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ABSTRACT. The maximal density of a measurable subset of Rn avoiding Euclidean dis-
tance 1 is unknown except in the trivial case of dimension 1. In this paper, we consider the
case of a distance associated to a polytope that tiles space, where it is likely that the sets
avoiding distance 1 are of maximal density 2−n, as conjectured by Bachoc and Robins.
We prove that this is true for n = 2, and for the Voronoï regions of the lattices An, n ≥ 2.

1. INTRODUCTION

A set avoiding distance 1 is a set A in a normed vector space (Rn, ‖ · ‖) such that
‖x−y‖ 6= 1 for every x, y ∈ A. The numberm1(Rn, ‖·‖) measures the highest proportion
of space that can be filled by a set avoiding distance 1. More precisely, m1(Rn, ‖ · ‖) is
the supremum of the densities (see Subsection 2.1 for a precise definition) of Lebesgue
measurable sets A ⊂ Rn avoiding distance 1.

The problem of determining m1(Rn, ‖ · ‖) has been mostly studied in the Euclidean
case. The number m1(Rn) = m1(Rn, ‖ · ‖2) was introduced by Larman and Rogers in [8]
as a tool to study the measurable chromatic number χm(Rn) of Rn, which is the minimal
number of colors required to color Rn in such a way that two points at Euclidean distance
1 have distinct colors, and that the color classes are measurable. Determining χm(Rn) has
turned out to be a very difficult problem, that has only been solved in dimension 1, and that
is wide open in any other dimension, including the familiar dimension 2, where it is only
known that 5 ≤ χm(R2) ≤ 7 (see [6], [13], and [12, Chapter 3] for a detailed historical
account).

The connection between m1(Rn) and χm(Rn) lies in the following inequality:

χm(Rn) ≥ 1

m1(Rn)
,

so, from an upper bound for m1(Rn), one obtains a lower bound for χm(Rn).
A natural approach to build a set avoiding distance 1, that works for any norm, starts

from a packing of unit balls. Let Λ be a set such that if x, y ∈ Λ, then the unit open balls
B(x, 1) and B(y, 1) do not overlap. Then the set A = ∪λ∈ΛB(λ, 1/2) of disjoint balls of
radius 1/2 is a set avoiding 1 and its density is δ

2n where n is the dimension of the space
and δ is the density of the packing. This construction is illustrated in Figure 1.

In the Euclidean plane, the density of an optimal packing of discs of radius 1 is 0.9069
and this approach therefore provides a lower bound of 0.2267 for m1(R2, ‖ · ‖2). The best
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FIGURE 1. A set avoiding distance 1 built from a sphere packing.

known construction is not much better than that: by refining this idea, Croft manages to
build in [3] a set of density 0.2293, which is an arrangement of balls cut out by hexagons.

Regarding upper bounds, Erdős conjectured (see [13]) that

m1(R2) <
1

4
.

The best upper bound up to now is due to Keleti, Matolcsi, de Oliveira Filho and Ruzsa [7],
who have shown m1(R2) ≤ 0.258795. Moser, Larman and Rogers (see [8]) generalized
Erdős’ conjecture to higher dimensions: for every n ≥ 2,

m1(Rn) <
1

2n
.

A weaker result has been proved in [7]: a set avoiding distance 1 necessarily has a density
strictly smaller than 1

2n if it has a block structure, i.e. if it may be decomposed as a disjoint
union A = ∪Ai such that if x and y are in the same block Ai then ‖x − y‖ < 1 and if
they are not, ‖x − y‖ > 1. However, without this assumption, the known upper bounds
are pretty far from 2−n, even asymptotically: the best asymptotic bound is m1(Rn) ≤
(1 + o(1))(1.2)−n (see [8], [1]).

Going back to the general case of an arbitrary norm, we make the remark that if the
unit ball tiles Rn by translation, the method described previously to build a set avoiding
distance 1 from a packing provides a set of density exactly 1/2n, as illustrated in Figure
2. Moreover, it is likely that this construction of a set avoiding distance 1 is optimal, as
conjectured by Bachoc and Robins:

FIGURE 2. The natural construction of density 1/2n.

Conjecture 1 (Bachoc, Robins). If ‖ · ‖ is a norm such that the unit ball tiles Rn by
translation, then

m1(Rn, ‖ · ‖) =
1

2n
.
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In this paper, we prove Conjecture 1 in dimension 2:

Theorem 1. If ‖ · ‖ is a norm such that the unit ball tiles R2 by translation, then

m1(R2, ‖ · ‖) =
1

4
.

Recall that the only convex bodies that tile space by translation are the parallelohedra,
i.e. the polytopes that admit a face-to-face tiling by translation. For a given parallelohedron
P , we denote by ‖ · ‖P the norm whose unit ball is P .

The Voronoï region of a lattice is a parallelohedron. Conversely, Voronoï conjectured
that all parallelohedra are, up to affine transformations, the Voronoï regions of lattices (see
Subsection 2.2). On the other hand,m1(Rn, ‖·‖) is clearly left unchanged under the action
of a linear transformation applied to the norm. So, in the light of Voronoï’s conjecture, it
is natural to consider in first place the polytopes that are Voronoï regions of lattices.

The most obvious family of lattices is the family of cubic lattices Zn, whose Voronoï
regions are hypercubes. We will see that in this case, Conjecture 1 holds trivially. The next
families of lattices to consider are arguably the root lattices An and Dn, where

An = {x ∈ Zn+1 |
n+1∑
i=1

xi = 0} (n ≥ 2).

and

Dn = {x ∈ Zn |
n∑
i=1

xi ≡ 0 mod 2} (n ≥ 4).

We will prove Conjecture 1 for the Voronoï regions of the lattices An in every dimen-
sions n ≥ 2. For the lattices Dn, we can only show the inequality

m1(Rn, ‖ · ‖P) ≤ 1

(3/4)2n + n− 1

which is however asymptotically of the order O
(

1
2n

)
.

Let us now give an idea of the method that we use to prove these results. The strategy is
to transfer the study of sets avoiding distance 1 to a discrete setting, in which such sets can
be decomposed as the disjoint union of small pieces (in other words they afford a kind of
block structure). Computing the optimal density of a set avoiding distance 1 in the discrete
setting amounts then to understanding how these blocks fit together locally.

To be more precise, we consider discrete subsets V of Rn, seen as induced subgraphs
of the unit distance graph G(Rn, ‖ · ‖). This is the graph whose vertices are the points of
Rn and whose edges connect the vertices x and y if and only if ‖x− y‖ = 1.

If G = (V,E) is a finite induced subgraph of G(Rn, ‖ · ‖), then it is well known that
(see [8])

m1(Rn, ‖ · ‖) ≤ α(G)

|V |
,

where as usual α(G) denotes the independence number of G and |V | is the number of its
vertices. We use a generalization of this inequality to discrete graphs (see Subsection 2.3).
Of course, the most difficult task is to design an appropriate discrete subset V , i.e. one that
provides a good upper bound of m1(Rn, ‖ · ‖) and at the same time is easy to analyse.

