}}{||\zeta - z||^{2(\alpha_0+1)}}
\]

et

\[
P_{s,q,P,M} = \sum_{\alpha_1 + \alpha_2 = n} \binom{n+1}{\alpha_1} \binom{M}{\alpha_2} \binom{M-1-\alpha_1}{1} \binom{M-\alpha_2}{1}
\times \frac{(dQ(z, \zeta))^{\alpha_1} \wedge (\overline{\partial} \partial \log(1 + ||\zeta||^2))^{\alpha_2}}{||\zeta - z||^{2(\alpha_0+1)}}
\]

30
Si l’on écrit la formule (1.18) dans le disque de rayon \( R \) et avec ces noyaux, on voit que, quitte à choisir \( M \) assez grand (tenant compte des estimations (2.6)), on peut faire en sorte que pour \( z \) fixé
\[
\lim_{R \to \infty} \left| \int_{|\zeta| = R} K_{s_i \zeta} P_M(z, \zeta) \right| = 0
\]
et
\[
\int_{\mathbb{C}^n} ||u_{l_1, l_2, j}|| < \infty, \quad \forall l_1, l_2, j,
\]
où les \( u_{l_1, l_2, j}, l_1, l_2 \in \mathbb{N}^n, \quad |l_1| \leq n + 1, \quad |l_2| \leq M + n \max \deg p_j, \quad 1 \leq j \leq N, \) sont définis par
\[
P_{s_i g_j p_M} = \sum_{j=1}^{M} p_j(z) \sum_{l_1 \in \mathbb{N}^n} \sum_{l_2 \in \mathbb{N}^n} u_{l_1, l_2, j} p(z)^{l_1} z^{l_2}
\]
(on a noté \( p(z)^{l_1} := p_1^{l_1} \cdots p_n^{l_1} \) et \( z^{l_2} := z_1^{l_2_1} \cdots z_n^{l_2_n} \)). Si l’on choisit \( M \) ainsi, on obtient l’identité
\[
1 = \frac{1}{(2\pi)^n} \sum_{j=1}^{N} p_j(z) \left( \sum_{l_1 \in \mathbb{N}^n} \sum_{l_2 \in \mathbb{N}^n} \int_{\mathbb{C}^n} u_{l_1, l_2, j} \right)
\]
ce qui nous donne bien une identité de Bézout (2.5) en un sens explicite (avec des \( \hat{p}_j \) explicites au lieu des \( q_j \) existentiels). Notons d’ailleurs que les \( q_j \) n’interviennent dans la construction que sous la forme d’une estimation de leur degré. En effet, les estimations des degré des \( \hat{p}_j \) dépendent du choix de \( M \). Ce choix (on peut s’en convaincre en faisant l’exercice) est conditionné par la quantité \( \max \deg q_j \) qui intervenait dans une identité à priori. Nous n’avons ici fait que trouver une identité explicite, sachant qu’il est toujours possible de résoudre le problème de Bézout. En un sens, notre démarche ici se mord au pied de la queue mais nous verrons plus tard comment imaginer d’autres scénarios. D’ores et déjà cependant, l’efficacité de nos formules intégrales pour résoudre certains problèmes de division (type pour l’instant identités de Bézout), avec ou sans conditions de croissance, nous semble démontrée.

2.3. Pseudo-filtrage de Wiener.

On a vu dans les sections précédentes que le poids naturel pour résoudre un problème de division dans un ouvert convexe \( U \) de \( \mathbb{C}^n \), lorsque les fonctions en jeu n’ont pas de zéros communs, est le poids \( q_e \) associé à la (1,0) forme différentielle dans \( U \times U \)
\[
Q_e(z, \zeta) = \frac{\sum_{k=1}^{N} J_k G^{(j)}(z, \zeta)}{||f||^2},
\]
avec
\[
G^{(j)}(z, \zeta) = \sum_{k=1}^{N} g_{jk}(z, \zeta)(d\zeta_j - dz_j)
\]

31
(ou, lorsqu’il s’agit de la représentation des fonctions et non plus des formes, des com-
ponents de type \( (1,0) \) en \( \zeta \) que l’on note respectivement \( Q_\epsilon \) et \( G^{(d)} \)). Dans ce cas, le
calcul du bloc \( 1 + \langle q_\epsilon, z - \zeta \rangle \) (dont le rôle est capital dans les formules du paragraphe
précédent relatives au Nullstellensatz) donne

\[
\frac{\epsilon}{||f(\zeta)||^2 + \epsilon} + \sum_{k=1}^{N} \frac{f_k(\zeta) f_k(z)}{||f(\zeta)||^2 + \epsilon}.
\]

Le problème crucial qui se pose, une fois les formules approchées écrites, est ce qui se passe
lorsque \( \epsilon \) tend vers \( 0 \). Nous étudierons cette question au paragraphe suivant. Signalons
cependant les calculs importants suivants, impliquant la forme approchée \( Q_\epsilon \). On a, pour
tout \( k \) entre 1 et \( \inf(n,N) \),

\[
(\partial_\zeta Q_\epsilon)^k(z, \zeta) =
\]

\[
= (-1)^{k(k-1)/2} k! \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq N} \left( \prod_{l=1}^{k} \frac{\partial \|f\|^2}{\partial f_{j_l}} - \frac{\partial \|f\|^2 \wedge \|f\|^2 \wedge \sum_{l=1}^{k} (-1)^{l-1} f_{j_l} \wedge \sum_{s \neq l} \partial f_{j_s}}{||f||^2 (||f||^2 + \epsilon)^k} \right) \wedge G_{j_1} \wedge \ldots \wedge G_{j_k}(z, \zeta).
\]

(volontairement, la variable \( \zeta \) n’a pas été exprimée lorsqu’elle était implicite au second
membre). On peut écrire aussi

\[
(\partial_\zeta Q_\epsilon)^k(z, \zeta) =
\]

\[
= (-1)^{k(k-1)/2} k! \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq N} \left( \frac{||f||^2 \wedge \sum_{l=1}^{k} (-1)^{l-1} f_{j_l} \wedge \sum_{s \neq l} \partial f_{j_s}}{||f||^2 (||f||^2 + \epsilon)^k} \right) \wedge G_{j_1} \wedge \ldots \wedge G_{j_k}(z, \zeta).
\]

En particulier, lorsque \( N \leq n \), on trouve

\[
(\partial_\zeta Q_\epsilon)^N = (-1)^{N(N-1)/2} N! \epsilon \frac{\sum_{j=1}^{N} \partial f_j}{||f||^2 + \epsilon} \wedge G_1 \wedge \ldots \wedge G_N(z, \zeta).
\]

L’idée d’introduire un tel mécanisme de division approchée est aussi une idée naturelle du
point de vue Hilbertien. Pour illustrer ce point, nous nous placerons dans le cadre de la
théorie du signal.
Soit \((\Omega, \mathcal{T}, P)\) un espace probabilisé. On notera \(E\) l’espérance mathématique. Supposons que l’on dispose de \(N\) “boîtes noires” \(C_1, \ldots, C_N\) correspondant à des opérateurs linéaires dont les paramètres ne changent pas dans le temps (on dit aussi des filtres), c’est à dire à des opérateurs de convolution par des distributions \(\mu_1, \ldots, \mu_N\), dites aussi \(\text{réponses impulsionnelles}\) des \(N\) filtres. On suppose que \(s\) est un processus continu d’énergie finie, c’est à dire une application

\[
(t_1, \omega) \mapsto s(t_1, \omega) : \mathbb{R} \times \Omega \mapsto \mathbb{C}
\]

telle que

\[
\int_{t \in \mathbb{R}} \int_{\Omega} |s(t, \omega)|^2 dtdP(\omega) < \infty.
\]

