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Abstract. We obtain the first known power-saving remainder terms for the
theorems of Davenport and Heilbronn on the density of discriminants of cubic
fields and the mean number of 3-torsion elements in the class groups of qua-
dratic fields. In addition, we prove analogous error terms for the density of
discriminants of quartic fields and the mean number of 2-torsion elements in
the class groups of cubic fields. These results prove analytic continuation of
the related Dirichlet series to the left of the line ℜ(s) = 1.

1. Introduction

Our primary goal is to prove the following theorems.

Theorem 1.1. For any ε > 0, the number of isomorphism classes of cubic fields

whose discriminant D satisfies 0 < D < X is

(1)
1

12ζ(3)
X +O

(

X7/8+ε
)

,

and the number of isomorphism classes of cubic fields whose discriminant D satisfies

0 < −D < X is

(2)
1

4ζ(3)
X +O

(

X7/8+ε
)

.

Theorem 1.2. Let D denote the discriminant of a quadratic field and let Cl3(D)
denote the 3-torsion subgroup of the ideal class group Cl(D) of D. For any ε > 0,

(3)
∑

0<D<X

#Cl3(D) =
4

3

∑

0<D<X

1 +O
(

X7/8+ε
)

and

(4)
∑

0<−D<X

#Cl3(D) = 2
∑

0<−D<X

1 +O
(

X7/8+ε
)

.

The main terms in both of these theorems were obtained in the seminal work
of Davenport and Heilbronn [17]. The first attempted computational verifications
of the Davenport–Heilbronn theorems were carried out in 1988 by Llorente and
Quer [28], who tabulated all real cubic fields up to discriminant 107. Even up to this
large discriminant they found, somewhat surprisingly, that there are fewer than 86%
as many fields as predicted by Davenport and Heilbronn’s main term. This work
was followed up in 1990 and 1994 by Fung and Williams [20], who tabulated complex
cubic fields up to absolute discriminant 106; they again found fewer than 88% of
the number of fields as suggested by the main term. These computations suggested
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that the convergence to the main term in the Davenport–Heilbronn theorem was
perhaps rather slow, thus raising questions about the magnitude of the error term.1

In 1997, the first author [1] computed cubic fields to absolute discriminant
1011. The computations were found to agree far better with the asymptotics of
Davenport–Heilbronn, and were enough for the author to hypothesize an error
term that is smaller than O(X/(log X)a) for any fixed a. A remainder estimate
somewhat better than O(X exp(−

√
logX)) later appeared in [2].

In 2001, it was conjectured by Roberts [33] that (1), (2) and possibly (3), (4)
hold with an error term of O(X5/6), indeed with an explicit second term in X5/6.
The computations of discriminants of cubic fields to X = 1011 in [1] strikingly
support this conjecture, while the computations, also to 1011, of 3-ranks of class
groups of imaginary quadratic fields in [26], [25] are also supportive.

Theorems 1.1 and 1.2 represent the first known theoretical results exhibiting
“power-saving” error terms in the Davenport–Heilbronn theorems.

Our techniques also allow us to prove analogous power-saving error terms in the
quartic case.

Theorem 1.3. For any ε > 0 and for i = 0, 1, 2, the number of isomorphism

classes of S4-quartic fields having 4 − 2i real embeddings, 2i complex embeddings,

and absolute discriminant less than X is

β

48
·X +O(X23/24+ε) if i = 0;

β

8
·X +O(X23/24+ε) if i = 1;

β

16
·X +O(X23/24+ε) if i = 2,

where β =
∏

p

(1 + p−2 − p−3 − p−4).

Theorem 1.4. Let K3 denote a cubic field, and let Cl2(K3) denote the 2-torsion
subgroup of the ideal class group Cl(K3) of K3. For any ε > 0,

(5)
∑

0<Disc(K3)<X

#Cl2(K3) =
5

4

∑

0<Disc(K3)<X

1 + O
(

X23/24+ε
)

and

(6)
∑

0<−Disc(K3)<X

#Cl2(K3) =
3

2

∑

0<−Disc(K3)<X

1 + O
(

X23/24+ε
)

.

The main terms of both these theorems appeared in [6]. There are exact counts
to X = 107 of S4-quartic fields in [10] and to X = 109 of totally real S4-quartic

1Concerning the count of Fung and Williams, they wrote, rather poetically: “Davenport and
Heilbronn have proved a theorem which says that this density should approach the asymptotic
limit of (4ζ(3))−1 ≈ .20798. If however, the reader were to plot the [empirical] density, he would
be somewhat astonished to see that this density is increasing so slowly that his first impression
would be that it will not make it to the Davenport–Heilbronn limit. Thus it remains a challenging

problem, assuming the Davenport–Heilbronn limit is not in error, to explain the origin of this
slow convergence. . . . [O]n the real side, . . . the problem is further aggravated by even slower
convergence. To date, and to our knowledge, no good quantitative explanation of this phenomenon
has been given.”
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fields in [29] that show a fairly leisurely convergence to the asymptotic limits in
Theorem 1.3. The magnitude of the gap from the main term appears to grow like a
power of X , but in contrast to the cubic case there does not appear to be a strong
signal in the data for a sharp secondary term. In fact, anything from a term of
order X5/6 logX to X7/8 seems possible. As suggested in [11], there may be several
error terms, with the most dominant only slightly so at computed levels. Though
our error exponent 23/24 is only slightly less than 1, it comes in the face of some
pessimism on this topic, as Cohen wrote in [9]: “Here it is hopeless to think that
one may prove anything.”

The story regarding the asymptotics of 2-torsion in the class groups of cubic fields
is quite interesting. The values 5/4 and 3/2 occurring in Theorem 1.4 were first
predicted by the Cohen–Martinet heuristics (the analogues of the Cohen–Lenstra
heuristics for noncyclic, higher degree fields). However, after the computations of
Ennola and Turunen [19] on the sizes of 2-torsion subgroups of class groups of
totally real cubic fields of discriminant less than 105 were published, there was
much skepticism surrounding these heuristics especially at the prime 2 for class
groups of cubic fields (even by Cohen and Martinet themselves; see [12]). Thus it
came as somewhat of a surprise that the asymptotic formulas originally predicted
by Cohen–Martinet are in fact correct. Theorem 1.4 states that not only are the
main terms of these asymptotic formulas correct, but they in fact come with a
power-saving error term.

There is a recent further twist to the story. More extensive computations have
led Malle [30] to propose revised heuristics for the distribution of 2-ranks of class
groups of cubic fields. However, these new densities do in fact yield the same
predictions for average 2-torsion as the original Cohen–Martinet heuristics. When
comparing the actual numbers with those predicted by the main term in Theorem
1.4, the error appears to grow like a power of X , but as with the situation of quartic
fields mentioned above, there is not a clear signal as to a sharp secondary term. It is
possible that there is a term of shape X5/6 logX with a smaller, but not negligible,
tertiary term or terms.

For n > 1, let ξn(s) :=
∑

K |DiscK|−s where K runs over the isomorphism
classes of number fields of degree n. In [8], Cohen asked whether the Dirichlet
series ξn can be analytically continued even to the line ℜ(s) = 1. This was known
only for n = 2 previously. Theorems 1.1 and 1.3 (together with the known results for
smaller Galois groups; see, e.g., [11] for a survey) also prove analytic continuation
of ξ3(s) and ξ4(s), to ℜ(s) > 7/8 and ℜ(s) > 23/24 respectively, with simple poles
located at s = 1.

We note that the power-saving error terms contained in Theorems 1.1 and 1.3
have recently been used by Yang [39] in studying the distributions of low-lying
zeroes (on the line ℜ(s) = 1/2) in families of Artin L-functions, namely, those
corresponding to cubic and quartic fields respectively. In particular, he shows that
the symmetry types of each of these families is symplectic (in the sense of Katz-
Sarnak [27]). See [34] for an introduction to families.

Finally, due to the recent results in [7], it is extremely likely that the methods of
this paper will allow a generalization of Theorems 1.1 and 1.3 to cubic and quartic
extensions respectively of an arbitrary base number field, and will also allow the
analogous generalizations of Theorems 1.2 and 1.4 to any base number field. This
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would, e.g., also allow the analogous extensions of Yang’s results to other families of
L-functions. We hope that these directions will be pursued in the very near future.

Acknowledgments: This work was initiated at the “Explicit Methods in Number
Theory” conference in Oberwolfach’s Mathematics Institute (July 2003), organized
by H. Cohen, H. W. Lenstra Jr., and D. Zagier. We thank the Institute for its
hospitality. The first author was supported by the ANR project ALGOL (07-
BLAN-0248). The second author was supported by a Long-Term Prize Fellowship
from the Clay Mathematics Institute. The third author was supported in part by
the National Science Foundation. We thank the referee for some helpful comments.

2. Cubic fields

Throughout this paper, p denotes a prime number, q a squarefree positive integer,
ω(n) is the number of distinct prime divisors of n and µ is the Möbius function, so
that µ(n) = (−1)ω(n) for a squarefree n and 0 otherwise.

2.1. Sketch. A ring of rank k is a commutative ring with unit that is free of rank
k as a Z-module. Rings of rank 2, 3, and 4 are called quadratic, cubic, and quartic

rings respectively. The discriminant of a ring O of rank k is defined as usual as the
determinant of its “trace form” 〈x, y〉 = Tr(xy) (see, e.g., [5, §2] for further details).

An order is a ring O of some finite rank k which is also an integral domain. Its
field of fractions K = Frac(O) = O ⊗ Q is thus a number field, whose maximal
order is denoted OK . More generally, if O is any ring of finite rank having nonzero
discriminant, then K = O ⊗ Q is an étale extension of Q, i.e., a direct sum of
number fields, and its maximal order is denoted OK . The index of such a ring O
is (OK : O), the cardinality of the finite abelian group OK/O.

