Sharp large deviations for Gaussian quadratic forms

Bernard BERCU

University of Toulouse, France

Workshop on limit theory, Hangzhou, December 2005

Bernard Bercu University of Toulouse, France

・ロト ・ 一日 ト ・ 日 ト

Outline

Introduction

- On the Cramer-Chernov theorem
- On the Bahadur-Rao theorem

2 Main results

- Gaussian quadratic forms
- Large deviation principle
- Sharp large deviation principle
- 3 Statistical applications
 - Sum of squares
 - Likelihood ratio test
 - Autoregressive process
 - Ornstein-Uhlenbeck process

< ∃ ►

On the Cramer-Chernov theorem On the Bahadur-Rao theorem

Strong law and central limit theorem

Let (X_n) be a sequence of iid random variables and set

$$S_n=\sum_{k=1}^n X_k.$$

If $X_n \in L^2(\mathbb{R})$ with $\mathbb{E}[X_n] = m$ and $Var(X_n) = \sigma^2$, we have

$$rac{S_n}{n} \longrightarrow m$$
 a.s.
 $rac{S_n - nm}{\sqrt{n}} \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \sigma^2)$

Idea. Require more on (X_n) to obtain sharp results on tails

On the Cramer-Chernov theorem On the Bahadur-Rao theorem

The Gaussian sample

Assume that $X_n \sim \mathcal{N}(0, \sigma^2)$ so that $S_n \sim \mathcal{N}(0, \sigma^2 n)$. For all c > 0,

$$\mathbb{P}(S_n \geqslant nc) \sim rac{\sigma}{c\sqrt{2\pi n}} \exp\Bigl(-rac{c^2 n}{2\sigma^2}\Bigr).$$

Therefore,

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(S_n\geqslant nc)=-\frac{c^2}{2\sigma^2}.$$

Question. Is this limit true in the non Gaussian case ?

(日)

크

Introduction

Main results Statistical applications On the Cramer-Chernov theorem On the Bahadur-Rao theorem

Outline

Introduction

- On the Cramer-Chernov theorem
- On the Bahadur-Rao theorem

2 Main results

- Gaussian quadratic forms
- Large deviation principle
- Sharp large deviation principle
- 3 Statistical applications
 - Sum of squares
 - Likelihood ratio test
 - Autoregressive process
 - Ornstein-Uhlenbeck process

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

On the Cramer-Chernov theorem On the Bahadur-Rao theorem

Let *L* be the log-Laplace of (X_n) . The Fenchel-Legendre dual of *L* is

$$I(c) = \sup_{t\in\mathbb{R}} \{ct - L(t)\}.$$

Theorem (Cramer-Chernov)

The sequence (S_n/n) satisfies an LDP with rate function I

• Upper bound: for any closed set $F \subset \mathbb{R}$

$$\limsup_{n\to\infty}\frac{1}{n}\log\mathbb{P}\Big(\frac{S_n}{n}\in\mathcal{F}\Big)\leqslant-\inf_{\mathcal{F}}\mathcal{I},$$

• Lower bound: for any open set $G \subset \mathbb{R}$

$$\liminf_{n\to\infty}\frac{1}{n}\log\mathbb{P}\Big(\frac{S_n}{n}\in G\Big) \ge -\inf_G I.$$

On the Cramer-Chernov theorem On the Bahadur-Rao theorem

Let *L* be the log-Laplace of (X_n) . The Fenchel-Legendre dual of *L* is

$$I(c) = \sup_{t\in\mathbb{R}} \{ct - L(t)\}.$$

Theorem (Cramer-Chernov)

The sequence (S_n/n) satisfies an LDP with rate function I

• Upper bound: for any closed set $F \subset \mathbb{R}$

$$\limsup_{n\to\infty}\frac{1}{n}\log\mathbb{P}\Big(\frac{S_n}{n}\in F\Big)\leqslant-\inf_F I,$$

