On the Usefulness of Persistent Excitation in ARX Adaptive Tracking

Bernard Bercu and Victor Vazquez

Universities of Bordeaux and Puebla, France, Mexico

48th IEEE Conference on Decision and Control

Shanghai, China, December 17, 2009

Outline

- 1 Introduction
 - The ARX Model
 - Matrix Polynomials
- 2 Estimation and Adaptive Control
 - Estimation
 - Adaptative Control
- On the Schur Complement
 - Preliminars
 - Schur Complement
 - Strong Controllability

4 Main Results

- Almost sure convergence
- Central limit theorem
- Law of iterated logarithm

Simulations

The ARX Model Matrix Polynomials

Outline

1 Introduction The ARX Model Matrix Polynomials Estimation Adaptative Control Preliminars Schur Complement Strong Controllability Almost sure convergence Central limit theorem Law of iterated logarithm

The ARX Model Matrix Polynomials

Introduction

Consider the *d*-dimensional $ARX_d(p, q)$ model given by

$\boldsymbol{A}(\boldsymbol{R})\boldsymbol{X}_{n+1} = \boldsymbol{B}(\boldsymbol{R})\boldsymbol{U}_n + \varepsilon_{n+1}$

- R the shift-back operator,
- X_n the system output,
- U_n the system input,
- ④ ε_n the driven noise.

The ARX Model Matrix Polynomials

Introduction

Consider the *d*-dimensional $ARX_d(p, q)$ model given by

$\boldsymbol{A}(\boldsymbol{R})\boldsymbol{X}_{n+1} = \boldsymbol{B}(\boldsymbol{R})\boldsymbol{U}_n + \varepsilon_{n+1}$

- R the shift-back operator,
- **2** X_n the system output,
- U_n the system input,
- $\odot \varepsilon_n$ the driven noise.

The ARX Model Matrix Polynomials

Introduction

Consider the *d*-dimensional $ARX_d(p, q)$ model given by

$\boldsymbol{A}(\boldsymbol{R})\boldsymbol{X}_{n+1} = \boldsymbol{B}(\boldsymbol{R})\boldsymbol{U}_n + \varepsilon_{n+1}$

- R the shift-back operator,
- 2 X_n the system output,
- **3** U_n the system input,
- ${}^{\textcircled{0}}$ ε_n the driven noise.

The ARX Model Matrix Polynomials

Introduction

Consider the *d*-dimensional $ARX_d(p, q)$ model given by

$\boldsymbol{A}(\boldsymbol{R})\boldsymbol{X}_{n+1} = \boldsymbol{B}(\boldsymbol{R})\boldsymbol{U}_n + \varepsilon_{n+1}$

- R the shift-back operator,
- 2 X_n the system output,
- U_n the system input,
- ε_n the driven noise.

The ARX Model Matrix Polynomials

Matrix Polynomials

The polynomials *A* and *B* are given for all $z \in \mathbb{C}$ by

$$\begin{aligned} A(z) &= I_d - A_1 z - \dots - A_p z^p, \\ B(z) &= I_d + B_1 z + \dots + B_q z^q, \end{aligned}$$

where A_i and B_j are unknown square matrices of order d and I_d is the identity matrix.

Definition

The matrix polynomial *B* is **causal or minimum phase** if for all $z \in \mathbb{C}$ with $|z| \leq 1$

 $\det(B(z))\neq 0.$

The ARX Model Matrix Polynomials

The Unknown Parameter

Denote by θ the unknown parameter of the model

$$\theta^t = (A_1, \ldots, A_p, B_1, \ldots, B_q).$$

The ARX model can be rewritten as

$$\boldsymbol{X}_{n+1} = \boldsymbol{\theta}^t \boldsymbol{\Phi}_n + \boldsymbol{U}_n + \boldsymbol{\varepsilon}_{n+1}$$

where the regression vector

$$\Phi_n = \left(X_n^t, \ldots, X_{n-p+1}^t, U_{n-1}^t, \ldots, U_{n-q}^t\right)^t.$$

The ARX Model Matrix Polynomials

About the Noise

We assume that (ε_n) is a martingale difference sequence adapted to $\mathbb{F} = (\mathcal{F}_n)$ such that for all $n \ge 0$,

$$\mathbb{E}[\varepsilon_{n+1}\varepsilon_{n+1}^t|\mathcal{F}_n] = \Gamma \qquad \text{a.s.}$$

where Γ is a positive definite covariance matrix. Moreover, we assume that (ε_n) has finite conditional moment of order > 2 so

$$\Gamma_n = \frac{1}{n} \sum_{k=1}^n \varepsilon_k \varepsilon_k^t \longrightarrow \Gamma$$
 a.s.