The content of a ring O of rank k is the largest integer c such that O/Z ∼=
c · (O′/Z) for some ring O′ of rank k; we say the content of O is ∞ if there is
no such largest integer. If the content c of O is finite, then the “principal part”
O′ is unique. Furthermore, if O has finite content c and index q, then O′ has
content 1 and index q/c2. The ring O is said to be primitive if its content is 1. By
“nondegenerate”, we mean “having nonzero discriminant”.

The crux of our method is the following result, due to Delone–Faddeev [18],
which was later refined to apply also to degenerate rings by Gan–Gross–Savin [21].

Theorem 2.1. The isomorphism classes of cubic rings are in bijection with the

classes of integral binary cubic forms modulo GL(2,Z). The bijection preserves

discriminant and content. In particular, it associates nondegenerate rings to non-

degenerate forms, and primitive rings to primitive forms. Furthermore, it associates

orders to irreducible forms.

We recall that G = GL(2,R) acts on the vector space V of binary forms over R
via

(γ · F )(x, y) = (Det γ)−1F
(

(x, y) · γ
)

.

The action of G on V has two orbits of nonzero discriminant, namely, V +, consisting
of those elements having positive discriminant, and V −, consisting of the elements
having negative discriminant.

Instead of cubic fields, we count isomorphism classes of their maximal orders,
which are associated to certain GL(2,Z)-orbits on VZ, the lattice in V consisting
of integral cubic forms. Davenport and Heilbronn [17] gave a local characterization
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of these “maximal” classes (see also [3, 4]). Via reduction theory for binary cubics
using Siegel sets (see [4]), we are eventually reduced to counting integral points,
satisfying suitable congruences, in certain semi-algebraic sets in V .

Let N±(q,X) denote the number of isomorphism classes of cubic orders of in-
dex divisible by q, whose discriminant D satisfies 0 < ±D < X , respectively. By
inclusion-exclusion, the number of classes of maximal cubic orders, whose discrim-
inant D satisfies 0 < ±D < X is given by

(7)
∑

q≥1

µ(q)N±(q,X).

As maximal cubic orders correspond exactly with cubic fields, (7) also represents
the count in the theorem. Our proof comes down to obtaining a fairly precise
estimate for N±(q,X) for q small, and an O-estimate for q large.

2.2. Orders of large index. Let q be a squarefree integer. In this section, we
obtain an upper bound for N±(q,X).

Lemma 2.2. Letting n+ = 6 and n− = 2, we have

N±(1, X) =
π2

12n±
X +O(X5/6).

In particular, N±(1, X) = O(X).

The main term in Lemma 2.2 was obtained in [16], while the error term appeared
in [35] (see also [4]).

Lemma 2.3. For a fixed order O and n ∈ Z>0, let Ord(O, n) denote the set of

suborders O′ of O with (O : O′) = n, and let ψ(O, n) := #Ord(O, n). Then

n 7→ ψ(O, n) is a multiplicative function.

Proof. If (a, b) = 1, the map

Ord(O, a) × Ord(O, b) → Ord(O, ab),
where (A,B) 7→ A ∩B, is a bijection. �

Lemma 2.4. Let O be a fixed cubic order and q a squarefree integer coprime to

the content of O. The number of suborders of O with index q is bounded by 3ω(q).

Proof. Since n 7→ ψ(O, n) is multiplicative, we can assume that q = p is prime. Let
F be a representative of the class of forms associated to O. The suborders of prime
index p of O are associated to the roots of F in P1(Fp). More precisely, if O =
〈1, u, v〉Z, a suborder O′ = 〈1, u′, v′〉Z of index p in O is given by (u′, v′) = (u, v)M ,

where M =
(

1 0
0 p

)

or
(

p b
0 1

)

, for some 0 ≤ b < p. This submodule is a subring if
and only if F ◦M ≡ 0 (mod p). This amounts to (b : 1) or (1 : 0) being a root
of F (mod p). There are at most deg(F ) = 3 such roots, since the content of F is
coprime to p, so that F 6≡ 0 (mod p). �

The assumption on the content is necessary: if it is divisible by a prime p, then
all p+ 1 submodules of index p in O are subrings.

Remark 2.5. A formula of Datskovsky and Wright [13] asserts that the generating
function for the orders of index n in a fixed maximal cubic order OK is

(8) ηK(s) :=
∑

n≥1

ψ(OK , n)n−s =
ζK(s)

ζK(2s)
ζ(3s− 1)ζ(2s),
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where ζK is the Dedekind zeta function of the cubic number field K. This result
implies Lemma 2.4. Conversely, (8) can be proven using elementary arguments
analogous to the above. If O = OK , then the bound in Lemma 2.4 is sharp if and
only if all prime divisors of q split completely in K. This is proven either from
(8) or a direct argument as above, using the fact that the splitting of F (mod p)
mirrors the splitting of p in K.

Remark 2.6. Shintani [35, 36] proved that
∑

O

|DiscO|−s
=
∑

K

|DiscK|−s
ηK(2s) (ℜ(s) > 1)

has an analytic continuation to C, with simple poles at s = 1 and s = 5/6, where O
and K run through the isomorphism classes of cubic orders and fields respectively.

Lemma 2.7. For q a squarefree integer, we have

N±(q,X) = O
(

X · 3ω(q)/q2
)

.

Proof. Let N(q,X) = N+(q,X) + N−(q,X), and among the classes of orders
counted by N(q,X), let N0(q,X) denote the number of primitive orders. Let O be
such a primitive order. By Lemma 2.3 and [4, Lemma 2], there exists an overorder
O′ such that (O′ : O) = q. It follows that DiscO′ = q−2 DiscO. By Lemma 2.2
there are O(X/q2) such orders O′; moreover, O(X/(q2c′4)) of these O′ have content
equal to c′. Now if O′ has content c′ then, by Lemma 2.4, the number of suborders
O of index q in O′ is at most

3ω(q/(q,c′))
∏

p|(q,c′)

(p+ 1).

Therefore, the number of possibilities for O is

N0(q,X) =
∑

c′≥1

3ω(q/(q,c′))
∏

p|(q,c′)

(p+ 1)O(
X

q2c′4
) = O(X · 3ω(q)/q2).

In the general case, O has a content c and there is a unique primitive order O′

such that c(O′/Z) ∼= (O/Z), so that

N(q,X) =
∑

c≥1

N0

(

q/(c2, q), X/c4
)

= O





3ω(q)

q2
X
∑

c≥1

(c2, q)2

c4



 .

Since q is squarefree, (c2, q) = (c, q) ≤ c and the last sum is O(1). �

We note that Lemma 2.7 could also be deduced via an analysis of the size of the
coefficients of the Dirichlet series in (8).

2.3. Orders of small index. Let q be a squarefree integer. Let S(q) denote the
set of integral binary cubic forms corresponding to cubic rings O having index
divisible by q in some other cubic ring O′. In particular, if the binary cubic form is
nondegenerate, then it lies in S(q) if and only if it corresponds to a nondegenerate
cubic ring having index divisible by q.

The set S(q) is defined by congruence conditions modulo q2 (see [17]). It follows
that S(q) may be expressed as the union of some number k of translates L1, . . . , Lk

of the lattice q2 · VZ. The following result, which follows from [17, Lemma 5] or [4,
Lemma 6], gives us the number k as a function of q.
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Lemma 2.8. Let ν(q) be the multiplicative function defined on squarefree numbers

q, where for prime p,

ν(p) = 1 − (1 − p−3)(1 − p−2) = p−2 + p−3 − p−5.

Then the number k of translates of the lattice q2 · VZ that comprise S(q) is ν(q)q8.

In each of the k translates L1, . . . , Lk of q2 ·VZ which comprise S(q), let a1, . . . , ak,
respectively, denote the smallest positive first coordinate of any element. Thus,
a1, . . . , ak are all integers in the interval [1, q2], and from Lemma 2.8, there are
ν(q)q8 > q6 of them. We now discuss their distribution.

Proposition 2.9. Let q be squarefree and let a be an integer in [1, q2]. The num-

ber of translates Lj of q2 · VZ that comprise S(q) and have smallest positive first

coordinate equal to a is
∏

p|q

p2∤a

p4 ·
∏

p|q

p2|a

(p5 − p4 + p3).

Proof. By the Chinese remainder theorem, it suffices to treat the case q = p, a
prime.

We consider first those forms having content coprime to p. If such a form f ∈ VZ,
when viewed modulo p, has three distinct roots in P1(F̄p), then its discriminant
Disc(f) will also evidently be coprime to p; hence f will correspond to a cubic
order that is maximal at p. Therefore, if a form f with content coprime to p is in
S(p), then modulo p it must have a multiple root in P1(F̄p) and thus in P1(Fp).

The following lemma (cf. [4, §3]) describes those binary cubic forms in S(p)
having a multiple root at (0, 1) ∈ P1(Fp).

Lemma 2.10. Let f(x, y) = ax3 + bx2y + cxy2 + dy3 be a form having content

coprime to p such that f (mod p) has a multiple root at (0, 1) ∈ P1(Fp). Then

f ∈ S(p) if and only if c ≡ 0 (mod p) and d ≡ 0 (mod p2).

