A Random-Projection Based Procedure to Test if a Strictly Stationary Process is Gaussian

J. Cuesta, F. Gamboa & A. Nieto

Universidad de Cantabria - Université Paul Sabatier

V Santouval 2009
1 Tests of Gaussianity

2 Gaussianity Tests for Strictly Stationary Processes

3 The Random Projection Test (RP test)

4 Simulations

5 Conclusions
Let X_1, \ldots, X_n be i.i.d. random variables, then,

we already know Gaussianity tests for this setting!

But, if the r.v.'s are dependent?
Let X_1, \ldots, X_n be i.i.d. random variables, then, we already know Gaussianity tests for this setting!

But, if the r.v.’s are dependent?
What kind of dependence?

We’ll deal with **Strictly Stationary Processes**

- \(\{X_t\}_{t \in \mathbb{Z}}, \ldots, X_1, X_2, \ldots \)
- \(\{X_t\}_{t \in \mathbb{N}}, X_1, X_2, \ldots \)

\(\{X_t\}_{t \in \mathbb{Z}} \) is a strictly stationary process iff

\[(X_{t_1}, X_{t_2}, \ldots, X_{t_j}) \text{ and } (X_{t_1+k}, X_{t_2+k}, \ldots, X_{t_j+k}) \text{ are i.d for all } k \in \mathbb{Z} \]

A strictly stationary process \(\{X_t\}_{t \in \mathbb{Z}} \) is Gaussian iff

\((X_1, \ldots, X_t) \text{ is a Gaussian vector for all } t \in \mathbb{N}\)
What kind of dependence?

We’ll deal with **Strictly Stationary Processes**

- \(\{X_t\}_{t \in \mathbb{Z}}, \ldots, X_1, X_2, \ldots \)
- \(\{X_t\}_{t \in \mathbb{N}}, X_1, X_2, \ldots \)

\(\{X_t\}_{t \in \mathbb{Z}} \) is a strictly stationary process iff

\[
(X_{t_1}, X_{t_2}, \ldots, X_{t_j}) \text{ and } (X_{t_1+k}, X_{t_2+k}, \ldots, X_{t_j+k}) \text{ are i.d for all } k \in \mathbb{Z}
\]

A strictly stationary process \(\{X_t\}_{t \in \mathbb{Z}} \) is Gaussian iff \((X_1, \ldots, X_t) \) is a Gaussian vector for all \(t \in \mathbb{N} \)
What kind of dependence?

We’ll deal with **Strictly Stationary Processes**

- \(\{X_t\}_{t \in \mathbb{Z}}, \ldots, X_1, X_2, \ldots \)
- \(\{X_t\}_{t \in \mathbb{N}}, X_1, X_2, \ldots \)

\(\{X_t\}_{t \in \mathbb{Z}} \) is a strictly stationary process iff

\[
(X_{t_1}, \ldots, X_{t_j}) \text{ and } (X_{t_1+k}, X_{t_2+k}, \ldots, X_{t_j+k}) \text{ are i.d for all } k \in \mathbb{Z}
\]

A strictly stationary process \(\{X_t\}_{t \in \mathbb{Z}} \) is Gaussian iff

\((X_1, \ldots, X_t) \) is a Gaussian vector for all \(t \in \mathbb{N} \)
But, there are not already a bunch of tests for this?

Yes,

- Epps’ test (1987)
 Check if $\phi_{X_t}(\lambda_i) = \phi_{N(\mu, \sigma^2)}(\lambda_i)$ for $i = 1, ..., N$

- Lobato and Velasco’s test (2004)
 Check the skewness and kurtosis of X_t

However, they only test if the marginals of the process are Gaussian.

That is; they test if X_t is Gaussian, not if $(X_1, ..., X_t)$ is Gaussian

So, is this O.K.?

No, because such tests do not reject non-Gaussian processes with Gaussian marginals

We need a new test that reject such kind of non-Gaussian processes!
But, there are not already a bunch of tests for this?

Yes,

- Epps’ test (1987)
 Check if $\phi_{X_t}(\lambda_i) = \phi_{N(\mu,\sigma^2)}(\lambda_i)$ for $i = 1, ..., N$

- Lobato and Velasco’s test (2004)
 Check the skewness and kurtosis of X_t

However, they only test if the marginals of the process are Gaussian.

