
Commun. Comput. Phys.
doi: 10.4208/cicp.220313.111013a

Vol. 15, No. 5, pp. 1266-1290
May 2014

An Accurate Cartesian Method for Incompressible

Flows with Moving Boundaries

M. Bergmann∗, J. Hovnanian and A. Iollo

Inria, F-33400 Talence, France, Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence,
France, CNRS, IMB, UMR 5251, F-33400 Talence, France.

Received 22 March 2013; Accepted (in revised version) 11 October 2013

Communicated by Boo-Cheong Khoo

Available online 14 February 2014

Abstract. An accurate cartesian method is devised to simulate incompressible viscous
flows past an arbitrary moving body. The Navier-Stokes equations are spatially dis-
cretized onto a fixed Cartesian mesh. The body is taken into account via the ghost-cell
method and the so-called penalty method, resulting in second-order accuracy in veloc-
ity. The accuracy and the efficiency of the solver are tested through two-dimensional
reference simulations. To show the versatility of this scheme we simulate a three-
dimensional self propelled jellyfish prototype.
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1 Introduction

Over the last decades, many works have been developed in order to precisely describe
the interactions between fluids and structures, especially when the solid presents com-
plex boundaries. These studies can be divided in two categories. The first category is
represented by Arbitrary Lagrangian Eulerian methods [10]. These methods are accurate
but are hard to set up and complicated to implement, moreover when moving and/or
deforming obstacles are considered. In addition, a dynamic mesh partitioner is neces-
sary when one deals with parallel computations. The second category is represented by
interface methods that are usually more versatile. Among them, there are the Ghost Fluid
method [12] or the Immersed Boundary method [24]. The current work focuses on the
immersed boundary method on a cartesian grid.
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The immersed boundary method has initially been introduced by Peskin in 1972 [29].
In his original version, the interactions between fluid and solid are described through a
forcing term consisting in a Dirac function located at the interface. This term is added
to the Navier-Stokes equations before discretization and thus is completely independent
of the spacial discretization. This approach is defined as a continuous forcing method and
was used by Peskin to simulate blood flow in a beating heart but has also been imple-
mented to simulate multiphase flow [36, 38] and solidification [40]. In another class of
immersed boundary methods one modifies the space discretization of the Navier-Stokes
equations near the interface. They are called discrete forcing methods. This method was
used and developed by Liu et al. [19], Marella et al. [21], Mittal et al. [11,23], Li et al. [17],
among others. Despite being strongly dependent on the space discretization, this second
category has the advantage of being sharp, as opposed to the first one.

The Ghost Cell method is inspired by this last approach since ghost-cell values are
introduced based on an interpolation of neighboring fluid cells, such that the boundary
conditions are satisfied on the immersed interface.

In this paper, the resolution of the Navier-Stokes equations follows a classical
predictor-corrector scheme [5, 37] with second-order spatial accuracy near the immersed
boundary. Other schemes have recently been proposed to achieve higher-order accu-
racy for simulating flows with moving boundaries on cartesian meshes, see for exam-
ple [11, 18, 21, 23]. In those works, the main idea is to improve accuracy by an efficient
and simple reconstruction of the solution near the immersed boundary. The schemes
then usually differ near the immersed boundary in the specific solution reconstruction
and in the treatment of mesh nodes that present geometric ambiguities with respect to
the discretization stencil. In the same spirit, here we propose a local reconstruction of
the solution near the immersed boundary that is based on the geometric information de-
livered by the distance function [26, 32, 33]. Moreover, as explained in the following, a
penalty method [1] is employed in the prediction step, allowing a consistent and efficient
solution of the pressure equation on the whole domain. Also, as it is shown hereafter,
the penalty approach automatically solves the problem of fixing appropriate physically
meaningful conditions for the ”fresh” nodes crossing the immersed boundary when the
border is moving.

The organization of this paper is as follows: the Section 2 is devoted to the description
of the numerical methodology including the scheme used at the immersed boundary. In
Section 3, we present validations through computed results for several canonical tests
and establish the accuracy of the scheme. The present method is then used to simulate
the flow generated by a self-propelled jellyfish-like swimmer. Finally, the Section 4 is
dedicated to conclusions.