Applying the transformation x 7→ x − ry, y 7→ y (resp. x 7→ y, y 7→ x) to the
binary cubic form occurring in Lemma 2.10, we then immediately obtain:

Lemma 2.11. Let f(x, y) be a form having content coprime to p such that f
(mod p) has a multiple root at the point α ∈ P1(Fp). If α = (r, 1), then f ∈ S(p) if

and only if f can be expressed in the form

(9) ax3 + (−3ar + b)x2y + (3ar2 − 2br + c)xy2 + (−ar3 + br2 − cr + d)y3

where c ≡ 0 (mod p) and d ≡ 0 (mod p2). If α = (1, 0), then f ∈ S(p) if and only

if f can be expressed in the form

(10) ax3 + bx2y + cxy2 + dy3

where a ≡ 0 (mod p2) and b ≡ 0 (mod p).

Lemma 2.11 explicitly describes all forms in S(p) that have content coprime to
p and have a given multiple root α ∈ P1(Fp). We may now use this description to
count the total number of binary cubic forms in S(p) modulo p2 that have content
prime to p and first coefficient equal to any given value a ∈ Z/p2Z.

If α = (r, 1) for some r ∈ {0, . . . , p− 1}, then the total number of forms in S(p)
(modulo p2) having content coprime to p, a multiple root at α ∈ P1(Fp), and a
given value of a 6≡ 0 (mod p) is p2 · p · 1 = p3 (i.e., the product of the number of
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possibilities modulo p2 for b, c, and d respectively). However, if a ≡ 0 (mod p),
then b cannot be 0 (mod p), for otherwise the third and fourth coefficients of f
would also vanish (mod p). Thus the total number of forms in S(p) (modulo p2)
having content coprime to p, a multiple root at α = (r, 1) ∈ P2(Fp), and a given
value a ≡ 0 (mod p) is (p2 − p) · p · 1 = p3 − p2.

On the other hand, if α = (1, 0) then all forms in S(p) with content coprime to
p and a multiple root at α satisfy a ≡ 0 (mod p2). For such forms, both c and
d cannot both vanish modulo p for then the whole form would vanish modulo p.
Therefore, the total number of forms in S(p) (modulo p2) having content coprime
to p and a multiple root at α = (1, 0) ∈ P1(Fp) is (p4 − p2) · p = p5 − p3 (i.e., the
product of the number of possibilities modulo p2 for (c, d) and b respectively).

Finally, for any a ≡ 0 (mod p), there are clearly p3 forms (mod p2) having
content a multiple of p, and these all lie in S(p).

We conclude that the total number of forms in S(p) (mod p2) having a given
value of a is

p · p3 = p4, if a 6≡ 0 (mod p);

p · (p3 − p2) + p3 = p4, if a ≡ 0 (mod p), a 6≡ 0 (mod p2);

p(p3 − p2) + (p5 − p3) + p3 = p5 + p4 − p3, if a ≡ 0 (mod p2).

This concludes the proof of Proposition 2.9. �

We now consider fundamental domains for the action of GL(2,Z) on V , as con-
structed in [4, §5.1]. Namely, let F be the usual fundamental domain in GL(2,R)
for GL(2,Z)\GL(2,R), in the sense of Gauss. Then for any vector v ∈ V ±, it is
clear that the multiset Fv ⊂ V is the union of n± fundamental domains for the
action of GL(2,Z) on V ±, where again n+ = | StabGR

(v)| = 6 for v ∈ V + and
n− = | StabGR

(v)| = 2 for v ∈ V −.
Let B = {w = (a, b, c, d) ∈ V : a2 + b2 + c2 + d2 ≤ 10, |Disc(w)| ≥ 1}. Given a

subset S of VZ, by “the expected number of elements of S in a fundamental domain
for GZ\V ±”, we mean the expected number of points of S lying in Fv divided by
n±, as v ranges over B∩V ± with respect to the measure |Disc(v)|−1dv. (For more
details on the reasons for this choice of set B and measure |Disc(v)|−1dv, see [4].)

If S is a GZ-invariant subset (e.g., the set of irreducible forms corresponding
to cubic orders having a given index q, which will be our main interest), then the
expected number of points in S in a fundamental domain for GZ\V ± will coincide
with the exact number in any given single fundamental domain Fv, where v is any
point in V ±. If S is not GZ-invariant, however, then this number of points in S
can vary with the choice of fundamental domain Fv. To control error terms, we
will have occasion to consider non-GZ-invariant subsets S as well; it turns out that,
in our methods, such sets can be controlled much better by averaging over several
fundamental domains rather than by examining a single fundamental domain. In
particular, the minimal cardinality of such a set, over all fundamental domains, is
bounded above by any upper bound for the expected cardinality over these fun-
damental domains. Thus, we will frequently consider the “expected number” of
points in a fundamental domain, rather than the “exact number” in any particular
fundamental domain.

Our choice of fundamental domains implies that “most” points (a, b, c, d) ∈ Fv
(v ∈ B) have “small” a, and indeed a is always at most O(Disc(a, b, c, d)1/4) in size
(see [4, Proof of Lemma 8]). In particular, many points in the fundamental domain
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Fv satisfy a = 0, and are thus reducible as binary cubic forms. The following
lemma, which is Lemma 8 in [4], shows that reducible forms in Fv (v ∈ B) occur
very rarely when a 6= 0.

Lemma 2.12. Let v ∈ B. Then the number of integral binary cubic forms ax3 +
bx2y+cxy2+dy3 ∈ Fv with a 6= 0 that are reducible and have absolute discriminant

less than X is O(X3/4+ε).

We now state the following consequence of Section 5.5 of [4] which, in conjunction
with Lemma 2.12, shows that irreducible points in fundamental domains Fv (v ∈ B)
are well-distributed with respect to congruences.

Theorem 2.13. For a positive integer m, let L be any translate v+m ·VZ (v ∈ VZ)
of the sublattice m·VZ of VZ, and let a denote the smallest positive first coordinate of

any element in L. Let N±(L;X) denote the expected number of lattice points in L,

with first coordinate nonzero and discriminant less than X, lying in a fundamental

domain for GZ\V ±. Then

(11) N±(L;X) = m−4N±(1, X)+O
(

m−3a−1/3X5/6 +m−2a−2/3X2/3 + log X
)

where the implied constant is independent of both m and L.

Remark 2.14. In light of Lemma 2.2, the main term in (11) is dominated by the
error estimate when m ≥ (X/ logX)1/4. Nevertheless, (11) may be read as an
O-estimate for N±(L,X) for larger values of m.

Let R±(q,X) denote the expected number of reducible forms, with first coor-
dinate nonzero, absolute discriminant less than X , and that correspond to a ring
having index a multiple of q, lying in a fundamental domain for GZ\V ±. Recall
that a nondegenerate form f corresponds to an order having index a multiple of q
if and only if it lies in S(q). Thus N±(q,X)+R±(q,X) gives the expected number
of nondegenerate points, in a fundamental domain for GZ\V ±, having nonzero first
coordinate and lying in S(q). This observation allows us to prove:

Corollary 2.15. Let q be a squarefree integer. Then we have

N±(q,X) = ν(q)N±(1, X)−R±(q,X) +O

(

q

ϕ(q)

(

q−2/3X5/6 + q6 log X
)

)

,

where ϕ is Euler’s function.

Proof. To obtain N±(q,X) + R±(q,X), we sum the count in Theorem 2.13 (with
m = q2) over the ν(q)q8 translates of q2 · VZ which comprise S(q). The main term
ν(q)N±(q,X) is thus clear. The second part of the O-estimate follows from the
inequality ν(q)q8 ≤ q7/ϕ(q) together with the third part of the O-estimate in (11).
Let the sequence of values of a which appear as the least positive first coordinates
for the translates of q2 ·VZ comprising S(q) be denoted a1, . . . , ak, where k = ν(q)q8.
We first show that for any value of y with 1 ≤ y ≤ q2, we have

(12)
∑

1≤i≤k
ai≤y

1 ≤ q

ϕ(q)
q4y.
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Towards this end, for a positive integer a, let s(a) denote the largest divisor of a
which is squarefull (for each prime p | s(a), we have p2 | s(a)). Then, by Proposi-
tion 2.9

∑

1≤i≤k
ai≤y

1 =
∑

a≤y

∏

p|q

p2∤a

p4
∏

p|q

p2|a

(p5 − p4 + p3)

≤ q4
∑

a≤y

∏

p|q

p2|a

p = q4
∑

a≤y

(s(a), q)

= q4
∑

d|q

d
∑

a≤y
(s(a),q)=d

1 ≤ q4
∑

d|q

d · y
d2

= q4y
∏

p|q

(

1 +
1

p

)

≤ q

ϕ(q)
q4y.

Thus, we have (12). Now let 0 < c < 1 be an arbitrary, fixed real number. It
follows from (12) and partial summation that

∑

1≤i≤k

a−c
i = (q2)−c

∑

1≤i≤k

1 +

∫ q2

1

cy−1−c
∑

1≤i≤k
ai≤y

1 dy

≤ ν(q)q8−2c +
q

ϕ(q)
q4
∫ q2

1

cy−c dy

< ν(q)q8−2c +
q

ϕ(q)

c

1 − c
q6−2c = O

(

q

ϕ(q)
q6−2c

)

.

Applying this calculation for c = 1/3 gives the first part of our O-estimate. The
middle term in the O-estimate in (11) corresponds to c = 2/3, and this contribu-
tion in the corollary is O( q

ϕ(q)q
2/3X2/3). It is easy to see that this expression is

dominated by the sum of the two error estimates already calculated, so we have the
corollary. �

2.4. Maximal orders.

Theorem 2.16. The number of isomorphism classes of cubic fields whose discrim-

inant D satisfies 0 < ±D < X is

(13)
1

2n±ζ(3)
X +O

(

X7/8 log15/8X
)

,

where n+ = 6 and n− = 2.