For the regular hexagon in the plane, we follow an idea due to Dmitry Shiryaev [11] who
proposed an auxiliary graph satisfying the following remarkable property: if two points x
and y are at graph distance 2, then they are at polytope distance 1. This implies that a set
avoiding polytope distance 1 is a union of cliques whose closed neighborhoods are disjoint.
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The density of such a set is bounded by the supremum of the local densities of the cliques
in their closed neighborhood. In the case of a general hexagonal Voronoï cell in the plane,
this approach doesn’t work straightforwardly and we need to introduce a different graph
with a slightly weaker property. The construction of such an auxiliary graph is also a key
ingredient of our proofs of the bounds for the Voronoï regions of An and Dn.

The paper is organized as follows: Section 2 contains preliminaries. In Section 3, we
prove Theorem 1. Section 4 is dedicated to the families of lattices An (Theorem 4) and
Dn (Theorem 5). In Section 5, we discuss the chromatic number of the unit distance graph
G(Rn, ‖ · ‖P).

We provide in Appendix A, the rather technical proof of Lemma 1, which gives an
alternate definition of the maximal density of an independent set of a discrete graph whose
vertices have finite degrees.

2. PRELIMINARIES

2.1. The density of a set avoiding polytope distance 1. Let Rn be equipped with a norm
‖ · ‖. A set S ⊂ Rn is said to avoid 1 if for every x, y ∈ S, d(x, y) = ‖x − y‖ 6= 1. We
define the density of a measurable set A ⊂ Rn with respect to Lebesgue measure as:

δ(A) = lim sup
R→∞

Vol(A ∩ [−R,R]n)

Vol([−R,R]n)
,

and we denote bym1(Rn, ‖·‖) the supremum of the densities achieved by measurable sets
avoiding distance 1:

m1(Rn, ‖ · ‖) = sup
S⊂Rnmeasurable
S avoiding 1

δ(S).

Let P ⊂ Rn be a convex symmetric polytope, centered at 0, and with a non empty
interior. The norm ‖ · ‖P associated with P is defined by

‖x‖P = inf{λ ∈ R+ | x ∈ λP},

and we call polytope distance the distance induced by ‖ · ‖P .
If BP(r) = {x ∈ Rn | ‖x‖P < r}, we have by definition:

x ∈ BP(1)⇔ x ∈ P̊ and ‖x‖P = 1⇔ x ∈ ∂P,

where P̊ denotes the interior of P and ∂P its boundary.
A polytopeP tiles Rn by translations if there exists a set Λ ⊂ Rn such that the translates

λ+ P for λ ∈ Λ cover Rn, i.e.
⋃
λ∈Λ(λ+ P) = Rn, and if, for every λ 6= λ′, (λ+ P̊) ∩

(λ′ + P̊) = ∅. If P is such a polytope, the set

A =
⋃
λ∈Λ

(λ+
1

2
P̊)

avoids 1, and has density 1
2n . This set gives a lower bound for m1:

Proposition 1. If P is a polytope tiling Rn by translation, and ‖ · ‖P the norm associated
with P , then

m1(Rn, ‖ · ‖P) ≥ 1

2n
.
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2.2. Parallelohedra and the Voronoï ’s Conjecture. A n-dimensional parallelohedron
is a polytope P that tiles face-to-face Rn by translation, i.e there is a tiling such that the
intersection between two translates of P , if non empty, is a common face of both of them.
Works by Minkowski [10], Venkov [14], and McMullen [9] have led to a proof that the
convex bodies tiling space by translation are exactly the parallelohedra, and moreover they
tile Rn by a lattice.

Let us recall that a lattice Λ ⊂ Rn is a discrete subgroup of the form
⊕n

i=1 Zei where
{e1, . . . , en} is a basis of Rn (for a general reference on lattices, see e.g [2]). The Voronoï
region of Λ is defined by

V = VΛ = {z ∈ Rn,∀ x ∈ Λ, 〈z − x, z − x〉 ≥ 〈z, z〉},
where 〈·, ·〉 denotes the usual scalar product on Rn. The Voronoï region of a lattice is a
parallelohedron. Voronoï conjectured that the converse is also true, up to an affine trans-
formation:

Conjecture 2 (Voronoï ’s Conjecture). If P is a parallelohedron in Rn, then there is an
affine map ϕ : Rn → Rn such that ϕ(P) is the Voronoï region of a lattice Λ ⊂ Rn.

This conjecture has been solved for several families of parallelohedra. For instance,
Voronoï himself [15] proved it for primitive parallelohedra, and Erdahl [5] solved it for
zonotopal parallelohedra. Moreover, Delone [4] has shown that Voronoï ’s conjecture is
true in dimensions up to 4.

According to Voronoï ’s conjecture, we focus on polytopes that are Voronoï regions of
lattices.

2.3. Discretization of the problem. A set avoiding distance 1 in Rn is exactly an inde-
pendent set inG(Rn, ‖·‖), i.e. a subset S of vertices such that, for all x, y ∈ S, ‖x−y‖ 6= 1.
Therefore m1(Rn, ||.||) is the supremum of the densities achieved by independent sets. It
is the analogue of the independence ratio ᾱ(G) = α(G)

|V | of a finite graph G.
Let G = (V,E) be a discrete induced subgraph of G(Rn, ‖ · ‖). For A ⊂ V , we define

the density of A in G:

(1) δG(A) = lim sup
R→∞

|A ∩ VR|
|VR|

where VR = V ∩ [−R,R]n. Based on this notion, we extend the definition of the
independence ratio to discrete graphs:

ᾱ(G) = sup
A independent set

δG(A).

In this paper, we use the following equivalent formulation of ᾱ(G):

Lemma 1. Let G = (V,E) be a discrete graph with V ⊂ Rn. If every v ∈ V has finite
degree, then

ᾱ(G) = lim sup
R→∞

ᾱ(GR),

where GR is the finite induced subgraph of G whose set of vertices is VR = V ∩ [−R,R]n.

Proof. This lemma is proved in Appendix A along with a discussion on the importance of
the hypothesis that all the vertices of the graph have finite degree. �

Discrete subgraphs induced by G(Rn, ‖ · ‖) provide upper bounds of m1(Rn, ||.||)
thanks to the following lemma:
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Lemma 2. Let G = (V,E) be a discrete subgraph induced by G(Rn, ‖ · ‖). Then

m1(Rn, ||.||) ≤ ᾱ(G).

Proof. By Lemma 1, we may assume without loss of generality that G is finite. In this
case the result is well known: the proof below is for the sake of completeness.

Let R > 0 be a real number, and let X ∈ [−R,R]n chosen uniformly at random. For
S ⊂ Rn, the probability that X is in S is P(X ∈ S) = Vol(S∩[−R,R]n)

Vol([−R,R]n) . Notice that
lim supR→∞ P(X ∈ S) = δ(S).