That is; they test if X_t is Gaussian,
not if $(X_1, ..., X_t)$ is Gaussian

So, is this O.K.?

No, because such tests do not reject non-Gaussian processes with Gaussian marginals

We need a new test that reject such kind of non-Gaussian processes!
But, there are not already a bunch of tests for this?

Yes,

- Epps’ test (1987)
 Check if $\phi_{X_t}(\lambda_i) = \phi_{N(\mu, \sigma^2)}(\lambda_i)$ for $i = 1, \ldots, N$

- Lobato and Velasco’s test (2004)
 Check the skewness and kurtosis of X_t

However, they only test if the marginals of the process are Gaussian.

That is; they test if X_t is Gaussian,
not if (X_1, \ldots, X_t) is Gaussian

So, is this O.K.?

No, because such tests do not reject non-Gaussian processes with Gaussian marginals
We need a new test that reject such kind of non-Gaussian processes!
But, there are not already a bunch of tests for this?
Yes,
- Epps’ test (1987)
 Check if $\phi_{X_t}(\lambda_i) = \phi_{N(\mu,\sigma^2)}(\lambda_i)$ for $i = 1, \ldots, N$
- Lobato and Velasco’s test (2004)
 Check the skewness and kurtosis of X_t

However, they only test if the marginals of the process are Gaussian.

That is; they test if X_t is Gaussian,
not if (X_1, \ldots, X_t) is Gaussian

So, is this O.K.?
No, because such tests do not reject non-Gaussian processes with Gaussian marginals

We need a new test that reject such kind of non-Gaussian processes!
Remember:

A strictly stationary process \(\{X_t\}_{t \in \mathbb{Z}} \) is Gaussian iff

\[(X_1, \ldots, X_t) \text{ is a Gaussian vector for all } t \in \mathbb{N} \]

iff

\[(\ldots, X_t) \text{ is a Gaussian vector} \]

How do we check if \((\ldots, X_t)\) is Gaussian?

The Random Projection Method
Remember:

A strictly stationary process \(\{X_t\}_{t \in \mathbb{Z}}\) is Gaussian iff

\((X_1, ..., X_t)\) is a Gaussian vector for all \(t \in \mathbb{N}\)

iff

\((..., X_t)\) is a Gaussian vector

How do we check if \((..., X_t)\) is Gaussian?

The Random Projection Method
Not all is Covered with those Tests

Remember:

A strictly stationary process \(\{X_t\}_{t \in \mathbb{Z}} \) is Gaussian iff
\[
(X_1, \ldots, X_t) \text{ is a Gaussian vector for all } t \in \mathbb{N}
\]
iff
\[
(\ldots, X_t) \text{ is a Gaussian vector}
\]

How do we check if \((\ldots, X_t)\) is Gaussian?

The Random Projection Method
The Random Projection Method

Given \(\{X_t\}_{t \in \mathbb{Z}} \) a strictly stationary process

\(H_0 : \{X_t\}_{t \in \mathbb{Z}} \) is a Gaussian process ; \(H_a : \{X_t\}_{t \in \mathbb{Z}} \) is not Gaussian

\(H_0 : (..., X_t) \) is a Gaussian vector

Theorem (Cuesta, Barrio, Fraiman and Matrán, 2007)

Let \(\eta \) be a dissipative distribution on a separable Hilbert space, \(H \). If \((..., X_t)\) is an \(H \)-valued random element and

\[
\eta\{ h \in H : \text{the distribution of } \langle(..., X_t), h \rangle \text{ is Gaussian} \} > 0 ,
\]

then \(X \) is Gaussian.

It follows,

\[
\eta\{ h \in H : \text{the distribution of } \langle(..., X_t), h \rangle \text{ is Gaussian} \} \in \{0, 1\},
\]

So, selecting \(h \) using a dissipative distribution we have,

\[
\langle(..., X_t), h \rangle \text{ is Gaussian iff } (..., X_t) \text{ is Gaussian a.s.}
\]
The Random Projection Method

Given \(\{X_t\}_{t \in \mathbb{Z}} \) a strictly stationary process

\(H_0 : \{X_t\}_{t \in \mathbb{Z}} \) is a Gaussian process ; \(H_a : \{X_t\}_{t \in \mathbb{Z}} \) is not Gaussian

\(H_0 : (..., X_t) \) is a Gaussian vector

Theorem (Cuesta, Barrio, Fraiman and Matrán, 2007)

Let \(\eta \) be a dissipative distribution on a separable Hilbert space, \(\mathcal{H} \). If \((..., X_t) \) is an \(\mathcal{H} \)-valued random element and

\[
\eta\{h \in \mathcal{H} : \text{the distribution of } \langle (..., X_t), h \rangle \text{ is Gaussian} \} > 0,
\]

then \(X \) is Gaussian.