Proof. As we have seen, the expression (7) gives the count in the theorem. We sum
(7) for q up to a large number Q (to be chosen later to minimize error terms) using
Corollary 2.15, and truncate the tail using Lemma 2.7. We thus obtain that the
number of such classes of maximal orders is equal to

(14) N±(1, X)
∑

q≤Q

µ(q)ν(q) +O(E1) +O(E2) +O(E3),
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where

E1 =
∑

q≤Q

q

ϕ(q)

(

q−2/3X5/6 + q6 logX
)

,

E2 =
∑

q>Q

N±(q,X),

E3 =
∑

q≤Q

R±(q,X).

A simple argument gives that

(15)
∑

q≤y

q

ϕ(q)
= O(y)

(in fact the sum is asymptotically κy with κ = ζ(2)ζ(3)/ζ(6)). Since

∑

q≤Q

q

ϕ(q)
qc = Qc

∑

q≤Q

q

ϕ(q)
−
∫ Q

1

cyc−1
∑

q≤y

q

ϕ(q)
dy,

we thus have
∑

q≤Q

q

ϕ(q)
qc = O(Q1+c) for c > −1.

Hence,

E1 = O
(

Q1/3X5/6 +Q7 logX
)

.

Further, by Lemma 2.7 we have

E2 ≤ X
∑

q>Q

3ω(q)

q2
.

Note that

∑

q≤y

3ω(q) ≤
∑

n≤y

∑

n=uvw

1 =
∑

uv≤y

∑

w≤y/uv

1 ≤
∑

uv≤y

y

uv
≤ y





∑

u≤y

1

u





2

= O(y log2 y).

Thus,

∑

q>Q

3ω(q)

q2
=

∫ ∞

Q

2

y3

∑

Q<q≤y

3ω(q) dy = O

(∫ ∞

Q

log2 y

y2
dy

)

= O

(

log2Q

Q

)

,

which stands as our estimate for E2.
To estimate E3, note that any reducible form f of absolute discriminant at most

X corresponds to an order of some index j in some étale cubic algebra, where
j ≤ X1/2. Therefore, f occurs among the set of forms counted by R±(q,X) only if
q divides j, and the number of such q is evidently O(jε) = O(Xε). By Lemma 2.12,
we conclude that E3 = O(Xε ·X3/4+ε) = O(X3/4+ε).
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For the main term in (14) we use
∑

q≤Q

µ(q)ν(q) =
∑

q

µ(q)ν(q) −
∑

q>Q

µ(q)ν(q)

=
∏

p

(1 − ν(p)) +O





∑

q>Q

q

ϕ(q)

1

q2





=
1

ζ(2)ζ(3)
+O

(

1

Q

)

,

where the last estimate follows from (15). We finally obtain that (7) is

1

ζ(2)ζ(3)
N±(1, X) +O

(

Q1/3X5/6 +Q7 log X +XQ−1 log2Q
)

.

By Lemma 2.2 and choosing Q = (X log X)1/8, we obtain the desired result. �

3. 3-torsion in the class groups of quadratic fields

We follow the same general strategy as above. Let p be an odd prime (resp. p =
2); an integer D ≡ 0, 1 (mod 4) is fundamental at p if it satisfies p2 ∤ D (resp. D 6≡
0, 4 (mod 16)). An integer D ≡ 0, 1 (mod 4) is a fundamental discriminant if it is
fundamental at all primes. In other words, it is either 1 or the discriminant of a
quadratic field. This provides a link between cubic orders and 3-ranks of quadratic
fields.

Lemma 3.1 (Hasse [22]). The number of isomorphism classes of cubic orders whose

discriminant D is fundamental is (#Cl3(D) − 1)/2.

Remark 3.2. More generally, let K a cubic field with discriminant dK and k :=
Q(

√
dK). Then dK is fundamental at p if and only if the places above p in k are

unramified in the cyclic cubic extension Kk/k.

We say an order is fundamental at p if its discriminant is. Let M±(q,X) be the
number of isomorphism classes of cubic orders O whose discriminant D satisfies
0 < ±D < X and is not fundamental at any prime divisor of q.

Lemma 3.3. Let q be a squarefree positive integer. The number of isomorphism

classes of maximal cubic orders OK whose discriminants satisfy 0 < ±D < X and

which are not fundamental at any prime divisor of q is O(X · 3ω(q)/q2).

Proof. This is due to
∑

0<±D<X

#Cl3(D) = O(X),

which follows from Lemmas 2.2 and 3.1, and a classical inequality bounding the
3-rank of the ring class group modulo q of Q(

√
D) by ω(q)+r3(

√
D)+O(1), already

used by Davenport and Heilbronn [17]. See Datskovsky and Wright [14] for a (more
general) proof yielding 4ω(q) instead of 3ω(q). �

We are now in the position to prove the following analogue of Lemma 2.7.

Lemma 3.4. For q a squarefree integer, we have

(16) M±(q,X) = O
(

X · 6ω(q)/q2
)

.
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Proof. Let O be an order contained in a maximal order OK . Then O fails to be
fundamental at p if and only if Disc(OK) is not fundamental at p, or p divides the
index (OK : O).

Let a, b, c be three integers such that abc = q, hence pairwise coprime. We want
to count the number of (isomorphism classes of) orders O such that

• |Disc(O)| < X ,
• c divides the content of O,
• b divides the index of O in its maximal order OK ,
• OK is not fundamental at any prime divisor of a.

Let cd be the content of such an O, I = bc2de its index, for some integers d, e ≥ 1.
(Note that b and (cd)2 divide the index, but we may have (b, d) > 1; on the other
hand, (b, c) = 1 and b is squarefree.) The maximal order OK containing O has
discriminant less than X/I2 in absolute value, so there are

O
(

X · 3ω(a)/(aI)2
)

possibilities for OK by Lemma 3.3. Let Ω(I) denote the number of prime divisors
of I, counted with multiplicity. Applying repeatedly Lemma 2.4, each of these
(primitive) maximal orders contains at most 3Ω(I) primitive suborders of index I.

Summing over d and e, we obtain O(X · 3Ω(abc2)/(abc2)2) orders, that is

O(X · 3ω(q)/q2 · 3ω(c)/c2).

There are 3ω(q) ways to write q = abc since q is squarefree, which would yield 9ω(q)

instead of 6ω(q) in (16). We instead estimate

∑

a,b,c
abc=q

3ω(c)

c2
=
∑

c|q

3ω(c)

c2
2ω(q/c) = 2ω(q)

∏

p|q

(

1 +
3/2

p2

)

= O(2ω(q)).

�

Let W (q) ⊂ VZ denote the set of all forms corresponding to cubic rings that,
for each prime p | q, are either not maximal at p, or maximal at p but also totally
ramified at p. Thus, for a prime q = p, W (p) = S(p) ∪ T (p) where T (p) denotes
the set of forms corresponding to cubic orders that are maximal but also totally
ramified at p. Note that T (p) contains only irreducible forms, so that S(q) and
W (q) coincide on reducible forms for all q.

Like S(p), the set T (p) is defined by congruence conditions modulo p2. Indeed,
a form is in T (p) if and only if it is maximal at p (which we have already seen is a
condition modulo p2) and it has a triple root modulo p (which is clearly a condition
modulo p).

By the Chinese Remainder Theorem it follows that for all positive integers q,
the set W (q) may be expressed as the union of some number κ ≥ k of translates
L1, . . . , Lκ of the lattice q2 · VZ. The following result, which follows from [17,
Lemma 4] or [4, Lemma 6], gives us the number κ as a function of q.

Lemma 3.5. Let τ(q) be the multiplicative function defined on squarefree numbers

q, where for prime p,

τ(p) = 1 − (1 − p−2)2 = 2p−2 − p−4.

Then the number κ of translates of the lattice q2 ·VZ that comprise W (q) is τ(q)q8.
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In each of the κ translates L1, . . . , Lκ of q2 · VZ which comprise W (q), let
a1, . . . , aκ, respectively, denote the smallest positive first coordinate of any ele-
ment. Thus, a1, . . . , aκ are all integers in the interval [1, q2], and from Lemma 3.5,
there are τ(q)q8 > 2q6 of them. We now discuss their distribution, which is the
analogue of Proposition 2.9 for W (q).

Proposition 3.6. Let q be squarefree and let a be an integer in [1, q2]. The num-

ber of translates Lj of q2 · VZ that comprise W (q) and have smallest positive first

coordinate equal to a is
∏

p|q

p2∤a

(2p4 − p3) ·
∏

p|q

p2|a

(p5 − p4 + p3).

Proof. By the Chinese Remainder Theorem, we may again assume that q = p
is a prime. It suffices to analyze T (p), since S(p) has already been treated in
Proposition 2.9. We begin with the following lemma, which follows easily from
Lemma 2.10.

Lemma 3.7. Let f(x, y) = ax3 + bx2y+ cxy2 + dy3 be a form such that f (mod p)
has a triple root at (0, 1) ∈ P1(Fp). Then f ∈ T (p) if and only if a 6≡ 0 (mod p),
b, c, d ≡ 0 (mod p) and d 6≡ 0 (mod p2).

Applying the transformation x 7→ x − ry, y 7→ y (resp. x 7→ y, y 7→ x) to the
binary cubic form occurring in Lemma 3.7, we then immediately obtain:

Lemma 3.8. Let f(x, y) be a form such that f (mod p) has a triple root at the

point α ∈ P1(Fp). If α = (r, 1), then f ∈ T (p) if and only if f can be expressed in

the form

(17) ax3 + (−3ar + b)x2y + (3ar2 − 2br + c)xy2 + (−ar3 + br2 − cr + d)y3

where a 6≡ 0 (mod p), b, c, d ≡ 0 (mod p) and d 6≡ 0 (mod p2). If α = (1, 0), then

f ∈ T (p) if and only if f can be expressed in the form

(18) ax3 + bx2y + cxy2 + dy3

where a, b, c ≡ 0 (mod p), a 6≡ 0 (mod p2), and d 6≡ 0 (mod p) .