• Lower bound: for any open set $G \subset \mathbb{R}$

$$\liminf_{n\to\infty}\frac{1}{n}\log\mathbb{P}\Big(\frac{S_n}{n}\in G\Big) \ge -\inf_G I.$$

On the Cramer-Chernov theorem On the Bahadur-Rao theorem

On the Cramer-Chernov theorem

The rate function *I* is convex with I(m) = 0. Therefore, for all c > m,

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(S_n\geqslant nc)=-I(c).$$

• Gaussian: If
$$X_n \sim \mathcal{N}(0, \sigma^2)$$
 with $\sigma^2 > 0$,
 $I(c) = \frac{c^2}{2\sigma^2}$.

• **Exponential:** If $X_n \sim \mathcal{E}(\lambda)$ with $\lambda > 0$,

$$I(c) = \begin{cases} \lambda c - 1 - \log(\lambda c) & \text{if } c > 0, \\ +\infty & \text{otherwise.} \end{cases}$$

Introduction

Main results Statistical applications On the Cramer-Chernov theorem On the Bahadur-Rao theorem

Outline

Introduction

- On the Cramer-Chernov theorem
- On the Bahadur-Rao theorem

2 Main results

- Gaussian quadratic forms
- Large deviation principle
- Sharp large deviation principle
- 3 Statistical applications
 - Sum of squares
 - Likelihood ratio test
 - Autoregressive process
 - Ornstein-Uhlenbeck process

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

On the Cramer-Chernov theorem On the Bahadur-Rao theorem

On the Bahadur-Rao theorem

Theorem (Bahadur-Rao)

Assume that L is finite on all \mathbb{R} and that the law of (X_n) is absolutely continuous. Then, for all c > m,

$$\mathbb{P}(S_n \ge nc) = \frac{\exp(-nl(c))}{\sigma_c t_c \sqrt{2\pi n}} \Big[1 + o(1) \Big]$$

where t_c is given by $L'(t_c) = c$ and $\sigma_c^2 = L''(t_c)$.

Remark. The core of the proof is the Berry-Esséen theorem.

(日)

On the Cramer-Chernov theorem On the Bahadur-Rao theorem

Theorem (Bahadur-Rao)

 (S_n/n) satisfies an **SLDP** associated with *L*. For all c > m, it exists $(d_{c,k})$ such that for any $p \ge 1$ and n large enough

$$\mathbb{P}(S_n \ge nc) = \frac{\exp(-nl(c))}{\sigma_c t_c \sqrt{2\pi n}} \left[1 + \sum_{k=1}^p \frac{d_{c,k}}{n^k} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right) \right].$$

Remark. The coefficients $(d_{c,k})$ may be explicitly given as functions of the derivatives $l_k = L^{(k)}(t_c)$. For example,

$$d_{c,1} = \frac{1}{\sigma_c^2} \left(\frac{l_4}{8\sigma_c^2} - \frac{5l_3^2}{24\sigma_c^4} - \frac{l_3}{2t_c\sigma_c^2} - \frac{1}{t_c^2} \right).$$
Bernard Bercul University of Toulouse, France

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Outline

Introduction

- On the Cramer-Chernov theorem
- On the Bahadur-Rao theorem

2 Main results

- Gaussian quadratic forms
- Large deviation principle
- Sharp large deviation principle
- 3 Statistical applications
 - Sum of squares
 - Likelihood ratio test
 - Autoregressive process
 - Ornstein-Uhlenbeck process

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Gaussian quadratic forms

Let (X_n) be a centered stationary real Gaussian process with spectral density $g \in \mathbb{L}^{\infty}(\mathbb{T})$

$$\mathbb{E}[X_n X_k] = \frac{1}{2\pi} \int_{\mathbb{T}} \exp(i(n-k)x)g(x) \, dx.$$

We are interested in the behavior of

$$W_n = \frac{1}{n} X^{(n)t} M_n X^{(n)}$$

where (M_n) is a sequence of Hermitian matrices of order *n* and

$$X^{(n)} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ ・

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Toeplitz and Cochran

Let $T_n(g)$ be the covariance matrix of $X^{(n)}$. By the Cochran theorem,

$$W_n = \frac{1}{n} \sum_{k=1}^n \lambda_k^n Z_k^n$$

λⁿ₁,..., λⁿ_n are the eigenvalues of T_n(g)^{1/2}M_nT_n(g)^{1/2},
 Zⁿ₁,..., Zⁿ_n are iid with χ²(1) distribution.