It follows,

\[
\eta\{h \in \mathcal{H} : \text{the distribution of } \langle (..., X_t), h \rangle \text{ is Gaussian} \} \in \{0, 1\},
\]

So, selecting \(h \) using a dissipative distribution we have,

\[
\langle (..., X_t), h \rangle \text{ is Gaussian iff } (..., X_t) \text{ is Gaussian a.s.}
\]
The Random Projection Method

Given \(\{ X_t \}_{t \in \mathbb{Z}} \) a strictly stationary process

\(H_0 : \{ X_t \}_{t \in \mathbb{Z}} \) is a Gaussian process ; \(H_a : \{ X_t \}_{t \in \mathbb{Z}} \) is not Gaussian

\(H_0 : (..., X_t) \) is a Gaussian vector

Theorem (Cuesta, Barrio, Fraiman and Matrán, 2007)

Let \(\eta \) be a dissipative distribution on a separable Hilbert space, \(H \). If \((..., X_t) \) is an \(H \)-valued random element and

\[
\eta \{ h \in H : \text{the distribution of } \langle (..., X_t), h \rangle \text{ is Gaussian} \} > 0,
\]

then \(X \) is Gaussian.

It follows,

\[
\eta \{ h \in H : \text{the distribution of } \langle (..., X_t), h \rangle \text{ is Gaussian} \} \in \{0, 1\},
\]

So, selecting \(h \) using a dissipative distribution we have,

\[
\langle (..., X_t), h \rangle \text{ is Gaussian iff } (..., X_t) \text{ is Gaussian a.s.}
\]
Given \(\{ X_t \}_{t \in \mathbb{Z}} \) a strictly stationary process

\[H_0 : \{ X_t \}_{t \in \mathbb{Z}} \text{ is a Gaussian process} \quad ; \quad H_a : \{ X_t \}_{t \in \mathbb{Z}} \text{ is not Gaussian} \]

\(H_0 : (..., X_t) \) is a Gaussian vector

Theorem (Cuesta, Barrio, Fraiman and Matrán, 2007)

Let \(\eta \) be a dissipative distribution on a separable Hilbert space, \(\mathcal{H} \). If

\((..., X_t) \) is an \(\mathcal{H} \)-valued random element and

\[
\eta\{ h \in \mathcal{H} : \text{the distribution of } \langle (..., X_t), h \rangle \text{ is Gaussian} \} > 0,
\]

then \(X \) is Gaussian.

It follows,

\[
\eta\{ h \in \mathcal{H} : \text{the distribution of } \langle (..., X_t), h \rangle \text{ is Gaussian} \} \in \{0, 1\},
\]

So, selecting \(h \) using a dissipative distribution we have,

\[
\langle (..., X_t), h \rangle \text{ is Gaussian} \iff (..., X_t) \text{ is Gaussian a.s.}
\]
In Practice

- \(H = \{(x_n)_{n \in \mathbb{N}^*} : \sum_{n \in \mathbb{N}^*} x_n^2 a_n < \infty \} \),
- \(a_n = \min(1, n^{-2}) \) and \(\mathbb{N}^* = \mathbb{N} \cup \{0\} \)
- \(\langle x, y \rangle = \sum_{n \in \mathbb{N}^*} x_n y_n a_n \), where \(x = (x_n)_{n \in \mathbb{N}^*}, y = (y_n)_{n \in \mathbb{N}^*} \)

- **Dissipative distribution**
 - \(l_0 \) chosen with \(\beta(\alpha_1, \alpha_2) \)
 - \(l_n \) chosen with \(\beta(\alpha_1, \alpha_2)[0, 1 - \sum_{i=0}^{n-1} \eta_i] \), for \(n \geq 1 \)
 - \(h_n = (l_n/a_n) \) for \(n \geq 0 \)
 - \((h_0, ...) \) has dissipative distribution