Lemma 3.8 explicitly describes all forms in T (p) that have a given triple root
α ∈ P1(Fp). We may now use this description to count the total number of binary
cubic forms in T (p) modulo p2 whose first coefficient is equal to any given value
a ∈ Z/p2Z.

If α = (r, 1) for some r ∈ {0, . . . , p− 1}, then the total number of forms in T (p)
(modulo p2) having a triple root at α ∈ P1(Fp) and a given value of a 6≡ 0 (mod p)
is p · p · (p− 1) = p3 − p2 (i.e., the product of the number of possibilities modulo p2

for b, c, and d respectively). Of course, the value a ≡ 0 (mod p) does not occur for
forms in T (p) having a triple root at α = (r, 1) ∈ P1(Fp).

On the other hand, if α = (1, 0) then all forms in T (p) having a triple root
at α satisfy a ≡ 0 (mod p), a 6≡ 0 (mod p2). For any such value of a, the total
number of forms in T (p) (modulo p2) having a triple root at α = (1, 0) ∈ P1(Fp) is
(p2 − p) · p · p = p4 − p3 (i.e., the product of the number of possibilities modulo p2

for d, c, and b respectively).
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We conclude that the total number of forms in T (p) (mod p2) having a given
value of a is

p · (p3 − p2) = p4 − p3, if a 6≡ 0 (mod p);

p4 − p3, if a ≡ 0 (mod p), a 6≡ 0 (mod p2);

0, if a ≡ 0 (mod p2).

In conjunction with Proposition 2.9, this yields Proposition 3.6. �

Theorem 1.2 is now proven as in the previous section, starting from

∑

0<±D<X

1 =
3

π2
X +O(X1/2),

∑

0<±D<X

(#Cl3(D) − 1)/2 =
∑

q≥1

µ(q)M±(q,X),

and the analogue of Corollary 2.15 (which may now be proven using Proposition 3.6
in the identical manner):

Lemma 3.9. For a squarefree integer q, we have

M±(q,X) = τ(q)N±(1, X)−R±(q,X) +O

(

2ω(q) q

ϕ(q)

(

q−2/3X5/6 + q6 log X
)

)

,

where τ is as in Lemma 3.5.

4. Quartic fields

4.1. Sketch. We call again an order of Z-rank 4 a quartic order : it is an order in a
quartic number field. More specifically, we say an order is an S4-quartic order if it
is an order in an S4-quartic field, i.e., a quartic number field whose Galois closure
has automorphism group S4.

In order to count S4-quartic number fields, we use an analogue for quartic rings
of Theorem 2.1. To state this result, let VZ now denote the space of pairs (A,B)
of integer-coefficient ternary quadratic forms. Then, excluding degenerate cases,
any element of VZ gives two conics in P2(Q̄) which intersect in four distinct points.
We say that an element (A,B) ∈ VZ is irreducible if the field of definition of one
(equivalently, any) of these intersection points is a quartic field. We say that an
element (A,B) ∈ VZ is totally irreducible if the field of definition of one (equivalently,
any) of these intersection points is an S4-quartic field. We say that two elements
of VZ are in the same class if one can be transformed into the other via an element
of G(Z) = GL(2,Z) × SL(3,Z). One finds that the action of G(Z) on VZ has a
unique polynomial invariant, called the discriminant; it is defined by Disc(A,B) =
Disc(Det(Ax−By)).

Finally, given an element (A,B) ∈ VZ such that A and B are linearly independent
over Q, let Λ denote the rank 2 lattice of integer-coefficient ternary quadratic forms
spanned over Z by A and B, and let Λ0 denote the maximal rank 2 lattice of
integer-coefficient ternary quadratic forms containing Λ. We define the content of
(A,B) as the index of Λ in Λ0. If A and B are not linearly independent over Q,
then we define the content of (A,B) to be ∞.

We then have the following theorem parametrizing quartic rings.
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Theorem 4.1 ([5]). There is a canonical map from the set of classes of pairs of

integer-coefficient ternary quadratic forms (A,B) to the set of isomorphism classes

of quartic rings. This map preserves content and discriminant. In particular,

the map sends nondegenerate elements in VZ to nondegenerate quartic rings, and

elements of content 1 in VZ to primitive quartic rings. Furthermore, the map sends

irreducible elements in VZ to quartic orders, and totally irreducible elements to

S4-quartic orders. Finally, the number of preimages under this map of a given

(isomorphism class of the) quartic ring Q is given by σ(n), where n denotes the

content of Q and σ is the usual sum-of-divisors function. (We take the convention

that σ(∞) = ∞ in the case that the content is ∞.)

Note that primitive quartic orders therefore have a single preimage under the
map of Theorem 4.1.

We recall that an element (g2, g3) ∈ GL(2,R)×GL(3,R) acts on the vector space
V of pairs of ternary quadratic forms over R via

(g2, g3) · (A,B) = (g3Ag
t
3, g3Bg

t
3) · gt

2,

where we view (A,B) ∈ V as a pair of symmetric 3 × 3 matrices. The action of
G = GL(2,R) × GL(3,R) on V has three orbits of nonzero discriminant, namely,
V (0), V (1), and V (2), where V (i) consists of those elements of V that yield a pair
of conics in P2(C) intersecting in 4 − 2i real points and 2i complex points. If

v ∈ V
(i)

Z = VZ ∩ V (i), then the fraction field of the quartic order corresponding to v
via Theorem 4.1 will then have 4−2i real embeddings and 2i complex embeddings.

Instead of S4-quartic fields, we count isomorphism classes of their maximal or-
ders, which are associated to certain G(Z)-orbits on VZ. A local characterization
of these “maximal” classes was given in [5, §4.2]. Via reduction theory for V using
Siegel sets as in [4] and [6], we are reduced (as in the cubic case) to counting integral
points, satisfying suitable congruences, in certain semi-algebraic sets in V .

4.2. Orders of large index. Adopting notation similar to the cubic case, we let
N (i)(q,X) denote the number of classes of pairs of ternary quadratic forms in VZ

corresponding to isomorphism classes of S4-quartic orders of index divisible by q
whose fraction field has 4 − 2i real embeddings and 2i complex embeddings. We
require an upper bound for N (i)(q,X).

Lemma 4.2. [6, Prop. 17] Letting n0 = 24, n1 = 4, and n2 = 8, we have

N (i)(1, X) =
ζ(2)2ζ(3)

2ni
·X +O

(

X23/24+ε
)

.

In particular, N (i)(1, X) = O(X).

In fact, if the methods of [4] are used in conjunction with those of [6], then the
error term above immediately reduces to O(X11/12) (see Corollary 4.12 below).

Lemma 4.3. For q a squarefree integer, we have

N (i)(q,X) = O
(

X · 6ω(q)/q2
)

.

Proof. This follows from Lemma 2.3 and the arguments in [6, §3.2]. (A key ingre-
dient is Nakagawa’s work [32], which proves a quartic analogue of Datskovsky and
Wright’s formula (8).) �
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4.3. Orders of small index. Let q be a squarefree integer. Then the set S(q) of all
pairs of ternary quadratic forms in VZ corresponding to quartic ringsQ having index
a multiple of q in some other quartic ring Q′ is defined by congruence conditions
modulo q2 (see [5]). It follows as with the cubic case that S(q) may be expressed
as the union of some number k of translates L1, . . . , Lk of the lattice q2 · VZ. The
following result, which follows from [5, eq. (45)], gives us the number k as a function
of q.

Lemma 4.4. Let ν(q) be the multiplicative function defined on squarefree numbers

q, where for prime p,

ν(p) = 1 − (1 − p−2)2(1 − p−3)(1 + p−2 − p−3 − p−4)

= p−2 + 2p−3 + 2p−4 − 3p−5 − 4p−6 − p−7 + 3p−8 + 3p−9 − p−10 − p−11.

Then the number k of translates of the lattice q2 · VZ that comprise S(q) is ν(q)q24.

In the cubic case, we examined the distribution of the first coordinate of binary
cubic forms in the corresponding sets S(q). In the quartic case, to obtain the best
possible error terms via our methods, we are led to examine the distribution of the
first four coordinates. For a pair of ternary quadratic forms (A,B) ∈ V , where
A(x1, x2, x3) =

∑

i≤j aijxixj and B(x1, x2, x3) =
∑

i≤j bijxixj we say that the first

four coordinates of (A,B) are given by a11, a12, a13, and a22. In each translate L of
q2 · VZ, we consider its standard member as the one with each entry in the interval
[1, q2]. (Indeed, the space of pairs of ternary quadratic forms VZ may be thought of
as the lattice Z12, and so L, as a coset of q2 ·VZ, has each of its twelve entries running
independently over particular residue classes modulo q2.) For each of the k trans-
lates L1, . . . , Lk of q2 ·VZ which comprise S(q), let (a1, b1, c1, d1), . . . , (ak, bk, ck, dk)
denote the respective quadruples consisting of the first four coordinates in their
standard member. Thus, (a1, b1, c1, d1), . . . , (ak, bk, ck, dk) are all quadruples of in-
tegers in [1, q2]4 = [1, q2] × [1, q2] × [1, q2] × [1, q2], and from Lemma 4.4, there are
k = ν(q)q24 > q22 of them. We now discuss the distribution of these k quadruples.

We begin with the following lemma.

Lemma 4.5. Suppose A is a ternary quadratic form over Z, and let p be any prime.

