Kernel density estimation in adaptive tracking

Bernard Bercu and Bruno Portier

Universities of Bordeaux and Rouen, France 47th IEEE Conference on Decision and Control Cancun, Mexico, December 10, 2008

Outline

Kernel density estimation

Estimation and adaptive control

- The ARMAX model
- Estimation and adaptive control
- Kernel density estimation

Main results

- Law of large numbers
- Central limit theorem

Application to a goodness of fit test

Outline

Goal

Let (X_n) be a sequence of **iid** random variables with **unknown** density function *f*.

Goal

Estimate the density function f by a kernel density estimator.

Let *K* be a **nonnegative**, **bounded**, **Lipschitz** function called **Kernel**, such that

$$\int_{\mathbb{R}} \mathcal{K}(x) \, dx = 1, \qquad \int_{\mathbb{R}} x \mathcal{K}(x) \, dx = 0,$$
$$\int_{\mathbb{R}} \mathcal{K}^{2}(x) \, dx = \tau^{2}.$$

Choices for the kernel

• Uniform kernel

$$\mathcal{K}_a(x) = \begin{cases} \frac{1}{2a} & \text{if } |x| \leq a, \\ 0 & \text{otherwise.} \end{cases}$$

• Epanechnikov kernel

$$\mathcal{K}_b(x) = \begin{cases} \frac{3}{4b} \left(1 - \frac{x^2}{b^2} \right) & \text{if } |x| \leq b, \\ 0 & \text{otherwise} \end{cases}$$

• Gaussian kernel

$$K_c(x) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{x^2}{2c^2}\right).$$

Choices for the kernel

• Uniform kernel

$$\mathcal{K}_a(x) = \left\{ egin{array}{cc} rac{1}{2a} & ext{if } |x| \leqslant a, \ 0 & ext{otherwise.} \end{array}
ight.$$

• Epanechnikov kernel

$$\mathcal{K}_b(x) = \left\{ egin{array}{c} rac{3}{4b}\left(1-rac{x^2}{b^2}
ight) & ext{if } |x|\leqslant b, \ 0 & ext{otherwise} \end{array}
ight.$$

• Gaussian kernel

$$K_c(x) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{x^2}{2c^2}\right).$$

Choices for the kernel

• Uniform kernel

$$\mathcal{K}_a(x) = \left\{ egin{array}{cc} rac{1}{2a} & ext{if } |x| \leqslant a, \ 0 & ext{otherwise.} \end{array}
ight.$$

• Epanechnikov kernel

$$\mathcal{K}_b(x) = \left\{ egin{array}{c} rac{3}{4b}\left(1-rac{x^2}{b^2}
ight) & ext{if } |x|\leqslant b, \ 0 & ext{otherwise.} \end{array}
ight.$$

Gaussian kernel

$$K_c(x) = rac{1}{c\sqrt{2\pi}} \exp\left(-rac{x^2}{2c^2}
ight).$$

Parzen-Rosenblatt or Wolverton-Wagner

Let (h_n) be a sequence of positive real numbers decreasing to zero called **bandwidth**. We can estimate the density *f* by the **Parzen-Rosenblatt** estimator given for all $x \in \mathbb{R}$ by

$$\widetilde{f}_n(x) = \frac{1}{nh_h} \sum_{i=1}^n K\Big(\frac{X_i - x}{h_n}\Big).$$

We can also estimate the density *f* by the Wolverton-Wagner estimator given for all $x \in \mathbb{R}$ by

$$\widehat{f}_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_i} K\left(\frac{\mathbf{X}_i - \mathbf{x}}{h_i}\right).$$

On Wolverton-Wagner

Theorem

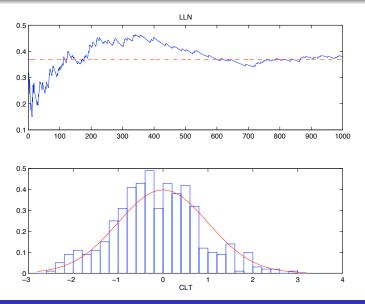
Assume that f is derivable with bounded derivative. If the bandwidth $h_n = 1/n^{\alpha}$ with $0 < \alpha < 1$, we have

(LLN)
$$\lim_{n\to\infty}\widehat{f}_n(x)=f(x) \quad a.s.$$

In addition, if $1/5 < \alpha < 1$, we also have

CLT)
$$\sqrt{nh_n}(\widehat{f}_n(x) - f(x)) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\tau^2 f(x)}{1 + \alpha}\right)$$