2 Discretization of the governing equations

We call Ω f the fluid domain, surrounding a body called Ωs. The entire domain is
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Ω=Ωs∪Ω f

and the interface fluid-solid is Γ=∂Ωs (see Fig. 1).

Ωs

Ω f

Γ=∂Ωs

Figure 1: Sketch of a generic flow configuration.

2.1 The governing equations in the fluid

Under the hypothesis of viscous and incompressible flow, the governing equations con-
sidered are the incompressible Navier-Stokes equations:

ρ
(∂u

∂t
+(u·∇)u

)

=−∇p+µ∆u in Ω f , (2.1a)

∇·u=0 in Ω f , (2.1b)

u=uB(x,t) in Ωs, (2.1c)

u(t=0,x)=u0(x) in Ω f , (2.1d)

u(t,x)=uΓ(t) on Γ, (2.1e)

with ρ the fluid density, u=(u,v) the velocity, p the pressure, µ the dynamic viscosity and
uB is the body velocity that can be either imposed or resulting from the interaction be-
tween fluid and the body. The fields u0 and uΓ represent the initial and boundary condi-
tions, respectively. In some cases it is more convenient to work with the non-dimensional
Navier-Stokes equations, where (2.1a) becomes:

∂u

∂t
+(u·∇)u=−∇p+

1

Re
∆u in Ω f , (2.2)

with Re=ρU∞D/µ the Reynolds number.

We consider the whole system (fluid-solid) as a single flow using the so-called penalty
method [1]. This approach considers the whole system as a porous media with a vari-
able permeability K, where the impermeable body is consider as a fluid with very low
permeability K≪1.
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Indeed, in the limit of K→0, it is demonstrated in [1] that

∂u

∂t
+(u·∇)u=−∇p+

1

Re
∆u+

χB

K
(uB−u(x,t)) in Ω, (2.3a)

∇·u=0 in Ω, (2.3b)

tends to Eqs. (2.2), (2.1b) and (2.1c), with χB the characteristic function of the solid, de-
fined as:

χB =

{

1, in the solid,
0, elsewhere.

(2.4)

The presence of the body is explicitly described through the penalization term in
Eq. (2.3a). For a moving and/or deforming body, the characteristic function χB has to
be updated following a transport equation:

∂χB

∂t
+(u·∇)χB =0 in Ω. (2.5)

To this end, a level set function φ can be introduced. This method, first presented by
Osher and Sethian [26, 27], implicitly represents the fluid/solid interface in the domain.
The level set function is the signed distance from the boundary of the body with negative
sign within the solid and positive one elsewhere. The interface between the fluid and the
immersed body is thus defined by φ= 0. The link between the level set and the charac-
teristic function is χB=1−H(φ), where H represents the Heaviside function. Finally, the
level set function satisfies the same transport equation, i.e.,

∂φ

∂t
+(u·∇)φ=0 in Ω. (2.6)

The outward normal vector of the body boundary, n, is simply defined as:

n=
∇φ

|∇φ|
. (2.7)

The property of distance characteristic is not necessary conserved. The level-set function
must be re-computed from the isoline zero, for instance using fast marching method [31,
32].

2.2 Numerical method

The Navier-Stokes equations are discretized using a finite-difference scheme with the col-
located cell-centered primitive variables (u,p). We also introduce a face-centered velocity
U as presented by Mittal et al. [23] to improve the pressure smoothness. A predictor-
corrector fractional step method is used to evaluate the solution in time. Based on the
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(u,v)i,j(u,v)i−1,j (u,v)i+1,j

(u,v)i,j−1

(u,v)i,j+1

Ui,j

Vi,j

Ui+1,j
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Figure 2: Sketch of velocity location.

