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Azuma-Hoeffding’s inequality
Let (Mn) be a square integrable martingale adapted to F=(Fn)
with M0 = 0. The predictable and the total quadratic variations
of (Mn) are given by

<M >n=
n∑

k=1

E[∆M2
k |Fk−1], [M]n =

n∑
k=1

∆M2
k

∆Mn = Mn −Mn−1.

Theorem (Azuma-Hoeffding’s inequality)

Assume that for each 1 6 k 6 n, ak 6 ∆Mk 6 bk a.s. for some
constants ak < bk . Then, ∀x > 0,

P(|Mn| > x) 6 2 exp
(
−

2x2∑n
k=1(bk − ak )2

)
.
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Freedman’s inequality

Theorem (Freedman’s inequality)

Assume that for each 1 6 k 6 n, |∆Mk | 6 c a.s. for some
constant c > 0. Then, ∀x , y > 0,

P(Mn > x, <M >n6 y) 6 exp
(
−

x2

2(y + cx)

)
.

Theorem
Freedman’s inequality also holds under the Bernstein moment
condition: ∀n > 1, p > 2 and for some constant c > 0

n∑
k=1

E[|∆Mk |p|Fk−1] 6
p!

2
cp−2 <M >n a.s.

B. Bercu and A. Touati University of Toulouse, France



Classical exponential inequalities
Main results

Statistical application

Azuma-Hoeffding’s inequality
Freedman’s inequality
De la Peña’s inequalities

Outline

1 Classical exponential inequalities
Azuma-Hoeffding’s inequality
Freedman’s inequality
De la Peña’s inequalities

2 Main results
Heavy on left or on right
A keystone lemma
New exponential inequalities

3 Statistical application

B. Bercu and A. Touati University of Toulouse, France



Classical exponential inequalities
Main results

Statistical application

Azuma-Hoeffding’s inequality
Freedman’s inequality
De la Peña’s inequalities

De la Peña’s inequalities

Definition. We shall say that (Mn) is conditionally symmetric
if, ∀n > 1, L(∆Mn|Fn−1) is symmetric.

Theorem (De la Peña)

Assume that (Mn) is conditionally symmetric. Then, ∀x , y > 0

P(Mn > x, [M]n 6 y) 6 exp
(
−

x2

2y

)
.
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Self-normalized martingales

Theorem (De la Peña)

Assume that (Mn) is conditionally symmetric. Then, ∀x , y > 0
and ∀a > 0, b > 0

P
( Mn

a + b[M]n
> x

)
6

√
E

[
exp

(
−x2

(
ab +

b2

2
[M]n

))]
,

P
( Mn

a + b[M]n
> x , [M]n >

1
y

)
6 exp

(
−x2

(
ab +

b2

2y

))
.

Goal. Avoid the symmetric condition on (Mn).
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Heavy on left or on right

Ta(x) =


a if x > a,

x if −a 6 x 6 a,

−a if x 6 −a.
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Heavy on left or right

Definition. Let X be a random variable on a probability space
(Ω,A, P). We shall say that

X is heavy on left if, ∀a > 0, E[Ta(X )] 6 0,
X is heavy on right if, ∀a > 0, E[Ta(X )] > 0.

X is symmetric ⇐⇒ X is heavy on left and on right.
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Heavy on left or right

Denote by F the distribution function of X and

H(a) =

∫ a

0
F (−x) − (1 − F (x)) dx = −E[Ta(X)].

X is heavy on left if, ∀a > 0, H(a) > 0,
X is heavy on right if, ∀a > 0, H(a) 6 0.
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A keystone lemma

For all t ∈ R, let

L(t) = E
[
exp

(
tX −

t2

2
X 2

)]
.

Lemma (Bercu-Touati)

Assume that X ∈ L1(R) with E[X ] = 0.

X is heavy on left ⇐⇒ ∀t > 0, L(t) 6 1,
X is heavy on right ⇐⇒ ∀t 6 0, L(t) 6 1,
X is symmetric ⇐⇒ ∀t ∈ R, L(t) 6 1.
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Centered Bernoulli B(p)
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Centered Binomial B(2, p)
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Centered Geometric G(p)
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Centered Poisson P(λ)
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Centered Exponential E(λ)
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Centered Gamma G(a, λ)
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Centered Log-Normal L(m, σ2)
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Martingales heavy on left or right

Definition. We shall say that (Mn) is conditionally heavy on
left if, ∀n > 1 and ∀a > 0,

E[Ta(∆Mn)|Fn−1] 6 0 a.s.

(Mn) is conditionally heavy on right if (−Mn) is conditionally
heavy on left.

Theorem (Bercu-Touati)

Assume that (Mn) is conditionally heavy on left. Then, ∀x , y > 0

P(Mn > x, [M]n 6 y) 6 exp
(
−

x2

2y

)
.
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Self-normalized martingales

Theorem (Bercu-Touati)

Assume that (Mn) is conditionally heavy on left. Then,
∀x , y > 0 and ∀a > 0, b > 0

P
( Mn

a + b[M]n
> x

)
6

√
E

[
exp

(
−x2

(
ab +

b2

2
[M]n

))]
,

P
( Mn

a + b[M]n
> x , [M]n >

1
y

)
6 exp

(
−x2

(
ab +

b2

2y

))
.
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Stable autoregressive process

Consider the stable autoregressive process

Xn+1 = θXn + εn+1, |θ| < 1

where (εn) is iid N (0, σ2), σ2 >0 and X0 is independent of (εn)
with N (0, σ2/(1− θ2)) distribution. Denote by θ̂n and θ̃n the
least squares and the Yule-Walker estimators of θ

θ̂n =

n∑
k=1

Xk Xk−1

n∑
k=1

X 2
k−1

, θ̃n =

n∑
k=1

Xk Xk−1

n∑
k=0

X 2
k

.
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a =
θ −

√
θ2 + 8
4

and b =
θ +

√
θ2 + 8
4

.

Theorem (Bercu-Gamboa-Rouault)

(θ̂n) satisfies an LDP with rate function

J(x) =


1
2

log
(

1 + θ2 − 2θx
1− x2

)
if x ∈ [a, b],

log |θ − 2x | otherwise.

(θ̃n) satisfies an LDP with rate function

I(x) =


1
2

log
(

1 + θ2 − 2θx
1− x2

)
if x ∈]− 1, 1[,

+∞ otherwise.
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Least squares and Yule-Walker
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Theorem (Bercu-Touati)

Assume that X0 is independent of (εn) with N (0, τ2) distribution
where τ2 > σ2. For all θ ∈ R, n > 0 and x > 0

P(θ̂n − θ > x) 6 2 exp
(
−

nx2

2(1 + yx)

)
where yx is the unique positive solution of

(1 + y) log(1 + y)− y = x2.

Remark. This inequality also holds for θ̃n. In addition, for all
0 < x < 1/2, yx < 2x so that

P(θ̂n − θ > x) 6 2 exp
(
− nx2

2(1 + 2x)

)
.
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