The normalized cumulant generating function of W_n is

$$L_n(t) = \frac{1}{n} \log \mathbb{E}\Big[\exp(ntW_n)\Big] = -\frac{1}{2n} \sum_{k=1}^n \log(1-2t\lambda_k^n)$$

as soon as $t \in \Delta_n = \left\{ t \in \mathbb{R} \mid 2t\lambda_k^n < 1 \right\}$.

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Toeplitz and Cochran

Let $T_n(g)$ be the covariance matrix of $X^{(n)}$. By the Cochran theorem,

$$W_n = \frac{1}{n} \sum_{k=1}^n \lambda_k^n Z_k^n$$

λⁿ₁,..., λⁿ_n are the eigenvalues of T_n(g)^{1/2}M_nT_n(g)^{1/2},
 Zⁿ₁,..., Zⁿ_n are iid with χ²(1) distribution.

The normalized cumulant generating function of W_n is

$$L_n(t) = \frac{1}{n} \log \mathbb{E}\Big[\exp(ntW_n)\Big] = -\frac{1}{2n} \sum_{k=1}^n \log(1-2t\lambda_k^n)$$

as soon as $t \in \Delta_n = \left\{ t \in \mathbb{R} \ / \ 2t \lambda_k^n < 1 \right\}$.

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Outline

Introduction

- On the Cramer-Chernov theorem
- On the Bahadur-Rao theorem

2 Main results

Gaussian quadratic forms

• Large deviation principle

- Sharp large deviation principle
- 3 Statistical applications
 - Sum of squares
 - Likelihood ratio test
 - Autoregressive process
 - Ornstein-Uhlenbeck process

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

LDP assumption. There exists $\varphi \in \mathbb{L}^{\infty}(\mathbb{T})$ not identically zero such that, if $m_{\varphi} = \text{esssinf } \varphi$ and $M_{\varphi} = \text{esssup } \varphi$,

$$(H_1) m_{\varphi} \leqslant \lambda_k^n \leqslant M_{\varphi}$$

and, for all $h \in \mathbb{C}([m_{\varphi}, M_{\varphi}])$,

(H₁)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n h(\lambda_k^n) = \frac{1}{2\pi}\int_{\mathbb{T}}h(\varphi(x))dx.$$

Under (H_1) , the asymptotic cumulant generating function is

$$L(t) = -\frac{1}{4\pi} \int_{\mathbb{T}} \log(1 - 2t\varphi(x)) dx$$

where $t \in \Delta = \{t \in \mathbb{R} \mid 2 \max(m_{\varphi}t, M_{\varphi}t) < 1\}.$

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Large deviation principle

The Fenchel-Legendre dual of L is

$$I(c) = \sup_{t\in\mathbb{R}} \left\{ ct + \frac{1}{4\pi} \int_{\mathbb{T}} \log(1-2t\varphi(x)) dx \right\}.$$

Theorem (Bercu-Gamboa-Lavielle)

If (H₁) holds, the sequence (W_n) satisfies an LDP with rate function I. In particular, for all $c > \mu$

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{P}(W_n\geq c)=-I(c).$$

with
$$\mu = \frac{1}{2\pi} \int_{\mathbb{T}} \varphi(x) dx$$
.