- Fix \(h = (h_0, ...) \)
- Define \(Y_t := \sum_{i=0}^{\infty} h_i X_{t-i} a_i \)
In Practice

- \(H = \{(x_n)_{n \in \mathbb{N}^*} : \sum_{n \in \mathbb{N}^*} x_n^2 a_n < \infty \} \),
- \(a_n = \min(1, n^{-2}) \) and \(\mathbb{N}^* = \mathbb{N} \cup \{0\} \)
- \(\langle x, y \rangle = \sum_{n \in \mathbb{N}^*} x_n y_n a_n \), where \(x = (x_n)_{n \in \mathbb{N}^*}, y = (y_n)_{n \in \mathbb{N}^*} \)

Dissipative distribution

- \(l_0 \) chosen with \(\beta(\alpha_1, \alpha_2) \)
- \(l_n \) chosen with \(\beta(\alpha_1, \alpha_2)[0, 1 - \sum_{i=0}^{n-1} \eta_i], \) for \(n \geq 1 \)

\(h_n = (l_n/a_n) \) for \(n \geq 0 \)

\((h_0, ...) \in H \) has dissipative distribution

- Fix \(h = (h_0, ...) \)
- Define \(Y_t := \sum_{i=0}^{\infty} h_i X_{t-i} a_i \)
In Practice

- \(H = \{ (x_n)_{n \in \mathbb{N}^*} : \sum_{n \in \mathbb{N}^*} x_n^2 a_n < \infty \} \),
 - \(a_n = \min(1, n^{-2}) \) and \(\mathbb{N}^* = \mathbb{N} \cup \{0\} \)
 - \(\langle x, y \rangle = \sum_{n \in \mathbb{N}^*} x_n y_n a_n \), where \(x = (x_n)_{n \in \mathbb{N}^*} \), \(y = (y_n)_{n \in \mathbb{N}^*} \)

- Dissipative distribution
 - \(l_0 \) chosen with \(\beta(\alpha_1, \alpha_2) \)
 - \(l_n \) chosen with \(\beta(\alpha_1, \alpha_2)[0, 1 - \sum_{i=0}^{n-1} \eta_i] \), for \(n \geq 1 \)
 - \(h_n = (l_n/a_n) \) for \(n \geq 0 \)
 - \((h_0, \ldots) \in H\) has dissipative distribution

- Fix \(h = (h_0, \ldots) \)
 - Define \(Y_t := \sum_{i=0}^{\infty} h_i X_{t-i} a_i \)
In Practice

- \(H = \left\{ (x_n)_{n \in \mathbb{N}^*} : \sum_{n \in \mathbb{N}^*} x_n^2 a_n < \infty \right\} \),
 - \(a_n = \min(1, n^{-2}) \) and \(\mathbb{N}^* = \mathbb{N} \cup \{0\} \)
 - \(\langle x, y \rangle = \sum_{n \in \mathbb{N}^*} x_n y_n a_n \), where \(x = (x_n)_{n \in \mathbb{N}^*}, y = (y_n)_{n \in \mathbb{N}^*} \)

- Dissipative distribution
 - \(l_0 \) chosen with \(\beta(\alpha_1, \alpha_2) \)
 - \(l_n \) chosen with \(\beta(\alpha_1, \alpha_2)[0, 1 - \sum_{i=0}^{n-1} \eta_i] \), for \(n \geq 1 \)
 - \(h_n = (l_n/a_n) \) for \(n \geq 0 \)
 - \((h_0, ...) \in H \) has dissipative distribution

- Fix \(h = (h_0, ...) \)
- Define \(Y_t := \sum_{i=0}^{\infty} h_i X_{t-i} a_i \)
The Random Projection Test (RP test)

\(\{X_t\}_{t \in \mathbb{Z}} \) strictly stationary process

\(H_0 : \{X_t\}_{t \in \mathbb{Z}} \) is a Gaussian process

\(H_0 : (\ldots, X_t) \) is a Gaussian vector

\(H_0 : Y_t \) is a Gaussian r.v.

\(H_0 : \) the one-dimensional marginal of the process \(\{Y_t\}_{t \in \mathbb{Z}} \) is a Gaussian r.v.

