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Consider the stochastic regression model

Xn+1 = θtΦn + Un + εn+1

Xn −→ the system output,
Φn −→ the regression vector,
Un −→ the adaptive control that can be chosen,
εn −→ the dirven noise.

We have two goals

Estimate the unknown parameter θ,
Control the dynamic of the process (Xn).
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Simulation of stable autoregressive process |θ| < 1

Xn+1 = θXn + εn+1
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Simulation of explosive autoregressive process |θ| > 1

Xn+1 = θXn + εn+1
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The weighted least squares estimator θ̂n of θ minimises

∆n(θ) =
1
2

n−1∑
k=0

ak (Xk+1 − Uk − θtΦk )2.

Consequently,

θ̂n = S−1
n−1(a)

n−1∑
k=0

akΦk (Xk+1 − Uk ),

Sn(a) =
n∑

k=0

akΦkΦt
k .

The standard least squares estimator is given by

an = 1.
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Weighted least squares estimator

The weighted least squares estimator is given for γ > 0 by

an =

(
1

log sn

)1+γ

where sn =
n∑

k=0

‖Φk ‖2 .

We always have the decomposition

θ̂n − θ = S−1
n−1(a)Mn(a)

Mn(a) =
n−1∑
k=0

akΦkεk+1.
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Adaptive tracking control

We wish to track, step by step, a given reference trajectory (xn).
We make use of the adaptive tracking control

Un = xn+1 − θ̂ t
nΦn.

Hence, the closed-loop system is given by

Xn+1 − xn+1 = πn + εn+1

where

πn = (θ − θ̂n)
tΦn.
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Optimization

We assume that (εn) satisfies the law of large numbers

lim
n→∞

1
n

n∑
k=1

ε2
k = σ2 a.s.

where σ2 > 0. We shall say that the tracking is optimal if

lim
n→∞

1
n

n∑
k=1

(Xk − xk )2 = σ2 a.s.
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Simulation of controlled autoregressive process

Xn+1 = θXn + Un + εn+1
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Let (εn) be a sequence adapted to a filtration F = (Fn) with

E[εn+1|Fn] = 0 and E[ε2
n+1|Fn] = σ2 > 0.

For a scalar sequence (Φn) adapted to F, we investigate the
asymptotic behavior of the martingale transform

Mn =
n∑

k=1

Φk−1εk .

The explosion coefficient associated to (Φn) is given by

fn =
Φ2

n

sn
where sn =

n∑
k=0

Φ2
k .
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First law of large numbers

In all the sequel, we assume that

lim
n→∞

sn = +∞ a.s.

Theorem (First LLN)
We have

(LLN) lim
n→∞

Mn

sn−1
= 0 a.s.

Remark. If (sn) converges, then (Mn) also converges a.s.
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Second law of large numbers

Theorem (Second LLN)
For a > 2, assume that

(A1)
sup
n>0

E [ |εn+1|a|Fn] < ∞ a.s.

Then, we have ( M2
n

sn−1

)
= O(log sn) a.s.

n∑
k=1

fk

( M2
k

sk−1

)
= O(log sn) a.s.
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Quadratic strong law

Theorem (Quadratic strong law)

If (A1) holds and the explosion coefficient fn → 0 a.s., we have

(QSL) lim
n→∞

1
log sn

n∑
k=1

fk

( M2
k

sk−1

)
= σ2 a.s.

Remark. The QSL is exactly the convergence of the moment of
order 2 in the ASCLT for (Mn).
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Example

Let (ξn) be a sequence of iid random variables with E[ξn] = m
and Var(ξ2

n) = σ2. If Sn = ξ1 + ξ2 + · · ·+ ξn, we have

(LLN) lim
n→∞

Sn

n
= m a.s.

(QSL) lim
n→∞

1
log n

n∑
k=1

(Sk − km
k

)2
= σ2 a.s.
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Consider the autoregressive process with adaptive control

Xn+1 = θtΦn + Un + εn+1,

Φn = (Xn, · · · , Xn−p+1)
t .

We assume that the reference trajectory (xn) satisfies

lim
n→∞

1
n

n∑
k=1

x2
k = τ2 a.s.

where τ > 0. For all n > 0, let

Sn =
n∑

k=0

ΦkΦt
k .
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Lemma (Bercu)

Assume that (A1) holds. If ` = σ2 + τ2, we have

lim
n→∞

Sn

n
= `Ip a.s.

Theorem (Bercu)

If (A1) holds, θ̂n converges almost surely to θ

‖ θ̂n − θ ‖2= O
( log n

n

)
a.s.

In addition, the tracking is optimal

lim
n→∞

1
n

n∑
k=1

(Xk − xk )2 = σ2 a.s.
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Theorem (Bercu)

If (A1) holds, we have

(CLT)
√

n(θ̂n − θ)
L−→ N

(
0,

σ2

`
Ip

)
,

(LIL) lim sup
n→∞

( n
2 log log n

)
‖ θ̂n − θ ‖2=

σ2

`
a.s.

(QSL) lim
n→∞

1
log n

n∑
k=1

‖ θ̂k − θ ‖2=
σ2

`
a.s.