Estimation Adaptative Control

Outline

The ARX Model Matrix Polynomials **Estimation and Adaptive Control** 2 Estimation Adaptative Control Preliminars Schur Complement Strong Controllability Almost sure convergence Central limit theorem Law of iterated logarithm

Estimation Adaptative Control

Weighted least squares

The weighted least squares estimator $\hat{\theta}_n$ of θ satisfies

$$\widehat{\theta}_{n+1} = \widehat{\theta}_n + a_n S_n^{-1}(a) \Phi_n \left(X_{n+1} - U_n - \widehat{\theta}_n^t \Phi_n \right)^t$$
$$S_n(a) = \sum_{k=0}^n a_k \Phi_k \Phi_k^t + I_\delta$$

The standard least squares estimator is given by

 $a_n = 1.$

Estimation Adaptative Control

Weighted Least Squares

The weighted least squares estimator is given for $\gamma > 0$ by

$$a_n = \left(\frac{1}{\log s_n}\right)^{1+\gamma}$$
 where $s_n = \sum_{k=0}^n \|\Phi_k\|^2$.

We always have the decomposition

$$\widehat{\theta}_n - \theta = S_{n-1}^{-1}(a)M_n(a)$$

$$M_n(a) = \sum_{k=0}^{n-1} a_k \Phi_k \varepsilon_{k+1}.$$

Estimation Adaptative Control

Adaptive Control

The control U_n forces X_n to track a given trajectory (x_n) . We use the **persistently excited adaptive tracking control**

$$\boldsymbol{U}_n = \boldsymbol{x}_{n+1} - \widehat{\theta}_n^t \boldsymbol{\Phi}_n + \boldsymbol{\xi}_{n+1}$$

where (ξ_n) is an exogenous noise with mean 0 and positive definite covariance matrix Δ . The closed-loop system is

$$\mathbf{X}_{n+1} - \mathbf{X}_{n+1} = \pi_n + \varepsilon_{n+1} + \xi_{n+1}$$

where the prediction error

$$\pi_n = (\theta - \widehat{\theta}_n)^t \Phi_n.$$

Estimation Adaptative Control

We assume that the trajectory (x_n) is bounded and satisfies

$$\sum_{k=1}^{n} \| x_k \|^2 = o(n)$$
 a.s.

and that (ξ_n) satisfies the strong law of large numbers so

$$\Sigma_n = \frac{1}{n} \sum_{k=1}^n (\varepsilon_k + \xi_k) (\varepsilon_k + \xi_k)^t \longrightarrow \Gamma + \Delta$$
 a.s.

Definition

The tracking is said to be residually optimal if

$$C_n = rac{1}{n} \sum_{k=1}^n (X_k - x_k) (X_k - x_k)^t \longrightarrow \Gamma + \Delta$$
 a.s.

Preliminars Schur Complement Strong Controllability

Outline

The ARX Model Matrix Polynomials Estimation Adaptative Control 3 On the Schur Complement Preliminars Schur Complement Strong Controllability Almost sure convergence Central limit theorem Law of iterated logarithm

Preliminars Schur Complement Strong Controllability

Preliminars

For all $z \in \mathbb{C}$ such that $|z| \leq r$, where r > 1 is strictly less than the smallest modulus of the zeros of det(B(z)), we denote

$$B^{-1}(z) = \sum_{k=0}^{\infty} D_k z^k$$

where $D_0 = I_d$ and for all $k \ge 1$, the matrices D_k are given by

$$egin{array}{rcl} D_k &=& -\sum\limits_{j=0}^{k-1} D_j B_{k-j} & ext{if} \quad k \leq q, \ D_k &=& -\sum\limits_{j=1}^q D_{k-j} B_j & ext{if} \quad k > q. \end{array}$$