・ 白マ ト ・ コ ト ・ コ ト

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Outline

Introduction

- On the Cramer-Chernov theorem
- On the Bahadur-Rao theorem

Main results

- Gaussian quadratic forms
- Large deviation principle
- Sharp large deviation principle
- 3 Statistical applications
 - Sum of squares
 - Likelihood ratio test
 - Autoregressive process
 - Ornstein-Uhlenbeck process

| 4 回 2 4 U = 2 4 U =

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Sharp large deviation results

SLDP assumption. There exists *H* such that, for all $t \in \Delta$

(H₂)
$$L_n(t) = L(t) + \frac{1}{n}H(t) + o\left(\frac{1}{n}\right)$$

where the remainder is uniform in *t*.

Theorem (Bercu-Gamboa-Lavielle)

Assume that (H_1) and (H_2) hold. Then, for all $c > \mu$

$$\mathbb{P}(W_n \ge c) = \frac{\exp(-nl(c) + H(t_c))}{\sigma_c t_c \sqrt{2\pi n}} \Big[1 + o(1) \Big]$$

where t_c is given by $L'(t_c) = c$ and $\sigma_c^2 = L''(t_c)$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Sharp large deviation results

SLDP assumption. For $p \ge 1$, there exists $H \in C^{2p+3}(\mathbb{R})$ such that, for all $t \in \Delta$ and for any $0 \le k \le 2p+3$

$$(H_2(p)) L_n^{(k)}(t) = L^{(k)}(t) + \frac{1}{n}H^{(k)}(t) + \mathcal{O}\left(\frac{1}{n^{p+2}}\right)$$

where the remainder is uniform in *t*.

Remark. Assumption $(H_2(p))$ is not really restrictive. It is fulfilled in many statistical applications.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Gaussian quadratic forms Large deviation principle Sharp large deviation principle

Theorem (Bercu-Gamboa-Lavielle)

For $p \ge 1$, assume that (H_1) and $(H_2(p))$ hold. Then, (W_n) satisfies an **SLDP** of order p associated with L and H. For all $c > \mu$, it exists $(d_{c,k})$ such that for n large enough

$\mathbb{P}(W_n \ge c)$

$$=\frac{\exp(-nl(c)+H(t_c))}{\sigma_c t_c \sqrt{2\pi n}}\left[1+\sum_{k=1}^p \frac{d_{c,k}}{n^k}+\mathcal{O}\left(\frac{1}{n^{p+1}}\right)\right].$$

Remark. The coefficients $(d_{c,k})$ may be given as functions of the derivatives $I_k = L^{(k)}(t_c)$ and $h_k = H^{(k)}(t_c)$. For example,

$$d_{c,1} = \frac{1}{\sigma_c^2} \left(-\frac{h_2}{2} - \frac{h_1^2}{2} + \frac{l_4}{8\sigma_c^2} + \frac{l_3h_1}{2\sigma_c^2} - \frac{5l_3^2}{24\sigma_c^4} + \frac{h_1}{t_c} - \frac{l_3}{2t_c\sigma_c^2} - \frac{1}{t_c^2} \right).$$

크

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Outline

Gaussian quadratic forms ۲ Statistical applications 3 Sum of squares Autoregressive process

Ornstein-Uhlenbeck process

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Sum of squares

Our first statistical application is on the sum of squares

$$W_n=\frac{1}{n}\sum_{k=1}^n X_k^2.$$

We recall that $g \in \mathbb{L}^{\infty}(\mathbb{T})$ is the spectral density of the centered stationary real Gaussian process (X_n) .

Theorem (Bryc-Dembo)

The sequence (W_n) satisfies an LDP with rate function I which is the Fenchel-Legendre dual of

$$L(t) = -\frac{1}{4\pi} \int_{\mathbb{T}} \log(1-2tg(x)) dx.$$

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Sum of squares

We shall often make use of the integral

$$\Delta(f) = \frac{1}{4\pi^2} \iint_{\mathbb{T}} \left(\frac{\log f(x) - \log f(y)}{\sin((x-y)/2)} \right)^2 dx dy.$$

Theorem (Bercu-Gamboa-Lavielle)

Assume that g > 0 on \mathbb{T} and g admits an analytic extension on the annulus $A_r = \{z \in \mathbb{C} \mid r < |z| < r^{-1}\}$ with 0 < r < 1. Then, (W_n) satisfies an SLDP associated with L and H where

$$H(t)=\frac{1}{2}\Delta(1-2tg).$$

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Outline

On the Bahadur-Rao theorem Gaussian quadratic forms ۲ Statistical applications 3 Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Neyman-Pearson

Let $g_0, g_1 \in \mathbb{L}^1(\mathbb{T})$ be two spectral densities. We wish to test

 $H_0: \langle g = g_0 \rangle$ against $H_1: \langle g = g_1 \rangle$.