B. Bercu Estimation and Control 22/ 46



Introduction
Strong law of large numbers

Linear regression models with adaptive control
Almost sure central limit theorem

Functional regression models with adaptive control

Outline

1 Introduction
Goals
Weighted least squares algorithm
Adaptative tracking control
Optimization

2 Strong law of large numbers

3 Linear regression models with adaptive control

4 Almost sure central limit theorem

5 Functional regression models with adaptive control

B. Bercu Estimation and Control 23/ 46



Introduction
Strong law of large numbers

Linear regression models with adaptive control
Almost sure central limit theorem

Functional regression models with adaptive control

Central limit theorem

Let (ξn) be a sequence of iid random variables with E[ξn] = m
and Var(ξ2

n) = σ2. If Sn = ξ1 + ξ2 + · · ·+ ξn, we have

(CLT)
Sn − nm

√
n

L−→ N (0, σ2).

In other words, for any function h bounded continuous,

lim
n→∞

E
[
h
(Sn − nm√

n

)]
=

∫
R

h(x)dG(x)

where G stands for the Gaussian measure N (0, σ2).
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Almost sure central limit theorem

We also have

(ASCLT)
1

log n

n∑
k=1

1
k

δ(Sk − km
√

k

) =⇒ G a.s.

In other words, for any function h bounded continuous,

lim
n→∞

1
log n

n∑
k=1

1
k

h
(Sk − km√

k

)
=

∫
R

h(x)dG(x) a.s.
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We have already seen the LLN for the martingale transform

Mn =
n∑

k=1

Φk−1εk .

The explosion coefficient associated with (Φn) is given by

fn =
Φ2

n

sn
avec sn =

n∑
k=0

Φ2
k .
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Theorem (Brown, Chaabane, Lifshits)

If (A1) holds and the explosion coefficient fn → 0 a.s., we have

(CLT)
Mn

√sn−1

L−→ N (0, σ2).

In addition, if
∞∑

n=1

f γ
n < ∞ a.s.

for some γ > 0, then we also have

(ASCLT)
1

log sn

n∑
k=1

fk δ( Mk
√sk−1

) =⇒ G a.s.
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Introduction
Strong law of large numbers

Linear regression models with adaptive control
Almost sure central limit theorem

Functional regression models with adaptive control

Powers of martingales

For any function h bounded continuous, we have

lim
n→∞

1
log sn

n∑
k=1

fkh
( Mk√

sk−1

)
=

∫
R

h(x)dG(x) a.s.

Definition. We shall say that (Mn) satisfies a PASCLT if this
convergence holds for all polynomial function h.

Goal. Establish a PASCLT in order to study the stability of
controlled functional regression models.
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Let

vn(p) =
sp

n − sp
n−1

sp
n

.

Theorem (Bercu)
For some p > 1 and a > 2p, assume that

(Ap) sup
n>0

E [ |εn+1|a|Fn] < ∞ a.s.

Then, we have ( M2
n

sn−1

)p
= O(log sn) a.s.

n∑
k=1

vk (p)
( M2

k

sk−1

)p
= O(log sn) a.s.
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Theorem (Bercu)

If (Ap) holds and the explosion coefficient fn → 0 a.s., we have

lim
n→∞

1
log sn

n∑
k=1

fk

( M2
k

sk−1

)p
=

σ2p(2p)!

2pp!
a.s.

Theorem (Bercu-Fort)

Assume that (Ap) holds for all p > 1 and fn → 0 a.s. Then,
(Mn) satisfies the PASCLT

1
log sn

n∑
k=1

fk δ( Mk
√sk−1

) =⇒ G a.s.
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Explosive martingales

For all p > 1, let

σn(p) = E[εp
n+1|Fn] a.s.

Theorem (Bercu)

Assume that (Ap) holds and, for all 26q 62p, σn(q)→σ(q)
a.s. where σ(q) = 0 if q is odd. Also assume that fn → f a.s.
where 0< f <1. Then, we have

lim
n→∞

1
n

n∑
k=1

( M2
k

sk−1

)p
= l(p, f ) a.s.
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Gaussian limit distribution

The limit l(p, f ) is given by

l(p, f)=
1

1− (1− f)p

p∑
k=1

C2k
2p fk (1−f)p−kσ(2k)l(p−k , f).

This expression does not depend on f iff, for all 1 6 k 6 p,

σ(2k) =
σ2k (2k)!

2kk !
.

In that particular case, we have

l(p, f ) =
σ2p(2p)!

2pp!
= l(p).
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Explosive martingales

Theorem (Bercu-Fort)

Assume that (Ap) holds for all p > 1 and fn → f a.s. where
0< f <1. For all p > 1, if l(p, f ) = l(p), then (Mn) satisfies the
PASCLT

1
n

n∑
k=1

δ( Mk
√sk−1

) =⇒ G a.s.
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Stable autoregressive process |θ| < 1

Consider the stable autoregressive process

Xn+1 = θXn + εn+1.

If (A1) holds, we have fn → 0,

lim
n→∞

sn

n
=

σ2

(1− θ2)
a.s.

