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Abstract. The Cohen-Lenstra-Martinet heuristics give precise predictions
about the class groups of a “random” number field. The 3-rank of quadratic
fields is one of the few instances where these have been proven. In the present
paper, we prove that, in this case, the rate of convergence is at least sub-
exponential. In addition, we show that the defect appearing in Scholz’s mirror
theorem is equidistributed with respect to a twisted Cohen-Lenstra density.

1. Introduction

Through the far-reaching heuristics of Cohen, Lenstra and Martinet [4, 5] and
the subsequent results in that direction by Gerth [14], and Datkovsky–Wright
[7], a picture is emerging of how the class group of a “random” number field
should look like, expressed in terms of natural densities. Even conjecturally, much
remains to be understood (see [6] for instance). In addition, to our knowledge
nobody has so far risked a conjecture about the actual speed of convergence, the
available experimental data being rather scarce.

One of the rare proven results on class group densities is due to Davenport
and Heilbronn [10, 11]. They devised a clever bijection between isomorphism
classes of cubic fields and an explicit set of classes of integral binary cubic forms,
compatible with the arithmetic structure of the fields. They used it to compute
the mean 3-rank of quadratic fields and related densities. (In an earlier book,
Delone–Faddeev [12, §15] had studied the same application in a simpler setting.
It then yielded a one-to-one correspondence between orders of cubic fields and
classes of integral irreducible binary cubic forms.)

In the present paper, we show that, contrary to what computed data could
have suggested, these densities converge (at least) at a sub-exponential rate (see
Theorem 1.1 for a precise statement), and this suggests that the Cohen-Lenstra-
Martinet densities also converge at least that fast.

More precisely, we will call fundamental discriminants the discriminants of
number fields K of degree at most 2 over Q. That is the set of integers ∆
without odd square factors, such that ∆ ≡ 1 mod 4 or ∆ ≡ 8 or 12 mod 16.
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Denote by ∆±(X) the intersection of the half-line R± with {∆ ∈ Z, |∆| 6 X},
and ∆±

fund(X) the subset of fundamental discriminants in ∆±(X). Then, setting

Lc(X) = exp
(
− c(log X log log X)1/2

)
,

the main result of this paper, proven in Section 3.3.1, is as follows.

Theorem 1.1. Let N±
3 (X) the number of cubic fields belonging to ∆±(X), and

set λ+ = 1/3, λ− = 1. For all c < 24−1/2, we have:

(1)
N±

3 (X)

X
=

λ±

4ζ(3)
+ Oc(Lc(X)) ,

(2)
∑

∆∈∆±fund(X)

3r3(∆)
/ ∑

∆∈∆±fund(X)

1 = 1 + λ± + Oc(Lc(X)) ,

where r3(∆) denotes the 3-rank of Q(
√

∆).

Let Cl(∆) denote the class group of Q(
√

∆), Ω be the set of all Cl(∆), ∆ > 0,
and A ⊆ Ω. Following Cohen and Lenstra, we consider, when the limit exists,

P (A) = lim
X→+∞

∑
∆∈∆+

fund(X)

1A(Cl(∆))
/ ∑

∆∈∆+
fund(X)

1 ,

P is only finitely additive, but is one’s best choice to define a “probability” on
Ω. If ∆ is a positive fundamental discriminant, we define the defect δ(∆) by
r3(−3∆) = r3(∆) + 1 − δ(∆). A classical mirror theorem, due in this case to
Scholz [16], implies that δ(∆) belongs to {0, 1}. We will prove in Section 3.3.2:

Theorem 1.2. When X tends to +∞, we have∑
∆∈∆+

fund(X)

δ(∆)=0

3r3(∆)
/ ∑

∆∈∆+
fund(X)

3r3(∆) =
1

2
+ Oc(Lc(X)) .

In other words, δ(∆) is equidistributed with respect to a twisted Cohen–Lenstra
density.
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which prompted our §3.3.2. We are also grateful to the referee for his comments.
Finally, we are indebted to the Max-Planck-Institut für Mathematik (Bonn) for its
financial support and for being the wonderful working place it is.