Chorin-Temam scheme [5, 37], the first step evaluates an intermediate velocity u
∗ ob-

tained by the resolution of an unsteady advection diffusion equation, consisting in the
prediction step:

u
∗−u

n

∆t
=−

1

2
(3N

n−N
n−1)−∇pn+

1

2Re
(D

n+D
∗)+

χB

K
(uB−u

∗) in Ω. (2.8)

The convective and diffusive terms are

N =
(δ(Ujui)

δxj

)

i
and D=

(δ2uj

δ2xj

)

i
,

respectively. The discretization operator δ/δxj represents a second order central finite
difference. A second order Adams-Bashforth scheme is used for the convective term
and a second order Crank-Nicholson scheme the diffusive term. The velocity fields u

∗ is
not divergence free. This predicted field u

∗ is then projected in a divergence free space.
Taking the divergence of

u
n+1−u

∗

∆t
=−(∇pn+1−∇pn) in Ω, (2.9)

and imposing
∇·un+1=0 in Ω, (2.10)

we obtain:
∇·u∗=∆t∇2(pn+1−pn) in Ω. (2.11)

At this point, we introduce the face centered velocity U (Fig. 2), computed by inter-
polating the cell centered neighboring velocities.

The face centered velocity is defined as follows in Ω:










ũ=u
∗+∆t(∇pn)cc,

Ũ=F(ũ),

U= Ũ−∆t(∇pn) f c,

(2.12)
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where the index cc and f c mean respectively cell centered and face centered, and F is an
interpolation function.

Let us note ψ=∆t(pn+1−pn). Hence, the Poisson equation that has to be solved in Ω

is:

∇·u∗=∆ψ. (2.13)

This Poisson equation is solved with homogeneous Neumann boundary conditions on
∂Ω. These conditions ensure that the normal velocity is not perturbed on the boundaries
of the domain during the correction step. Besides, using the penalty approach, there is
no need to impose boundary conditions on the fluid-structure interface.

Pressure oscillations may occur if one uses the collocated cell centered velocity to
compute the divergence. To suppress these oscillations, we use the face-centered velocity
U, corresponding to the face-centered velocity. Eq. (2.11) becomes:

∇·U =∆ψ. (2.14)

The velocities and the pressure are then updated in Ω:

pn+1= pn+
ψ

∆t
, (2.15a)

u
n+1=u

∗−(∇ψ)cc, (2.15b)

U
n+1= Ũ−(∇ψ) f c. (2.15c)

We arbitrarily choose an initial pressure value p0 = 0.5. Depending on the applications,
one can be interested in moving and/or deforming the body. For instance, for a self-
propelled body like the jellyfish (Subsection 3.4), a deformation velocity can be imposed
to the body resulting in translation and rotation velocities computed from the forces and
the torques. The body velocity (deformation + translation + rotation) is uB. The body is
then displaced following (2.6). The new fluid/structure interface is the zero level of that
function.

The interface fluid/solid does not a priori fit the fluid mesh. In the classical approach
of the penalty method, the penalized velocity is forced on all the grid nodes inside the
bodies, with a first order accuracy in space. Here, we present the Image Point Correction
method (IPC) which consists in a correction of the value of the penalized velocity at the
solid points having at least one fluid neighbor using a ghost-cell approach in order to
impose the desired velocity on the interface. This improvement step is performed before
the prediction step (2.9) to impose accurate gradients near the interface. The main idea
is to find the right correction in the normal direction of the interface, using the velocity
gradient through the interface. In other words, considering a one-dimensional case, let
us denote uB the velocity we want on the boundary, uS and uF, respectively, the penal-
ized velocity enforced on the solid node situated in xS, and the velocity in the fluid node
situated in xF=xS−∆x, both neighboring the interface, like in Fig. 3. The value of the pe-
nalized velocity uB must be such that the velocity gradient taken at the interface remains
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Figure 3: One-dimensional sketch of the methodology used to compute the corrected velocity.

the same when it is evaluated through the interface (see Fig. 3). Mathematically it means:

uS−uB

|φS|
=

uB−uF

|φF|
, (2.16)

where |φS| and |φF| are the absolute value of the level set function in xS and xF respec-
tively, that is to say their distances from the interface. In other words,

uS=uB+|φS|
(

uB−uF

|φF|

)

, (2.17)

which allows us to exhibit the general expression of the corrected velocity:

uS =uB−|φ|
( ∂u

∂n

)∣

∣

∣

φ=0
, (2.18)

with n the outward normal unit vector of the interface. Finally, as φ is negative in the
solid, the final form of the corrected velocity is:

uS=uB+φ
(∂u

∂n

)∣

∣

∣

φ=0
. (2.19)

The IPC method is applied to the solid points having a neighbor in the fluid. The penal-
ization method is applied to all other solid points.