On suppose de plus que ce processus est stationnaire, c’est à dire que

\[
(t_1, t_2) \mapsto E(s(t_1, \cdot), s(t_2, \cdot))
\]

est une distribution \(\Gamma_s\) de \(t_1 - t_2\), dite fonction d’autocorrelation du signal. On supposera cette distribution à support compact ; dans le cas le plus simple où les valeurs du processus à deux instants distincts ne sont pas corréllées, cette distribution est la distribution de Dirac. On notera \(P_s\) la densité spectrale de puissance du processus \(s\), c’est à dire le spectre de cette distribution \(\Gamma_s\) ; si les valeurs du processus à deux instants distincts ne sont pas corréllées, on a \(P_s = \gamma\), fonction constante dans l’espace des fréquences. Le processus (inconnu) est enregistré par les appareils, ce qui correspond à un signal capté entaché d’une erreur de mesure

\[
\begin{pmatrix}
\int_{\mathbb{R}} s(t-u, \omega) d\mu_1(u) + \theta_1(t, \omega) \\
\vdots \\
\int_{\mathbb{R}} s(t-u, \omega) d\mu_N(u) + \theta_N(t, \omega)
\end{pmatrix}
\]

l’erreur de mesure

\[
\Theta(t, \omega) := \begin{pmatrix}
\theta_1(t, \omega) \\
\vdots \\
\theta_N(t, \omega)
\end{pmatrix}
\]

est supposée aussi stationnaire, au sens où, pour \(t_1, t_2 \in \mathbb{R}\), la matrice

\[
\Psi(t_1, t_2) := \left[ E(\theta_j(t, \cdot), \overline{\theta_k(t, \cdot)}) \right]_{1 \leq j, k \leq N}
\]

est une fonction de \(t_1 - t_2\), que pour simplifier ici, on supposera de la forme \(\eta \delta_0 I_N\), où \(\delta_0\) est la distribution de Dirac. On suppose aussi, ce qui est naturel, que l’erreur de mesure satisfait

\[
E(\theta_j(t, \cdot)) = 0, \ 1 \leq j \leq N, \ t \in \mathbb{R}
\]

(la moyenne de l’erreur est nulle) ainsi que

\[
E(s(t, \cdot), \overline{\theta_j(t, \cdot)}) = 0, \ 1 \leq j \leq N, \ t \in \mathbb{R}
\]

33
(pas de corrélation erreur-signal). On supposera aussi pour simplifier les choses que tous les processus ici sont réels.

Le problème est le suivant: réaliser $N$ appareils, correspondant à des réponses impulsionnelles $\nu_1, \ldots, \nu_N$, de manière à ce que, si

$$\tilde{s}(t, \omega) := \sum_{k=1}^{N} \nu_k * [\mu_k * s(\cdot, \omega) + \theta_k(\cdot, \omega)](t, \omega),$$

on puisse réaliser

$$e := \mathbb{E}[\tilde{s}(t, \omega) - s(t, \omega)]^2$$

minimale (notons que cette quantité est indépendante de $t$ du fait des hypothèses de stationnarité de $s$ et $\Theta$, ainsi que de la non-corrélation de ces deux signaux). Le calcul est très simple, si l'on utilise la formule de Plancherel, comme dans [Pap], p. 272-273 $^*$; on trouve

$$e = \frac{1}{2\pi} \int_{\mathbb{R}} \left( \gamma \sum_{k=1}^{N} \hat{\nu}_k(\xi) \hat{\mu}_k(\xi) - 1 \right)^2 + \eta \sum_{k=1}^{N} |\hat{\nu}_k(\xi)|^2 \, d\xi,$$

quantité qui est minimale lorsque les réponses impulsionnelles des appareils déconvoluteurs sont données par

$$\hat{\nu}_k(\xi) = \frac{\hat{\mu}_k(\xi)}{\sum_{k=1}^{N} |\hat{\mu}_k(\xi)|^2 + \epsilon}, \quad k = 1, \ldots, N,$$

avec $\epsilon = \eta/p$ pourrait être qualifié de rapport signal/bruit. On voit donc que ce mécanisme de déconvolution des signaux bruités (proposé originellement par Wiener) introduit le même type de division approchée que celui que nous mentionnions en tête de cette section.

2.4. Lemme de Jordan et transformée de Mellin.

Rappelons ici le lemme classique de Jordan.

**Lemme 2.1.** Soit $\gamma \in \mathbb{R}$ et $f$ une fonction définie et continue sur la droite $\gamma + \mathbb{R}$ du plan complexe, à valeurs dans $\mathbb{C}$, et $t \in [0, 1]$ tel que

$$I = \lim_{T \to +\infty} \int_{\gamma + [-iT, iT]} f(u) t^{-u} \, du$$

existe. On suppose que la fonction $f$ se prolonge méromorphiquement au demi-plan $\Pi^- := \{\text{Re} \, \zeta \leq \gamma\}$ et qu'il existe une suite $(R_k)_k$ de nombres strictement positifs tels que

$$\lim_{k \to +\infty} \max_{\{u - \gamma = R_k\} \cap \Pi^-} |f(u)| = 0$$

(en particulier, pour \(k\) assez grand, \(f\) n'a aucun pôle sur \(\{u - \gamma = R_k\} \cap \Pi^-\). On a alors

\[
I = (2i\pi) \lim_{\delta \to 0} \sum_{\alpha \in \{u - \gamma \leq R_k\} \cap \Pi^-} \text{Res}_\alpha [f(\zeta)t^{-\zeta}d\zeta],
\]

où le résidu d'une \((1,0)\) forme méromorphe \(\varphi = h(\zeta)d\zeta\) est défini, comme d'habitude, par

\[
\text{Res}_\alpha \varphi := \frac{1}{2i\pi} \int_{\xi_\alpha} \varphi,\]

\(\xi_\alpha\) désignant un cycle d'indice 1 autour du point \(\alpha\) n'entourant que \(\alpha\) comme pôle éventuel de la fonction \(h\).

**Preuve.** On choisit \(k\) assez grand pour que le prolongement méromorphe de \(f\) n'ait plus de pôle sur la portion \(\Gamma_k^-\) du cercle de centre \(\gamma\) et de rayon \(R_k\) incluse dans le demi-plan \(\Pi^-\). On oriente ce demi-cercle dans le sens trigonométrique. Grâce à la formule des résidus, on a

\[
\int_{\gamma + [-iR_k, iR_k]} f(u)t^{-u}du = (2i\pi) \sum_{\alpha \in \{u - \gamma \leq R_k\} \cap \Pi^-} \text{Res}_\alpha [f(\zeta)t^{-\zeta}d\zeta] - t^\gamma \int_{\Gamma_k^-} f(u)t^{-u}du.
\]

Notons

\[
\epsilon_k(f) := \max_{\{u - \gamma \leq R_k\} \cap \Pi^-} |f(u)|.
\]

On peut estimer l'intégrale sur le demi-cercle \(\Gamma_k^-\) ainsi:

\[
\left|\int_{\Gamma_k^-} f(u)t^{-u}du\right| \leq \epsilon_k(f)R_k \int_{\gamma}^{\gamma + \frac{\pi}{2}} e^{R_k|\log t|\cos \theta}d\theta
\]

\[
\leq \epsilon_k(f)R_k \int_{\gamma}^{\gamma + \frac{\pi}{2}} e^{-R_k|\log t|\sin \theta}d\theta
\]

\[
\leq \epsilon_k(f)R_k \int_{\gamma}^{\gamma + \frac{\pi}{2}} e^{-2R_k|\log t|\frac{\theta}{\pi}}d\theta = o(1)
\]

grâce à l'hypothèse sur la suite \((\epsilon_k)\). En passant à la limite lorsque \(k\) tend vers l'infini dans (2.7), on prouve notre résultat. \(\diamondsuit\)

Au lieu d'utiliser la formule des résidus avec des contours du type frontière de demi-cercle, comme ci-dessus, on peut "pousser" l'intégration sur les droites verticales vers la gauche en utilisant comme contours des frontières de rectangles à côtés parallèles aux axes. C'est ce que nous ferons lors de l'inversion de la transformée de Mellin.