Let S ⊂ Rn be a set avoiding 1. We define the random variable N = |(X + V ) ∩ S|.
On one hand, we have:

E
[
N

|V |

]
=

1

|V |
E

[∑
v∈V

1{X+v∈S}

]

=
1

|V |
∑
v∈V

P(X ∈ S − v).

For every v, we have lim supR→∞ P(X ∈ S − v) = δ(S − v) = δ(S).
On the other hand, since for v1, v2 ∈ V , ‖(X − v1)− (X − v2)‖ = ‖v1 − v2‖, and

(X + V ) ∩ S ⊂ S, we have, for any R > 0,

N

|V |
≤ ᾱ(G).

Thus we get,
δ(S) ≤ ᾱ(G).

�

In order to give a first example, we consider the most natural lattice: the cubic lattice.
The associated tiling and norm are respectively the cubic tiling and the well known sup
norm ‖x‖∞ = sup1≤i≤n |xi|. More precisely, if L = 2Zn, the Voronoï region of L is the
cube whose vertices are the points of coordinates (±1,±1, . . . ,±1).

Proposition 2. For every n ≥ 1, we have:

m1(Rn, ‖ · ‖∞) =
1

2n

Proof. Let V = {0, 1}n ⊂ Rn and let G be the subgraph of G(Rn, ‖ · ‖) induced by V .
Following the definition of V , for every v, v′ ∈ V with v 6= v′, we have ‖v − v′‖∞ = 1.
So G is a complete graph, thus its independence number is 1. Since it has 2n vertices,
applying Lemma 2, we get

m1(Rn, ‖ · ‖∞) ≤ α(G)

|V |
=

1

2n
.

�

3. PARALLELOHEDRON NORMS IN THE PLANE

In this section, we prove Theorem 1. It is well known that the parallelohedra in dimen-
sion 2, are, up to an affine transformation, the Voronoï regions of a lattice, and that their
combinatorial type is either that of a square or of a hexagon (see Figure 3).

We have already seen that m1(R2, ‖ · ‖∞) = 1
4 , so it remains to deal with hexagons.

Even though it is not true that every hexagonal Voronoï region is linearly equivalent to the



ON THE DENSITY OF SETS AVOIDING PARALLELOHEDRON DISTANCE 1 7

FIGURE 3. The two kinds of Voronoï regions of lattices in the plane.

regular hexagon, we will first consider the regular hexagon in order to present in this basic
case, the ideas that will be used in the general case.

3.1. The regular hexagon. The following result is due to Dmitry Shiryaev [11]:

Theorem 2. If P is the regular hexagon in the plane, then

m1(R2, ‖ · ‖P) =
1

4
.

Let P be the regular hexagon in R2. We denote by S its set of vertices and by ∂P its
boundary. Thus, ‖x‖P = 1 if and only if x ∈ ∂P . We label the vertices of P modulo 6 as
described in Figure 4.

The set 1
2S spans a lattice V . Let us consider GP , the subgraph of G(R2, ‖ · ‖P)

induced by V . We shall prove that ᾱ(GP) ≤ 1/4. To do so, we introduce an auxiliary
graph G̃ = (Ṽ , Ẽ), which is the Cayley graph with the same set of vertices Ṽ = V

corresponding to the generating set 1
2S. In other words, for x, y ∈ V , (x, y) ∈ Ẽ if and

only if x− y ∈ 1
2S. This graph is drawn in Figure 4.

We denote by d̃(x, y) the distance between two vertices x and y in the graph G̃, i.e.
the minimal length of a path in G̃ between x and y. We define the distance d̃(A,B) in G̃
between two subsets of vertices A and B as the minimal distance between a vertex of A
and a vertex of B. The following lemma will be crucial for the proof of Theorem 2:

v0

v1v2

v3

v4 v5

FIGURE 4. The regular hexagon and the Cayley graph G̃.

Lemma 3. Let u1 and u2 be two vertices of G̃. Then:

(Property D) d̃(u1, u2) = 2⇒ ‖u1 − u2‖P = 1.

Proof. Since G̃ is vertex-transitive, we may assume without loss of generality that u1 = 0.
The vertices u at graph distance 2 from 0 must be of the form vi

2 +
vj
2 . It is not hard to

check that if u2 =
vi+vj

2 is neither 0 nor another vk
2 (in which case d̃(0, u2) < 2), then it

is a point of ∂P (see also Figure 4). �
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Remark 1. It can be noted, although it will not be useful here, that the equivalence
d̃(u1, u2) = 2⇔ ‖u1 − u2‖P = 1 holds.

For a set A ⊂ Ṽ , we define its closed neighborhood

N [A] = {v ∈ Ṽ such that d̃(v,A) ≤ 1} = A+

(
{0} ∪ 1

2
S

)
.

Now we consider the cliques of G̃, that is the setsC ⊂ Ṽ such that for every u 6= v ∈ C,
d̃(u, v) = 1. We will use the following lemma several times: it shows that for any graph G̃
satisfying (Property D), if A ⊂ Ṽ avoids polytope distance 1, then A is a union of cliques
whose closed neighborhoods are disjoint:

Lemma 4. Let ‖ · ‖P be a norm in Rn defined by a polytope P . Let GP be an induced
subgraph ofG(Rn, ‖·‖P). Assume there exists an auxiliary graph G̃ with the same vertices
V as GP satisfying (Property D). Let A ⊂ V avoiding polytope distance 1. Then A is the
union of cliques of G̃:

A =
⋃
C∈C

C

such that if C,C ′ ∈ C with C 6= C ′, then

N [C] ∩N [C ′] = ∅.

Proof. Let us decompose of A into connected components with respect to G̃. Following
Lemma 3, since A avoids polytope distance 1, a connected component C cannot contain
two vertices at graph distance 2 from each other. So C must be a clique.

Assume that two different cliques C and C ′ of A share a common neighbor. Thus
d̃(C,C ′) ≤ 2. Since C and C ′ are two disjoint connected components, d̃(C,C ′) > 1. So
d̃(C,C ′) = 2, which is impossible, since A avoids polytope distance 1. �

Now we define the local density of a cliqueC of G̃: δ0(C) = |C|
|N [C]| . In the next lemma,

we analyse the different possible cliques of the graph G̃ that we constructed for the regular
hexagon, and determine their local density:

Lemma 5. For every clique C ⊂ G̃,

δ0(C) ≤ 1

4

Proof. Let C be a clique of G̃. Since G̃ is vertex transitive, we can assume without loss of
generality that 0 ∈ C. Up to the action of the dihedral group D3 on V , there are only three
possible cliques in G̃ containing 0, and one can easily determine their neighborhoods (see
Figure 5):

• C = {0}: its neighborhood is {0} ∪ 1
2S. Thus δ0(C) = 1

7 .
• C =

{
0, v02

}
, and δ0(C) = 2

10 = 1
5 .

• C =
{

0, v02 ,
v1
2

}
, and δ0(C) = 3

12 = 1
4 .

�

We have all the ingredients to prove that the density of a set avoiding 1 for the regular
hexagon can not exceed 1/4:
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FIGURE 5. The possible cliques and their neighborhood.