Now let us consider a two-dimensional case (see Fig. 4). In order to determine
(∂u/∂n)|φ=0, we must find all the symmetric points of the ghost points through the inter-
face. This can easily be done thanks to the level set.

Indeed, as previously seen, the external outward unit vector of the interface can be
computed based on the knowledge of the level set function. Besides, having the direction,
we know that the interface point corresponding to the ghost node is located at a distance
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symetric point

Fluid

Solid

F

F

B

B
S

S

n

φ=0

Fluid point

Solid point

Ghost point Boundary point

Figure 4: Sketch of the IPC method in a two-dimensional case. The IPC is applied to the Ghost points using
the symmetric points. The value of the symmetric point is based on an interpolation of its four neighboring
fluid points. The original penalty method is applied on the other solid points.

|φ| from the ghost node, so the symmetric point is at 2|φ|. The symmetric point of the
solid point to be corrected is located in the fluid and does not a priori fit with a grid node.
Consequently, its value must be interpolated. Usually it can be interpolated from its four
closest neighbors (located at the extremities of the cell containing the symmetric point).
Interpolation can directly be computed from those four points except if one of those point
is precisely the point to be corrected. In this last case, this point is replaced by its closest
point on the body boundary where the velocity is known, see Fig. 5. This correction
is similar to that used in [23]. In this study a second order Lagrange interpolation is
performed.

The penalization step in (2.9) is used to bypass two difficulties. Firstly, it has been
proven (Remark 3.1, [1]) that the use of the penalty method leads to a Neumann condi-
tion for the pressure at the fluid/structure interface. This allows the Poisson solver to
take full advantage of the data structure resulting from a uniform grid, leading to a sim-
ple parallel code and an efficient distributed solver. Using other approaches, boundary
conditions should explicitly be applied on the fluid/structure interface (Poisson equa-
tion (2.13)). Secondly, when the body is moving, fresh cells are created. This means that
some body cells at a given time step can become fluid cell at the next time step. Without
penalty method, these fresh cells have the velocity that was just modified using the IPC
correction. Clearly, these velocities are unphysical. The penalty step imposes divergence
free fresh cells if the body motion and deformation is divergence free. In conclusion, the
overall scheme is formally second-order accurate near the immersed boundary thanks to
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Figure 5: For simplicity of explication, we sketch a 2D example relative to an axial section of a 3D jellyfish
(Subsection 3.4). 2D interpolation is performed using four points. Usually, the four corners of the cell containing
the Image Point (IP) are used for interpolation. Several kinds of configurations can occur for velocity correction.
For example type A (four fluid points), type B (three fluid points) and type C (two fluid points). In the case
where the point to be corrected corresponds to one of the corners, this points is replaced with the nearest point
on the boundary (types B and C). No special treatment is performed for the other points belonging to the
moving body, like in type C. When a point does not belong neither to A, B or C type, it is penalized with a
first order correction. The number of these points is however negligible. This approach is similarly extended in
3D over a cube.

the penalty method and the distance function. No boundary conditions for pressure are
imposed on the fluid/structure interface. Oscillations in pressure are prevented as done
in [16, 30]. The scheme is consistent and therefore mass conservation is granted in the
limit of the approximation accuracy, like in any other projection scheme.

3 Numerical results

In this section, we first evaluate the order of accuracy of the solver (Subsection 3.1). Then
we test it on several reference cases. We will consider both steady (Subsection 3.2) and
moving cylinders (Subsection 3.3). We will compare the aerodynamic coefficients to ref-
erence results for several values of the Reynolds number. While the steady cylinder is
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defined by uB =0 and U∞ 6=0, the moving cylinder is defined by uB 6=0 and U∞ =0. We
will thus define the Reynolds number as Re = ‖U∞−uB‖2D/ν. Finally, we will model
and simulate a three-dimensional jellyfish (Subsection 3.4).