((



The ARMAX model Estimation and adaptive control Kernel density estimation

Outline

Kernel density estimation

Estimation and adaptive control

- The ARMAX model
- Estimation and adaptive control
- Kernel density estimation

Main results

- Law of large numbers
- Central limit theorem
- Application to a goodness of fit test

The ARMAX model Estimation and adaptive control Kernel density estimation

Consider the *d*-dimensional **ARMAX(p,q,r)** model given by

 $\boldsymbol{A}(\boldsymbol{R})\boldsymbol{X}_n = \boldsymbol{B}(\boldsymbol{R})\boldsymbol{U}_n + \boldsymbol{C}(\boldsymbol{R})\boldsymbol{\varepsilon}_n$

where *R* is the shift-back operator, X_n is the system output, U_n is the system input and ε_n is the driven noise,

- $A(R) = I_d A_1 R \cdots A_p R^p$,
- $B(R) = B_1 R + B_2 R^2 + \dots + B_a R^q$,
- $C(R) = I_d C_1 R \cdots C_r R^r$

where A_i , B_j , and C_k are unknown matrices. We assume that the **high frequency gain** B_1 is known with $B_1 = I_d$.

Consider the *d*-dimensional **ARMAX(p,q,r)** model given by

 $\boldsymbol{A}(\boldsymbol{R})\boldsymbol{X}_n = \boldsymbol{B}(\boldsymbol{R})\boldsymbol{U}_n + \boldsymbol{C}(\boldsymbol{R})\boldsymbol{\varepsilon}_n$

where *R* is the shift-back operator, X_n is the system output, U_n is the system input and ε_n is the driven noise,

- $A(R) = I_d A_1 R \cdots A_p R^p$,
- $B(R) = B_1R + B_2R^2 + \cdots + B_qR^q$,
- $C(R) = I_d C_1 R \dots C_r R^r$

where A_i , B_j , and C_k are unknown matrices. We assume that the **high frequency gain** B_1 is known with $B_1 = I_d$.

Consider the *d*-dimensional **ARMAX(p,q,r)** model given by

 $A(R)X_n = B(R)U_n + C(R)\varepsilon_n$

where *R* is the shift-back operator, X_n is the system output, U_n is the system input and ε_n is the driven noise,

•
$$A(R) = I_d - A_1 R - \cdots - A_p R^p$$
,

•
$$B(R) = B_1R + B_2R^2 + \cdots + B_qR^q$$
,

• $C(R) = I_d - C_1 R - \cdots - C_r R^r$

where A_i , B_j , and C_k are unknown matrices. We assume that the **high frequency gain** B_1 is known with $B_1 = I_d$.

The ARMAX model Estimation and adaptive control Kernel density estimation

The unknown parameter of the model is given by

$$\theta^t = (A_1, \ldots, A_p, B_2, \ldots, B_q, C_1, \ldots, C_r).$$

The **ARMAX(p,q,r)** model can be rewritten as

 $X_{n+1} = \theta^t \Psi_n + U_n + \varepsilon_{n+1},$

where $\Psi_n = (X_n^p, U_n^q, \varepsilon_n^r)^t$ with

$$\begin{aligned} X_n^p &= (X_n^t, \dots, X_{n-p+1}^t), \\ U_n^q &= (U_{n-1}^t, \dots, U_{n-q+1}^t), \\ \varepsilon_n^r &= (\varepsilon_n^t, \dots, \varepsilon_{n-r+1}^t). \end{aligned}$$

The ARMAX model Estimation and adaptive control Kernel density estimation

Causality and Passivity

Definition

The matrix polynomial *B* is **causal** if for all $z \in \mathbb{C}$ with $|z| \leq 1$

 $\det(z^{-1}B(z))\neq 0.$

Definition

The matrix polynomial *C* is **passif** if for all $z \in \mathbb{C}$ with |z| = 1

 $\det(C(z)) \neq 0$ and $C^{-1}(z) > \frac{1}{2}I_d$

The ARMAX model Estimation and adaptive control Kernel density estimation

Extended least squares

We estimate θ by the **extended least squares** estimator

$$\widehat{\theta}_{n+1} = \widehat{\theta}_n + S_n^{-1} \Phi_n (X_{n+1} - U_n - \widehat{\theta}_n^t \Phi_n)^t,$$

$$\widehat{\varepsilon}_{n+1} = X_{n+1} - U_n - \widehat{\theta}_n^t \Phi_n,$$

where the vector $\Phi_n = (X_n^p, U_n^q, \hat{\varepsilon}_n^r)^t$ with $\hat{\varepsilon}_n^r = (\hat{\varepsilon}_n^t, \dots, \hat{\varepsilon}_{n-r+1}^t)$,

$$S_n = \sum_{i=0}^n \Phi_i \Phi_i^t + S,$$

where S is a positive definite and deterministic matrix.