2. Cubic forms and congruences

Let F be a class of binary forms modulo GL(2, Z) (not the modular group),
or a number field. In both cases the discriminant will be denoted by ∆(F ). By
abuse of notation, we say that F belongs to ∆±(X), or ∆±

fund(X), whenever
∆(F ) does.
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We first need to count the classes of integral cubic forms satisfying a given
congruence. This congruence needs to be compatible with the GL(2, Z) action,
which is for instance the case when it depends only on the discriminant of the
form. We follow the proof given in [1] in the special case ∆(F ) is fundamental
and q divides ∆. In the present paper, we will deal with an adelic congruence.
If one wants a privileged congruence modulo q, and needs to keep control of q in
the error term (as in [1] or [3]), the computations become much more involved,
and highly dependent on the congruence considered.

In essence, we count integral points in a volume C±
X (depending on the discrim-

inants being positive or negative), which is a fundamental domain for the action
of GL(2, Z) on the lattice of integral binary cubic forms of discriminant bounded
by X. We consider a compact truncature C±

X,ρ, whose definition depend on a free
parameter ρ. To evaluate the number of points which satisfy the congruence, we
cut C±

X,ρ into hypercubes whose width equals the congruence modulus. Should
the congruence include the Davenport–Heilbronn local conditions, these points
are now in one-to-one correspondence with isomorphism classes of cubic fields,
having the same discriminant.

Here and in the sequel, the letter p will always denote a prime number. For
every prime p, let Epαp be a set of forms modulo pαp and, for any integer m, let

Em =
⋂

pαp |m

Epαp , E =
⋂
p

Epαp .

By abuse of notation, if F is an integral form or is defined modulo a multiple
of m, we will write F ∈ Em whenever its reduction F mod m belongs to Em.
Thus, by the Chinese remainder theorem, Em can be thought as containing forms
defined modulo m, the total number of which is m4. Define local densities by

s(p) =
|Epαp |
p4αp

, t(p) = 1− s(p).

Assume, moreover, that the family (Epαp )p satisfies the following two conditions:
• if F ∈ Epαp is an integral form, then F ◦ γ ∈ Epαp , for all γ ∈ GL(2, Z).
• there exists an integer α such that αp 6 4α for almost all p.

Lemma 2.1. Let m = o(X1/4). For all ε > 0, the number of irreducible classes
of cubic forms F ∈ ∆±(X) ∩ Em is equal to

H±
∏
p|m

s(p)X + Oε(m
1/4X15/16+ε) ,

where we put H+ = π2

72
and H− = π2

24
.

Proof. We use the results and notations of [1]: the irreducible classes of forms in
Em correspond, discarding a Oε(X

3/4+ε), to half the number of integral points in
C±

X , satisfying the same congruence (Theorems 3.3 and 3.5). If m = o(X1/4), the
number of integral points in the truncature C±

X,ρ of C±
X belonging to Em is



4 KARIM BELABAS

2H±
∏
p|m

s(p)X + Oε(X
1−ρ+ε + mX3/4+3ρ+ε)

(Theorem 3.12 and Proposition 4.4) and the number of those points in C±
X not be-

longing to C±
X,ρ is dominated by X1−ρ+ε (Lemma 3.11). Choose Xρ = X1/16m−1/4

and the lemma is proven. �

Note that, by taking m = 1 in the lemma, |∆±(X)| is asymptotic to H±X.
(This result is originally due to Davenport [8, 9], and was refined by Shintani [17]).
Hence, we do not need to check the condition m = o(X1/4) since, otherwise, the
error term dominates the total number of classes of forms. Thus, Lemma 2.1 is
also true (albeit empty) in this case.

Corollary 2.2. Let Y > 0, and denote by f±(r) the number of irreducible F ∈
∆±(X) such that, for all primes p, we have

• p | r implies F mod pαp 6∈ Epαp ,

• p 6 Y implies F mod pαp ∈ Epαp .

Let PY be the product of all primes less than Y . Then, for all ε > 0, all r and Y
such that (r, PY )=1, we have

f±(r) = H±
∏
p6Y

s(p)
∏
p|r

t(p) ·X + Oε(X
15/16+εe(α+ε)Y rα) .

Proof. Applying the lemma, we obtain

f±(r) = H±
∏
p6Y

s(p)
∏
p|r

t(p)X + Oε

(
X15/16+ε

∏
p|rPY

pαp/4
)

,

and the conclusion follows from the prime number theorem. �

Theorem 2.3. Suppose there exists C > 0 and u > 1 such that

(H1) t(p) 6 Cp−u,
(H2) the forms in Epαp are non-zero modulo p,
(H3) the number of classes belonging to ∆±(X), but not to Epαp , is O(Xp−u).