\(\{Y_t\}_{t \in \mathbb{Z}} \) inherit \(\{X_t\}_{t \in \mathbb{Z}} \) properties

Then,

Test Gaussianity of \(\{Y_t\}_{t \in \mathbb{Z}} \) with a procedure that check if the marginals of the process are Gaussian

- Epps’ test (1987)
- Lobato and Velasco’s test (2004)
The Random Projection Test (RP test)

\(\{X_t\}_{t \in \mathbb{Z}}\) strictly stationary process

\(H_0:\ \{X_t\}_{t \in \mathbb{Z}}\) is a Gaussian process

\(H_0:\ (..., X_t)\) is a Gaussian vector

\(H_0:\ Y_t\) is a Gaussian r.v.

\(H_0:\ the\ one-dimensional\ marginal\ of\ the\ process\ \{Y_t\}_{t \in \mathbb{Z}}\) is a Gaussian r.v.

\(\{Y_t\}_{t \in \mathbb{Z}}\) inherit \(\{X_t\}_{t \in \mathbb{Z}}\) properties

Then,

Test Gaussianity of \(\{Y_t\}_{t \in \mathbb{Z}}\) with a procedure that check if the marginals of the process are Gaussian

- Epps’ test (1987)
- Lobato and Velasco’s test (2004)
The Random Projection Test (RP test)

\{X_t\}_{t \in \mathbb{Z}} \text{ strictly stationary process}

\text{\(H_0\)}: \{X_t\}_{t \in \mathbb{Z}} \text{ is a Gaussian process}

\text{\(H_0\)}: (\ldots, X_t) \text{ is a Gaussian vector}

\text{\(H_0\)}: \text{\(Y_t\) is a Gaussian r.v.}

\text{\(H_0\)}: \text{the one-dimensional marginal of the process \(\{Y_t\}_{t \in \mathbb{Z}}\) is a Gaussian r.v.}

\{Y_t\}_{t \in \mathbb{Z}} \text{ inherit } \{X_t\}_{t \in \mathbb{Z}} \text{ properties}

Then,

Test Gaussianity of \(\{Y_t\}_{t \in \mathbb{Z}}\) with a procedure that check if
the marginals of the process are Gaussian

- Epps’ test (1987)
- Lobato and Velasco’s test (2004)
The Random Projection Test (RP test)

\{X_t\}_{t \in \mathbb{Z}} \text{ strictly stationary process}

\(H_0: \{X_t\}_{t \in \mathbb{Z}} \text{ is a Gaussian process}\)

\(H_0: (\ldots, X_t) \text{ is a Gaussian vector}\)

\(H_0: Y_t \text{ is a Gaussian r.v.}\)

\(H_0: \text{the one-dimensional marginal of the process} \{Y_t\}_{t \in \mathbb{Z}} \text{ is a Gaussian r.v.}\)

\{Y_t\}_{t \in \mathbb{Z}} \text{ inherit } \{X_t\}_{t \in \mathbb{Z}} \text{ properties}

Then,

Test Gaussianity of \(\{Y_t\}_{t \in \mathbb{Z}}\) with a procedure that check if the marginals of the process are Gaussian

- Epps’ test (1987)
- Lobato and Velasco’s test (2004)
The Random Projection Test (RP test)

\(\{X_t\}_{t \in \mathbb{Z}} \) strictly stationary process

\(H_0 : \{X_t\}_{t \in \mathbb{Z}} \) is a Gaussian process

\(H_0 : (..., X_t) \) is a Gaussian vector

\(H_0 : Y_t \) is a Gaussian r.v.

\(H_0 : \) the one-dimensional marginal of the process \(\{Y_t\}_{t \in \mathbb{Z}} \) is a Gaussian r.v.

