Short-Term Load Forecasting with Exponentially Weighted Methods

James W. Taylor
Saïd Business School
University of Oxford

EDF and INRIA Workshop

5 April 2012

Half-hourly Load

Average GB Intraday Cycles

Methods

1. Double seasonal ES
2. Intraday cycle ES
3. DWR with trigonometric terms
4. DWR splines
5. Spline-based ES
6. SVD-based ES

Simple ES

$y_{t}=l_{t-1}+e_{t}$
$l_{t}=l_{t-1}+\alpha e_{t}$

Note:

$$
\begin{aligned}
l_{t} & =\alpha y_{t}+\alpha(1-\alpha) y_{t-1}+\alpha(1-\alpha)^{2} y_{t-2}+\alpha(1-\alpha)^{3} y_{t-3}+\ldots \\
& =\alpha y_{t}+(1-\alpha) l_{t-1} \\
& =l_{t-1}+\alpha\left(y_{t}-l_{t-1}\right)
\end{aligned}
$$

1. Double Seasonal ES

$$
\begin{aligned}
& y_{t}=l_{t-1}+d_{t-48}+w_{t-336}+\phi e_{t-1}+\varepsilon_{t} \\
& e_{t}=y_{t}-\left(l_{t-1}+d_{t-48}+w_{t-336}\right) \\
& l_{t}=l_{t-1}+\alpha e_{t} \\
& d_{t}=d_{t-48}+\delta e_{t} \\
& w_{t}=w_{t-336}+\omega e_{t}
\end{aligned}
$$

2. Intraday Cycle ES (Gould e tal 2008)

- Different intraday cycles:

Mon $\left(d_{1 t}\right)$, Tue-Thu $\left(d_{2 t}\right)$, Fri $\left(d_{3 t}\right)$, Sat $\left(d_{4 t}\right)$ and Sun $\left(d_{5 t}\right)$.

$$
\begin{aligned}
& I_{i t}= \begin{cases}1 & \text { if period } t \text { occurs in a day of type } i \\
0 & \text { otherwise }\end{cases} \\
& y_{t}=l_{t-1}+\sum_{i=1}^{5} I_{i t} d_{i, t-48}+\phi e_{t-1}+\varepsilon_{t} \\
& e_{t}=y_{t}-\left(l_{t-1}+\sum_{i=1}^{5} I_{i t} d_{i, t-48}\right) \\
& l_{t}=l_{t-1}+\alpha e_{t} \\
& d_{i t}=d_{i, t-48}+\gamma_{i j} \sum_{j=1}^{5} I_{j t} e_{t} \quad(i=1,2, \ldots, 5)
\end{aligned}
$$

Methods

1. Double seasonal ES
2. Intraday cycle ES
3. DWR with trigonometric terms
4. DWR splines
5. Spline-based ES
6. SVD-based ES

Discount Weighted Regression (Ameen \& Harrison 1984)

- EWR: $y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t}$

$$
\sum_{i=1}^{t} \lambda^{t-i}\left(y_{i}-\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}\right)^{2}
$$

- DWR allows different decay for each parameter:

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}_{t}=\hat{\boldsymbol{\beta}}_{t-1}+\mathbf{Q}_{t}^{-1} \boldsymbol{x}_{t} e_{t} \\
& e_{t}=y_{t}-\boldsymbol{x}_{t}^{\prime} \hat{\boldsymbol{\beta}}_{t} \\
& \mathbf{Q}_{t}=\lambda^{\frac{1}{2}} \mathbf{Q}_{t-1} \lambda^{\frac{1}{2}}+\boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\prime} \\
& \lambda^{\frac{1}{2}}=\operatorname{diag}\left(\lambda_{1}^{\frac{1}{2}}, \lambda_{2}^{\frac{1}{2}}, \ldots, \lambda_{M}^{\frac{1}{2}}\right), \quad 0 \leq \lambda_{i} \leq 1 \forall i
\end{aligned}
$$

3. DWR with Trigonometric Terms

$$
y_{t}=b_{0}+\sum_{i=1}^{M_{1}}\left(b_{1 i} \sin \left(\frac{2 i \pi t}{48}\right)+b_{2 i} \cos \left(\frac{2 i \pi t}{48}\right)\right)+\sum_{i=1}^{M_{2}}\left(b_{3 i} \sin \left(\frac{2 i \pi t}{336}\right)+b_{4 i} \cos \left(\frac{2 i \pi t}{336}\right)\right)+\varepsilon_{t}
$$

$\lambda_{1} \approx 0.977$ for b_{0}
$\lambda_{2} \approx 0.994$ for $b_{1 i}$ and $b_{2 i}$
$\lambda_{3} \approx 0.998$ for $b_{3 i}$ and $b_{4 i}$

Splines

- Cubic spline joined at $\left(x_{i}{ }^{*}, s_{i}{ }^{*}\right)$.

Any point on spline is linear combination of values at knots x_{i}^{*} :

$$
f(x)=\boldsymbol{w}^{\prime} \boldsymbol{s}^{*}
$$

\boldsymbol{w} calculated analytically.