Si \(\theta\) est une fonction mesurable à support compact inclus dans \([0, \infty]\) et à valeurs complexes, on peut définir sa transformée de Mellin (réelle ici) dès que la fonction satisfaisait une estimation du type

\[
\int_0^\infty t^{\alpha - 1} |\theta(t)|dt < \infty,
\]

(2.8)
où \( \gamma_0 \) est un nombre réel (une telle condition exclut une explosion non contrôlée de \( \theta \) lorsque l'on approche 0 par la droite). Alors, on dit que \( \theta \) est Mellin-transformable, et sa transformée de Mellin est la fonction

\[
M(\theta; \lambda) : \lambda \mapsto \lambda \int_0^{\infty} t^{\lambda-1} \theta(t) dt,
\]

définie et holomorphe au moins dans le demi plan ouvert \( \Re \lambda > \gamma_0 \) (on utilise le théorème de dérivation de Lebesgue). D'ailleurs (2.8) assure, via un changement de variable, que la fonction

\[
s \in \mathbb{R} \mapsto e^{\gamma s} \theta(e^s)
\]
est intégrable sur \( \mathbb{R} \). On peut remarquer que, si \( \gamma > \gamma_0 \) et \( \xi \in \mathbb{R} \),

\[
M(\theta; \gamma + i\xi) = (\gamma + i\xi) \int_\mathbb{R} e^{t(\gamma+i\xi)} \theta(e^t) dt
\]
est telle que

\[
\xi \mapsto \frac{M(\theta; \gamma + i\xi)}{\gamma + i\xi}
\]
représente la transformée de Fourier (en \( -\xi \)) de la fonction intégrable

\[
t \mapsto e^{\gamma t} \theta(e^t).
\]

Nous avons alors le petit lemme élémentaire suivant:

**Lemme 2.2.** Supposons que la transformée de Mellin de \( \theta \) puisse se prolonger en une fonction holomorphe dans le demi plan \( \Re \lambda > -\eta_0 \), où \( \eta_0 \) est un nombre strictement positif et qu'il existe \( \gamma > \gamma_0 \) et \( \eta \in [0, \eta_0[ \) tels que le prolongement \( M(\theta; \cdot) \) satisfasse \( |M(\theta; \cdot)| \leq C \) dans la bande \( \{\Re \lambda \in [-\eta, \gamma]\} \) et

\[
\int \mathbb{R} \frac{|M(\theta; \sigma + i\xi)|}{1 + |\xi|} d\xi < \infty \quad (2.9)
\]

daussi que pour \( \sigma = -\eta \) et \( \sigma = \gamma \). Alors

\[
\lim_{t \to 0, t > 0} \theta(t) = M(\theta; 0).
\]

**Preuve.** L'hypothèse (2.9) appliquée pour \( \sigma = \gamma \) et la remarque précédente impliquent que la fonction de \( L^1(\mathbb{R}) \): \( t \mapsto e^{\gamma t} \theta(e^t) \) et son spectre sont toutes les deux intégrables; il suit de la formule d'inversion de Fourier que l'on a, pour tout \( t \) réel

\[
e^{\gamma t} \theta(e^t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} M(\theta; \gamma + i\xi) e^{-i\xi} d\xi.
\]

On peut écrire cette identité ainsi: pour tout \( u > 0 \),

\[
\theta(t) = \frac{1}{2i\pi} \int_{\gamma+\mathbb{R}^+} M(\theta; u) \frac{t^{-u} du}{u}.
\]

36
L’application de la formule des résidus nous assure, si $\partial R_T$ est la frontière du rectangle $[-\eta, \gamma] \times [-T, T]$ (orientée dans le sens trigonométrique) que

$$\frac{1}{2i\pi} \int_{\partial R_T} M(\theta; u) \frac{t^{-u} du}{u} = M(\theta; 0)$$

puisque 0 est le seul pôle à l’intérieur de ce contour de la forme méromorphe concernée. Si l’on utilise l’hypothèse (2.9) cette fois pour $\sigma = -\eta$ et le fait que $M(\theta; \cdot)$ est bornée en $C e^{\log t \max(\eta, \gamma)}$ sur les bords horizontaux du rectangle, on voit, faisant tendre $T$ vers l’infini, que, pour $t$ voisin de 0,

$$\frac{1}{2i\pi} \int_{\gamma+iR} M(\theta; u) \frac{t^{-u} du}{u} = \frac{1}{2i\pi} \int_{-\eta+iR} M(\theta; u) \frac{t^{-u} du}{u} + M(\theta; 0) = M(\theta; 0) + o(1)$$

car

$$\left| \int_{-\eta+iR} M(\theta; u) \frac{t^{-u} du}{u} \right| \leq k t^n \int_R \frac{|M(\theta; \sigma + i\xi)|}{1 + |\xi|} d\xi$$

pour un certain $k > 0$. Cela conclut la preuve du lemme. ♦

Si l’on fait toujours la même hypothèse à priori (2.8) sur $\theta$, mais que l’on suppose cette fois que la transformée de Mellin se prolonge au demi espace $\Re \lambda \geq -\eta_0$ en une fonction méromorphe, à pôles dans un rectangle $[-\eta_0, \gamma] \times [-T, T]$, toujours avec des hypothèses similaires, à savoir que le prolongement est borné dans le domaine $\{ \lambda, \Re \lambda \in [-\eta_0, \gamma], \Im \lambda \geq T \}$ et que

$$\forall \sigma \in [-\eta_0, \gamma], \int_{|\xi| \geq T} \frac{|M(\theta; \sigma + i\xi)|}{1 + |\xi|} d\xi < \infty,$$

on montre, en déplaçant progressivement la droite verticale vers la gauche et en utilisant la formule des résidus, que $\theta$ admet un développement asymptotique en 0 (que l’on construit explicitement) dans l’échelle des $(t^\alpha (\log t)^q), -\gamma_0 < \alpha \leq 0, q \in \mathbb{N}$. Si l’on peut prolonger de manière méromorphe encore plus à gauche de 0 (disons dans $\Re \lambda \geq -A$) avec les conditions

$$\exists T > 0, \forall \sigma \in [-A, \gamma], \int_{|\xi| \geq T} \frac{|M(\theta; \sigma + i\xi)|}{1 + |\xi|} d\xi < \infty$$

et

$$\exists C > 0, |M(\theta; \zeta)| \leq C, -A \leq \Re \zeta \leq \gamma, |\Im \zeta| \geq T,$$

alors on obtient en déplaçant la droite verticale vers la gauche un développement asymptotique de $\theta$ au voisinage de 0 dans l’échelle des $(t^\alpha (\log t)^q), -\gamma_0 < \alpha \leq A, q \in \mathbb{N}$. Les idées évoquées ici (interaction entre prolongement méromorphe de la transformée de Mellin et précision du développement asymptotique d’une fonction près de 0) sont dues à P. Jeanquartier, H. Maire, D. Barlet.

L’idée que recèle le recours à la transformation de Mellin nous incite à envisager autrement, cette fois de manière indirecte, la division approchée.
Reprenons les mêmes notations qu’au début de ce paragraphe (les $f_j$, $j = 1, \ldots, N$, sont $N$ fonctions holomorphes dans un ouvert convexe $U$ de $\mathbb{C}^n$ et les $\mathbf{G}^{(j)}$, $j = 1, \ldots, N$, sont les formes de Hefer correspondantes).

On introduit un paramètre complexe $\lambda$ de partie réelle assez grande (certainement pour l’instant strictement supérieure à 1) et le poids $q^\lambda$ associé cette fois à la forme

$$
Q^{(\lambda)}(z, \zeta) := \|f\|^2 \sum_{k=1}^{N} f_k \mathbf{G}^{(j)}(z, \zeta) \|f\|^2.
$$

Dans ce cas, on a

$$
1 + q^{(\lambda)}(z - \zeta) = (1 - \|f(z)\|^2 \lambda^2) + \|f(\zeta)\|^2 \lambda^2 \sum_{k=1}^{N} \frac{f_k(z)f_k(\zeta)}{\|f(z)\|^2}.
$$

Un calcul simple conduit alors, si $k \leq \inf(n, N)$, à

$$
(\overline{\partial}_z Q^{(\lambda)})^k(z, \zeta) = (-1)^{\frac{k(k-1)}{2}} k! \times
$$

$$
\times \|f\|^{2(k-1)} \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq N} \left( \bigwedge_{l=1}^k \overline{\partial f_{i_l}} + (\lambda - 1) \frac{\|f\|^2}{\|f\|^2} \bigwedge_{l=1}^k \left( \sum_{s=1}^{k} (-1)^{l-1} f_{i_s} \bigwedge_{s \neq t} \overline{\partial f_{i_t}} \right) \right)
$$

$$
\wedge G_{i_1} \wedge \cdots \wedge G_{i_k}(z, \zeta)
$$

(2.10)

(volontairement, la variable $\zeta$ n’a pas été exprimée lorsqu’elle était implicite au second membre). En particulier, si $N \leq n$, on a

$$
(\overline{\partial}_z Q^{(\lambda)})^N(z, \zeta) = (-1)^{\frac{N(N-1)}{2}} N! \lambda \|f\|^{2N \lambda - 2} \bigwedge_{j=1}^{N} \overline{\partial f_j} \wedge G_1 \wedge \cdots \wedge G_N(z, \zeta).
$$

(2.11)

Ces calculs nous conduisent à une approche radicalement différente de la division via le processus approché proposé au paragraphe précédent: dans le premier cas (pseudo-filtrage de Wiener), l’approche à $\epsilon = 0$ est direct; dans le second cas, seul le mécanisme du prolongement analytique nous permettra de construire de vraies formules de division (correspondant au cas limite $\lambda = 0$) en suivant le long du prolongement analytique l’évolution de formules écrites dans un premier temps lorsque le paramètre $\lambda$ a une grande partie réelle.