The forces exerted by the fluid on the body can be computed by:

F=
∮

∂ΩS

n

[

−pI+
1

Re

(

∇u+(∇u)T
)

]

ds, (3.1)

where ∂ΩS is the boundary of the body and n is the external unit normal vector of the
body boundary. The aerodynamic coefficient are C = F/(0.5ρ0U2

∞0.5D). The drag and
lift coefficients are respectively defined as CD =C ·ex and CL =C ·ey. In order to evaluate
the pressure and the velocity gradients on the interface we use a Q1 interpolation on
the pressure and the velocity. The Q1 interpolation consists in approximating the flow
variable ϕ (here the pressure and the velocity) by a quadratic interpolation. The body
is described by Lagrangian markers, and we then identify the four closest grid nodes to
each marker. Then, the flow variable value is determined on this marker thanks to the
formulation:

ϕ(x,y)= c1xy+c2x+c3y+c4, (3.2)

with (x,y) the position of the current marker. The four coefficients ci are determined
thanks to the values of ϕ on the four closest neighbors, previously identified:

{C}=[V ]−1{ϕ}, (3.3)

where {C}T =(c1,··· ,c4) is the vector containing the four unknown coefficients, {ϕ}T =

(ϕ1,··· ,ϕ4) is the vector containing the values of the flow variable on the four grid nodes,
[V ] is the Vandermonde Matrix. As a consequence, [V ] can be written as:

[V ]=











xy|1 x|1 y|1 1

xy|2 x|2 y|2 1

xy|3 x|3 y|3 1

xy|4 x|4 y|4 1











.

Thus, the pressure can be determined and, differentiating this last expression by x and y,
we can determine the velocity gradient.

3.1 Grid convergence study

Here we test the solver for a two dimensional flow past a cylinder at Re=45. The size of
the domain is 6D×4D with D the diameter of the cylinder. Its center is located in (0,0).
We used Dirichlet boundary at the inflow (u=U∞), non-reflecting boundary conditions
at the outflow [14] and streamline boundary conditions (v= 0 and ∂u/∂y= 0) on others
boundaries. The boundary conditions for the pressure are also similar to those developed
in [14]. A grid convergence evaluation consists in comparing the errors between several
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Figure 6: Distribution of pressure contours at t=5 for Re=550.
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Figure 7: Error distribution for the numerical solution for the steady cylinder with (360×240) grid.

grids and an analytical solution. Nevertheless, as there is no existing analytical solution
for this case, a refined solution is considered as the analytical one, corresponding to a
grid (1800×1200). This highly resolved solution is compared to five other solutions cor-
responding to the following grids: (600×400), (360×240), (300×200), (225×150) and
(180×120). The time step chosen is 10−5D/U∞, thus respecting the CFL condition for
every grid, and the different solutions are compared after a time of t = 0.5, i.e., 5×104

iterations. The distribution of the error magnitude in velocity and pressure for the steady
cylinder using grid (360×240) can be seen in Fig. 7. These figures show that the error is
mainly concentrated around the immersed boundary. Fig. 8 shows that we globally ob-
tain a second-order accuracy, measured with the L2-norm, for the velocity and order 1.5
for the pressure. Concerning the local accuracy evaluated using the L∞-norm, we have a
second order too on the velocity and order 0.5 for the pressure.

As already mentioned in the previous section, we can see in Fig. 6 that the classical
penalty step applies the right pressure conditions on the interface, without any special
treatment.
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(a) L2 (b) L∞

Figure 8: L2 and L∞ norms of the error for the u and v velocity components and the pressure, versus the
computational grid size.

3.2 Steady cylinder

In this section we consider steady circular cylinders (uB=0) with an inflow velocity U∞=
1. We will first study the flow past a single cylinder (Subsection 3.2.1) and then we will
study the flow past two cylinder in a tandem arrangement (Subsection 3.2.2).

3.2.1 Flow past a steady cylinder

We have performed simulations for Reynolds numbers in a range 40−550. The domain
size is [−8;16]×[−8;8]. The space step is ∆x=0.01 and the time step is chosen to respect
the CFL conditions.