Proof of Theorem 2. Following Lemma 2, it is sufficient to prove ᾱ(GP) ≤ 1
4 . If A ⊂ V

is a set avoiding 1, it may be written as the union of cliques in G̃, whose neighborhoods are
disjoint (Lemma 4). So the density of A is upper bounded by the maximum local density
of a clique in G̃. So, from Lemma 5, ᾱ(GP) ≤ 1

4 . �

3.2. General hexagonal Voronoï regions. In this subsection, we deal with a general
hexagonal Voronoï region P of the plane, and prove:

Theorem 3. If P is an hexagonal Voronoï region in the plane, then

m1(R2, ‖ · ‖P) =
1

4
.

Let P be the hexagonal Voronoï region of a lattice L ⊂ R2. Let {β0, β1} be a basis of
L such that the vectors β0 , β1, β2 = β1 − β0, and their opposites define the faces of P .
We label the vertices vi, for 0 ≤ i ≤ 5, of P in such a way that βi = vi + vi+1, where i is
defined modulo 6. This situation is depicted in Figure 6.

β0

β1β2

β3

β4 β5

v3

v2

v1

v0

v5

v4

FIGURE 6. The vectors βi and the vertices of the hexagon.

In order to prove Theorem 3, just like in the case of the regular hexagon, we shall con-
struct a graph GP induced by G(R2, ‖ · ‖P), and prove that ᾱ(GP) ≤ 1/4. Unfortunately,
in general, the vertices of P do not span a lattice. We will use a different point of view in
order to build GP , together with an auxiliary graph G̃ that will satisfy a weaker version of
(Property D).

For the set V of vertices of GP , we take the lattice 1
2L, together with the translates of

the vertices VP of P by 1
2L. We set A = 1

2L and B = VP + 1
2L so that V = A ∪ B;



10 CHRISTINE BACHOC, THOMAS BELLITTO, PHILIPPE MOUSTROU, AND ARNAUD PÊCHER

this construction is represented in Figure 7 where the vertices of A are depicted in red, and
those of B in green.

FIGURE 7. Constructing the set of vertices of GP

Let us note that for every i, vi+2 = vi mod L. Indeed,

vi+2 − vi = vi+2 + vi+1 − (vi + vi+1) = βi+1 − βi = βi+2.

As a consequence, we may write V as the disjoint union of three sets:

V =
1

2
L ∪ (

1

2
L+ v0) ∪ (

1

2
L+ v1),

and this implies that the density of B in V is twice that of A.
Now, let us construct the auxiliary graph G̃ = (Ṽ , Ẽ). It has the same vertices as GP ,

i.e. Ṽ = V . Let us describe the edges of G̃. By construction, there are exactly 7 vertices
of V in the interior of P: the center 0 ∈ A, and six points of B denoted s0, . . . , s5, with

si =
vi−1 + vi+1

2
.

For every point of a ∈ A, we define the edges (a, a+ si) and (a+ si, a+ si+1) for i from
0 to 5. This is illustrated in Figure 8.

s2
s1

s0

s5

s4

s3

FIGURE 8. Constructing the edges of G̃.

Remark 2. In the case of the regular hexagon, this construction leads to the same graph
G̃ that we considered in Subsection 3.1.

Let us describe the neighborhood (with respect to G̃) of each type of point. By con-
struction, a point in A has 6 neighbors, and they all belong to B. A vertex a+ si of B also
has six neighbors. Three of them are elements ofA, namely a, a+ βi

2 and a+ βi−1

2 and the
other three are elements of B, namely, a+ si−1, a+ si+1 and a+ vi. Figure 9 illustrates
the neighborhoods of the vertices of G̃.

It should be noted that (Property D) is not in general fulfilled by G̃: indeed, the vertices
s0 and s3 are at graph distance 2 in G̃ but not (in general) at polytope distance 1. However,
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s2

s1

s0
s5

s4

s3

v3

v2

v1

v0

v5

v4

0 β0

2

β1

2β2

2

β3

2

β4

2

β5

2

FIGURE 9. The basic pattern in G̃.

this property continues to hold for points that share a common neighbor in B. We prove
this in the next lemma, which will play the role of Lemma 3 for this new graph G̃:

Lemma 6. If two vertices x, y ∈ V are at distance 2 from each other in G̃ and have a
common neighbor z ∈ B, then ‖x− y‖P = 1.

Proof. First suppose that at least one of the two vertices is in A. In this case we may
assume x = 0. Then z is one of the si, and following the analysis of the neighbors of
si, y must be in the set {0, si−1, si+1,

βi

2 ,
βi−1

2 , vi}. The first three are obviously not at
graph distance 2 from 0, so y is one of the last three vertices, and they all are in ∂P . Thus,
‖x− y‖P = 1.

Now suppose x, y, z ∈ B. Then we may assume without loss of generality x = si−1,
and z = si. Since z has only three neighbors in B, y can be either si+1 or vi. We have:

si+1 − si−1 =
vi + vi+2

2
− vi + vi−2

2
=
vi+2 − vi−2

2
=
vi+2 + vi+1

2
=
βi+1

2

and

vi − si−1 = vi −
vi + vi−2

2
=
vi − vi−2

2
=
vi + vi+1

2
=
βi
2
.

In both cases ‖x− y‖P = 1. �

Let U ⊂ V be a set of vertices avoiding polytope distance 1, let C be a connected
component of U and let N [C] be its closed neighborhood. We define:

NB [C] = N [C] ∩B
and

δ0
B(C) =

|C|
|NB [C]|

.

The following lemma is the analogue of Lemma 4 in this situation: we show that if C
and C ′ are two different connected components, then NB [C] and NB [C ′] must be disjoint:

Lemma 7. Let U ⊂ V be a set avoiding polytope distance 1. If C 6= C ′ are two connected
components of U , then

NB [C] ∩NB [C ′] = ∅.

Proof. If a vertex z ∈ B is in both NB [C] and NB [C ′], then there is x ∈ C, y ∈ C ′ such
that d̃(x, z) = d̃(z, y) = 1. Since C and C ′ are connected components of U , we have
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d̃(x, y) > 1. Thus d̃(x, y) = 2 and by Lemma 6, ‖x−y‖P = 1, which is impossible, since
U avoids 1. �

Now we study the different possible connected components:

Lemma 8. Let U ⊂ V be a set avoiding polytope distance 1. If C is a connected compo-
nent of U , then

δ0
B ≤

3

8
.

Proof. We enumerate the possible connected components. Let us start with the isolated
points. Up to translations by 1

2L, we have:
• C = {0} ⊂ A. Its neighborhood is made of six vectors fromB. So δ0

B(C) = 1/6.
• C = {si} ⊂ B. We know that such a vertex has three neighbors in B, thus
δ0
B(C) = 1/4.

FIGURE 10. The two possible types of connected component with one
element. The circled vertices denote the elements of C and the figure
represents all their neighbors in B.