Il existe néanmoins une relation entre le processus de division approché et ce second processus utilisant le prolongement analytique; l’idée est que l’on passe de l’un à l’autre via la transformation de Mellin.

Nous devons rappeler tout d’abord un résultat classique et important de géométrie analytique réelle, dû à Sard: * si $F$ est une application d’un ouvert connexe $\Omega$ de $\mathbb{R}^p$ dans

---


38
$R^q$ et $r \leq \min(p,q)$ est le rang du plus grand mineur de la matrice Jacobienne $J[F]$ de $F$ qui ne soit pas identiquement nul, alors l'ensemble des valeurs critiques de $F$, c'est à dire des points $F(\xi)$ où $\xi \in \Omega$ est tel que rang $J[F] < r$, est un ensemble de mesure de Lebesgue nulle dans $R^q$. D'autre part, grâce au théorème de Fubini, on dispose, si $K$ est un compact inclus dans $\Omega$, d'une "estimation de volume en moyenne", du type

$$\int_K \| J(F)(\xi) \| d\xi_1 \cdots d\xi_p \geq \int_{R^q} \mes_{p-q}(K \cap \{ F = \epsilon \}) d\epsilon \quad (2.12)$$

(c'est la formule dite de la co-aire, voir par exemple une preuve dans le livre de Federer * théorème 3.2.11, page 248, où figure un énoncé d'ailleurs beaucoup plus précis en termes de mesures de Hausdorff et non de mesures de Lebesgue).

En particulier, si $U$ est un ouvert de $C^n$ et $f_1, \ldots, f_N$ sont des fonctions holomorphes dans $U$, l'ensemble des nombres $\epsilon > 0$ tels que

$$\{ \zeta \in U, |f_1(\zeta)|^2 + \cdots + |f_N(\zeta)|^2 = \epsilon \}$$

n'est pas une sous-variété lisse de dimension réelle $2n-1$ de l'ouvert $U$ est un sous ensemble négligeable $S$ de $]0, +\infty[$. D'autre part, on a, par (2.12), pour tout compact $K$ de $U$,

$$\int_K \| \nabla(||f||^2) \| dx_1 dy_1 \cdots dx_n dy_n \geq \int_0^\infty \mes_{2n-1}(K \cap \{ ||f||^2 = \epsilon \}) d\epsilon. \quad (2.13)$$

On peut donc naturellement, si $f_1, \ldots, f_N$ sont des fonctions holomorphes dans $U$, définir, pour tout sous ensemble $I = \{j_1, \ldots, j_k\} \subset \{1, \ldots, N\}$, de cardinal $k \leq n$ et pour toute $(n, n-k)$ forme à coefficients continus et à supports compact dans $U$, la fonction

$$\epsilon \in ]0, +\infty[ \setminus S \mapsto \theta_I(f, \varphi; \epsilon) := \int_{||f||=\epsilon} \frac{(-1)^{\frac{k(k-1)}{2}}}{\epsilon^k} (\sum_{l=1}^k (-1)^{l-1} f_{i_l} \wedge \sum_{s=1 \neq l}^k \varphi(\zeta)).$$

Ces fonctions induisent des fonctions mesurables à support compact dans $]0, +\infty[$. Il résulte de (2.13) que chaque fonction $\theta_I(f, \varphi; \cdot)$ vérifie la clause (2.8) avec $\gamma_0 = k + 1$ et est donc Mellin-transformable. Un calcul facile (que l'on laisse en exercice comme application de Fubini et du théorème de convergence dominée de Lebesgue) nous montre que la transformée de Mellin de cette fonction est exactement la fonction

$$\lambda \in \Re \zeta > k + 1 \mapsto \sigma_I(f, \varphi; \lambda) :=$$

$$= (-1)^{\frac{k(k-1)}{2}} (k-1)! \int_{U} ||f||^{2(\lambda-k)} \frac{\partial ||f||^2}{||f||^2} \wedge (\sum_{l=1}^k (-1)^{l-1} f_{i_l} \wedge \sum_{s=1 \neq l}^k \varphi(\zeta)).$$

On remarque que, l’on peut réécrire les formules (2.10) sous la forme suivante: pour toute forme de type \( (n-k, n-k) \) à coefficients continus et à support compact dans \( U \),

\[
\int_U \left( \overline{\zeta} Q(\lambda) \right)^k (\zeta, \zeta) \wedge \varphi = (-1)^{\frac{k(k-1)}{2}} k! \times \\
\times \int_U \|f\|^{2k-1} \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq N} \left( \prod_{l=1}^k \frac{\partial f_{j_l}}{\|f\|} \wedge \left( \sum_{l=1}^k (-1)^{l-1} f_{i_l} \wedge \overline{\partial f_{j_l}} \right) \wedge G_{j_1} \wedge \cdots \wedge G_{j_k} (\zeta, \zeta) \wedge \varphi^+ \right) \\
+ (-1)^{\frac{k(k-1)}{2}} (k-1)! \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq N} \sigma_I (f, G_{j_1} \wedge \cdots \wedge G_{j_k} \wedge \varphi; k\lambda).
\]

Un autre procédé, lui aussi intéressant pour faire le lien entre division approchée suivant l’idée de Wiener (usage de \( Q_\varepsilon, \varepsilon > 0 \)) et division approchée suivant les techniques inspirées du prolongement analytique (usage de \( Q(\lambda) \), avec au départ \( \text{Re } \lambda >> 0 \)), consiste en l’utilisation des formules classiques de Mellin-Barnes, dont le prototype est le lemme 2.3 suivant:

**Lemme 2.3.** Soit \( \beta \) un nombre complexe avec \( \text{Re } \beta > 0 \) et \( 0 < \gamma < \text{Re } \beta \). On a alors, pour tout \( t > 0 \), la formule

\[
(1 + t)^{-\beta} = \frac{1}{2i\pi \Gamma(\beta)} \int_{\gamma+i\mathbb{R}} \Gamma(s) \Gamma(\beta - s) t^{-s} ds.
\]  

**Preuve.** Cette formule est une formule bien connue; on pourrait la retrouver en utilisant le fait suivant: si \( \beta \) et \( \gamma \) sont deux nombres, l’un \( \beta \) complexe, l’autre \( \gamma \) réel avec en plus \( \text{Re } (\beta) > \gamma > 0 \), alors, on a, pour tout réel \( \omega \),

\[
\int_{-\infty}^{+\infty} \frac{e^{-\xi\gamma}}{(1 + e^{-\xi})^\beta} e^{-i\omega \xi} d\xi = \frac{\Gamma(\gamma + i\omega) \Gamma(\beta - \gamma - i\omega)}{\Gamma(\beta)},
\]

(voir formule 3.314, page 305 dans la table de Gradshteyn-Ryzhik *, outil très précieux). On écrit ici que le spectre du signal

\[
t \mapsto \frac{e^{-\gamma t}}{(1 + e^{-t})^\beta}
\]

est, dans l’espace des fréquences, le signal

\[
\omega \mapsto \frac{\Gamma(\gamma + i\omega) \Gamma(\beta - \gamma - i\omega)}{\Gamma(\beta)}.
\]

---

En utilisant la formule d’inversion de Fourier, il vient alors
\[
\frac{e^{-\gamma u}}{(1+e^{-u})^\beta} = \frac{1}{2\pi} \int_{\mathbb{R}} \Gamma(\gamma + i\omega)\Gamma(\beta - \gamma - i\omega)e^{iu\omega}d\omega, \quad u \in \mathbb{R}.
\]
d'où
\[
\frac{1}{(1+e^{-u})^\beta} = \frac{1}{2i\pi} \int_{\gamma+i\mathbb{R}} \Gamma(s)\Gamma(\beta - s)e^{-us}ds.
\]
On conclut en posant \( t = e^{-u} \) à la validité de (2.14).