Preliminars Schur Complement Strong Controllability

Let

$$P(z) = B^{-1}(z)(A(z) - I_d) = \sum_{k=1}^{\infty} P_k z^k$$

where all the matrices P_k may be explicitly calculated as functions of the matrices A_i and B_j

$$P_k = -\sum_{j=0}^{k-1} D_j A_{k-j} \quad \text{if} \quad k \le p,$$

$$P_k = -\sum_{j=1}^p D_{k-j} A_j \quad \text{if} \quad k > p.$$

For all $1 \le i \le q$, denote by H_i be the square matrix of order d

$$H_{i} = \sum_{k=i}^{\infty} P_{k} \Gamma P_{k-i+1}^{t} + \sum_{k=i-1}^{\infty} Q_{k} \Delta Q_{k-i+1}^{t}$$

where $Q_k = D_k + P_k$. In addition, let *H* be the symmetric square matrix of order *dq*

$$H = \begin{pmatrix} H_1 & H_2 & \cdots & H_{q-1} & H_q \\ H_2^t & H_1 & H_2 & \cdots & H_{q-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ H_{q-1}^t & \cdots & H_2^t & H_1 & H_2 \\ H_q^t & H_{q-1}^t & \cdots & H_2^t & H_1 \end{pmatrix}$$

٠

Preliminars Schur Complement Strong Controllability

For all
$$1 \le i \le p$$
, let $K_i = P_i \Gamma + Q_i \Delta$ and, if $q \le p$,

$$K = \begin{pmatrix} 0 & K_1 & K_2 & \cdots & \cdots & K_{p-2} & K_{p-1} \\ 0 & 0 & K_1 & \cdots & \cdots & K_{p-3} & K_{p-2} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & K_1 & K_2 & \cdots & K_{p-q+1} \\ 0 & \cdots & \cdots & 0 & K_1 & \cdots & K_{p-q} \end{pmatrix}$$

while, if $p \leq q$,

$$K = \begin{pmatrix} 0 & K_1 & \cdots & K_{p-2} & K_{p-1} \\ 0 & 0 & K_1 & \cdots & K_{p-2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & 0 & K_1 \\ 0 & 0 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

.

Denote by *L* the block diagonal matrix of order *dp*

$$L = \left(egin{array}{ccccccccc} \Gamma + \Delta & 0 & \cdots & 0 & 0 \\ 0 & \Gamma + \Delta & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & \Gamma + \Delta & 0 \\ 0 & 0 & \cdots & 0 & \Gamma + \Delta \end{array}
ight)$$

Let Λ be the symmetric square matrix of order $\delta = d(p+q)$

$$\Lambda = \left(\begin{array}{cc} L & K^t \\ K & H \end{array}\right).$$

•

Preliminars Schur Complement Strong Controllability

A Keystone Lemma

Lemma

Let S be the Schur complement of L in Λ

 $\mathbf{S} = \mathbf{H} - \mathbf{K}\mathbf{L}^{-1}\mathbf{K}^t.$

If the matrix polynomial B is **minimum phase**, then the matrices S and Λ are invertible and Λ^{-1} is given by

$$\Lambda^{-1} = \begin{pmatrix} L^{-1} + L^{-1} K^{t} S^{-1} K L^{-1} & -L^{-1} K^{t} S^{-1} \\ -S^{-1} K L^{-1} & S^{-1} \end{pmatrix}$$

Preliminars Schur Complement Strong Controllability

Strong Controllability

Remark

If we use an adaptive control without excitation

$$\boldsymbol{U_n=\boldsymbol{x_{n+1}}-\widehat{\theta}_n^t \boldsymbol{\Phi}_n,}$$

then *S* and Λ are not always invertible. It is necessary to add a new concept of **strong controllability**, really not restrictive, which implies that *S* and Λ are invertible.

Strong Controllability

Remark

In the particular case d = 1, the **strong controllability** is equivalent to the **coprimness** of the polynomials $A - I_d$ and B which corresponds to the usual notion of **controllability**.

Almost sure convergence Central limit theorem Law of iterated logarithm

Outline

- The ARX Model Matrix Polynomials Estimation Adaptative Control Preliminars Schur Complement Strong Controllability Main Results 4 Almost sure convergence Central limit theorem Law of iterated logarithm
 - Simulations

Almost sure convergence Central limit theorem Law of iterated logarithm

Theorem

Assume that B is **minimum phase** and that (ε_n) has finite conditional moment of order > 2. Then, for the LS estimator, we have

$$\lim_{n\to\infty}\frac{S_n}{n}=\Lambda \quad a.s.$$

 $n \rightarrow \infty$ *n* In addition, the tracking is residually optimal

$$\parallel \boldsymbol{C}_n - \boldsymbol{\Sigma}_n \parallel = \mathcal{O}\left(\frac{\log n}{n}\right)$$
 a.s.