We first consider the asymptotic regime (long time integration) at Re= 40, Re= 100,
Re=200 and Re=300. The temporal evolutions of the drag and lift coefficients at Re=40
and Re=200 is presented in Fig. 9. While the flow at Re=40 is steady, the flow at Re=200
is unsteady (drag and lift fluctuations). Comparisons with references results in presented
in Table 1. Our results show good agreements with previous studies.

Table 1: Comparison of the mean drag coefficient for one steady cylinder, with previous studies.

Re 40 100 200 300

Present study 1.66 1.41 1.40 1.42

Wieselsberger [39] 1.70 - - 1.22

Mittal [23] 1.53 1.35 - 1.36

Hendersen [13] 1.54 1.35 1.34 1.37

Braza [4] - 1.36 1.40 -

Bergmann [2] 1.68 1.41 1.39 -
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(a) Re=200 (b) Re=40

Figure 9: Drag and Lift coefficients for a steady cylinder.

We then consider a short time integration at Re=550. The temporal evolution of the
drag is shown in Fig. 10. These results also present good agreement between the present
study and the numerical results in [28].

Figure 10: Temporal evolution of the drag coefficient for a steady cylinder at Re=550. Comparison with results
obtained by [28] for a fixed cylinder.

3.2.2 Flow past two steady cylinders in a tandem arrangement

After validating the method for a single steady cylinder, we now consider two steady
cylinders in a tandem arrangement. In other words, let us consider two circular cylin-
ders C1 and C2, with the same diameter D, at a distance L from each other. The size of
the domain is 40D×20D. The two solids are vertically centered in the domain and the
cylinder C1 is located at 10D from the upstream boundary (see Fig. 11). The space step is
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Figure 11: Sketch of the two steady cylinders in a tandem arrangement.

chosen to be ∆x=∆y= 1.6×10−2 and the time step is ∆t= 10−3. Then, we compare the
mean drag coefficient and the Strouhal number, for several values of Re, with previous
studies. The results are gathered in Tables 2 to 4 and show good agreements with the
previous studies.

Table 2: Comparison of the mean drag coefficient and the Strouhal number for two steady cylinders in a tandem
arrangement with previous studies for Re=100 and L=2.5D or L=5.5D.

Re=100

L=2.5D L=5.5D

Cd St Cd St

C1 C2 C1 C2 C1 C2 C1 C2

Present study 1.16 −0.057 0.12 0.12 1.31 0.90 0.167 0.167

Dehkordi [8] 1.24 −0.071 − − 1.33 1.00 0.165 0.165

Mittal [25] 1.27 −0.075 − − 1.43 0.86 0.168 0.168

Ding [9] 1.16 −0.09 − − 1.33 0.95 0.160 0.160

Sharman [34] 1.17 −0.062 0.118 − 1.25 0.65 0.154 0.154

Table 3: Comparison of the mean drag coefficient and the Strouhal number for two steady cylinders in a tandem
arrangement with previous studies for Re=200 and L=1.5D or L=2D.

Re=200

L=1.5D L=2D

Cd St Cd St

C1 C2 C1 C2 C1 C2 C1 C2

Present study 1.04 −0.17 0.185 0.185 1.00 −0.19 0.140 0.140

Dehkordi [8] 1.05 −0.15 0.175 0.175 1.03 −0.16 0.138 0.138

Meneghini [22] 1.06 −0.18 0.167 0.167 1.03 −0.17 0.130 0.130

Mahir [20] − − − − 1.06 −0.21 − −

Slaouti [35] − − − − 0.89 −0.21 0.130 0.130
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Table 4: Comparison of the mean drag coefficient and the Strouhal number for two steady cylinders in a tandem
arrangement with previous studies for Re=200 and L=3D or L=4D.