For this simple hypothesis, the most powerful test is based on

$$W_n = \frac{1}{n} X^{(n)t} \Big[T_n^{-1}(g_0) - T_n^{-1}(g_1) \Big] X^{(n)}.$$

LRT assumption.

$$(H_3) \qquad \log g_0 \in \mathbb{L}^1(\mathbb{T}) \qquad \text{and} \qquad \frac{g_0}{g_1} \in \mathbb{L}^\infty(\mathbb{T})$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Theorem (Bercu-Gamboa-Lavielle)

 If (H₃) holds, then under H₀, (W_n) satisfies an LDP with rate function I which is the Fenchel-Legendre dual of

$$L(t) = -\frac{1}{4\pi} \int_{\mathbb{T}} \log \Big(\frac{(1-2t)g_1(x) + 2tg_0(x)}{g_1(x)} \Big) dx.$$

Assume that g₀, g₁ > 0 on T and g₀, g₁ admit an analytic extensions on the annulus A_r = {z ∈ C / r < |z| < r⁻¹} with 0 < r < 1. Then, under H₀, (W_n) satisfies an SLDP associated with L and H where

$$H(t)=\frac{1}{2}\Big(\Delta(g_1)-\Delta((1-2t)g_1+2tg_0)\Big).$$

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Theorem (Bercu-Gamboa-Lavielle)

 If (H₃) holds, then under H₀, (W_n) satisfies an LDP with rate function I which is the Fenchel-Legendre dual of

$$L(t) = -\frac{1}{4\pi} \int_{\mathbb{T}} \log\Bigl(\frac{(1-2t)g_1(x) + 2tg_0(x)}{g_1(x)}\Bigr) dx.$$

Assume that g₀, g₁ > 0 on T and g₀, g₁ admit an analytic extensions on the annulus A_r = {z ∈ C / r < |z| < r⁻¹} with 0 < r < 1. Then, under H₀, (W_n) satisfies an SLDP associated with L and H where

$$H(t)=\frac{1}{2}\Big(\Delta(g_1)-\Delta((1-2t)g_1+2tg_0)\Big).$$

(日)

크

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

One can explicitly calculate *L* and *H*. For example, consider the autoregressive process of order *p*. For all $x \in \mathbb{T}$

$$g(x) = \frac{\sigma^2}{|A(e^{ix})|^2}$$

where A is a polynomial given by

$$A(e^{ix}) = \prod_{j=1}^{p} (1 - a_j e^{ix})$$

with $|a_j| < 1$. Then, we have $rac{1}{2\pi} \int_{\mathbb{T}} \log g(x) dx = \log \sigma^2$ and

$$\Delta(g) = -\sum_{j=1}^{p} \sum_{k=1}^{p} \log(1 - a_j \overline{a}_k).$$

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Neyman-Pearson

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Neyman-Pearson

Bernard Bercu University of Toulouse, France

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Neyman-Pearson

Bernard Bercu University of Toulouse, France

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Outline

On the Bahadur-Rao theorem Gaussian quadratic forms ۲ Statistical applications 3 Sum of squares Autoregressive process Ornstein-Uhlenbeck process

(4回) (1日) (日)

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Stable autoregressive process