Finally, $\hat{\theta}_n$ converges almost surely to θ

$$\|\widehat{\theta}_n - \theta\|^2 = \mathcal{O}\left(\frac{\log n}{n}\right)$$
 a.s

Almost sure convergence Central limit theorem Law of iterated logarithm

Theorem

Assume that B is **minimum phase** and that (ε_n) has finite conditional moment of order > 2. Then, for the LS estimator, we have

$$\lim_{n\to\infty}\frac{S_n}{n}=\Lambda \quad a.s.$$

In addition, the tracking is residually optimal

$$\mid \boldsymbol{C}_n - \boldsymbol{\Sigma}_n \parallel = \mathcal{O}\left(\frac{\log n}{n}\right)$$
 a.s.

Finally, $\hat{\theta}_n$ **converges almost surely** *to* θ

$$\|\widehat{\theta}_n - \theta\|^2 = \mathcal{O}\left(\frac{\log n}{n}\right) \quad a$$

Almost sure convergence Central limit theorem Law of iterated logarithm

Theorem

Assume that B is **minimum phase** and that (ε_n) has finite conditional moment of order > 2. Then, for the LS estimator, we have

$$\lim_{n\to\infty}\frac{S_n}{n}=\Lambda \quad a.s.$$

In addition, the tracking is residually optimal

$$\mid \boldsymbol{C}_n - \boldsymbol{\Sigma}_n \parallel = \mathcal{O}\left(\frac{\log n}{n}\right) \qquad a.s.$$

Finally, $\hat{\theta}_n$ converges almost surely to θ

$$\| \widehat{\theta}_n - \theta \|^2 = \mathcal{O}\left(\frac{\log n}{n}\right) \quad a.s.$$

Almost sure convergence Central limit theorem Law of iterated logarithm

Theorem

Assume that B is **minimum phase**. In addition, suppose that either (ε_n) is a white noise or (ε_n) has finite conditional moment of order > 2. Then, for the WLS estimator, we have

$$\lim_{n\to\infty} (\log n)^{1+\gamma} \frac{S_n(a)}{n} = \Lambda \quad a.s.$$

In addition, the tracking is residually optimal

$$\parallel \boldsymbol{C}_n - \boldsymbol{\Sigma}_n \parallel = \boldsymbol{o}\left(\frac{(\log n)^{1+\gamma}}{n}\right) \qquad a.$$

Finally, $\widehat{\theta}_n$ converges almost surely to θ $\| \widehat{\theta}_n - \theta \|^2 = \mathcal{O}\left(\frac{(\log n)^{1+\gamma}}{n}\right)$

Almost sure convergence Central limit theorem Law of iterated logarithm

Theorem

Assume that B is **minimum phase**. In addition, suppose that either (ε_n) is a white noise or (ε_n) has finite conditional moment of order > 2. Then, for the WLS estimator, we have

$$\lim_{n\to\infty} (\log n)^{1+\gamma} \frac{S_n(a)}{n} = \Lambda \quad a.s.$$

In addition, the tracking is residually optimal

$$\parallel \boldsymbol{C}_n - \boldsymbol{\Sigma}_n \parallel = \boldsymbol{o}\left(\frac{(\log n)^{1+\gamma}}{n}\right) \qquad a.s$$

Finally, $\widehat{ heta}_n$ converges almost surely to heta

Almost sure convergence Central limit theorem Law of iterated logarithm

Theorem

Assume that B is **minimum phase**. In addition, suppose that either (ε_n) is a white noise or (ε_n) has finite conditional moment of order > 2. Then, for the WLS estimator, we have

$$\lim_{n\to\infty} (\log n)^{1+\gamma} \frac{S_n(a)}{n} = \Lambda \quad a.s.$$

In addition, the tracking is residually optimal

$$\parallel \boldsymbol{C}_n - \boldsymbol{\Sigma}_n \parallel = \boldsymbol{o}\left(\frac{(\log n)^{1+\gamma}}{n}\right) \qquad a.s$$

Finally, $\hat{\theta}_n$ converges almost surely to θ $\| \hat{\theta}_n - \theta \|^2 = \mathcal{O}\left(\frac{(\log n)^{1+\gamma}}{n}\right)$

a.s.

Almost sure convergence Central limit theorem Law of iterated logarithm

Theorem

Assume that B is minimum phase and that (ε_n) and (ξ_n) have both finite conditional moments of order $\alpha > 2$. Then, the LS and WLS estimators share the same CLT

$$\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, \Lambda^{-1} \otimes \Gamma)$$

where the inverse matrix Λ^{-1} may be explicitly calculated and the symbol \otimes stands for the matrix Kronecker product.