\(\{Y_t\}_{t \in \mathbb{Z}} \) inherit \(\{X_t\}_{t \in \mathbb{Z}} \) properties

Then,

Test Gaussianity of \(\{Y_t\}_{t \in \mathbb{Z}} \) with a procedure that check if the marginals of the process are Gaussian

- Epps’ test (1987)
- Lobato and Velasco’s test (2004)
The Random Projection Test (RP test)

\{X_t\}_{t \in \mathbb{Z}} \text{ strictly stationary process}

\(H_0: \{X_t\}_{t \in \mathbb{Z}} \text{ is a Gaussian process}\)

\(H_0: (\ldots, X_t) \text{ is a Gaussian vector}\)

\(H_0: Y_t \text{ is a Gaussian r.v.}\)

\(H_0: \text{the one-dimensional marginal of the process } \{Y_t\}_{t \in \mathbb{Z}} \text{ is a Gaussian r.v.}\)

\{Y_t\}_{t \in \mathbb{Z}} \text{ inherit } \{X_t\}_{t \in \mathbb{Z}} \text{ properties}

Then,

Test Gaussianity of \(\{Y_t\}_{t \in \mathbb{Z}}\) with a procedure that check if the marginals of the process are Gaussian

- Epps’ test (1987)
- Lobato and Velasco’s test (2004)
Simulations

Given an AR(1) process

\[X_t = q \ast X_{t-1} + \epsilon_t \]

Compare results of

- E, Epps’ test (1987)

<table>
<thead>
<tr>
<th>q</th>
<th>Test</th>
<th>(N(0,1))</th>
<th>log N</th>
<th>(t_{10})</th>
<th>(\chi^2_{1})</th>
<th>(\chi^2_{10})</th>
<th>(U(0, 1))</th>
<th>(\beta(2, 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.5</td>
<td>E</td>
<td>.0724</td>
<td>.6780</td>
<td>.0556</td>
<td>.8514</td>
<td>.2058</td>
<td>.5408</td>
<td>.4914</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0364</td>
<td>.9976</td>
<td>.1752</td>
<td>.9992</td>
<td>.4300</td>
<td>.0006</td>
<td>.1174</td>
</tr>
<tr>
<td>.5</td>
<td>E</td>
<td>.0682</td>
<td>.8594</td>
<td>.0608</td>
<td>.9582</td>
<td>.2610</td>
<td>.5618</td>
<td>.5562</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0358</td>
<td>.9996</td>
<td>.1602</td>
<td>.9990</td>
<td>.4522</td>
<td>.0002</td>
<td>.1160</td>
</tr>
<tr>
<td>.9</td>
<td>E</td>
<td>.1156</td>
<td>.5708</td>
<td>.0944</td>
<td>.4674</td>
<td>.1526</td>
<td>.1430</td>
<td>.1560</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0326</td>
<td>.9236</td>
<td>.0564</td>
<td>.7194</td>
<td>.1152</td>
<td>.0180</td>
<td>.0426</td>
</tr>
</tbody>
</table>
Simulations

Given an AR(1) process

\[X_t = q \cdot X_{t-1} + \epsilon_t \]

Compare results of

- E, Epps’ test (1987)

<table>
<thead>
<tr>
<th>q</th>
<th>Test</th>
<th>(\text{N}(0,1))</th>
<th>log N</th>
<th>(t_{10})</th>
<th>(\chi^2_1)</th>
<th>(\chi^2_{10})</th>
<th>(U(0, 1))</th>
<th>(\beta(2, 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.5</td>
<td>E</td>
<td>.0724</td>
<td>.6780</td>
<td>.0556</td>
<td>.8514</td>
<td>.2058</td>
<td>.5408</td>
<td>.4914</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0364</td>
<td>.9976</td>
<td>.1752</td>
<td>.9992</td>
<td>.4300</td>
<td>.0006</td>
<td>.1174</td>
</tr>
<tr>
<td>.5</td>
<td>E</td>
<td>.0682</td>
<td>.8594</td>
<td>.0608</td>
<td>.9582</td>
<td>.2610</td>
<td>.5618</td>
<td>.5562</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0358</td>
<td>.9996</td>
<td>.1602</td>
<td>.9990</td>
<td>.4522</td>
<td>.0002</td>
<td>.1160</td>
</tr>
<tr>
<td>.9</td>
<td>E</td>
<td>.1156</td>
<td>.5708</td>
<td>.0944</td>
<td>.4674</td>
<td>.1526</td>
<td>.1430</td>
<td>.1560</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0326</td>
<td>.9236</td>
<td>.0564</td>
<td>.7194</td>
<td>.1152</td>
<td>.0180</td>
<td>.0426</td>
</tr>
</tbody>
</table>
Simulations

Given an AR(1) process

\[X_t = q * X_{t-1} + \epsilon_t \]