The ARMAX model Estimation and adaptive control Kernel density estimation

Adaptive Control

The role played by U_n is to force X_n to track step by step a given trajectory (x_n) . We make use of the **adaptive tracking control**

 $\boldsymbol{U}_n = \boldsymbol{x}_{n+1} - \widehat{\theta}_n^t \boldsymbol{\Phi}_n.$

Then, the closed-loop system is given by

 $X_{n+1} - X_{n+1} = \pi_n + \varepsilon_{n+1}$

where the prediction error

$$\pi_n = (\theta - \widehat{\theta}_n)^t \Phi_n.$$

The ARMAX model Estimation and adaptive control Kernel density estimation

We assume that (ε_n) is a sequence of **iid** random vectors with **unknown density** *f*. If (ε_n) were observable, we could estimate *f* by

$$f_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_i^d} K\left(\frac{\varepsilon_i - \mathbf{x}}{h_i}\right).$$

However, ε_{n+1} is unobservable but it can estimated by

$$\widehat{\varepsilon}_{n+1} = X_{n+1} - U_n - \widehat{\theta}_n^t \Phi_n = X_{n+1} - X_{n+1}.$$

Consequently, we can use the Wolverton-Wagner estimator

$$\widehat{f}_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_i^d} K\left(\frac{X_i - X_i - \mathbf{x}}{h_i}\right).$$

Law of large numbers Central limit theorem

Outline

- Estimation and adaptive control
 - The ARMAX model
 - Estimation and adaptive control
 - Kernel density estimation
- Main results
 - Law of large numbers
 - Central limit theorem

Application to a goodness of fit test

Law of large numbers Central limit theorem

Uniform law of large numbers

Theorem

Assume that *f* is positive and differentiable with **bounded** gradient and that (ε_n) has finite moment of order > 2. If the bandwidth $h_n = 1/n^{\alpha}$ with $\alpha \in]0, 1/d[$, then

(LLN)

$$\lim_{n\to\infty}\sup_{x\in\mathbb{R}^d}|\widehat{f}_n(x)-f(x)|=0 \quad a.s.$$

Law of large numbers Central limit theorem

Central limit theorem

Theorem

Assume that *f* is positive and differentiable with **bounded** gradient and that (ε_n) has finite moment of order > 2. If the bandwidth $h_n = 1/n^{\alpha}$ with $\alpha \in [1/(d+2), 1/d[$, then

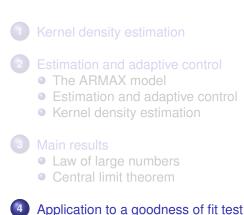
$$G_n(x) = \sqrt{nh_n^d}(\widehat{f}_n(x) - f(x)) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\tau^2 f(x)}{1 + \alpha d}\right) = G(x).$$

In addition, for N distinct points x_1, \ldots, x_N of \mathbb{R}^d , we also have

(MCLT)
$$(G_n(x_1), \cdots, G_n(x_N)) \xrightarrow{\mathcal{L}} (G(x_1), \cdots, G(x_N))$$

where $G(x_1), \ldots, G(x_N)$ are independent.

Outline



goodness of fit test

We wish to test

 \mathcal{H}_0 : $\langle f = f_0 \rangle$ versus \mathcal{H}_1 : $\langle f \neq f_0 \rangle$

where f_0 is a given density function. Our statistical test is

$$T_n(N) = \frac{1}{\tau^2 \ell_h} \sum_{i=1}^N \frac{(\hat{f}_n(x_i) - f_0(x_i))^2}{\hat{f}_n(x_i)}$$

where x_1, \ldots, x_N are *N* distinct points of \mathbb{R}^d and

$$\ell_h = \frac{1}{1 + \alpha d}.$$

Theorem

Assume that f is positive and differentiable with **bounded** gradient and that (ε_n) has finite moment of order > 2. If the bandwidth $h_n = 1/n^{\alpha}$ with $\alpha \in]1/(d+2), 1/d[$, then under \mathcal{H}_0

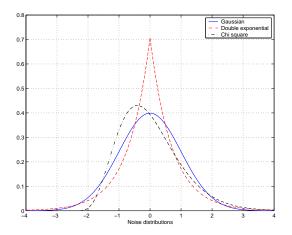
$$nh_n^d T_n(N) \xrightarrow{\mathcal{L}} \chi^2(N).$$