Voici une preuve directe. On établit d’abord la formule pour \( t < 1 \). La formule de Stirling nous assure que, dans le secteur \( \arg \zeta < \pi \), on a, pour \( |\zeta| \) tendant vers l’infini,
\[
\Gamma(\zeta) \sim \sqrt{2\pi e^{-\zeta}} \zeta^{-\frac{1}{2}},
\]
ce qui nous assure la décroissance rapide de
\[
\gamma_{\beta} : \zeta \mapsto \Gamma(\zeta)\Gamma(\beta - \zeta)
\]
sur toute ligne verticale du plan complexe. On peut donc, en utilisant la formule de Cauchy sur le rectangle
\[
[-n - \eta, \gamma] \times [-N, N], \quad n \geq 1, \quad N \in \mathbb{N}^*,
\]
et \( 0 < \eta < \frac{1}{2} \) choisi de manière à ce que la fonction \( \gamma_{\beta} \) n’ait pas de pôle sur la droite verticale \( \text{Re} \zeta = -n - \eta \), puis en faisant tendre \( N \) vers l’infini, obtenir
\[
\frac{1}{2i\pi \Gamma(\beta)} \int_{\gamma + i\mathbb{R}} \Gamma(s)\Gamma(\beta - s)t^{-s}ds = \frac{1}{2i\pi \Gamma(\beta)} \int_{-n - \eta + i\mathbb{R}} \Gamma(s)\Gamma(\beta - s)t^{-s}ds + \sum_{k=0}^{n} \text{Res} [\Gamma(s)\Gamma(\beta - s)t^{-s}, -k].
\]
Or
\[
\sum_{k=0}^{n} \text{Res} [\Gamma(s)\Gamma(\beta - s)t^{-s}, -k] = 1 + \sum_{k=1}^{n} \frac{(-\beta)\cdots(-\beta-k+1)}{k!} t^k = R_n(t).
\]
Comme on le remarque immédiatement \( R_n(t) \) est la partie principale du développement de Taylor à l’ordre \( n \) de
\[
t \mapsto (1 + t)^{-\beta}
\]
au voisinage de \( t = 0 \). Si l’on note
\[
\Psi(t) = \frac{1}{2i\pi \Gamma(\beta)} \int_{\gamma + i\mathbb{R}} \Gamma(s)\Gamma(\beta - s)t^{-s}ds,
\]
on a, pour tout \( n \in \mathbb{N}^* \),
\[
\Psi(t) - (1 + t)^{-\beta} = o(t^n)
\]
41
car on peut majorer \( R_n \) par

\[
|R_n(t)| \leq \frac{t^{n+\eta}}{2\pi} \int_{\mathbb{R}} |\Gamma(-n - \eta + i\xi)\Gamma(\beta + n + \eta - i\xi)| d\xi \leq C_n t^{n+\eta} \tag{2.15}
\]

du fait de la rapide décroissance de \( \Gamma \) sur les lignes verticales du plan complexe, et par conséquent de la convergence de l'intégrale figurant à droite de (2.15). On peut aussi utiliser l'équation fonctionnelle de \( \Gamma \) impliquant les relations

\[
\Gamma(-n - \eta + i\xi) = \frac{\Gamma(-n + 1 - \eta + i\xi)}{(-n - \eta + i\xi)} = \cdots = \frac{\Gamma(1 - \eta + i\xi)}{\prod_{k=0}^{n} (-k - \eta + i\xi)} \tag{2.16}
\]

et

\[
\Gamma(\beta+n+\eta-\xi) = (\beta+n-1+\eta-\xi)\Gamma(\beta+n-1+\eta-\xi) = \cdots = \Gamma(\beta+\eta-\xi) \prod_{j=0}^{n-1} (\beta+k+\eta-\xi). \tag{2.17}
\]

Pour tout \( \varepsilon > 0 \), il existe \( T(\varepsilon) \) tel que, pour tout \( (\xi, k) \in \mathbb{R} \times \mathbb{N} \) avec \( |\xi| + |k| \geq T(\varepsilon) \), on ait

\[
\left| \frac{(\eta - i\xi) + \beta + k}{(\eta - i\xi) + k} \right| \leq (1 + \varepsilon).
\]

Ceci nous permet d'estimer l'intégrale

\[
\int_{|\xi| \geq T(\varepsilon)} |\Gamma(-n - \eta + i\xi)\Gamma(n + \beta + \eta - i\xi)| d\xi
\]

en utilisant les formules (2.16) et (2.17) par

\[
\int_{|\xi| \geq T(\varepsilon)} |\Gamma(-n - \eta + i\xi)\Gamma(n + \beta + \eta - i\xi)| d\xi \leq (1 + \varepsilon)^{n-1} \int_{|\xi| \geq T(\varepsilon)} \frac{|\Gamma(\beta + \eta - i\xi)\Gamma(1 - \eta + i\xi)|}{|\eta - i\xi + n|} d\xi
\]

\[
\leq C_1(\varepsilon)(1 + \varepsilon)^n.
\]

On a aussi, si \( n > T(\varepsilon) \)

\[
\int_{|\xi| \geq T(\varepsilon)} |\Gamma(-n - \eta + i\xi)\Gamma(n + \beta + \eta - i\xi)| d\xi \leq K(\varepsilon)(1 + \varepsilon)^{n-1-T(\varepsilon)} \int_{|\xi| \geq T(\varepsilon)} \frac{|\Gamma(\beta + \eta - i\xi)\Gamma(1 - \eta + i\xi)|}{|\eta - i\xi + n|} d\xi
\]

\[
\leq C_2(\varepsilon)(1 + \varepsilon)^n.
\]
Ceci nous permet d'affirmer que

\[ R_n(t) \leq C(\epsilon)t^{n+\eta}(1 + \epsilon)^{n-1} \]

et de conclure \( \lim_{n \to \infty} R_n(t) = 0 \) si \((1 + \epsilon)t < 1\); comme \(\epsilon\) est arbitraire, ceci achève la preuve de (2.14) dans le cas \(0 < t < 1\). Pour prouver le résultat lorsque \(t > 1\), il suffit cette fois de décaler notre intégrale sur les lignes verticales non plus vers la gauche, comme ci dessus, mais vers la droite. Le raisonnement est en tout point similaire. Le cas \(t = 1\) s'obtient par continuité (on applique le théorème de convergence dominée de Lebesgue par exemple pour montrer que \(\Psi\), définie par l'intégrale, est bien continue en \(t = 1\). \(\diamondsuit\)

Si \(t_1\) et \(t_2\) sont deux nombres strictement positifs, on a, pour tout \(\beta\) de partie réelle strictement positive, en prenant \(\gamma\) tel que \(0 < \gamma < \text{Re} \beta\),

\[
(t_1 + t_2)^{-\beta} = t_2^{-\beta} (1 + \frac{t_1}{t_2})^{-\beta} = \frac{1}{2\pi i \Gamma(\beta)} \int_{\gamma+i\mathbb{R}} \Gamma(s) \Gamma(\beta-s) t_1^{-s} t_2^{s-\beta} ds .
\]

Ceci peut s'itérer et si \(t_1, t_2, t_3\), sont trois nombres strictement positifs, et si \(\gamma_1\) et \(\gamma_2\) sont deux nombres strictement positifs tels que \(\gamma_1 + \gamma_2 < \text{Re} \beta\), et \(\vec{\gamma} := (\gamma_1, \gamma_2)\),

\[
(t_1 + t_2 + t_3)^{-\beta} = \frac{1}{(2\pi)^3 \Gamma(\beta)} \int_{\gamma_1+i\mathbb{R}} \Gamma(s_1) \Gamma(s_2) \Gamma(\beta-s_1-s_2) t_1^{-s_1} t_2^{-s_2} t_3^{s_1+s_2-\beta} ds_1 ds_2 .
\]

Ainsi, si \(t_1, \ldots, t_p\), sont \(p\) nombres strictement positifs, on a, pour tout \(\beta\) de partie réelle strictement positive, en prenant \(\gamma \in [0, \infty[^{p-1}\) tel que \(0 < \gamma_1 + \cdots + \gamma_{p-1} < \text{Re} \beta\), et \(\vec{\gamma} := (\gamma_1, \ldots, \gamma_{p-1})\),

\[
(t_1 + \cdots + t_p)^{-\beta} = \frac{1}{(2\pi)^p \Gamma(\beta)} \int_{\vec{\gamma}+i\mathbb{R}^{p-1}} \Gamma(s_1) \cdots \Gamma(s_{p-1}) \Gamma(\beta-|s|) t_1^{-s_1} \cdots t_{p-1}^{-s_{p-1}} t_p^{-\beta} ds ,
\]

avec les conventions \(ds := ds_1 \cdots ds_{p-1}\) et \(|s| := s_1 + \cdots + s_{p-1}\). Le second membre de (2.18) correspond à ce que l'on appelle une intégrale de Mellin-Barnes de plusieurs variables.
Chapitre 3.
Courants résidus et division.