In addition, θ̂n → θ a.s. and

√
n(θ̂n − θ)

L−→ N (0, 1 − θ2).
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If (Ap) holds for all p > 1, we have the PASCLT

1
log n

n∑
k=1

1
k

δ√k(bθk −θ) =⇒ N (0, 1 − θ2) a.s.

In particular, for all p > 1, we have

lim
n→∞

1
log n

n∑
k=1

kp−1(θ̂k − θ)2p =
(1 − θ2)p(2p)!

2pp!
a.s.
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Explosive autoregressive process |θ| > 1

If (H1) holds, θ−nXn converges a.s. to the random variable

Y = X0 +
∞∑

k=1

θ−kεk .

In addition, fn → (θ2 − 1)/θ2,

lim
n→∞

sn

θ2n =
θ2Y 2

(θ2 − 1)
a.s.

Consequently, θ̂n → θ a.s. Moreover, if (εn) is gaussian and C
stands for the Cauchy distribution

|θ|n(θ̂n − θ)
L−→ C.
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If (εn) is gaussian, we have the PASCLT

1
n

n∑
k=1

δ|θ|k (bθk −θ) =⇒ N
(

0,
σ2(θ2 − 1)

Y 2

)
a.s.

In particular, for all p > 1, we have

lim
n→∞

1
n

n∑
k=1

(|θ|k (θ̂k − θ))2p =
σ2p(θ2 − 1)p(2p)!

Y 2p2pp!
a.s.
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Consider the functional autoregressive model of order d > 1

Xn+1 = θf (Xn, · · · , Xn−d+1) + Un + εn+1.

We estimate θ by the standard least squares estimator

θ̂n − θ =
Mn

sn−1
with Mn =

n∑
k=1

Φk−1εk .

We choose the adaptive tracking control

Un = xn+1 − θ̂nΦn

where Φn = f (Xn, · · · , Xn−d+1).
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The functional class C(a, b)

Let C(a, b) with a, b ∈ N and a > 1 be the class of functions f
from Rd to R such that, for all x ∈ Rd ,

c1 + c2 ‖x ‖b6 |f (x)| 6 c3 + c4 ‖x ‖a

where b > 1 if c1 = 0 and b > 0 otherwise.
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Corollary (Bercu-Portier)

Assume that (Ha) holds and f ∈ C(a, b) with a < 4. Then, we
have θ̂n → θ a.s. and

(θ̂n − θ)2 = O
(

log n
n

)
a.s.

For all 1 6 p 6 a, the tracking is stable of order p

lim sup
n→∞

1
n

n∑
k=1

(Xk − xk )2p < ∞ a.s.

If σn(2p) → σ(2p) a.s., the tracking is optimal of order p

lim
n→∞

1
n

n∑
k=1

(Xk − xk )2p = σ(2p) a.s.
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The natural hypothesis (Ha)

Denote by P(a) the polynomial algebra with d variables and
total degree 6 a with a > 1. We assume that f 2 ∈ P(2a)
together with

(Ha) lim
n→∞

1
n

n∑
k=d

f 2(εk + xk , . . . , εk−d+1 + xk−d+1) = ` a.s.

where ` > 0. Under (Aa) and (Ha) with a < 4, we can prove

lim
n→∞

sn

n
= ` a.s.
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Corollary (Bercu-Portier)

Under (Aa) and (Ha) with a < 4, we have θ̂n → θ a.s. and

(CLT)
√

n(θ̂n − θ)
L−→ N

(
0,

σ2

`

)
,

(LIL) lim sup
n→∞

(
n

2 log log n

)
(θ̂n − θ)2 =

σ2

`
a.s.

Moreover, for all 1 6 p 6 a, we also have

lim
n→∞

1
log n

n∑
k=1

kp−1(θ̂k − θ)2p =
σ2p(2p)!

`p 2p p!
a.s.
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Polynomial autoregressive processes of order 2

Assume that xn → 0 and σn(p) → σ(p) a.s. for all 1 6 p 6 4.
Consider the polynomial autoregressive processes

(1) Xn+1 = θX 2
n + Un + εn+1,

(2) Xn+1 = θXn(1− Xn) + Un + εn+1,

(3) Xn+1 = θXnXn−1 + Un + εn+1.

Then, the corollary holds with `(1) = σ(4),

`(2) = σ(4) − 2σ(3) + σ(2), `(3) = σ(2)2.
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Polynomial autoregressive processes of order 3

Assume that xn → 0 and σn(p) → σ(p) a.s. for all 1 6 p 6 6.
Consider the polynomial autoregressive processes

(4) Xn+1 = θX 3
n + Un + εn+1,

(5) Xn+1 = θX 2
n (1− Xn) + Un + εn+1,

(6) Xn+1 = θX 2
n Xn−1 + Un + εn+1.

Then, the corollary holds with `(4) = σ(6),

`(5) = σ(6) − 2σ(5) + σ(4), `(6) = σ(4)σ(2).
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Simulation of controlled autoregressive process

!! MANY THANKS !!

Xn+1 = θX 2
n + Un + εn+1
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