In addition, under \mathcal{H}_1 and if one can find some point x of \mathbb{R}^d in $\{x_1, x_2, \ldots, x_N\}$ such that $f(x) \neq f_0(x)$, then $T_n(N) \rightarrow \sigma^2$ a.s.

$$\sqrt{nh_n^d}(T_n(N) - \sigma^2) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(\mathbf{0}, \lambda^2)$$

$$\sigma^{2} = \frac{1}{\tau^{2}\ell_{h}} \sum_{i=1}^{N} \frac{(f(x_{i}) - f_{0}(x_{i}))^{2}}{f(x_{i})}, \quad \lambda^{2} = \frac{1}{\tau^{2}\ell_{h}} \sum_{i=1}^{N} \frac{(f^{2}(x_{i}) - f_{0}^{2}(x_{i}))^{2}}{f^{3}(x_{i})}.$$

Simulations



Noise distributions

• Gaussian

$$f_0(x) = rac{1}{\sqrt{2\pi}} \exp\Bigl(-rac{x^2}{2}\Bigr),$$

Double exponential

$$f_1(x) = \frac{1}{\sqrt{2}} \exp\left(-\sqrt{2}|x|\right),$$

• Chi square

$$f_2(x) = \begin{cases} \frac{9}{5}(x+\sqrt{6})^5 \exp\left(-\sqrt{6}(x+\sqrt{6})\right) & \text{if } |x| \ge -\sqrt{6}, \\ 0 & \text{otherwise.} \end{cases}$$

Noise distributions

Gaussian

$$f_0(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right),$$

Double exponential

$$f_1(x) = \frac{1}{\sqrt{2}} \exp\left(-\sqrt{2}|x|\right),$$

• Chi square

$$f_2(x) = \begin{cases} \frac{9}{5}(x+\sqrt{6})^5 \exp\left(-\sqrt{6}(x+\sqrt{6})\right) & \text{if } |x| \ge -\sqrt{6}, \\ 0 & \text{otherwise.} \end{cases}$$

Noise distributions

• Gaussian

$$f_0(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right),$$

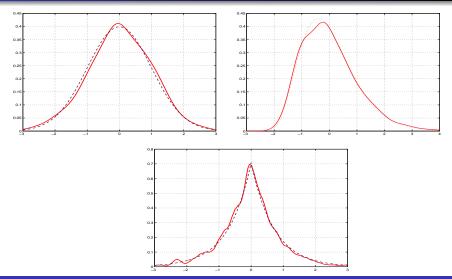
Double exponential

$$f_1(x) = \frac{1}{\sqrt{2}} \exp\left(-\sqrt{2}|x|\right),$$

• Chi square

$$f_2(x) = \begin{cases} \frac{9}{5}(x+\sqrt{6})^5 \exp\left(-\sqrt{6}(x+\sqrt{6})\right) & \text{if } |x| \ge -\sqrt{6}, \\ 0 & \text{otherwise.} \end{cases}$$

Law of large numbers



Bercu and Portier

Kernel density estimation in adaptive tracking

ARX Goodness of fit test

$X_{n+1} = \theta X_n + U_n + \varepsilon_{n+1}$

Table: Results under \mathcal{H}_0 and \mathcal{H}_1 with test level 5%.

	<i>n</i> = 200, <i>N</i> = 8				<i>n</i> = 1000, <i>N</i> = 22	
	$\mathcal{H}f_0$	$\mathcal{H}f_1$	$\mathcal{H}f_2$	$\mathcal{H}f_0$	$\mathcal{H}f_1$	$\mathcal{H}f_2$
G f ₀	3.8%	35.7%	28%	3.7%	99.7%	98.2%
$\mathcal{G}f_1$	45.8%	5.5%	71.5%	100%	5%	100%
$\mathcal{G}f_2$	21.2%	54.5%	3.2%	96.7%	100%	5.1%

NARX Goodness of fit test

$$X_{n+1} = \theta X_n^2 + U_n + \varepsilon_{n+1}$$

Table: Results under \mathcal{H}_0 and \mathcal{H}_1 with test level 5%.

	<i>n</i> = 200, <i>N</i> = 8				<i>n</i> = 1000, <i>N</i> = 22	
	$\mathcal{H}f_0$	$\mathcal{H}f_1$	$\mathcal{H}f_2$	$\mathcal{H}f_0$	$\mathcal{H}f_1$	$\mathcal{H}f_2$
Gf ₀	3%	37.1%	28.5%	4.3%	99.5%	98.6%
$\mathcal{G}f_1$	44.6%	5.2%	72%	100%	5.1%	100%
$\mathcal{G}f_2$	19.8%	58.3%	3.7%	97.2%	100%	5%