3.1. Le résidu local.
Soient $f_1, \ldots, f_n$, $n$ fonctions holomorphes de $n$ variables, toutes définies dans un voisinage $V$ de l’origine dans $\mathbb{C}^n$, et telles que le seul zéro commun aux $f_i$ dans ce voisinage $V$ soit 0. Si $(\epsilon_1, \ldots, \epsilon_n)$ sont des nombres strictement positifs tels que $\varepsilon$ ne soit pas valeur critique de l’application

$$F : \zeta \in V \subset \mathbb{C}^n \rightsquigarrow (|f_1(\zeta)|^2, \ldots, |f_n(\zeta)|^2) \in [0, \infty]^n,$$

(ce qui est possible hors d’un ensemble de mesure nulle d’après le théorème de Sard), on peut définir, lorsque $\varphi$ est une $(n, 0)$ forme dans $\mathcal{D}(V)$, l’intégrale résiduelle

$$I_f(\varphi; \varepsilon) := \frac{1}{(2\pi)^n} \int_{\Gamma_f(\varepsilon)} \frac{\varphi(\zeta)}{f_1(\zeta) \cdots f_n(\zeta)}, \quad (3.1)$$

où $\Gamma_f(\varepsilon)$ est la sous variété (lisse et de dimension réelle $n$) de $V$ définie par les équations

$$|f_1(\zeta)|^2 = \epsilon_1, \ldots, |f_n(\zeta)|^2 = \epsilon_n$$

avec les conventions suivantes d’orientation; d’une part, on convient de ce que la forme différentielle $dx_1 \wedge dy_1 \wedge \cdots \wedge dx_n \wedge dy_n$ est la forme volume dans $V$, d’autre part, toujours avec cette convention

$$\int_{\Gamma_f(\varepsilon)} \psi(\zeta) \, d\zeta_1 \wedge \cdots \wedge d\zeta_n = \lim_{N \to \infty} \int_V \bar{\partial}[\chi_N(\frac{|f_1|^2}{\epsilon_1})] \wedge d\zeta_1 \wedge \cdots \wedge \bar{\partial}[\chi_N(\frac{|f_n|^2}{\epsilon_n})] \wedge d\zeta_n$$

(où $(\chi_N)_N$ désigne une suite de fonctions de $\mathbb{R}$ dans $\mathbb{R}$ régularisant la fonction saut $\chi(t) = 0$ pour $t > 1$, $\chi(t) = 1$ pour $t \geq 1$). Ainsi l’intégration sur $\Gamma_f(\varepsilon)$ se trouve ramenée à des calculs d’intégrales de $2n$ formes à support compact dans $V$.

La première difficulté qui saute aux yeux est que la paramétrisation de la sous variété ainsi orientée $\Gamma_f(\varepsilon)$ n’est nullement évidente, ce qui rend extrêmement complexe et peu maniable la définition (3.1) de l’intégrale résiduelle. Il faut cependant noter qu’en un point de $\Gamma_f(\varepsilon)$, le Jacobian $\text{Jac} f$ ne peut s’annuler: en effet, il est d’une part impossible que ce Jacobian $\text{Jac} f$ soit identiquement nul sur $V$, d’autre part, s’il existait un point $\zeta_0$ de $\Gamma_f(\varepsilon)$ où $\text{Jac} f = 0$, $\varepsilon = F(\zeta_0)$ serait valeur critique de $F$, ce qui est exclu. Pour tout $\theta \in [0, 2\pi]^n$, les zéros communs des $f_k^{e^{i\theta}} := \zeta \mapsto f_k(\zeta) - e^{i\theta_k} \sqrt{\varepsilon_k}, \ k = 1, \ldots, n$, sont donc des zéros simples (automatiquement isolés), c’est-à-dire des zéros où le jacobien ne s’annule pas. Il y a donc un nombre fini de tels points dans le support d’une forme test $\varphi \in \mathcal{D}^{(n, 0)}(V)$. On peut ainsi écrire, si

$$A_{\theta, \varepsilon} := \{\zeta \in V, \ f_k^{e^{i\theta}} = 0, \ k = 1, \ldots, n\},$$

* De fait, il est même impossible, comme on le verra plus tard, que ce Jacobien soit au voisinage de 0 dans l’idéal engendré par $f_1, \ldots, f_n$. 

44
notre intégrale résiduelle sous la forme

\[ I_f(\psi; d\zeta_1 \wedge \cdots \wedge d\zeta_n; \varepsilon) = \frac{1}{(2\pi)^n} \int_{[0,2\pi]^n} \left( \sum_{\xi \in A_{f,\varepsilon} \cap \text{Supp} \psi} \frac{\psi(\xi)}{\text{Jac} f(\xi)} \right) d\theta_1 \cdots d\theta_n. \]  

Sous cette forme, on voit que, si \( \text{Jac} f(0) \neq 0 \), alors, on a immédiatement

\[ I_f(\psi; d\zeta_1 \wedge \cdots \wedge d\zeta_n; \varepsilon) = \frac{\psi(0)}{\text{Jac} f(0)} + o(1) \]

( comme fonction de \( \| \varepsilon \| \) lorsque cette quantité tend vers 0). La fonction (certes non définie partout au voisinage de 0 dans \( \mathbb{C}^n \), mais définie au moins en tous les points \( (\sqrt{\epsilon_1} e^{i\theta_1}, \ldots, \sqrt{\epsilon_n} e^{i\theta_n}) \), lorsque \( \varepsilon \) n’est pas valeur critique de \( F \) et \( \bar{\theta} \in [0,2\pi]^n \))

\[ \zeta \mapsto \sum_{\xi, \{ f_k(\xi) = \epsilon_k, k = 1, \ldots, n \} \cap \text{Supp} \psi} \frac{\psi(\xi)}{\text{Jac} f(\xi)} \]

est ce que l’on appellera une fonction Trace. Ainsi notre intégrale résiduelle (3.1) s’exprime t’elle en termes de fonctions Traces.

Le comportement de l’intégrale résiduelle lorsque \( \varepsilon \) tend vers 0 est facile à étudier lorsque \( \varphi \) est une forme fermée, ce qui ici signifie, si \( \varphi = \psi d\zeta \), que \( \psi \) est holomorphe près de l’origine. Dans ce cas, la formule de Stokes nous indique, pour tout \( k \) dans \( \{1, \ldots, n\} \), pour \( \varepsilon \) de norme assez petite,

\[ \int_{\Gamma_f(\varepsilon)} \frac{\varphi(\zeta)}{f_1(\zeta) \cdots f_n(\zeta)} - \int_{\Gamma_f(\varepsilon)} \frac{\varphi(\zeta)}{f_1(\zeta) \cdots f_n(\zeta)} = \int_{\Gamma_{f,\varepsilon}^{\|f\| \leq \epsilon, j \neq k ; f_k^{\|f\| \leq \epsilon_k} \leq \epsilon_k}} \frac{d\varphi}{f_1 \cdots f_n} = 0 \]

si \( \varepsilon \) désigne le n-uplet obtenu depuis \( \varepsilon \) en substituant \( \epsilon_k' < \epsilon_k \) à \( \epsilon_k \). Ceci nous montre que dans ce cas, la fonction

\[ \varepsilon \mapsto I(\varphi; \varepsilon) \]

est constante au voisinage de l’origine et on définit le symbole résiduel

\[ \text{Res} \left[ \begin{array}{c} \varphi \\ f_1, \ldots, f_n \end{array} \right] \]

par

\[ \text{Res} \left[ \begin{array}{c} \varphi \\ f_1, \ldots, f_n \end{array} \right] = \lim_{\|\varepsilon\| \to 0^+} I_f(\varphi; \varepsilon). \]