We now focus on the connected components of size 2. Since a vertex in A has all its
neighbors in B, such a connected component can not contain two elements of A. Thus, up
to translation, we only have:

• C = {0, si}, and the only neighbor in B that is not a neighbor of 0 is vi. Thus
δ0
B = 2/7.

• C = {si, si+1} and the neighbors in B are si−1, vi, si+2, vi+1. Thus δ0
B = 2/6 =

1/3.

FIGURE 11. The two possible types of connected component with two elements.

There are up to translations two kinds of connected components of size three:
• C = {0, si, si+1}. The only neighbor of si+1 inB that is not a neighbor of {0, si}

is vi+1. Thus δ0
B = 3/8.



ON THE DENSITY OF SETS AVOIDING PARALLELOHEDRON DISTANCE 1 13

• C = {0, si,−si}. The only neighbor of −si in B that is not a neighbor of {0, si}
is −vi. Thus δ0

B = 3/8.

FIGURE 12. The two possible types of connected component with three elements.

It is easy to check, applying Lemma 6, that we have enumerated all kind of connected
components of U . �

Finally we can put everything together and complete the proof of Theorem 3:

Proof of Theorem 3. Let U ⊂ V avoiding polytope distance 1. We define

δB(U) = lim sup
R→∞

|U ∩ VR|
|B ∩ VR|

where as usual VR = V ∩ [−R,R]n. We have:

δGP (U) = δB(U)× δGP (B),

and since V = A ∪B and B is twice as dense as A in GP ,

δGP (U) =
2

3
δB(U).

From Lemma 7, we have δB(U) ≤ supC⊂U δ
0
B(C) where C runs over the connected

components of U . Then Lemma 8 shows that

δB(U) ≤ 3

8

and we get

δGP (U) ≤ 2

3
× 3

8
=

1

4
.

�

4. THE NORMS ASSOCIATED WITH THE VORONOÏ REGIONS OF THE LATTICES An
AND Dn

4.1. The lattice An. Here we consider for any n ≥ 2, the lattice

An = Zn+1 ∩H,

where H is the hyperplane H = {(x1, . . . , xn+1) ∈ Rn+1 |
∑n+1
i=1 xi = 0}. Let P be the

Voronoï region of An. We shall prove:

Theorem 4. For every dimension n ≥ 2, if P is the Voronoï region of the lattice An, then

m1(Rn, ‖ · ‖P) =
1

2n
.
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In fact, for n = 2, the Voronoï region of A2 is nothing but the regular hexagon. We are
going to generalize to all dimensions n ≥ 2 the strategy that we used in subsection 3.1.

Let us recall the description of the Voronoï region P of An given in [2, Chapter 21,
section 3].

The orthogonal projection on H is denoted by pH . Let, for 1 ≤ i ≤ n and j :=
(n+ 1)− i,

vi = pH((0, . . . , 0︸ ︷︷ ︸
i times

, 1, . . . , 1︸ ︷︷ ︸
j times

))

= (0, . . . , 0, 1, . . . , 1)− j

n+ 1
(1, . . . , 1)

= (
−j
n+ 1

, . . . ,
−j
n+ 1︸ ︷︷ ︸

i times

,
i

n+ 1
, . . . ,

i

n+ 1︸ ︷︷ ︸
j times

).

Let S be the simplex whose vertices are 0 and the vectors vi. Then the vertices of P
are the images of the non zero vertices of S under the permutation group Sn+1. In other
words, the set of vertices of P is

VP = {pH(u) | u ∈ V0}, where V0 = {0, 1}n+1 \ {(0, . . . , 0), (1, . . . , 1)}.

We also analyze the boundary of P , in order to understand the norm associated with
P . The non zero vertices of S are supported by the hyperplane H0,n of H defined by
H0,n = {x = (x0, . . . xn) ∈ H | xn − x0 = 1}. Applying Sn+1, we find that the faces of
P are supported by all the Hi,j = {x = (x0, . . . xn) ∈ H | xj − xi = 1}, for i 6= j. So{

x ∈ P if and only if for all i 6= j, xj − xi ≤ 1

x ∈ ∂P if and only if maxi6=j(xj − xi) = maxj xj −mini xi = 1,

and more generally the norm ‖x‖P of a vector x ∈ H is given by

‖x‖P = max
j
xj −min

i
xi.

Note that if x = pH(u), because H⊥ = R(1, . . . , 1), we have

max
j
xj −min

i
xi = max

j
uj −min

i
ui.

The vertices of P generate a lattice, which is the dual lattice of An:

Lemma 9. The vertices of P span over Z the lattice A#
n = pH(Zn+1).

Proof. Let v ∈ VP . There is u ∈ V0 such that v = pH(u). Since (u− pH(u)) ∈ H⊥, we
have, for every x ∈ An = Zn+1 ∩H ,

〈x, v〉 = 〈x, pH(u)〉 = 〈x, u〉 =
∑
i,ui=1

xi ∈ Z,

so spanZ(VP) ⊂ A#
n .

Now let us take x ∈ A#
n = pH(Zn+1), so x = pH(z0, . . . , zn), with zi ∈ Z. Then

x = pH(z0, . . . , zn) =

n∑
i=0

zipH(0, . . . , 0, 1︸︷︷︸
i

, 0 . . . , 0) ∈ spanZ(VP).

Thus spanZ(VP) = A#
n . �
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We consider the subgraph GP of G(Rn, ‖ · ‖P) induced by the set of vertices 1
2A

#
n , and

the auxiliary graph G̃which is the Cayley graph on 1
2A

#
n associated with the generating set

1
2VP . These graphs are the generalizations of the graphs that we considered in subsection
3.1. Here we show that G̃ satisfies the same remarkable property:

Lemma 10. The graph G̃ satisfies (Property D).

Proof. We follow the proof of Lemma 3. We may assume x = 0, and we need to show
that, for v, v′ ∈ VP , if v+v′

2 6= 0 then it is either some v′′

2 ∈
1
2VP , or an element of ∂P .

Equivalently, we study v + v′ and show that one of the three following situations occurs:
v + v′ = 0,

v + v′ = v′′ ∈ VP ,
‖v + v′‖P = 2.

Let u and u′ be elements of V0 = {0, 1}n+1 \ {(0, . . . , 0), (1, . . . , 1)} such that v =
pH(u) and v′ = pH(u′). The coordinates of the vector u + u′ belong to {0, 1, 2}, but
cannot be all 0 nor all 2. We explore the possible cases:

• If u+ u′ = (1, . . . , 1), then pH(u+ u′) = (0, . . . , 0), and v + v′ = 0.
• If the coordinates of u + u′ are only 0’s and 1’s, then u + u′ ∈ V0, and thus
v + v′ ∈ VP .

• If the coordinates of u + u′ are only 1’s and 2’s, we may decompose u + u′

as u+ u′ = (1, . . . , 1) + w, and w must be an element of V0. This implies that
v + v′ = pH(w) ∈ VP .

• The last remaining case is when both 0’s and 2’s appear in the coordinates of
U = u+ u′. Then, maxj Uj −mini Ui = 2, that is ‖v + v′‖P = 2.