Let rk(A) denote the rank of A over Z/pZ. Then the number of values (mod p2)
for the quadratic form B, such that (A,B) corresponds to a quartic ring that is not

maximal at p, is

p10 + O(p9), if rk(A) = 3;
≤ 3p10 + O(p9), if rk(A) = 2;

2p11 + O(p10), if rk(A) = 1;
p12, if rk(A) = 0.

Proof. Suppose rk(A) = 3. For (A,B) to be nonmaximal at p, A and B must have
a multiple point of intersection in P2(Fp). The number of B (mod p2) with this
property is p11 +O(p10). Indeed, A has p+1 points in P2(Fp), and the number of B
that have at least a double intersection with A at a given Fp-rational point of A is
p10 +O(p3) (as this amounts to two linear conditions on B mod p). Thus the total
number of B having a multiple point of intersection at an Fp-rational point of A is
p11 + O(p10). Moreover, it is easy to see that the number of B having more than
one multiple point of intersection with A in P2(F̄p) is negligible in comparison, i.e.,
O(p10). Finally, by [5, §4.2], a proportion of 1/p + O(1/p2) of these p11 + O(p10)
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values of B will yield a quartic ring that is nonmaximal at p, yielding a total of
p10 +O(p9) possible B’s in the case rk(A) = 3.

If rk(A) = 2, then in P2(F̄p), the degenerate conic A is the union of two distinct
lines. By similar reasoning, the number ofB (mod p2) having a multiple intersection
point with A is at most 2p11 + p11 = 3p11, and again a proportion of 1/p+O(1/p2)
of these will be nonmaximal at p, yielding the claim in this case.

If rk(A) = 1, then in P2(Fp), the (degenerate) conic A is a double line. Any B will
have a multiple intersection with A, when viewed as conics in P2(Fp); generically,
there will be two double points of intersection. For each of these two double points
of intersection, one obtains a proportion of 1/p+O(1/p2) of these values of B that
are nonmaximal at p. Thus we obtain a total of 2p11 +O(p10) values of B for which
(A,B) is not maximal at p.

Finally, if rk(A) = 0, then B can be any ternary quadratic form. All p12 values
of B will give an (A,B) that is not maximal at p. This completes the proof. �

We now prove the following two propositions which give information on the
distribution of the quadruple (a11, a12, a13, a22) = (a, b, c, d) in S(p).

Proposition 4.6. Fix a, b, c, d ∈ Z/p2Z, and suppose that at least one element of

the set {a, b, c}, and at least one of the set {a, b, d}, is nonzero modulo p. Then the

number of (A,B) (mod p2), with these values of a, b, c, d, such that (A,B) is not

maximal at p is p14 +O(p13).

Proof. If a, b, c, d satisfy the conditions of the proposition, then Det(A), as a (qua-
dratic, linear, or constant) polynomial function of u = a23 and v = a33, does not
identically vanish. Hence the number of possible values of u, v (mod p2) for which
Det(A) is nonzero (mod p) is p4 + O(p3). By the lemma, the number of values of
(A,B) with rk(A) = 3, (A,B) nonmaximal at p, and the given values of a, b, c, d,
is (p4 +O(p3))(p10 +O(p9)) = p14 +O(p13).

It remains to consider those choices of u, v for which A has vanishing determinant
(mod p). The number of such choices for u, v is O(p3). The rank of A (mod p) will
then be either 2 or 1 in such a case. In particular, the number of u, v modulo p2 for
which rk(A) = 2 is O(p3). By Lemma 4.5, the number of values of (A,B) (mod p2)
with rk(A) = 2, (A,B) nonmaximal at p, and the given values of a, b, c, d, is at
most (O(p3))(3p10 +O(p9)) = O(p13).

Finally, we consider the case rk(A) = 1. Note that A (mod p) will be of rank 1
only if b2 − 4ad ≡ c2 − 4av ≡ bc− 2au ≡ 0. If a is nonzero (mod p), then (assuming
p > 2) v and u are determined (mod p) by the given information, so there are exactly
p2 choices possible for the pair (u, v) (mod p2) for which the condition rk(A) = 1
holds. If a is zero (mod p), then for rk(A) = 1 to hold, we also then need b ≡ 0
(mod p) and c ≡ 0 (mod p), a contradiction. Thus, regardless of the value of a,
there are at most p2 values of u, v (mod p2) yielding rk(A) = 1. By the lemma, we
conclude that the number of values of (A,B) with rk(A) = 1, (A,B) nonmaximal
at p, and our given values of a, b, c, d is at most p2(2p11 + O(p10)) = O(p13). The
proposition follows. �

Proposition 4.7. Suppose a, b, c, d ∈ Z/p2Z and either a ≡ b ≡ c ≡ 0 (mod p) or

a ≡ b ≡ d ≡ 0 (mod p). Then the number of (A,B) (mod p2), with these values of

a, b, c, d, such that (A,B) is not maximal at p is at most 6p14 +O(p13).
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Proof. The condition on a, b, c, d implies that Det(A) vanishes (mod p). Thus the
rank of A is at most 2, regardless of u = a23 and v = a33. The number of values of
u and v (mod p2) with rk(A) = 2 is thus less than p4; by Lemma 4.5, the number
of (A,B) not maximal at p, with rk(A) = 2 and the given values of a, b, c, d, is at
most 3p14 +O(p13).

For A (mod p) to be rank 1 for some values of u and v, first assume that
a ≡ b ≡ c ≡ 0 (mod p). Then rk(A) = 1 occurs when u2 ≡ 4dv (mod p), so if d
is not zero (mod p), then v (mod p) is determined by u (assuming p > 2), while if
d ≡ 0 (mod p), then u ≡ 0 (mod p) and v may be any nonzero residue (mod p).
Thus, regardless of the value of d, the number of values of u and v (mod p2) with
rk(A) = 1 in this case is at most p3. Note the hypotheses a ≡ b ≡ d ≡ 0 (mod p)
and rk(A) = 1 implies too that c ≡ 0 (mod p), the case we have just considered.
By Lemma 4.5, the number of (A,B) not maximal at p, with rk(A) = 1 and the
given values of a, b, c, d, is at most 2p14 +O(p13).

Finally, for A (mod p) to be rank 0, we must have u ≡ v ≡ 0 (mod p). The
number of values of u and v (mod p2) is thus p2. By Lemma 4.5, the number of
(A,B) not maximal at p, with rk(A) = 0 and the given values of a, b, c, d, is at most
p14. The proposition follows. �

Corollary 4.8. Let q be squarefree and let (a, b, c, d) be a quadruple of integers

in [1, q2]4. The number of translates Lj of q2 · VZ that comprise S(q) and have

(a, b, c, d) as the first four coordinates of some member is

6f
(

q14 +O
(

q13
))

,

where

0 ≤ f ≤
∑

p|gcd(q,a,b,cd)

1.

Proof. This follows from Propositions 4.6 and 4.7, together with the Chinese Re-
mainder Theorem. �

We construct fundamental domains for the action of GZ on the 12-dimensional
real vector space V in a manner analogous to that used in the cubic case (see [6,
§2.1]), and the phrase “expected number” is also then defined analogously. As
in the cubic case, our choice of fundamental domains Fv ⊂ V ensures that the
first coordinate a11 is generally small in these domains, and often 0. Although the
condition a11 = 0 this time does not imply that (A,B) is not totally irreducible,
we still have ([6, Lemma 11]):

Lemma 4.9. The expected number of (A,B) ∈ Fv with a11 = 0 that are totally

irreducible and have absolute discriminant less than X is O(X11/12).

Moreover, in analogy with Lemma 2.12, we also have:

Lemma 4.10. The number of (A,B) ∈ Fv with a11 6= 0 that are not totally

irreducible and have absolute discriminant less than X is O(X11/12+ε).

Proof. This follows from [6, Lemmas 12 and 13] and [37, 38]. �

We are now ready to prove the quartic analogue of Theorem 2.13.

Theorem 4.11. For a positive integer m, let L be any translate v+m ·VZ (v ∈ VZ)
of the sublattice m ·VZ of VZ, and let (a, b, c, d) denote the smallest positive first four
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coordinates of any element in L. For i = 0, 1, 2, let N (i)(L;X) denote the expected

number of lattice points in L, with first coordinate nonzero and discriminant less

than X, lying in a fundamental domain for GZ\V (i). Then

(19) N (i)(L;X) =
N (i)(1, X)

m12
+O

(

∑

S⊂{aij ,bij}

X(|S|+αS+βS+γS+δS)/12

m|S|aαSbβScγSdδS
+ log X

)

,

where S ranges over the nonempty proper subsets of the set of 12 coordinates

{aij, bij} on VZ, and αS , βS , γS , δS ∈ [0, 1] are real constants that depend only on

S and satisfy |S| + αS + βS + γS + δS ≤ 11. Moreover, it is possible to choose

αS , βS , γS , δS ∈ [0, 1) for all S except for the following three sets:

(i) {b11, b12, b13, b22, b23, b33}, for which αS, βS, γS, δS = 1;
(ii) {a22, a23, a33, b22, b23, b33}, for which δS = 0 and αS, βS, γS = 1;
(iii) {a13, a23, a33, b13, b23, b33}, for which γS = 0 and αS, βS, δS = 1.