Compare results of
- E, Epps' test (1987)

<table>
<thead>
<tr>
<th>q</th>
<th>Test</th>
<th>N(0,1)</th>
<th>log N</th>
<th>t_{10}</th>
<th>\chi^2_1</th>
<th>\chi^2_{10}</th>
<th>U(0, 1)</th>
<th>\beta(2, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.5</td>
<td>E</td>
<td>.0724</td>
<td>.6780</td>
<td>.0556</td>
<td>.8514</td>
<td>.2058</td>
<td>.5408</td>
<td>.4914</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0364</td>
<td>.9976</td>
<td>.1752</td>
<td>.9992</td>
<td>.4300</td>
<td>.0006</td>
<td>.1174</td>
</tr>
<tr>
<td>.5</td>
<td>E</td>
<td>.0682</td>
<td>.8594</td>
<td>.0608</td>
<td>.9582</td>
<td>.2610</td>
<td>.5618</td>
<td>.5562</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0358</td>
<td>.9996</td>
<td>.1602</td>
<td>.9990</td>
<td>.4522</td>
<td>.0002</td>
<td>.1160</td>
</tr>
<tr>
<td>.9</td>
<td>E</td>
<td>.1156</td>
<td>.5708</td>
<td>.0944</td>
<td>.4674</td>
<td>.1526</td>
<td>.1430</td>
<td>.1560</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0326</td>
<td>.9236</td>
<td>.0564</td>
<td>.7194</td>
<td>.1152</td>
<td>.0180</td>
<td>.0426</td>
</tr>
</tbody>
</table>
Given an AR(1) process

\[X_t = q \times X_{t-1} + \epsilon_t \]

Compare results of

- E, Epps’ test (1987)
- GE, combination of G and E using the Multiple Testing Procedure of Benjamini and Yekutieli (2001)
- RP, Random Projection Test using GE
Given an AR(1) process

\[X_t = q \ast X_{t-1} + \epsilon_t \]

Compare results of
- E, Epps’ test (1987)
- GE, combination of G and E using the Multiple Testing Procedure of Benjamini and Yekutieli (2001)
- RP, Random Projection Test using GE
Given an AR(1) process

\[X_t = q * X_{t-1} + \epsilon_t \]

Compare results of

- E, Epps’ test (1987)
- GE, combination of G and E using the Multiple Testing Procedure of Benjamini and Yekutieli (2001)
- RP, Random Projection Test using GE
<table>
<thead>
<tr>
<th>q</th>
<th>Test</th>
<th>N(0,1)</th>
<th>log N</th>
<th>t_{10}</th>
<th>χ^2_1</th>
<th>χ^2_{10}</th>
<th>$U(0, 1)$</th>
<th>$\beta(2, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.5</td>
<td>E</td>
<td>.0724</td>
<td>.6780</td>
<td>.0556</td>
<td>.8514</td>
<td>.2058</td>
<td>.5408</td>
<td>.4914</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0364</td>
<td>.9976</td>
<td>.1752</td>
<td>.9992</td>
<td>.4300</td>
<td>.0006</td>
<td>.1174</td>
</tr>
<tr>
<td></td>
<td>GE</td>
<td>.0716</td>
<td>.9978</td>
<td>.1406</td>
<td>.9982</td>
<td>.4454</td>
<td>.4716</td>
<td>.4338</td>
</tr>
<tr>
<td></td>
<td>RP</td>
<td>.0806</td>
<td>1</td>
<td>.1866</td>
<td>.9998</td>
<td>.5626</td>
<td>.6568</td>
<td>.7664</td>
</tr>
<tr>
<td>.5</td>
<td>E</td>
<td>.0682</td>
<td>.8594</td>
<td>.0608</td>
<td>.9582</td>
<td>.2610</td>
<td>.5618</td>
<td>.5562</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0358</td>
<td>.9996</td>
<td>.1602</td>
<td>.9990</td>
<td>.4522</td>
<td>.0002</td>
<td>.1160</td>
</tr>
<tr>
<td></td>
<td>GE</td>
<td>.0756</td>
<td>.9994</td>
<td>.1464</td>
<td>.9998</td>
<td>.5018</td>
<td>.4838</td>
<td>.5216</td>
</tr>
<tr>
<td></td>
<td>RP</td>
<td>.0816</td>
<td>.9944</td>
<td>.1330</td>
<td>.9936</td>
<td>.5492</td>
<td>.3442</td>
<td>.8086</td>
</tr>
<tr>
<td>.9</td>
<td>E</td>
<td>.1156</td>
<td>.5708</td>
<td>.0944</td>
<td>.4674</td>
<td>.1526</td>
<td>.1430</td>
<td>.1560</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>.0326</td>
<td>.9236</td>
<td>.0564</td>
<td>.7194</td>
<td>.1152</td>
<td>.0180</td>
<td>.0426</td>
</tr>
<tr>
<td></td>
<td>GE</td>
<td>.1004</td>
<td>.9256</td>
<td>.0936</td>
<td>.7284</td>
<td>.1780</td>
<td>.1174</td>
<td>.1372</td>
</tr>
<tr>
<td></td>
<td>RP</td>
<td>.1000</td>
<td>.8742</td>
<td>.0930</td>
<td>.6316</td>
<td>.9136</td>
<td>.5958</td>
<td>.9894</td>
</tr>
</tbody>
</table>
A Non-Gaussian Process with Gaussian Marginals