�

Because G̃ satisfies (Property D), Lemma 4 is satisfied by G̃. So we can proceed to
analyze the cliques of G̃, and for each of them, determine its local density. Since G̃ is
vertex transitive, we only describe the cliques containing 0. For u ∈ V0, we define its
support I = {i ∈ {1, . . . , n+ 1}, ui = 1}.

Lemma 11. The cliques of G̃ containing 0 are the sets of the form{
0,
pH(u1)

2
, . . . ,

pH(us)

2

}
such that if Ii is the support of ui, then

I1 ⊂ I2 ⊂ . . . ⊂ Is.
In particular, since s ≤ n, a clique can not contain more than n+ 1 vertices.

Proof. Let C be a clique of G̃, and assume 0 ∈ C. Then the other elements of C must
belong to 1

2VP and since C is a clique, they must be adjacent in the graph. In other
words, if v

2 ,
v′

2 ∈ C, then v−v′
2 ∈ 1

2VP . Let v 6= v′ ∈ VP , and u, u′ ∈ V0 such that
v = pH(u) and v′ = pH(u′). We denote by I and I ′ the respective supports of u and u′.
For i ∈ {1, . . . , n+ 1}, the ith coordinate of u− u′ is:

1 if i ∈ I \ I ′,
−1 if i ∈ I ′ \ I,
0 otherwise.
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If both 1 and−1 appear in the coordinates of u−u′, then ‖v−v′‖P = 2, and v−v′ /∈ VP .
By definition of V0 and since v 6= v′, the coordinates of u − u′ must take two different
values. Two cases remain: if u−u′ contains only 0’s and 1’s, u−u′ ∈ V0 and v−v′ ∈ VP ;
and if it contains only 0’s and−1’s, then we can write u−u′ = w−(1, . . . , 1), withw ∈ V0,
so that v − v′ ∈ VP as well.

To conclude, we find that v − v′ ∈ VP if and only if I ⊂ I ′ or I ′ ⊂ I .
�

Lemma 12. For every clique C of G̃,

δ0(C) ≤ 1

2n
.

Proof. Let
{

0, pH(u1)
2 , . . . , pH(us)

2

}
be a clique. By symmetry, we may assume that

ui = (1, . . . , 1︸ ︷︷ ︸
wi

, 0, . . . , 0),

where wi = |Ii|. We want to count the vertices in

N [C] =
1

2
({0, pH(u1), . . . , pH(us)}+ VP) .

Since 0 ∈ C, the set ({0, pH(u1), . . . , pH(us)}+ VP) must contain all the images of
V0 ∪ {0} by pH : there are 2n+1 − 1 such vertices. We count, for each i = 1, . . . , s, how
many new neighbors are provided by pH(ui) + VP . We find that

• The vector
u1 = (1, . . . , 1︸ ︷︷ ︸

w1

, 0, . . . , 0),

provides (2w1 − 1)(2n+1−w1 − 1) new neighbors.
• The vector

u2 = (1, . . . , 1︸ ︷︷ ︸
w1

, 1, . . . , 1︸ ︷︷ ︸
w2−w1

, 0, . . . , 0),

provides 2w1(2w2−w1 − 1)(2n+1−w2 − 1) new neighbors.
• For any 2 ≤ i ≤ s, the vector ui will provide 2wi−1(2wi−wi−1 − 1)(2n+1−wi − 1)

new neighbors.
By summing all the values, if we set w0 = 0, we get:

|N [C]| = 2n+1 − 1 +

s∑
i=1

2wi−1(2wi−wi−1 − 1)(2n+1−wi − 1)

= (s+ 1)2n+1 − (

s∑
i=1

2n+1−(wi−wi−1) + 2ws).

Since ws ≤ n and for every i, (wi − wi−1) ≥ 1, we have

2ws +

s∑
i=1

2n+1−(wi−wi−1) ≤ (s+ 1)2n,

and this implies

|N [C]| ≥ (s+ 1)2n+1 − (s+ 1)2n = (s+ 1)2n.
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Finally, the local density of C satisfies:

δ0(C) =
|C|
|N [C]|

=
s+ 1

|N [C]|
≤ 1

2n
,

and we may note that this bound is sharp if and only ifws = n and for every i,wi−wi−1 =
1, that is when C is a maximal clique of the form

{0, (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1, 0, 0), (1, . . . , 1, 0)}.
�

Now we can conclude the proof of Theorem 4:

Proof of Theorem 4. Following Lemma 12 and Lemma 4, ᾱ(GP) ≤ 1
2n , which leads to

the theorem, following Lemma 2. �

4.2. The lattice Dn, n ≥ 4. We apply the same method as for An to another classical
family of lattices. For n ≥ 4, the lattice Dn is defined by

Dn = {x = (x1, . . . , xn) ∈ Zn |
n∑
i=0

xi = 0 mod 2}.

The same construction provides again a graph that satisfies (Property D). Unfortunately,
the analysis of the neighborhoods of the cliques does not lead to the wanted 1

2n upper
bound. Nevertheless, we can prove:

Theorem 5. For every dimension n ≥ 4, if P is the Voronoï region of the lattice Dn, then

m1(Rn, ‖ · ‖P) ≤ 1

(3/4)2n + n− 1
.

Let us describe the Voronoï region of Dn. Again we refer to [2] for further details.
Let S be the simplex whose vertices are 0, (0, . . . , 0, 1),

(
1
2 , . . . ,

1
2

)
, and the vectors0, . . . , 0︸ ︷︷ ︸

i

, 1
2 , . . . ,

1
2

, for 2 ≤ i ≤ n − 2. Then the Voronoï region P of Dn is the

union of the images of S by the group generated by all permutations of the coordinates
and sign changes of evenly many coordinates. Note that some of the vertices of S are not
extreme points of P anymore. Actually, there are two types of vertices of P:{

2n vectors of the form (±1, 0, . . . , 0) (type 1),
2n vectors of the form

(
± 1

2 , . . . ,±
1
2

)
(type 2).

The non zero vectors of S are contained in the hyperplane of Rn defined by the equation
xn−1 + xn = 1. The faces of P are supported by the images of this hyperplane under the
action of the group i.e. the hyperplanes defined by the equations of the form±xi±xj = 1,
with i 6= j. Thus,{

x ∈ P if and only if for all i 6= j, |xi|+ |xj | ≤ 1

x ∈ ∂P if and only if maxi 6=j(|xi|+ |xj |) = 1,

and the norm ‖x‖P of a vector x ∈ Rn is

‖x‖P = max
i 6=j

(|xi|+ |xj |).

As in the case of An, the vertices of P span the dual lattice of Dn:

Lemma 13. The vertices of P span over Z the dual lattice D#
n .
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Proof. It is immediate to check that for every x ∈ Dn and v ∈ VP , 〈x, v〉 ∈ Z, so
spanZ(VP) ⊂ D#

n . The converse follows directly from the following decomposition of
D#
n :

D#
n = Dn ∪

((
1

2
, . . . ,

1

2

)
+Dn

)
∪
((

1

2
, . . . ,−1

2

)
+Dn

)
∪ ((0, . . . , 0, 1) +Dn).