Then, for for all c < c0 = (u− 1)/4(α+1)1/2, the number of irreducible primitive
classes of binary cubic forms in ∆±(X) ∩ E is equal to:

H±
∏

p

s(p)X + Oc(XLc(X)) .

Proof. We want to count the classes belonging to Epαp for all p, thus primitive
because of hypothesis (H2). Using the notation from our previous corollary, this
is equal to

(3) f(1)−
∑
k>1

∑
p1<···<pk
Y <pi<Z

(−1)k−1f(p1 . . . pk)−O

(∑
p>Z

f(p)

)
,
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by the inclusion-exclusion principle, for any parameter Z. The remainder term
is dominated by XZ1−u, thanks to (H3). We now introduce another parameter
K and deompose the main term in the form

f(1)−
∑

16k<K

∑
p1<···<pk
Y <pi<Z

(−1)k−1f(p1 . . . pk) + O

( ∑
p1<···<pK
Y <pi<Z

f(p1 . . . pK)

)
.

Using Corollary 2.2, this is equal to

H±
∏
p6Y

s(p)X

[
1−

K−1∑
k=1

∑
p1<···<pk
Y <pi<Z

(−1)k−1t(p1 . . . pk)

]

+ Oε

(
X15/16+εe(α+ε)Y K

∑
p1<···<pK<Z

(p1 . . . pK)α +
∑

p1<···<pK
Y <pi<Z

t(p1 . . . pK)X

)
,

where t has been extended by multiplicativity to all integers. Using (H1), we
obtain

H±
∏
p6Y

s(p)X

[
1 +

∑
k>1

∑
p1<···<pk
Y <pi<Z

(−1)kt(p1 . . . pk)

]

+ Oε

(
X15/16+εe(α+ε)Y K

(∑
p<Z

pα
)K

+ X
(
C
∑
p>Y

p−u
)K
)

.

That is, factoring back the Euler product,

H±
∏
p<Z

s(p)X + Oε

(
X15/16+εe(α+ε)Y KZK(1+α) + X

(
CY 1−u/ log Y

)K)
.

Finally, using (H1) again to evaluate the product of the s(p), we find that (3) is
equal to

H±
∏

s(p)X + Oε

(
X15/16+εe(α+ε)Y KZK(1+α) + XY K(1−u) + XZ1−u

)
.

We choose Y = log X/ log log log X and assume K = o(Xε). The remainder
term, divided by X, is dominated by

(4) X−1/16+εZK(1+α) + (log X)K(1−u) + Z1−u

= e(−1/16+ε) log X+K(1+α) log Z + eK(1−u) log log X + e(1−u) log Z .

To equalize the first two terms, we set

K =
(1/16− ε) log X

(α + 1) log Z + (u− 1) log log X
.
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We now choose log Z = λ(log X log log X)1/2, where λ = (16(α + 1))−1/2. A
simple computation yields

K ∼ λ(1− 16ε)

(
log X

log log X

)1/2

= o(Xε) ,

and the result is proven, with c = λ(u− 1)− ε. �

For “sensible” Epαp , exponential sums techniques may improve on Lemma 2.1,
thus increasing c0. This is the case for all our subsequent applications, where we
could take c0 = (17/3)−1/2 ≈ 0.420, most of the corresponding estimates being
done in [1]. We nonetheless keep the value given by Theorem 2.3 in the sequel.

3. Applications

3.1. Davenport-Heilbronn densities.

Theorem 3.1. Set α2 = 4, αp = 2 for p odd, and let n be an integer such that p|n
implies pαp |n. Let En be any set of classes of forms modulo n, whose discriminants
are congruent to fundamental discriminants modulo n, and let ∆(En) be the set
of discriminants of all forms belonging to En. For all c < 24−1/2, we have∑

∆∈∆±fund(X)

∆∈∆(En)

3r3(∆) − 1

2
=

H±X

ζ2(2)

∏
p|n

s(p)

(1− p−2)2
+ On,c(XLc(X)) .

Proof. In the case n = 1, it follows from a remark of Hasse [15, Satz 8] that
the left-hand side counts isomorphism classes of cubic fields having fundamental
discriminants. Now, take for Epαp the classes modulo pαp whose discriminants
are fundamental modulo pαp , with the additional constraint that they belong to
En if p | n (after this choice, the notation En is compatible with the one given
before Lemma 2.1).