Almost sure convergence Central limit theorem Law of iterated logarithm

Theorem

In addition, the LS and WLS estimators share the same LIL which means that for any vectors $u \in \mathbb{R}^d$ and $v \in \mathbb{R}^{\delta}$,

$$\limsup_{n \to \infty} \left(\frac{n}{2 \log \log n} \right)^{1/2} v^t (\widehat{\theta}_n - \theta) u$$
$$= -\liminf_{n \to \infty} \left(\frac{n}{2 \log \log n} \right)^{1/2} v^t (\widehat{\theta}_n - \theta) u$$
$$= \left(v^t \Lambda^{-1} v \right)^{1/2} \left(u^t \Gamma u \right)^{1/2} \quad a.s.$$

In particular,

$$\left(\frac{\lambda_{\min}\Gamma}{\lambda_{\max}\Lambda}\right) \leq \limsup_{n\to\infty} \left(\frac{n}{2\log\log n}\right) \parallel \hat{\theta}_n - \theta \parallel^2 \leq \left(\frac{\lambda_{\max}\Gamma}{\lambda_{\min}\Lambda}\right) a.s.$$

Outline

The ARX Model Matrix Polynomials Estimation Adaptative Control Preliminars Schur Complement Strong Controllability Almost sure convergence Central limit theorem Law of iterated logarithm Simulations

Simulations Without Excitation

Consider the ARX₂(1, 1) process given by

$$X_{n+1} = AX_n + U_n + BU_{n-1} + \varepsilon_{n+1}$$

where

$$\boldsymbol{U}_n = \boldsymbol{X}_{n+1} - \widehat{\theta}_n^t \boldsymbol{\Phi}_n,$$

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $B = \frac{1}{4} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$.

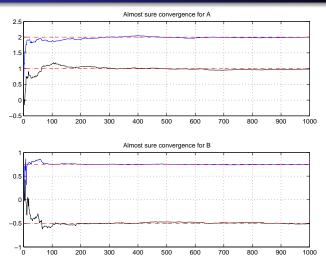
It is strongly controllable with limiting matrix

$$\Lambda = \frac{1}{21} \left(\begin{array}{rrrr} 21 & 0 & 0 & 0 \\ 0 & 21 & 0 & 0 \\ 0 & 0 & 192 & 0 \\ 0 & 0 & 0 & 28 \end{array} \right)$$

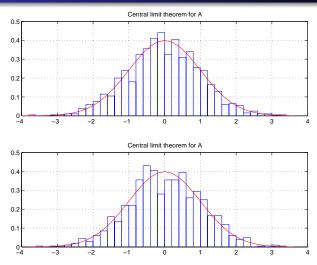
Usefulness of excitation in ARX adaptive tracking

.

Almost sure convergence

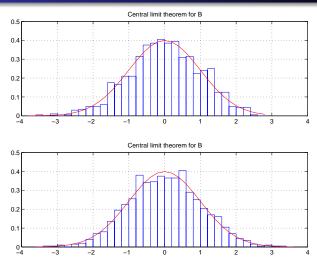


Central limit theorem



Bercu and Vazquez

Central limit theorem



Simulations Without Excitation

Consider the ARX₂(1, 1) process given by

$$X_{n+1} = AX_n + U_n + BU_{n-1} + \varepsilon_{n+1}$$

where

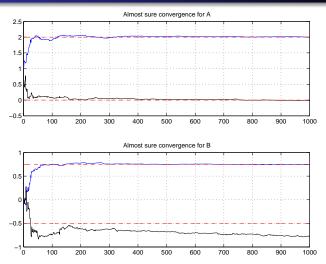
$$\boldsymbol{U}_n = \boldsymbol{X}_{n+1} - \widehat{\theta}_n^t \boldsymbol{\Phi}_n,$$

$$A = \left(egin{array}{cc} 2 & 0 \ 0 & 0 \end{array}
ight)$$
 and $B = rac{1}{4} \left(egin{array}{cc} 3 & 0 \ 0 & -2 \end{array}
ight).$