Malheureusement, lorsque \( \varepsilon \) tend vers 0, mais lorsque \( \varphi \) est cette fois une \( (n,0) \) forme arbitraire, il n’y a plus de limite inconditionnelle pour

\[ \lim_{\|\varepsilon\| \to 0^+} I_f(\varphi; \varepsilon). \]
comme on le verra à la fin de cette section sur un exemple et cela complique notre définition du symbole résiduel. Pour pallier à ce problème, on remarque, en appliquant les théorèmes de Fubini et de Lebesgue (convergence dominée), que l’on a toujours, lorsque \( \phi = \psi d\zeta \) avec \( \psi \) holomorphe près de 0, lorsque \( \epsilon > 0 \) est assez petit pour que \( I(\phi; \cdot) \) soit presque partout constant dans \( ]0, \epsilon[\), lorsque \( \tau \) enfin est un paramètre strictement positif tendant vers 0,

\[
\tau n! \int_{]0, \epsilon[n} \frac{I_f(\varphi; \eta)}{(\eta_1 + \cdots + \eta_n + \tau)^{n+1}} d\eta_1 \cdots d\eta_n =
\]

\[
= \text{Res} \left[ f_1, \ldots, f_n \right] \quad \frac{\tau}{\epsilon} n! \int_{]0, \epsilon[\mathbb{R}^n} \frac{du_1 \cdots du_n}{(u_1 + \cdots + u_n + \frac{\tau}{\epsilon})^{n+1}} =
\]

\[
= \frac{(-1)^{(n-1)}}{(2\pi)^n} \int_{\partial U_{\psi, \epsilon}} \frac{\tau}{\epsilon} \left( \frac{\partial f_k \wedge \varphi}{(\|f\|^2 + \tau)^{n+1}} \right)
\]

\[
= \text{Res} \left[ f_1, \ldots, f_n \right] (1 + o(1)),
\]

où \( U_{\phi, \epsilon} \) est la composante contenant 0 de l’ensemble

\[
|f_k|^2 \leq \epsilon, \quad k = 1, \ldots, n.
\]

Cela tient aux formules

\[
d|f_k|^2 \wedge d\zeta = f_k \overline{\partial f_k} \wedge d\zeta,
\]

soit donc

\[
\bigwedge_{k=1}^n d|f_k|^2 \wedge d\zeta_k = f_1 \cdots f_n (-1)^{\frac{n(n-1)}{2}} \bigwedge_{k=1}^n \overline{\partial f_k} \wedge \varphi.
\]

Comme on le remarque immédiatement via un petit calcul

\[
\frac{\sum_{k=1}^n (-1)^{k-1} \overline{f_k} \wedge \partial f_j \wedge \varphi}{(\|f\|^2 + \tau)^n} = n \tau \frac{\sum_{k=1}^n \overline{f_k} \wedge \varphi}{(\|f\|^2 + \tau)^{n+1}},
\]

ce qui nous donne via la formule de Stokes, et si \( \tau \) tend vers 0,

\[
\text{Res} \left[ f_1, \ldots, f_n \right] + o(1) = \frac{(-1)^{\frac{n(n-1)}{2}} (n-1)!}{(2\pi)^n} \int_{\partial U_{\psi, \epsilon}} \frac{\sum_{k=1}^n (-1)^{k-1} \overline{f_k} \wedge \partial f_j \wedge \varphi}{(\|f\|^2 + \tau)^n}.
\]

En particulier, pour \( \tau = 0 \),

\[
\text{Res} \left[ f_1, \ldots, f_n \right] = \frac{(-1)^{\frac{n(n-1)}{2}} (n-1)!}{(2\pi)^n} \int_{\partial U_{\psi, \epsilon}} \frac{\sum_{k=1}^n (-1)^{k-1} \overline{f_k} \wedge \partial f_j \wedge \varphi}{\|f\|^2}. \]

46
Comme la forme
\[
\sum_{k=1}^{n} (-1)^{k-1} \int \frac{\omega f_k \wedge \overline{\omega f_j} \wedge \varphi}{||f||^{2n}}
\]
est (on le vérifie immédiatement) une forme fermée dans \( V \) privé de l’origine, on a donc aussi
\[
\text{Res} \left[ \varphi \wedge \frac{f_1, \ldots, f_n}{f_1, \ldots, f_n} \right] = (-1)^{\frac{n(n-1)}{2}} \frac{(n-1)!}{(2i\pi)^n} \int_{||\varphi||^{2n}} \left( \sum_{k=1}^{n} (-1)^{k-1} f_k \wedge \overline{\omega f_j} \wedge \varphi \right) \wedge \varphi.
\]
(3.5)

pour tout \( r \) tel que \( B(0, r) \) soit inclus dans \( V \) et aussi, pour \( 0 < \eta < \frac{1}{r} \) petit et hors d’un ensemble de mesure nulle lié à l’application du théorème de Sard pour \( ||f||^2 \),
\[
\text{Res} \left[ \varphi \wedge \frac{f_1, \ldots, f_n}{f_1, \ldots, f_n} \right] = (-1)^{\frac{n(n-1)}{2}} \frac{(n-1)!}{(2i\pi)^n} \int_{||\varphi||^{2n}} \left( \sum_{k=1}^{n} (-1)^{k-1} f_k \wedge \overline{\omega f_j} \wedge \varphi \right) \wedge \varphi.
\]
(3.6)
Le choix de \( \eta \) assez petit correspond au fait que \( \{ ||f||^2 \leq \eta \} \) soit un voisinage connexe de l’origine.

Soient maintenant \( f_1, \ldots, f_m \) \( m \) fonctions holomorphes dans un voisinage \( V \) de l’origine dans \( \mathbb{C}^n \) et dénissant dans \( V \) une variété analytique de codimension \( d \). Nous allons introduire une collection de courants, que nous qualifierons de courants résiduels relatifs. Chaque tel courant est en correspondance avec un paquet \( (f_{i_1}, \ldots, f_{i_p}) \) extrait de l’ensemble \( \{ f_1, \ldots, f_m \} \), le cardinal \( p \) du paquet variant entre la codimension \( d \) de \( \{ f_1 = \cdots = f_m = 0 \} \) et \( \min(m, n) \). Le fait que ces courants sont propresmment définis sera un problème que nous évoquerons dans la section suivante. On note
\[
\text{Res} \left[ \varphi \wedge \frac{f_{i_1}, \ldots, f_{i_p}}{f_{i_1}, \ldots, f_{i_p}} \right] = \lim_{\varphi \to 0} \frac{(-1)^{\frac{p(p-1)}{2}}}{(2i\pi)^p} \int_{||\varphi||^{2n}} \Omega(f_{i_1}, \ldots, f_{i_p}) \wedge \varphi, \varphi \in \mathcal{D}(\mathbb{C}^n) \wedge \varphi,
\]
(3.7)

où
\[
\Omega(f_{i_1}, \ldots, f_{i_p}) = \sum_{k=1}^{p} \overline{\partial f_{i_k}} = \sum_{k=1}^{p} \overline{\partial f_{i_k}} \wedge \varphi.
\]
(3.8)
Un tel courant est un \((0, p)\) courant. Une fois son existence prouvée, on voit aussi facilement que, pour toute forme test \( \varphi \in \mathcal{D}(\mathbb{C}^n) \),
\[
\text{Res} \left[ \varphi \wedge \frac{f_{i_1}, \ldots, f_{i_p}}{f_{i_1}, \ldots, f_{i_p}} \right] = \lim_{\varphi \to 0^+} \frac{(-1)^{\frac{p(p-1)}{2}}}{(2i\pi)^p} \int_{V} \frac{||f||^2 \wedge \Omega(f_{i_1}, \ldots, f_{i_p}) \wedge \varphi}{||f||^2 ||f||^2 + \varphi} \wedge \varphi
\]
\[
= (-1)^{\frac{p(p-1)}{2}} (p-1)! \int_{V} \left[ \lambda \int_{V} ||f||^2 \wedge \Omega(f_{i_1}, \ldots, f_{i_p}) \wedge \varphi \right]_{\lambda=0^+},
\]
(3.9)
la notation $[\Theta(\lambda)]_{\lambda=0}$ signifiant que, suivant l'esprit de Gelfand, on considère la fonction $\Theta$ pour $\lambda \in \mathbb{C}$ avec $\Re\lambda > p$, puis que l'on suit le prolongement analytique pour aboutir au calcul de la valeur en 0. Ces courants ne sont pas fermés; combinés astucieusement avec les $df_j$, ils peuvent donner des courants positifs fermés: ainsi, un petit calcul d'algèbre multilinéaire nous donne

$$
\partial ||f||^2 \wedge \left( \sum_{1 \leq i_1 < i_2 < \ldots < i_{p-1} \leq m} 1 \leq i_1 < i_2 < \ldots < i_{p-1} \leq m \right) \wedge \left( \frac{p-1}{1 \leq l_1 < \ldots < l_{p-1} \leq m} \wedge \left( \frac{p-1}{1 \leq l_1 \leq m} \right) = \\
= (-1)^{p-1} \sum_{1 \leq i_1 < i_2 < \ldots < i_p \leq m} \Omega(f_{i_1}, \ldots, f_{i_p}) \wedge \left( \frac{p}{1 \leq l \leq m} \right)
$$