Re=200

L=3D L=4D

Cd St Cd St

C1 C2 C1 C2 C1 C2 C1 C2

Present study 0.96 −0.18 0.126 0.126 1.23 0.89 0.185 0.185

Dehkordi [8] 1.00 −0.08 0.129 0.129 1.16 0.52 0.18 0.18

Meneghini [22] 1.00 −0.08 0.125 0.125 1.18 0.38 0.17 0.17

Mahir [20] 1.05 −0.56 0.130 0.130 1.34 0.56 0.18 0.18

Slaouti [35] 0.87 −0.16 − − 1.11 0.88 0.19 0.19

3.3 Moving cylinder

We now consider moving cylinders (uB 6= 0 and U∞ = 0). We consider an impulsively
started cylinder (Subsection 3.3.1) and an impulsively started then stopped cylinder
(3.3.2). Finally the sedimentation of a cylinder under gravity is studied (Subsection 3.3.3).

3.3.1 An impulsively started cylinder

We consider an impulsively started cylinder at Re= 550. This test case is similar to that
presented in Subsection 3.2.1, except that we now have uB=1 and U∞=0. As it is shown
in Fig. 12, our method shows good results. Indeed, the global behavior of the two curves
is very similar although the curve of the impulsively started cylinder shows some oscil-
lations but these are decreasing when ∆x→ 0. This is explained by the fact that, due to
the motion of the cylinder, the number of points in the fluid at time tn is not the same as
at tn+1.

Figure 12: Temporal evolution of the drag coefficients for an impulsively started cylinder at Re=550. Comparison
with results obtained by [28] for a fixed cylinder.
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3.3.2 Impulsively started then stopped cylinder

We also performed two-dimensional simulations of impulsively started cylinder that is
impulsively stopped for several Reynolds numbers. These tests are presented in [15]. Let
us note that in [15], time is non-dimensionalized using the radius of the cylinder:

T0=
1
2 D

U∞

,

whereas we use the diameter of the cylinder: t0 =D/U∞, which explains the factor two
between their non-dimensionalized times and ours. The following comparisons will be
adapted to our non-dimensional time.

First of all, we compared drag coefficients for an impulsively started cylinder for Re=
40 and Re= 200, up to a time t= 0.25 (Fig. 13) and observe that our results are in good
agreements with [15]. Then, we considered an impulsively started cylinder for Re= 40
that is stopped at time t=5. Fig. 14 shows a comparison of the evolutions of the drag and
Fig. 15 represents the vorticity field computed with the present method which is in good
agreement with the results in [15].

Finally, we perform a simulation at Re = 550. An impulsively started cylinder is
stopped at time t = 2.5. Figs. 16 and 17 represent respectively the comparison of the
drag evolutions and the vorticity field. All these results match those of Koumoutsakos et
al. [15].

(a) Re=200 (b) Re=40

Figure 13: Comparison of the drag coefficients for an impulsively started cylinder up to a time t=0.25 with [15].

3.3.3 Sedimentation of cylinder

We study the sedimentation of a two-dimensional cylinder in a cavity. We consider the
same configuration as Coquerelle and Cottet in [6]. The domain under consideration is
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Figure 14: Comparison of the Drag coefficients for an impulsively started cylinder stopped at t=5 for Re=40
(using our non-dimensionalized time).

Figure 15: Vorticity field for an impulsively started cylinder stopped at t=5 for Re=40.

a box [0;2]×[0;6] where a two-dimensional circular cylinder is initially located in (1;4)
and falls under gravity. The cylinder’s radius is r= 0.25 and its density is ρs = 1.5. The
viscosity and density of the fluid are respectively ν=0.01 and ρ f =1. The gravity is chosen

to be g=−980. The space and time steps are ∆x=∆y=1/256 and ∆t=10−5 respectively.
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Figure 16: Comparison of the Drag coefficients for an impulsively started cylinder stopped at t=2.5 for Re=550
(using our non-dimensionalized time).

Figure 17: Vorticity field for an impulsively started cylinder stopped at t=2.5 for Re=550.
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Figure 18: Comparison of the vertical velocity on an horizontal cut through the center of the cylinder falling
under gravity at time t=0.1, between our current method and Coquerelle and Cottet’s [6].
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Figure 19: Comparison of the height evolution in time of the center of a cylinder falling under gravity, between
our current method and Coquerelle and Cottet’s [6].