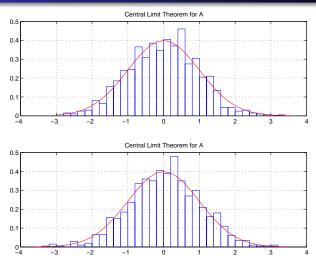
It is not strongly controllable because the limiting matrix

$$\Lambda = \frac{1}{21} \left(\begin{array}{rrrr} 21 & 0 & 0 & 0 \\ 0 & 21 & 0 & 0 \\ 0 & 0 & 192 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

Almost sure convergence



Central limit theorem



Simulations with Excitation

Consider the ARX₂(1, 1) process given by

$$X_{n+1} = AX_n + U_n + BU_{n-1} + \varepsilon_{n+1}$$

where

$$\boldsymbol{U}_n = \boldsymbol{x}_{n+1} - \widehat{\theta}_n^t \boldsymbol{\Phi}_n + \boldsymbol{\xi}_{n+1}$$

$$A = \left(egin{array}{cc} 2 & 0 \ 0 & 0 \end{array}
ight)$$
 and $B = rac{1}{4} \left(egin{array}{cc} 3 & 0 \ 0 & -2 \end{array}
ight).$

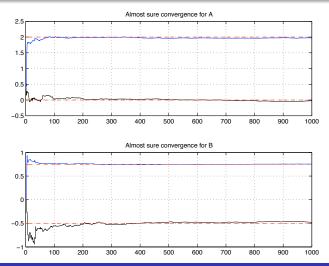
Thanks to the **exogenous excitation** (ξ_n), Λ is invertible

$$\Lambda = \frac{1}{21} \begin{pmatrix} 42 & 0 & 21 & 0 \\ 0 & 42 & 0 & 21 \\ 21 & 0 & 576 & 0 \\ 0 & 21 & 0 & 28 \end{pmatrix}$$

Usefulness of excitation in ARX adaptive tracking

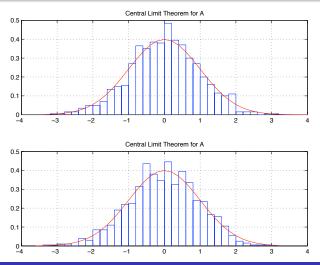
•

Almost sure convergence



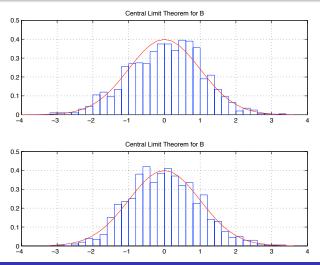
Bercu and Vazquez

Central limit theorem



Bercu and Vazquez

Central limit theorem



Bercu and Vazquez

Strong Controllability

Consider the square matrix of order dq given, if $p \ge q$, by

$$\Pi = \begin{pmatrix} P_{p} & P_{p+1} & \cdots & P_{p+q-2} & P_{p+q-1} \\ P_{p-1} & P_{p} & P_{p+1} & \cdots & P_{p+q-2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ P_{p-q+2} & \cdots & P_{p-1} & P_{p} & P_{p+1} \\ P_{p-q+1} & P_{p-q+2} & \cdots & P_{p-1} & P_{p} \end{pmatrix}$$

while, if $p \leq q$, by

$$\Pi = \begin{pmatrix} P_{p} & P_{p+1} & \cdots & \cdots & P_{p+q-2} & P_{p+q-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ P_{1} & P_{2} & \cdots & \cdots & P_{q-1} & P_{q} \\ 0 & P_{1} & P_{2} & \cdots & P_{q-2} & P_{q-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & P_{1} & \cdots & P_{p} \end{pmatrix}$$

Bercu and Vazquez

Usefulness of excitation in ARX adaptive tracking

٠

Strong Controllability

Definition

The $ARX_d(p, q)$ process is said to be **strongly controllable** if *B* is **minimum phase** and Π is invertible,

$\det(\Pi) \neq 0.$

The concept of strong controllability is not really restrictive.

• If
$$p = q = 1$$
, $\longrightarrow \det(A_1) \neq 0$,
• If $p = 2$, $q = 1$, $\longrightarrow \det(A_2 - B_1A_1) \neq 0$,
• If $p = 1$, $q = 2$, $\longrightarrow \det(A_1) \neq 0$,
• If $p = q = 2$, $\longrightarrow \text{ estrong Controllability}$
 $\det \begin{pmatrix} A_1 & A_2 - B_1A_1 \\ A_2 - B_1A_1 & -B_1A_2 + (B_1^2 - B_2)A_1 \end{pmatrix} \neq 0$.