Proof. We proceed as in the proof of Theorem 2.13, combining the error estimate
techniques of [4] and Section 2 with the work of [6]. In particular, for each nonempty
proper subset S of the coordinates on V , we wish to compute the expected m-scaled
volume of the projection of the region RX onto the coordinate hyperplane spanned
by the coordinates in S. This expected volume is again expressible as an integral
over the variables of the Siegel set (see [6, §2.1]) and can be bounded by an absolute
constant times an integral of the form

(20) m−|S|

∫ X1/12

λ=C

∫ ∞

s1,s2,s3=1/2

λ|S|se1

1 s
e2

2 s
e3

3

dλ

λ

ds1
s1

ds2
s2

ds3
s3
,

where, in the integral, the values of λ, s1, s2, s3 are restricted to the region where

(21) as1s
4
2s

2
3 ≤ λ, bs1s2s

2
3 ≤ λ, cs1s2 ≤ λs3, and ds1s

2
3 ≤ λs22,

and C is an absolute positive constant.
For a given choice of S ⊂ {aij , bij}, the values of e1, e2, e3 are determined by

(22) se1

1 s
e2

2 s
e3

3 = s−2
1 s−6

2 s−6
3

∏

t∈S

s
w1(t)
1 s

w2(t)
2 s

w3(t)
3 ,

where the values of wi(t) for t ∈ S and i = 1, 2, 3 are given in the following table:

(23)

t a11 a12 a13 a22 a23 a33 b11 b12 b13 b22 b23 b33
w1(t) −1 −1 −1 −1 −1 −1 1 1 1 1 1 1
w2(t) −4 −1 −1 2 2 2 −4 −1 −1 2 2 2
w3(t) −2 −2 1 −2 1 4 −2 −2 1 −2 1 4

Using (23), we estimate the integral in (20) for each set S, and the result follows.
We give some details on the estimates for these 4094 integrals. Note that e1 ≤

4, e2 ≤ 6, e3 ≤ 6. Let e = max{e1, e2, e3}. If e < 0, the integral in (20) is
O(X |S|/12), so that the theorem is proved with αS = βS = γS = δS = 0. This also
proves the theorem in each case with |S| = 11, since e < 0 for each such S.

Say e = e1 ≥ 0. Taking the geometric mean of the inequalities in (21), we have

(24) s1 ≤ λ

(abcd)1/4s2s
5/4
3

.

If e1 = 0, replace e1 with 1. If e2 < e1, the integral is at most a constant times

(25) (abcd)−e1/4X(|S|+e1)/12.
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Since |S| + e1 ≤ 11, this bound is acceptable if e1 ≤ 3, while if e1 = 4, we are in
the case of our first exceptional set (i). Also, if e = e1 = e2, then a short search
through possibilities in (23) shows that e1 = e2 = 1 and |S| = 5. Replacing e1 with
2, the estimate (25) is acceptable.

Next consider e = e2 ≥ 0. From the above, we may assume e1 < e2. Solving (24)
for s2 and using this in the evaluation of the integral gives us at most a constant
times (abcd)−e2/4X(|S|+e2)/12, which is acceptable if |S| + e2 ≤ 11 and e2 ≤ 3. (As
before, we have increased e2 to 1 in the case that it is 0.) If |S|+ e2 ≥ 12 or e2 ≥ 4,
then we take the geometric mean of the first three inequalities in (21), getting

s2 ≤ λ1/2

(abc)1/6s
1/2
1 s

1/2
3

.

In these cases e1, e3 < e2/2, except if e2 = 4, where there is a possibility that
e3 = 2. In this latter case we replace e2 with 5. We thus have the estimate
(abc)−e2/6X(|S|+e2/2)/12 for the integral, which is acceptable if e2 ≤ 5, since then
|S|+ e2/2 ≤ 11. If e2 = 6, we have exceptional set (ii) and this integral calculation
supports our assertion.

Finally consider the case e = e3 ≥ 0. We may assume that e1, e2 < e3. Solving
(24) for s3, we get the estimate

s3 ≤ λ4/5

(abcd)1/5s
4/5
1 s

4/5
2

.

If e3 ≤ 4, then e1, e2 < e3 imply that e1, e2 < (4/5)e3, and (replacing e3 by 1 when
it is 0) the integral is majorized by (abcd)−e3/5X(|S|+(4/5)e3)/12. This estimate is
acceptable, since |S| + e3 ≤ 11 when e3 ≤ 4. If e3 = 5 or 6, then e1 < 0, e2 ≤ 1.
The geometric mean of the first, second, and fourth inequalities in (21) gives

s3 ≤ λ1/2

(abd)1/6s
1/2
1 s

1/2
2

.

Thus, the integral is majorized by (abd)−e3/6X(|S|+e3/2)/12. This estimate is ac-
ceptable when e3 = 5, which occurs only with |S| = 5. When e3 = 6, we have
exceptional set (iii), and the integral estimate supports our assertion in this case.
This concludes our proof. �

Let R(i)(q,X) denote the expected number of points (A,B) in a fundamental
domain that have first coordinate nonzero, are not totally irreducible, have absolute
discriminant less than X , and correspond to a quartic order having index divisible
by q. (Thus, these are contained among the points considered in Lemma 4.10.) To
obtain an estimate for N (i)(q,X) +R(i)(q,X), up to an error of O(X11/12) due to
the points in Lemma 4.9, we sum the estimate of Theorem 4.11 withm = q2 over the
ν(q)q24 translates of the lattice q2 · VZ that comprise S(q). We use Proposition 4.8
to sum the expression in the variables a, b, c, d, just as we used Proposition 2.9 in
the proof of Corollary 2.15.
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Corollary 4.12. There is a constant θ such that if q is a positive squarefree integer,

then

N (i)(q,X) = ν(q)N (i)(1, X)−R(i)(q,X)

+O

(

(

q

ϕ(q)

)θ
(

X11/12 + q2X5/6 log4 X + q22 log X
)

)

.

The constant θ in this result depends on the the O-constant in Corollary 4.8, the
function f(a, b, c, d) there, and also on the fact that ν(q)q2 = O

(

(q/ϕ(q))2
)

. The
exact determination of θ is unimportant to our results.

It is possible to slightly improve Corollary 4.12 by being a little more careful
with the three extreme sets S in the proof of Theorem 4.11, obtaining logX in
place of log4X . This improvement is also unimportant to our results.

4.4. Maximal orders. We are now ready to prove Theorem 1.3, which we restate
in slightly stronger form.

Theorem 4.13. For i = 0, 1, 2, the number of isomorphism classes of S4-quartic

fields having 4 − 2i real embeddings and absolute discriminant less than X is

(26)
β

2ni
X +O

(

X23/24 log29/6X
)

,

where β is as defined in Theorem 1.3.

Proof. By inclusion-exclusion, the number of classes of maximal quartic orders
having 4 − 2i real embeddings and absolute discriminant less than X is given by

(27)
∑

q≥1

µ(q)N (i)(q,X).

As maximal quartic orders correspond exactly with quartic fields, (27) also repre-
sents the count in the theorem. We sum (27) for q up to a large number Q (to
be chosen later to minimize error terms) using Corollary 4.12, and truncate the
tail using Lemma 4.3. We thus obtain that the number of such classes of maximal
orders is equal to

(28) N (i)(1, X)
∑

q≤Q

µ(q)ν(q) +O(E1) +O(E2) +O(E3),

where

E1 =
∑

q≤Q

(

q

ϕ(q)

)θ

(X11/12 + q2X5/6 log4X + q22 logX), E2 =
∑

q>Q

N (i)(q,X),

and E3 =
∑

q≤Q R
(i)(q,X).

It follows from Lemmas 4.9, 4.10, and an argument analogous to the one in
the cubic case, that E3 = O(X11/12+ε). Note that generalizing (15) we have
∑

q≤y(q/ϕ(q))θ = O(y) for any fixed θ. Using Lemma 4.3 and proceeding just

as in the proof of Theorem 2.16 to estimate E1 and E2, we then obtain that (27) is

β

ζ(2)2ζ(3)
N (i)(1, X)+O

(

QX11/12 +Q3X5/6 log4X +Q23 log X +XQ−1 log5Q
)

.

By Lemma 4.2 and choosing Q = X1/24(logX)1/6 we obtain the desired result. �
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5. 2-torsion in the class groups of cubic fields

We follow an analogous strategy. Let O be an order in an S4-quartic field, and
let p ∈ Z be a prime such that O is maximal at p. We say p is overramified in O if
(p) factors into primes in O as P 4, P 2, or P 2

1P
2
2 . Similarly, the archimedean prime

of Z (the “prime at infinity”) is overramified in O if it factors into the product of
two ramified places (i.e., O⊗R is totally complex). A quartic maximal order O (or
the quartic field K4 in which it lies) is nowhere overramified if no prime of Z (finite
or infinite) is overramified in O.

The significance of being “nowhere overramified” is as follows. Given an S4-
quartic field K4, let K24 denote its Galois closure. Let K3 denote a cubic field
contained in K24 (the “cubic resolvent field”), and let K6 be the unique quadratic
extension of K3 such that the Galois closure of K6 over Q is precisely K24. Then
one checks that the quadratic extension K6/K3 is unramified precisely when the
quartic field K4 is nowhere overramified. Conversely, if K3 is a noncyclic cubic
field, and K6 is an unramified quadratic extension of K3, then the Galois closure
of K6 is an S4-extension K24 which contains up to conjugacy a unique, nowhere
overramified quartic extension K4.

In particular, we have following lemma due to Heilbronn.

Lemma 5.1 (Heilbronn [23]). Let K3 be a noncyclic cubic field. The number of

isomorphism classes of S4-quartic fields K4 whose cubic resolvent field is isomorphic

to K3 is #Cl2(K3) − 1.

Let M (i)(q,X) be the number of isomorphism classes of S4-quartic orders O with
4 − 2i real embeddings and absolute discriminant less than X such that, at every
prime p dividing q, O is either nonmaximal at p or is maximal but overramified at
p. Then:

Lemma 5.2. For q a squarefree integer, we have

(29) M (i)(q,X) = O(X · 6ω(q)/q2).