Consider the stable autoregressive process

$$X_{n+1} = \theta X_n + \varepsilon_{n+1}, \qquad |\theta| < 1$$

where (ε_n) is iid $\mathcal{N}(0, \sigma^2)$, $\sigma^2 > 0$. If X_0 is independent of (ε_n) with $\mathcal{N}(0, \sigma^2/(1 - \theta^2))$ distribution, (X_n) is a centered stationary Gaussian process. For all $x \in \mathbb{T}$

$$g(x)=\frac{\sigma^2}{1+\theta^2-2\theta\cos x}.$$

(日)

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Let $\hat{\theta}_n$ be the least squares estimator of the parameter θ

$$\widehat{\theta}_n = \frac{\sum_{k=1}^n X_k X_{k-1}}{\sum_{k=1}^n X_{k-1}^2}.$$

We have $\widehat{\theta}_n \longrightarrow \theta$ a.s. and $\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1 - \theta^2)$. One can also estimate θ by the **Yule-Walker** estimator

$$\widetilde{\theta}_n = \frac{\sum_{k=1}^n X_k X_{k-1}}{\sum_{k=0}^n X_k^2}.$$

(日)

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

$$a = rac{ heta - \sqrt{ heta^2 + 8}}{4}$$
 and $b = rac{ heta + \sqrt{ heta^2 + 8}}{4}$

Theorem (Bercu-Gamboa-Rouault)

• $(\hat{\theta}_n)$ satisfies an LDP with rate function

$$J(x) = \begin{cases} \frac{1}{2} \log \left(\frac{1 + \theta^2 - 2\theta x}{1 - x^2} \right) & \text{if } x \in [a, b], \\ \log |\theta - 2x| & \text{otherwise.} \end{cases}$$

• (θ_n) satisfies an LDP with rate function

$$I(x) = \begin{cases} \frac{1}{2} \log \left(\frac{1 + \theta^2 - 2\theta x}{1 - x^2} \right) & \text{if } x \in]-1, 1[, \\ +\infty & \text{otherwise.} \end{cases}$$

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

$$a = rac{ heta - \sqrt{ heta^2 + 8}}{4}$$
 and $b = rac{ heta + \sqrt{ heta^2 + 8}}{4}$

Theorem (Bercu-Gamboa-Rouault)

• $(\hat{\theta}_n)$ satisfies an LDP with rate function

$$J(x) = \left\{ egin{array}{l} rac{1}{2} \log \left(rac{1+ heta^2-2 heta x}{1-x^2}
ight) & ext{if } x \in [a,b], \ \log | heta-2x| & ext{otherwise.} \end{array}
ight.$$

• $(\tilde{\theta}_n)$ satisfies an LDP with rate function

$$I(x) = \begin{cases} \frac{1}{2} \log \left(\frac{1 + \theta^2 - 2\theta x}{1 - x^2} \right) & \text{if } x \in]-1, 1[, \\ +\infty & \text{otherwise.} \end{cases}$$

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Least squares and Yule-Walker

STABLE AUTOREGRESSIVE PROCESS

Bernard Bercu University of Toulouse, France

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Yule-Walker

Theorem (Bercu-Gamboa-Lavielle)

The sequence $(\tilde{\theta}_n)$ satisfies an **SLDP**. For all $c \in \mathbb{R}$ with $c > \theta$ and |c| < 1, it exists a sequence $(d_{c,k})$ such that for any $p \ge 1$ and n large enough

$$\mathbb{P}(\tilde{\theta}_{n} \geq c) = \frac{\exp(-nl(c) + H(c))}{\sigma_{c} t_{c} \sqrt{2\pi n}} \left[1 + \sum_{k=1}^{p} \frac{d_{c,k}}{n^{k}} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right) \right]$$
$$t_{c} = \frac{c(1+\theta^{2}) - \theta(1-c^{2})}{1-c^{2}}, \qquad \sigma_{c}^{2} = \frac{1-c^{2}}{(1+\theta^{2}-2\theta c)^{2}},$$
$$H(c) = -\frac{1}{2} \log \left(\frac{(1-c\theta)^{4}}{(1-\theta)^{2}(1+\theta^{2}-2\theta c)(1-c^{2})^{2}} \right).$$

