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Hoeffding’s inequality

Let (Xn) be a sequence of independent random variables and

Sn =
n∑

k=1

Xk .

Theorem (Hoeffding’s inequality)

Assume that for each 1 6 k 6 n, ak 6 Xk 6 bk a.s. for some
constants ak < bk . Then, for all x > 0,

P(|Sn − E[Sn]| > x) 6 2 exp
(
−

2x2∑n
k=1(bk − ak )2

)
.
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Bennett’s inequality

Theorem (Bennett’s inequality)

Assume that (Xn) is square integrable and for each 1 6 k 6 n,
Xk 6 c a.s. for some constant c > 0. Then, for all x > 0,

P(Sn − E[Sn] > x) 6 exp
(
−

Vn

c2
h
(xc

Vn

))
where Vn is the variance of Sn and

h(x) = (1 + x) log(1 + x)− x .
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Bernstein’s inequality

For all x > 0,

h(x) >
3x2

2(3 + x)
.

Theorem (Bernstein’s inequality)

Assume that (Xn) is square integrable and for each 1 6 k 6 n,
Xk 6 c a.s. for some constant c > 0. Then, for all x > 0,

P(Sn − E[Sn] > x) 6 exp
(
−

x2

2(Vn + xc/3)

)
.
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Azuma-Hoeffding’s inequality
Let (Mn) be a square integrable martingale adapted to F=(Fn)
with M0 = 0. The predictable and the total quadratic variations
of (Mn) are given by

<M >n=
n∑

k=1

E[∆M2
k |Fk−1], [M]n =

n∑
k=1

∆M2
k

where ∆Mn = Mn −Mn−1.

Theorem (Azuma-Hoeffding’s inequality)

Assume that for each 1 6 k 6 n, ak 6 ∆Mk 6 bk a.s. for some
constants ak < bk . Then, for all x > 0,

P(|Mn| > x) 6 2 exp
(
−

2x2∑n
k=1(bk − ak )2

)
.

B. Bercu University of Bordeaux, France 8/ 20



Classical exponential inequalities
Exponential inequalities for martingales

Application to adaptive tracking
Two open problems

Azuma-Hoeffding’s inequality
Freedman’s inequality
De la Peña’s inequality

Freedman’s inequality
Theorem (Freedman’s inequality)
Assume that for each 1 6 k 6 n, ∆Mk 6 c a.s. for some
constant c > 0. Then, for all x , y > 0,

P(Mn > x, <M >n6 y) 6 exp
(
−

x2

2(y + cx)

)
.

Theorem
Freedman’s inequality also holds under the Bernstein moment
condition: for all n > 1, p > 2 and for some constant c > 0,

n∑
k=1

E[|∆Mk |p|Fk−1] 6
p!

2
cp−2 <M >n a.s.
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De la Peña’s inequality

Definition. We shall say that (Mn) is conditionally symmetric
if, for all n > 1, L(∆Mn|Fn−1) is symmetric.

Theorem (De la Peña’s inequality)

If (Mn) is conditionally symmetric, then for all x , y > 0,

P(Mn > x, [M]n 6 y) 6 exp
(
−

x2

2y

)
.

B. Bercu University of Bordeaux, France 10/ 20



Classical exponential inequalities
Exponential inequalities for martingales

Application to adaptive tracking
Two open problems

Azuma-Hoeffding’s inequality
Freedman’s inequality
De la Peña’s inequality

Self-normalized martingales

Theorem (De la Peña’s inequality)

If (Mn) is conditionally symmetric, then for all x , y > 0,

P
( Mn

[M]n
> x

)
6

√
E
[
exp
(
−x2

2
[M]n

)]
,

P
( Mn

[M]n
> x , [M]n >

1
y

)
6 exp

(
− x2

2y

)
.

Goal. Normalize by <M >n instead of [M]n.
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Self-normalized martingales

Definition. We shall say that (Mn) is conditionally Gaussian if
for all n > 1,

L(∆Mn|Fn−1) = N (0,∆<M >n)

where ∆<M >n=<M >n−<M >n−1.

Theorem (Bercu)

If (Mn) is conditionally Gaussian, then for all x > 0,

P
( Mn

<M >n
> x

)
6 inf

p>1

(
E
[
exp

(
−(p−1)

x2

2
<M >n

)])1/p

.
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Autoregressive process

Consider the autoregressive process given, for all n > 0, by

Xn+1 = θXn + Un + εn+1

Xn −→ the system output,
Un −→ the adaptive control that can be chosen,
εn −→ the driven noise.

We assume that the noise (εn) is iid with N (0, σ2) distribution.
Our goal is to

Estimate the unknown parameter θ,
Control the dynamic of the process (Xn).
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Estimation

We estimate the parameter θ by the least squares estimator

θ̂n =

∑n
k=1 Xk−1(Xk − Uk−1)∑n

k=1 X 2
k−1

.

θ̂n − θ = σ2 Mn

<M >n

where

Mn =
n∑

k=1

Xk−1εk and <M >n= σ2
n∑

k=1

X 2
k−1.
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Adaptive Control
The role of Un is to force Xn to track, step by step, a given
reference trajectory (xn). We use the adaptive control

Un = xn+1 − θ̂nXn.

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

20

25

30

B. Bercu University of Bordeaux, France 16/ 20



Classical exponential inequalities
Exponential inequalities for martingales

Application to adaptive tracking
Two open problems

Adaptive Control
The role of Un is to force Xn to track, step by step, a given
reference trajectory (xn). We use the adaptive control

Un = xn+1 − θ̂nXn.

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

B. Bercu University of Bordeaux, France 16/ 20



Classical exponential inequalities
Exponential inequalities for martingales

Application to adaptive tracking
Two open problems

Exponential Inequality

Theorem (Bercu)
For all n > 1 and x > 0, we have

P(|θ̂n − θ| > x) 6 2 exp
(
−

nx2

2(1 + yx)

)
where yx is the unique positive solution of the equation

(1 + y) log(1 + y)− y = x2.

Remark. For all 0 < x < 1/2, yx < 2x so that

P(|θ̂n − θ| > x) 6 2 exp
(
− nx2

2(1 + 2x)

)
.
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Large Deviations
Consider the stable autoregressive process without control. Let

a =
θ −

√
θ2 + 8
4

and b =
θ +

√
θ2 + 8
4

.

Theorem (Bercu-Gamboa-Rouault)

The sequence (θ̂n) satisfies an LDP with rate function

I(x) =


1
2

log
(

1 + θ2 − 2θx
1− x2

)
if x ∈ [a, b],

log |θ − 2x | otherwise.

In particular, for all x > θ, lim
n→∞

1
n

log P(θ̂n > x) = −I(x).

Goal. Investigate the LDP for (θ̂n) in adpative tracking.
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Moderate Deviations

Goal. Let (an) be a sequence of positive numbers increasing to
infinity such that an = o(n). Denote

Vn =

√
n
an

(θ̂n − θ).

One can conjecture that (Vn) satisfies an LDP with speed an
and rate function I(x) = x2/2.
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