OLS Regression Splines (Poriier 1973)

- Cubic spline joined at $\left(x_{i}{ }^{*}, s_{i}{ }^{*}\right)$.

Any point on spline is linear combination of values at knots x_{i}^{*} :

$$
f(x)=\boldsymbol{w}^{\prime} \boldsymbol{s}^{*}
$$

\boldsymbol{w} calculated analytically.

- OLS regression spline:

$$
y_{t}=\boldsymbol{w}_{t}^{\prime} \boldsymbol{s}^{*}+\varepsilon_{t}
$$

4. DWR Splines

- Use DWR to estimate s_{t}^{*} for intraweek cycle
- select knots
- constrain spline to be identical at certain knots
- different λ for night and day knots

5. Spline-Based ES

$$
\begin{aligned}
& y_{t}=w_{t}^{\prime} s_{t-1}^{*}+\phi e_{t-1}+\varepsilon_{t} \\
& e_{t}=y_{t}-w_{t}^{\prime} s_{t-1}^{*} \\
& s_{j, t}^{*}=s_{j, t-1}^{*}+\left(\alpha+\kappa I_{j t}^{\text {nnot }}+\eta I_{j t}^{\text {nearby }}\right) e_{t} \quad(j=1,2, \ldots, M) \\
& I_{i t}^{\text {knot }}= \begin{cases}1 & \text { if period } t \text { is location of knot } i \\
0 & \text { otherwise }\end{cases} \\
& I_{i t}^{\text {nearby }}= \begin{cases}1 & \text { if period } t \text { is between knots }(i-1) \text { and }(i+1) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Similar to Harvey and Koopman 1993.

Methods

- Double seasonal ES
- Intraday cycle ES
- DWR with trigonometric terms
- DWR splines
- Spline-based ES
- SVD-based ES

SVD-Based Forecasting

- Arrange data as $(w \times 336)$ matrix \boldsymbol{Y}.
- SVD gives:
- intraweek basis vectors in \boldsymbol{V}

- weekly feature series in \boldsymbol{P}
- Select only first k features and bases.
- Forecast each feature and project back onto \boldsymbol{Y} space.

Data Matrix \boldsymbol{Y}

Singular Value Decomposition

Half-hours										
	1	2	3	4	335	336		atures	series	
Week 1	(10.47	10.46	10.46	10.43	10.46	10.43	195.0	0.99	0.31	.
Week 2	10.44	10.44	10.44	10.42	10.47	10.43	195.1	0.83	0.18	
Week 3	10.45	10.45	10.45	10.43	10.48	10.46	195.1	0.83	0.06	
引		!	\vdots	!		\vdots	!	!	!	\vdots
:	,	.	:	\vdots	.	:		\vdots	\vdots	
Week 104	10.38	10.37	10.36	10.34	10.44	10.41)	193.5	1.04	0.44	\ldots

$$
\underset{(w \times 336)}{\boldsymbol{Y}}=\underset{(w \times 336)_{(336 \times 336)}}{ }
$$

6. SVD-Based ES

- Work with just first k features:

$$
\underset{(w \times 336)}{\boldsymbol{Y}} \approx \underset{(w \times k)(k \times 336)}{\tilde{\boldsymbol{P}}} \tilde{\boldsymbol{V}}^{\prime}
$$

- Need to forecast future week/row of $\tilde{\boldsymbol{P}}$.

$$
\begin{aligned}
& y_{t}=\tilde{\boldsymbol{p}}_{t-1} \tilde{\boldsymbol{V}}_{[t \bmod 336]}^{\prime}+\phi e_{t-1}+\varepsilon_{t} \\
& e_{t}=y_{t}-\tilde{\boldsymbol{p}}_{t-1} \tilde{\boldsymbol{V}}_{[t \bmod 336]}{ }^{\prime} \\
& \tilde{\boldsymbol{p}}_{t}=\tilde{\boldsymbol{p}}_{t-1}+\left(\alpha \mathbf{1}_{336} \tilde{\boldsymbol{V}}+\delta \sum_{j=1}^{7} \tilde{\boldsymbol{V}}_{[t \bmod 48]+(j-1) 48}+\omega \tilde{\boldsymbol{V}}_{[t \bmod 336]}\right) e_{t}
\end{aligned}
$$

$\mathbf{1}_{336}$ is (1×336) matrix of 1's.

MAPE for France \& GB

Broader Comparison

	Conceptual simplicity	Ease of implementation	Judgement required	Point forecast accuracy	Prediction Intervals
Double seasonal ES	3	3	3	3	3
Intraday cycle ES	2	2	2	3	3
DWR with trig. terms	2	1	3	2	1
DWR spline	1	1	1	1	1
Spline-based ES	1	1	1	2	3
SVD-based ES	1	2	2	3	2
SARMA	2	1	1	2	3

MAPE for GB (different study with 10 weeks post-sample)

Other Work

- Triple seasonal models
- Anomalous load
- Minute-by-minute data and very short lead times
- Probabilistic forecasting
- Call centre arrivals