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Yule-Walker

Bernard Bercu University of Toulouse, France

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Yule-Walker

Bernard Bercu University of Toulouse, France

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Yule-Walker

Bernard Bercu University of Toulouse, France

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Explosive autoregressive process

Consider the explosive autoregressive process

$$X_{n+1} = \theta X_n + \varepsilon_{n+1}, \qquad |\theta| > 1$$

where (ε_n) is iid $\mathcal{N}(0, \sigma^2)$, $\sigma^2 > 0$. The Yule-Walker estimator satisfies $\tilde{\theta}_n \longrightarrow 1/\theta$ a.s. together with

$$|\theta|^n \left(\widetilde{\theta}_n - \frac{1}{\theta}\right) \xrightarrow{\mathcal{L}} \frac{(\theta^2 - 1)}{\theta^2} \mathcal{C}$$

where C stands for the Cauchy distribution.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ ・

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Explosive autoregressive process

Theorem (Bercu)

The sequence $(\tilde{\theta}_n)$ satisfies an LDP with rate function

$$I(x) = \begin{cases} \frac{1}{2} \log \left(\frac{1 + \theta^2 - 2\theta x}{1 - x^2} \right) & \text{if } x \in]-1, 1[, x \neq 1/\theta, \\\\ 0 & \text{if } x = 1/\theta, \\\\ +\infty & \text{otherwise.} \end{cases}$$

・ロト ・ 四 ト ・ 回 ト ・

크

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Discontinuity

EXPLOSIVE AUTOREGRESSIVE PROCESS

Bernard Bercu University of Toulouse, France

3

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Yule-Walker

Theorem (Bercu)

The sequence $(\tilde{\theta}_n)$ satisfies an SLDP. For all $c \in \mathbb{R}$ with $c > 1/\theta$ and |c| < 1, it exists a sequence $(d_{c,k})$ such that for any $p \ge 1$ and n large enough

$$\mathbb{P}(\widetilde{\theta}_n \geq c) = \frac{\exp(-nl(c) + H(c))}{\sigma_c t_c \sqrt{2\pi n}} \left[1 + \sum_{k=1}^p \frac{d_{c,k}}{n^k} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right) \right]$$
$$t_c = \frac{(\theta c - 1)(\theta - c)}{1 - c^2}, \qquad \sigma_c^2 = \frac{1 - c^2}{(1 + \theta^2 - 2\theta c)^2},$$

$$H(c) = -rac{1}{2}\log\left(rac{(heta c-1)^2}{(1+ heta^2-2 heta c)(1-c^2)}
ight)$$

Bernard Bercu University of Toulouse, France

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Yule-Walker

Bernard Bercu University of Toulouse, France

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Outline

Gaussian quadratic forms ۲ Statistical applications 3 Sum of squares Autoregressive process

Ornstein-Uhlenbeck process

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Consider the stable Ornstein-Uhlenbeck process

 $dX_t = \theta X_t dt + dW_t, \qquad \theta < \mathbf{0}$

where (W_t) is a standard Brownian motion. We establish similar SLDP for the energy

$$\mathcal{S}_T = \int_0^T X_t^2 \, dt,$$

the **maximum likelihood** estimator of θ

$$\widehat{\theta}_T = \frac{\int_0^T X_t \, dX_t}{\int_0^T X_t^2 \, dt} = \frac{X_T^2 - T}{2 \int_0^T X_t^2 \, dt},$$

and the **log-likelihood ratio** given, for $\theta_0, \theta_1 < 0$, by

$$W_T = (\theta_0 - \theta_1) \int_0^T X_t \, dX_t - \frac{1}{2} (\theta_0^2 - \theta_1^2) \int_0^T X_t^2 \, dt.$$

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Stable Ornstein-Uhlenbeck process

Theorem (Bryc-Dembo)

The sequence (S_T/T) satisfies an LDP with rate function

$$J(x) = \left\{ egin{array}{cc} rac{(2 heta c+1)^2}{8c} & ext{if } c>0, \ +\infty & ext{otherwise.} \end{array}
ight.$$