A family of this kind of processes, $f(p)$, is given in Cuesta and Matrán (1991), with p a prime number.

Let $p = 5$,

$$
\ldots, X_{mp}, X_{mp+1}, X_{mp+2}, X_{mp+3}, X_{mp+4}, X_{(m+1)p}, \ldots, X_{(m+1)p+4}, \ldots
$$

- a strictly stationary process
- of pairwise independent variables
- with X_t Gaussian for all $t \in \mathbb{Z}$
- without mutually independent variables

<table>
<thead>
<tr>
<th>n</th>
<th>E</th>
<th>G</th>
<th>GE</th>
<th>RP(2)</th>
<th>RP(3)</th>
<th>RP(5)</th>
<th>RP(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>.0338</td>
<td>.0348</td>
<td>.0630</td>
<td>.1760</td>
<td>.2032</td>
<td>.2350</td>
<td>.2794</td>
</tr>
<tr>
<td>500</td>
<td>.0266</td>
<td>.0322</td>
<td>.0302</td>
<td>.4880</td>
<td>.5602</td>
<td>.7036</td>
<td>.8222</td>
</tr>
</tbody>
</table>
A Non-Gaussian Process with Gaussian Marginals

A family of this kind of processes, \(\mathcal{F}(p) \), is given in Cuesta and Matrán (1991), with \(p \) a prime number.

Let \(p = 5 \),

\[
..., X_{mp}, X_{mp+1}, X_{mp+2}, X_{mp+3}X_{mp+4}, X_{(m+1)p}, ..., X_{(m+1)p+4}, ...
\]

- a strictly stationary process
- of pairwise independent variables
- with \(X_t \) Gaussian for all \(t \in \mathbb{Z} \)
- without mutually independent variables

<table>
<thead>
<tr>
<th>n</th>
<th>E</th>
<th>G</th>
<th>GE</th>
<th>RP(2)</th>
<th>RP(3)</th>
<th>RP(5)</th>
<th>RP(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>.0338</td>
<td>.0348</td>
<td>.0630</td>
<td>.1760</td>
<td>.2032</td>
<td>.2350</td>
<td>.2794</td>
</tr>
<tr>
<td>500</td>
<td>.0266</td>
<td>.0322</td>
<td>.0302</td>
<td>.4880</td>
<td>.5602</td>
<td>.7036</td>
<td>.8222</td>
</tr>
</tbody>
</table>
Summarizing

1. Tests of Gaussianity
2. Gaussianity Tests for Strictly Stationary Processes
3. The Random Projection Test (RP test)
4. Simulations
5. Conclusions
Conclusions

Given a strictly stationary process \(\{X_t\}_{t \in \mathbb{Z}} \),

the RP test check if \(\{X_t\}_{t \in \mathbb{Z}} \) is Gaussian

Procedure:
- Take \(h \in H \) following \(\eta \)
- \(Y_t := \langle (\ldots, X_t), h \rangle \)
- Check if the marginals of the strictly stationary process \(\{Y_t\}_{t \in \mathbb{Z}} \) are Gaussian

Advantage:
- Reject non-Gaussian processes with Gaussian marginals
Thank you very much!