This follows from Lemma 2.3 and [6, §3.2].
Let W (q) ⊂ VZ denote the set of all elements corresponding to quartic rings that,

for every prime p dividing q, are either nonmaximal at p or are maximal at p but
are overramified at p. Thus, for a prime q = p, W (p) = S(p) ∪ T (p), where T (p)
denotes the set of elements in VZ corresponding to quartic orders that are maximal
at p and overramified at p.

Like S(p), the set T (p) is defined by congruence conditions modulo p2. Indeed,
an element (A,B) ∈ VZ is in T (p) if and only if (a) it corresponds to a quartic
order maximal at p (which we have already seen is a condition modulo p2) and (b)
it has either a quadruple point of intersection or two double points of intersection
in P2(F̄p) (which is clearly a condition modulo p).

By the Chinese Remainder Theorem it follows that for all positive squarefree
integers q, W (q) may be expressed as the union of some number κ ≥ k of translates
L1, . . . , Lκ of the lattice q2 ·VZ. The following result, which follows from [6, eq. (37)],
gives us the number κ as a function of q.

Lemma 5.3. Let τ(q) be the multiplicative function defined on squarefree numbers

q, where for prime p,

τ(p) = 1−(1−p−2)2(1−p−3)2 = 2p−2+2p−3−p−4−4p−5−p−6+2p−7+2p−8−p−10.
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Then the number κ of translates of the lattice q2 ·VZ that comprise W (q) is τ(q)q24.

For each of the κ translates L1, . . . , Lκ of q2 · VZ which comprise W (q), let
(a1, b1, c1, d1), . . . , (aκ, bκ, cκ, dκ) denote the respective quadruples consisting of the
first four coordinates in their standard member. Note that each (ai, bi, ci, di) is in
[1, q2]4. From Lemma 5.3, we have κ = τ(q)q24 > 2q22, so on average, each integer
quadruple in [1, q2]4 is hit > 2q14 times. We now discuss the finer distribution of
these κ quadruples.

We first prove the following lemma, which is the analogue of Lemma 4.5 for T (p).

Lemma 5.4. Suppose A is a ternary quadratic form over Z, and let p be any prime.

Let rk(A) denote the rank of A over Z/pZ. Then the number of values (mod p2)
for the quadratic form B, such that (A,B) ∈ T (p) is

p10 + O(p9), if rk(A) = 3;
p10 + O(p9), if rk(A) = 2;
p12 + O(p11), if rk(A) = 1;
0, if rk(A) = 0.

Proof. Suppose rk(A) = 3. Then the number of B (mod p2) resulting in two
double points of intersection in P2(F̄p) is p10 + O(p9), while the number resulting
in a quadruple point of intersection is O(p9). The proportion of these that yield
a quartic order not maximal at p is as before O(1/p), by [5, §4.2]. Thus the total
number of B (mod p2) such that (A,B) ∈ T (p) is p10 +O(p9), as claimed.

If rk(A) = 2, then in P2(F̄p), the degenerate conic A is the union of two distinct
lines. The only values of B giving a quadruple point of intersection with A, as conics
in P2(F̄p), are those that yield degenerate conics having the same double point in
P2(F̄p) as A. It is easy to see using [6, §4.2] that such (A,B) cannot be maximal at
p. Meanwhile, the number of B (mod p2) such that (A,B) yield two double points
of intersection in P2(F̄p) is p10 + O(p9), and again a negligible proportion O(1/p)
of these give quartic rings not maximal at p. This proves the claim in this case.

If rk(A) = 1, then in P2(Fp), the (degenerate) conic determined by A is a double
line. As conics in P2(F̄p), any B that does not share a component with A will have
either a quadruple point or two double points of intersection with A. A negligible
number of these B (mod p2) will correspond to quartic rings nonmaximal at p.
Thus we obtain a total of p12 +O(p11) values of B in this case.

Finally, if rk(A) = 0, then as already noted in the proof of Lemma 4.5, no B
gives an (A,B) that is maximal at p. This completes the proof. �

Proposition 5.5. Fix a, b, c, d ∈ Z/p2Z. Then modulo p2, the number of (A,B) ∈
T (p) with given values of a, b, c, d is

p14 + O(p13), if b2 − 4ad 6≡ 0 (mod p);
≤ 2p14 + O(p13), if b2 − 4ad ≡ 0 (mod p) but gcd(a, c) 6≡ 0 (mod p);

p15 + O(p14), otherwise.

Proof. If b2 − 4ad 6≡ 0 (mod p), then Det(A), as a polynomial function of u = a23

and v = a33, does not identically vanish. Hence the number of possible values of u,
v (mod p2) for which Det(A) is nonzero (mod p) is p4 +O(p3). By the lemma, the
number of values of (A,B) (mod p2) with rk(A) = 3, (A,B) ∈ T (p), and the given
values of a, b, c, d, is (p4 + O(p3))(p10 + O(p9)) = p14 + O(p13). We now consider
those O(p3) choices of u, v (mod p2) for which A has vanishing determinant (mod p).
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The rank of A (mod p) will be 2 in such a case. By Lemma 5.4, the number of
values of (A,B) (mod p2) with rk(A) = 2, (A,B) ∈ T (p), and the given values of
a, b, c, d, is then (O(p3))(p10 +O(p9)) = O(p13). This takes care of the first case.

Suppose we are now in the second case, i.e., b2 − 4ad ≡ 0 (mod p) but at least
one of a, c 6≡ 0 (mod p). In this case, by the same argument as in the first case,
we have at most p14 + O(p13) possible values for (A,B) (mod p2) with rk(A) ≥ 2,
(A,B) ∈ T (p), and the given values of a, b, c, d. However, in this second case, we
also have the possibility rk(A) = 1. Note that A (mod p) will be of rank 1 only if
c2 − 4av ≡ bc− 2au ≡ 0. If a is nonzero (mod p), then (assuming p > 2) v and u
are determined (mod p) by the given information, so there are exactly p2 choices
possible for the pair (u, v) (mod p2) for which the condition rk(A) = 1 holds. If
a is zero (mod p), then for rk(A) = 1 to hold, we also then need c ≡ 0 (mod p),
a contradiction. Thus, regardless of the value of a, there are at most p2 values of
u, v (mod p2) yielding rk(A) = 1. By Lemma 5.4, we conclude that the number of
values of (A,B) with rk(A) = 1, (A,B) ∈ Tp, and our given values of a, b, c, d is at
most p2(p12 +O(p11)) = p14, which takes care of this case.

Finally, we consider the last case where b2 − 4ad ≡ a ≡ c ≡ 0 (mod p), which
also implies b ≡ 0 (mod p). The condition on a, b, c, d implies that Det(A) vanishes
(mod p). Thus the rank of A is at most 2, regardless of u and v. The number of
values of u and v (mod p2) with rk(A) = 2 is thus less than p4; by Lemma 5.4, the
number of (A,B) ∈ Tp, with rk(A) = 2 and the given values of a, b, c, d, is at most
p14 +O(p13).

Now for A (mod p) to be rank 1 for some values of u and v, we must have
u2 ≡ 4dv (mod p), so if d is not zero (mod p), then v (mod p) is determined by u
(assuming p > 2), while if d ≡ 0 (mod p), then u ≡ 0 (mod p) and v may be any
nonzero residue (mod p). Thus, regardless of the value of d, the number of values
of u and v (mod p2) with rk(A) = 1 in this case is p3. By Lemma 5.4, the number
of (A,B) not maximal at p, with rk(A) = 1 and the given values of a, b, c, d, is
p3(p12 +O(p11)) = p15 +O(p14). This completes the proof of the proposition. �

Corollary 5.6. Let q be squarefree and let (a, b, c, d) be a quadruple of integers

in [1, q2]4. The number of translates Lj of q2 · VZ that comprise W (q) and have

(a, b, c, d) as the first four coordinates of some member is
(

2g gcd(q, a, b, c) + 6f
) (

q14 +O
(

q13
))

,

where f is as in Corollary 4.8 and

0 ≤ g ≤
∑

p|gcd(q,b2−4ad)
p∤gcd(a,c)

1.

Proof. This follows from Corollary 4.8 and Proposition 5.5, together with the Chi-
nese Remainder Theorem. �

Let S(i)(q,X) denote the expected number of points (A,B) in a fundamental
domain that have first coordinate nonzero, are not totally irreducible, have absolute
discriminant less than X , and correspond to a quartic order that for each prime p
dividing q has either index divisible by p or is maximal at p but is overramified at
p. Combining Theorem 4.11 and Corollary 5.6, we have the following result that is
completely analogous to Corollary 4.12.
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Corollary 5.7. Let q be a positive squarefree integer. There is some positive con-

stant θ such that for i = 0, 1, 2,

M (i)(q,X) = τ(q)M (i)(1, X) − S(i)(q,X)

+O

(

2ω(q)

(

q

ϕ(q)

)θ
(

X11/12 + q2X5/6 log4 X + q22 log X
)

)

.

We are now ready to prove Theorem 1.4. We do so as we did Theorem 1.3 in
the previous section, but we also use Theorem 1.1 plus the identities

∑

0<Disc(K3)<X

(#Cl2(K3) − 1) =
∑

q≥1

µ(q)M (0)(q,X),

∑

0<−Disc(K3)<X

(#Cl2(K3) − 1) =
∑

q≥1

µ(q)M (1)(q,X),

where K3 runs over noncyclic cubic fields.
Finally, we note that Wong’s estimate [37, 38]

∑

0<Disc(K3)<X
K3 cyclic

(#Cl2(K3) − 1) = O(X5/6+ε)

shows that the contribution of cyclic fields to the sums in (5) and (6) is negligible;
thus the asymptotics of these sums, and the stated error terms, do not change
regardless of whether or not these sums include cyclic cubic fields.
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