Par conséquent, il vient immédiatement, pour toute forme test $\varphi$ de type $(n-p, n-p)$, $d \leq p \leq n$,

$$
\sum_{1 \leq i_1 < \ldots < i_p \leq m} \left[ \begin{array}{cc}
\text{Res} & df_{i_1} \wedge \ldots \wedge df_{i_p} \wedge \varphi \\
& f_{i_1}, \ldots, f_{i_p} \\
& f_1, \ldots, f_m
\end{array} \right] = \\
= \lim_{\tau \to 0} \frac{\tau^{p!}}{(2i\pi)^p} \int \frac{\partial ||f||^2 \wedge \partial ||f||^2 \wedge \left( \sum_{1 \leq j_1 < j_2 < \ldots < j_{p-1} \leq m} 1 \leq j_1 < j_2 < \ldots < j_{p-1} \leq m \right) \wedge \left( \frac{p-1}{1 \leq l_1 \leq m} \wedge \left( \frac{p-1}{1 \leq l \leq m} \right) \right)}{||f||^2(||f||^2 + \tau)^{p+1}},
$$

ce qui montre bien que le $(p, p)$ courant

$$
\varphi \mapsto \sum_{1 \leq i_1 < \ldots < i_p \leq m} \left[ \begin{array}{cc}
\text{Res} & df_{i_1} \wedge \ldots \wedge df_{i_p} \wedge \varphi \\
& f_{i_1}, \ldots, f_{i_p} \\
& f_1, \ldots, f_m
\end{array} \right]
$$

est un courant positif. Ce courant est aussi un courant fermé car on a également, toujours pour toute forme test $\varphi$ de type $(n-p, n-p)$, $d \leq p \leq n$,

$$
\sum_{1 \leq i_1 < \ldots < i_p \leq m} \left[ \begin{array}{cc}
\text{Res} & df_{i_1} \wedge \ldots \wedge df_{i_p} \wedge \varphi \\
& f_{i_1}, \ldots, f_{i_p} \\
& f_1, \ldots, f_m
\end{array} \right] = \\
= \lim_{\epsilon \to 0} \frac{(-1)^{\epsilon} \gamma^{p+1}}{2(2i\pi)^p} \int_{||f||^2 = \epsilon} \left( \sum_{1 \leq i_1 < \ldots < i_p \leq m} \Omega(f_{i_1}, \ldots, f_{i_p}) \wedge \left( \frac{p-1}{1 \leq l_1 \leq m} \wedge \left( \frac{p-1}{1 \leq l \leq m} \right) \right) \right) \wedge \varphi = \\
= \lim_{\epsilon \to 0} \frac{\gamma \epsilon^{p+1}}{2 \epsilon^p} \int_{||f||^2 = \epsilon} \partial ||f||^2 \wedge \left( \sum_{1 \leq i_1 < \ldots < i_{p-1} \leq m} 1 \leq i_1 < \ldots < i_{p-1} \leq m \right) \wedge \left( \frac{p-1}{1 \leq l_1 \leq m} \wedge \left( \frac{p-1}{1 \leq l \leq m} \right) \right) \wedge \varphi = \\
= -\lim_{\epsilon \to 0} \frac{\gamma \epsilon^{p+1}}{2 \epsilon^p} \int_{||f||^2 = \epsilon} \bar{\partial} ||f||^2 \wedge \left( \sum_{1 \leq i_1 < \ldots < i_{p-1} \leq m} 1 \leq i_1 < \ldots < i_{p-1} \leq m \right) \wedge \left( \frac{p-1}{1 \leq l_1 \leq m} \wedge \left( \frac{p-1}{1 \leq l \leq m} \right) \right) \wedge \varphi,
$$

48
avec
\[ \gamma_p = \frac{(-1)^{(p-1)(p-2)}}{(2i\pi)^p} (p-1)! . \]

**Exemple.**

Donnons un exemple de calcul de courant de ce type dans le cas où les fonctions holomorphes de \( n \) variables \( f_1, \ldots, f_p \) (\( p \leq n \)), définies dans un ouvert de \( \mathbb{C}^n \), sont telles que \( f_2 = a_2 f_1, \ldots, f_m = a_m f_1 \), où les \( a_j \) sont des fonctions holomorphes dans \( V \). Soit \( k \) un entier entre 1 et \( m \). La transformée de Mellin de la fonction
\[ \epsilon \mapsto \theta_k(\epsilon ; \varphi) := \frac{(-1)^{(p-1)}}{(2i\pi)^p} \int_{\|f\|^2 = \epsilon} \left( \sum_{1 \leq i_1 < i_2 < \ldots < i_p \leq m} \Omega(f_{i_1}, \ldots, f_{i_p}) \wedge (\bigwedge_{l=1}^p df_{i_l}) \right) \wedge \varphi \]
est, par définition, la fonction
\[ \lambda \mapsto \Theta_k(\lambda ; \varphi) := \lambda \int_V e^{\lambda - 1} \theta_k(\epsilon ; \varphi) d\epsilon , \]
de définie et holomorphe pour \( \text{Re} \lambda > p \), et s’exprimant, comme on le voit via une application du théorème de Fubini, pour \( \lambda \in C \), \( \text{Re} \lambda >> p \),
\[ \Theta_k(\lambda ; \varphi) = \lambda \int_V ||f||^{2k\lambda} A_k \wedge \varphi , \]
avec
\[ \left[ \frac{1}{2i\pi} \partial \left( ||f||^{2\lambda} \partial \log ||f||^2 \right) \right]^k = ||f||^{2p\lambda} [ (dd^c \log ||f||^2)^k + \lambda A_k ] . \]
Un calcul simple nous donne
\[ A_k = k[dd^c \log |f_1|^2 + \frac{1}{2i\pi} \partial \log (1 + ||a||^2) \wedge \frac{df_1}{f_1}] \wedge (dd^c \log (1 + ||a||^2))^{k-1} , \]
où
\[ ||a||^2 = |a_2|^2 + \cdots + |a_p|^2 . \]
Si l’on admet que
\[ \lambda \mapsto |f_1|^{2k\lambda} (1 + ||a||^2)^{k\lambda} \frac{df_1}{f_1} \wedge \Psi \]
est une fonction holomorphe dans un demi-plan \( \text{Re} \lambda > -\eta \) lorsque \( \Psi \) est une \((n-1,n)\) forme test et qu’il en est de même pour
\[ \lambda \mapsto \lambda ||f_1||^{2\lambda} \frac{df_1}{f_1} \wedge \tilde{\Psi} \]

49
lorsque $\tilde{\Psi}$ est cette fois une $(n-1,n-1)$ forme test, on voit que

$$\theta_k(0; \varphi) = \left[ \frac{\lambda}{2i\pi} \int_V ||f_1||^{2\lambda} \frac{d\bar{f}_1}{f_1} \wedge \frac{df_1}{f_1} \wedge (dd^c \log(1 + ||a||^2))^{k-1} \wedge \varphi \right]_{\lambda=0}.$$  

Si $f_1$ est telle que $df_1 \neq 0$ sur $\{f_1 = 0\}$, on trouve immédiatement, grâce à la formule de Cauchy,

$$\theta_k(0; \varphi) = \int_{f_1=0} (dd^c \log(1 + ||a||^2))^{k-1} \wedge \varphi.$$  

**FIN DES NOTES RÉDIGÉES**