�

Once again, let GP be the subgraph of G(Rn, ‖ · ‖P) induced by V = 1
2D

#
n , and let G̃

be the auxiliary graph which is the Cayley graph on V associated with the generating set
1
2VP . It also satisfies (Property D):

Lemma 14. The graph G̃ satisfies (Property D).

Proof. We follow the proof of Lemma 10. Let v, v′ ∈ VP . We distinguish three cases
depending on the type of v and v′:

• If both v and v′ are of type 1, v + v′ is either 0, or, up to permutation of the
coordinates, of the form (±2, 0, . . . , 0) or (±1,±1, 0, . . . , 0), and ‖v + v′‖P = 2.

• If both v and v′ are of type 2, the non zero coordinates of v + v′ are 1 or −1.
If v + v′ 6= 0, then either it is a vertex of VP of type 1, or it has at least two
coordinates whose absolute values are equal to 1, and so ‖v + v′‖P = 2.

• If v is of type 1 and v′ is of type 2, then v + v′ is either a vertex of VP of type
2, or, up to a permutation of coordinates, of the form

(
± 3

2 ,±
1
2 , . . . ,±

1
2

)
, and

‖v + v′‖P = 2.

�

It remains to analyze the neighborhoods of the cliques of G̃. We first determine the
possible cliques of G̃. We may assume that they contain 0.

Lemma 15. Up to symmetry, a clique of G̃ containing 0 must be a subset of the maximal
clique

Cmax =
{

0,
v1

2
,
v2

2
,
v3

2

}
where


v1 = (0, . . . , 0, 1)

v2 =
(

1
2 ,

1
2 , . . . ,

1
2

)
v3 =

(
− 1

2 ,
1
2 , . . . ,

1
2

) .

Proof. Let v, v′ ∈ VP such that v−v
′

2 ∈ 1
2VP . The conclusion follows from the following

facts:

• Both v and v′ can not be of type 1, because the difference of two such vectors, is
either 0 or has polytope norm 2.

• If v and v′ are both of type 2, then v and v′ must differ by only one coordinate,
otherwise ‖v − v′‖P = 2.

• If v is of type 1, say v = (0, · · · , 0, ±1︸︷︷︸
i

, 0 · · · , 0), if v′ is of type 2 and v−v′
2 ∈

1
2VP , then the ith coordinate of v′ must have the same sign as the ith coordinate
of v.

�

Then, we analyze the local density of the cliques:
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Lemma 16. For every clique of G̃,

δ0(C) ≤ 1

(3/4)2n + n− 1
.

Proof. By enumerating the neighbors of every element in Cmax and by counting the inter-
sections of the different neighborhoods, we find that:

• If C = {0}, δ0(C) = 1
1+2n+n .

• If C =
{

0, v12
}

,

δ0(C) =
2

2n + 2n−1 + 4n
=

1

(3/4)2n + 2n
.

Note that for n ≥ 6, this density is already greater than 1
2n .

• If C is one of the two symmetric cliques
{

0, v22
}

and
{

0, v32
}

,

δ0(C) =
2

2× 2n + 2n
=

1

2n + n
.

• By symmetry, the cliques of the form
{

0, vi2 ,
vj
2

}
have the same number of neigh-

bors. If C is one of them,

δ0(C) =
3

2× 2n + 2n−1 + 3n− 1
=

1

(5/6)2n + n− 1/3
,

which is also greater than 1
2n .

• Finally,

δ0(Cmax) =
4

3× 2n + 4n− 4
=

1

(3/4)2n + n− 1
,

which is the highest possible value of δ0(C).
�

5. THE CHROMATIC NUMBER OF G(Rn, ‖ · ‖P)

In this section, we discuss the chromatic number χ(Rn, ‖·‖P) of the unit distance graph
associated with a parallelohedron. We start with the construction of a natural coloring of
Rn with 2n colors, leading to:

Proposition 3. Let P be a parallelohedron in Rn. Then

χ(Rn, ‖ · ‖P) ≤ 2n.

Proof. By assumption, there is a lattice Λ such that Rn is the disjoint union ∪λ∈Λ(λ+P).
We may also write Rn as the disjoint union

Rn =
⋃
λ∈ 1

2 Λ

(
λ+

1

2
P
)

=
⋃
λ∈ 1

2 Λ

BP

(
λ,

1

2

)
.

If H is a coset of 1
2Λ
/

Λ, then

AH =
⋃
λ∈H

BP

(
λ,

1

2

)
is a set avoiding distance 1. So the points inAH can receive the same color. This concludes
the proof, since Rn is the disjoint union of allAH whereH runs through the 2n cosets. �
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FIGURE 13. χ(Rn, ‖ · ‖P) ≤ 2n.

In order to lower bound χ(Rn, ‖ · ‖P), we can take advantage of the induced subgraphs
that we have constructed in previous sections. In particular, whenever we have a discrete
induced subgraphGP ofG(Rn, ‖·‖P) satisfying ᾱ(GP) = 1

2n , we obtain as an immediate
consequence that

χ(Rn, ‖ · ‖P) ≥ χ(GP) ≥ 1

ᾱ(GP)
= 2n.

Thus we have proved:

Corollary 1. Let P be a parallelohedron in R2. Then

χ(R2, ‖ · ‖P) = 4.

Corollary 2. Let P be the Voronoï region of the lattice An in Rn. Then

χ(Rn, ‖ · ‖P) = 2n.

Remark 3. We want to point out the fact that in dimension 2, one can find a finite induced
subgraph of G(Rn, ‖ · ‖P) with chromatic number 4. Indeed, the induced subgraph of
G(Rn, ‖ · ‖P) whose vertices and edges are drawn in Figure 14 is easily seen to have
chromatic number 4.

FIGURE 14. χ(R2, ‖ · ‖P) ≥ 4.

APPENDIX A. THE PROOF OF LEMMA 1

This appendix is dedicated to the proof of Lemma 1, which gives two equivalent for-
mulations of the independence ratio of a discrete graph whose vertices have finite degrees.
The importance of the assumption on the degrees of the vertices will be discussed after the
proof. The statement of the lemma is reproduced below:
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Lemma 1. Let G = (V,E) be a graph such that its vertex set V is a discrete subset of Rn,
and such that every vertex has finite degree. Then

ᾱ(G) = lim sup
R→∞

ᾱ(GR),

where GR is the finite induced subgraph of G whose set of vertices is VR = V ∩ [−R,R]n.

Proof. Let G be a graph satisfying the assumptions of the lemma. First of all, we remark
that if G is finite, there exists R such that GR = G. Thus, α(G) = lim supR→∞ α(GR) is
obvious. From now on, we will assume that G has infinitely many vertices.

The inequality α(G) ≤ lim supR→∞ α(GR) clearly holds. Indeed, if A is an indepen-
dent set of G, then A ∩ VR is an independent set of GR and so |A∩VR|

|VR| ≤ α(GR), leading
to δG(A) ≤ lim supR→∞ α(GR).