By definition, E contains exactly the classes whose discriminant is fundamen-
tal and belong to En. Since the discriminant is preserved by the Davenport–
Heilbronn bijection, the number of classes of forms belonging to E yields exactly
the left-hand side of the formula.

We now check that E satisfies the three hypotheses in Theorem 2.3: this is easy
for (H2) since p|F would imply that p4|∆(F ), and ∆ would not be fundamental.
The other two are trivially satisfied for any given finite number of primes so,
excluding the primes p|n, we are reduced to the case n = 1. That is, to the
original computations of Davenport and Heilbronn [11].

They define their local densities with respect to primitive forms. Once trans-
lated into our notations, their Lemma 4 yields s(p) = (1 − p−2)2 (recall that we
assume here that p - n). Hence, (H1) is satisfied with u = 2.

Proposition 1 in the same paper proves that (H3) is also valid with u = 2. This
is the technical heart of their work, and uses the language of binary quadratic
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forms, genera, etc. Datskovski and Wright [7, §6] have given a more general proof
in terms of class field theory.

Hence we can apply Theorem 2.3 with s(p) = (1−p−2)2 if p - n, and 4α = u = 2.
We now notice that

∏
(1− p−2)2 = ζ(2)−2 and the result follows. �

Proof of Theorem 1.1. Equality (2) is an easy consequence of Theorem 3.1,
and the classical density of fundamental discriminants. Using again the results of
[11], the hypotheses of Theorem 2.3 are satisfied with s(p) = (1 − p−3)(1 − p−2)
and 4α = u = 2. Equality (1) follows. �

The densities in Theorem 1.1 were computed by Davenport and Heilbronn in
[11], without any remainder term for lack of uniformity in the congruence modulus
(corresponding to our Lemma 2.1). A remainder term in o(1/ log2(X)) was then
obtained by the author in [1]. The sub-exponential convergence rates that we
have proven are surprisingly fast when matched with numerical data. To give
an example, N+

3 (1011) = 6, 715, 824, 025, which gives an experimental density of
0.0672 for real cubic fields up to 1011, to compare with 1/12ζ(3) ≈ 0.0693. In
the case of complex cubic fields, we find N−

3 (1011) = 20, 422, 230, 540, hence an
experimental density of 0.2042, while 1/4ζ(3) ≈ 0.2080 (see the tables in [2]). A
linear regression on this experimental data, suggests one could take c between 0.6
et 0.7 (whereas 24−1/2 ≈ 0.2). Of course, there is no real reason to believe that
the true speed of convergence is given by a function Lc(X).

3.2. On the mirror inequality. Recall that we denote by δ(∆) the defect in
Scholz’s equality. Under the Cohen–Lenstra model and modulo some reasonable
but unproven independence assumptions, Dutarte [13] obtained the following con-
jecture:

Conjecture 3.2. Let P be as in the introduction. For all a > 0, we have
P ({Cl(∆) : δ(∆) = 0, r3(∆) = a}) = 3−(a+1).

Whence P ({Cl(∆) : δ(∆) = 0, r3(∆) 6 a}) would tend to 1/2 as a → +∞. We
now prove this unconditionally for a twisted density:

Proof of Theorem 1.2. We write∑
∆∈∆+

fund(X)

3r3(−3∆) =
∑

∆∈∆−fund(3X)

3|∆

3r3(∆) +
∑

∆∈∆−fund(X/3)

3-∆

3r3(∆) .

Using Theorem 3.1, and the density computed in [1, Theorem 1.2], we compute∑
∆∈∆−fund(X)

3|∆

3r3(∆) − 1

2
=

H−X

4ζ2(2)
+ Oc(X.Lc(X)) .
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An easy computation then yields∑
∆∈∆+

fund(X)

3r3(−3∆) − 3r3(∆)

2
=

(H− −H+)X

ζ2(2)
+ Oc(X.Lc(X)) .

Whence, by definition of δ(∆), using (2) and the classical density of fundamental
discriminants:∑

∆∈∆+
fund(X)

3r3(∆) 3
1−δ(∆) − 1

2

/ ∑
∆∈∆+

fund(X)

3r3(∆) =
1

2
+ Oc(Lc(X)) .

We conclude by remarking that (31−δ(∆) − 1)/2 is the characteristic function of
the property δ(∆) = 0. �
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Comté, Besançon, 1984, pp. Exp. No. 4, 11.

[14] F. Gerth III, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984), pp. 489–515.
[15] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer

Grundlage, Math. Zeitschrift. 31 (1930), pp. 565–582.
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