Theorem (Florens-Pham)

The sequence $(\hat{\theta}_T)$ satisfies an LDP with rate function

$$I(x) = \begin{cases} -\frac{(c-\theta)^2}{4c} & \text{if } c < \theta/3, \\ 2c - \theta & \text{otherwise.} \end{cases}$$

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Stable Ornstein-Uhlenbeck process

Theorem (Bercu-Rouault)

The sequence $(\hat{\theta}_T)$ satisfies an SLDP. For all $\theta < c < \theta/3$, it exists a sequence $(d_{c,k})$ such that, for any $p \ge 1$ and T large enough

$$\mathbb{P}(\widehat{\theta}_{T} \ge c) = \frac{\exp(-TI(c) + H(c))}{\sigma_{c}t_{c}\sqrt{2\pi T}} \left[1 + \sum_{k=1}^{p} \frac{d_{c,k}}{T^{k}} + \mathcal{O}\left(\frac{1}{T^{p+1}}\right) \right]$$
$$t_{c} = \frac{c^{2} - \theta^{2}}{2c}, \qquad H(c) = -\frac{1}{2}\log\left(\frac{(c+\theta)(3c-\theta)}{4c^{2}}\right),$$
$$\sigma_{c}^{2} = -1/2c. \text{ Similar expansion holds for } c > \theta/3 \text{ with } c \neq 0.$$

(日)

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Stable Ornstein-Uhlenbeck process

Theorem (Bercu-Rouault)

For c = 0, it exists a sequence (b_k) such that, for any p ≥ 1 and T large enough

$$\mathbb{P}(\widehat{\theta}_{T} \ge \mathbf{0}) = \frac{\exp(\theta T)}{\sqrt{\pi T} \sqrt{-\theta}} \left[1 + \sum_{k=1}^{p} \frac{b_{k}}{T^{k}} + \mathcal{O}\left(\frac{1}{T^{p+1}}\right) \right].$$

For c = θ/3, it exists a sequence (d_k) such that, for any p ≥ 1 and T large enough

$$\mathbb{P}(\widehat{\theta}_{T} \ge \boldsymbol{c}) = \frac{\exp(-Tl(\boldsymbol{c}))}{4\pi T^{1/4} \tau_{\theta}} \left[1 + \sum_{k=1}^{2p} \frac{d_{k}}{(\sqrt{T})^{k}} + \mathcal{O}\left(\frac{1}{T^{p}\sqrt{T}}\right) \right]$$

where $au_{ heta} = (- heta/3)^{1/4} / \Gamma(1/4)$.

200

Sum of squares Likelihood ratio test Autoregressive process Ornstein-Uhlenbeck process

Stable Ornstein-Uhlenbeck process

Theorem (Bercu-Rouault)

For c = 0, it exists a sequence (b_k) such that, for any p ≥ 1 and T large enough

$$\mathbb{P}(\widehat{\theta}_{T} \ge \mathbf{0}) = \frac{\exp(\theta T)}{\sqrt{\pi T} \sqrt{-\theta}} \left[1 + \sum_{k=1}^{p} \frac{b_{k}}{T^{k}} + \mathcal{O}\left(\frac{1}{T^{p+1}}\right) \right]$$

For c = θ/3, it exists a sequence (d_k) such that, for any p ≥ 1 and T large enough

$$\mathbb{P}(\widehat{\theta}_{T} \ge \boldsymbol{c}) = \frac{\exp(-TI(\boldsymbol{c}))}{4\pi T^{1/4} \tau_{\theta}} \left[1 + \sum_{k=1}^{2p} \frac{d_{k}}{(\sqrt{T})^{k}} + \mathcal{O}\left(\frac{1}{T^{p}\sqrt{T}}\right)^{-1} \right]$$

where $\tau_{\theta} = (-\theta/3)^{1/4}/\Gamma(1/4)$.