We will prove the reverse inequality by exhibiting a sequence of independent sets Sk
such that, for all k ≥ 1, lim supR→∞

|Sk∩VR|
|VR| ≥ lim supR→∞ α(GR)− 1

k .
Let r` be a strictly increasing sequence of real numbers tending to infinity and such

that lim`→∞ α(Gr`) = lim supR→∞ α(GR), and let Ar` be an independent subset of Vr`
of maximal cardinality. The set Sk will be constructed from the sequence of independent
sets Ar` ; however, we will need, for reasons that will appear more clearly later, that the
successive rings Vr` \Vr`−1

are sufficiently large. In view of that, we construct a convenient
subsequence of r`, with the help of a function ϕ(`), in the following way.

Since the graph G is discrete, we know that for all R, VR is finite and since all the
vertices of the graph are of finite degree, we know that the neighborhood N [VR] is finite
too. We call b(R) the smallest real number such that N [VR] ⊂ Vb(R). Then, we set
ϕ(0) = 0 and, inductively for ` ≥ 0,

ϕ(`+ 1) = min
{
i | ri ≥ b(rϕ(`)) and |Vri \ Vrϕ(`)

| ≥ |Vrϕ(`)
\ Vrϕ(`−1)

|
}
.

The existence of ϕ(`+1) at each step of the recursion holds because lim`→∞ r` = +∞
and Vrϕ(`)

\ Vrϕ(`−1)
is finite (since G is discrete). To keep the notations simple, we set

R` = rϕ(`).
We will need the following property of the number of elements of the rings associated

to the sequence R`:

Proposition 4. For all ` ∈ N, for all m ∈ N∗:

|VR`+1
\ VR`

| ≤ 1

m
|VR`+m

\ VR`
|

Proof. We have |VR`+m
\VR`

| =
m−1∑
k=0

|VR`+k+1
\VR`+k

| and each term of the sum is larger

than |VR`+1
\ VR`

|, by definition of ϕ. �

Now we are ready to define the sets Sk. We set, for k ≥ 0,

Sk :=
{
v ∈ V | ∃i ∈ N such that v ∈ ARik

and ∀j < i, v /∈ N [ARjk
]
}
.

It remains to prove that Sk is an independent set and satisfies the inequality

lim sup
R→+∞

|Sk ∩ VR|
|VR|

≥ lim sup
R→∞

α(GR)− 1

k
.

Proposition 5. Sk is independent.
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Proof. Let v1 and v2 be two vertices of Sk and let i1 and i2 be such that v1 ∈ ARi1k
,

v2 ∈ ARi2k
and for all j < i1 (respectively i2), v1 (resp. v2) /∈ N [ARjn ]. If i1 = i2,

then v1 and v2 both belong to ARi1k
which is independent, consequently they are not

connected. If say, i1 > i2, from the very definition of Sk, v2 /∈ N [ARi1k
], so v1 and v2 are

not connected either. �

Lemma 17. For all k ≥ 1, i ≥ 0, |Sk∩VRik
|

|VRik
| ≥

|ARik
|

|VRik
| −

1
k .

Proof. We prove the lemma by induction on i:
• The property holds for i = 0 since Sk ∩ VR0

contains AR0
.

• Let i ∈ N be such that the property holds. We have:

(2)
|Sk ∩ VR(i+1)k

|
|VR(i+1)k

|
=
|Sk ∩ VRik

|
|VR(i+1)k

|
+
|Sk ∩ (VR(i+1)k

\ VRik
)|

|VR(i+1)k
|

.

Let us lower bound the two terms of this sum one after the other.
I Since ARik

is an independent set of maximal cardinality in VRik
, we know that

|ARik
| ≥ |AR(i+1)k

∩ VRik
|. Combining with the induction hypothesis, we find

|Sk ∩ VRik
|

|VRik
|
≥
|AR(i+1)k

∩ VRik
|

|VRik
|

− 1

k

and thus:

(3)
|Sk ∩ VRik

|
|VR(i+1)k

|
≥
|AR(i+1)k

∩ VRik
|

|VR(i+1)k
|

− 1

k

|VRik
|

|VR(i+1)k
|
.

I By definition, Sk contains all the vertices of AR(i+1)k
except those who are in the

neighborhood of an ARjk
with j < i + 1. Since for all j < i, N [ARjk

] ⊂ Vb(Rik), the
set Sk ∩ (VR(i+1)k

\ VRik
) contains AR(i+1)k

\ Vb(Rik). We also have by construction that
b(Rik) ≤ Rik+1. Thus,

|Vb(Rik) \ VRik
| ≤ |VRik+1

\ VRik
| ≤ 1

k
|VR(i+1)k

\ VRik
|

where the second inequality follows from Proposition 4.
This leads to the following inequality:

(4)
|Sk ∩ (VR(i+1)k

\ VRik
)|

|VR(i+1)k
|

≥
|AR(i+1)k

\ VRik
|

|VR(i+1)k
|

− 1

k

|VR(i+1)k
\ VRik

|
|VR(i+1)k

|

By combining equations (2), (3) and (4), we find:

|Sk ∩ VR(i+1)k
|

|VR(i+1)k
|
≥
|AR(i+1)k

|
|VR(i+1)k

|
− 1

k

which concludes the proof of Lemma 17. �

Now we are ready to conclude the proof of Lemma 1. Indeed, for all k ≥ 1, we have
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α(G) = sup
S

lim sup
R→+∞

|S ∩ VR|
|VR|

≥ lim sup
R→+∞

|Sn ∩ VR|
|VR|

≥ lim
i→∞

|Sk ∩ VRik
|

|VRik
|

≥ lim
i→∞

|ARik
|

|VRik
|
− 1

k

≥ lim sup
R→∞

α(GR)− 1

k
.

In the limit when k →∞, we obtain that α(G) ≥ lim supR→∞ α(GR). �

To conclude our discussion of Lemma 1, we would like to point out that the inequality
α(G) ≤ lim supR→∞ α(GR) does not necessarily hold if G has vertices with infinite
degree, by bringing out a counterexample.

Let G be the graph given by V = Z and E = {{a, b}|a < 0 and b > −2a}.
Let N ∈ N and let SN =

[[
−N,−N2

]]
∪ [[0, N ]]. One can see easily that SN is indepen-

dent in G. Hence, lim supR→∞ α(GR) ≥ limN→∞
|SN |
|VN | = 3

4 .
Let S be an independent set of G. If S contains a vertex indexed by a negative integer

−k, it cannot contain any vertex indexed by i > 2k and can therefore only contain finitely
many vertices indexed by positive integers. Hence, limN→∞

|S∩VN |
|VN | ≤

1
2 . If S does not

contain any vertex indexed by a negative integer, the inequality limN→∞
|A∩VN |
|VN | ≤

1
2

holds aswell. Thus,

sup
S

lim sup
N→+∞

|S ∩ VN |
|VN |

≤ 1

2

which proves that α(G) 6= lim supR→∞ α(GR).
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