Through the Figs. 18 and 19, we can see that our results match [6]. Furthermore, in
Fig. 18, we can see that two points inside the cylinder have a vertical velocity lower than
the others. These points are the ghost points and their lower velocity correspond to the
corrected velocity induced by the IPC method.

3.4 A three-dimensional example: the jellyfish-like swimming

The numerical approach described in Section 2 can easily be extended to the modeling
and numerical simulation of three-dimensional self-propelled swimmers. As an exam-
ple, we study the flow generated by a moving and deformable body that is a simplified
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Figure 20: Sketch of the jellyfish shape during one stroke.

prototype for a jellyfish. The prototype has a lens type shape with diameter D=4cm and
maximal thickness ℓ=D/10. The swimming shape is obtained deforming the lens shape.
We roll up this profiles onto a sphere with radius r(t). In this study r(t) oscillates period-
ically between rmin =1.7D/(2π) and rmax =3.3D/(2π) with frequency f =1Hz. We also
slightly deform the extremity of that profile using frequency f = 1Hz. This overall de-
formation does not preserve the volume of the jellyfish. We thus perform an homothetic
transformation of the whole body to recover (with maximal error of 3%) the undeformed
lens volume. These swimming parameters (rmin, rmax and f ) are chosen to mimic a realis-
tic jellyfish. The jellyfish shape during one swimming stroke is presented in Fig. 20. The
fluid and body density is ρ=1000 kg/m3 and the fluid dynamic viscosity is µ=10−3Pa·s.

The mass center of the jellyfish is initially centered at (x,y,z)= (0,0,0). The jellyfish
moves under the effect of the force and torques integrated over its surface, according to
Newton laws as explained in [3]. The jellyfish swims in the positive x-direction in an
”aquarium” with computational domain [−2D,6D]×[−2D,2D]×[−2D,2D]. The mesh is
composed by 600×300×300=54 millions of nodes. The jellyfish swims in a fluid at rest
(u=0 at t=0) and homogeneous Dirichlet boundary conditions (u=0) are used on all the
boundaries.

It is known, see [16], that mass and momentum conservation perturbations near
the moving bodies lead to considerable force oscillations and displacement inaccuracies
when the immersed bodies incorporate new grid points or new grid points are released
from the immersed body to the fluid. In Fig. 22 we show the plot of the force acting on
the jellyfish. The plot shows that in our case these perturbations cause oscillations that
are very small, provided that the largest possible CFL is taken. The pressure field in a 2D
section close to the swimming body is shown in Fig. 23. It is seen that the pressure is con-
tinuous across the body boundaries. The pressure gradient is not necessarily orthogonal
to the body, as it should be. No boundary conditions for pressure are applied on the im-
mersed body, thanks to the penalization step. Also, we show a plot a the divergence after
the projection step, Fig. 24. Of course the divergence is of the order of the residuals of the
linear problem solved for projection, as expected. Moreover, the divergence residual is
uniformly distributed near the boundary.

After a transient regime the jellyfish reaches an average velocity around 2.5cm/s (see
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Figure 21: Temporal evolution of the jellyfish velocity.
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Figure 22: Temporal evolution of the forces exerted by the jellyfish.

Fig. 21). The associated Reynolds number is then Re=ρVD/µ≈1000. The wake generated
by the jellyfish is presented in Fig. 25. It shows alternate counter-rotating vortex rings.
Indeed, vortex pairing of counter-rotating vortices can also be observed in Fig. 26 where
the z-vorticity is plotted in the plan z=0. This vortex pattern is similar to that generated
by a two-dimensional jellyfish [3].

This coherent structure dynamics compares well to what is experimentally found
in [7] by PIV analysis of the flow induced by an actual oblate medusian jellyfish (Aurelia
Aurita) swimming in its natural marine habitat. Although the jellyfish swim simulated in
this paper is realistic, quantitative comparisons are difficult because of the lack of details
on the actual jellyfish geometry and swimming law. Nonetheless, the flow patterns are
in remarkable qualitative accordance with the one observed in nature.
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Figure 23: Snapshot of the pressure field generated by the jellyfish (z=0).

Figure 24: Snapshot of the divergence of the velocity field generated by the jellyfish (z=0).

(a) t=6 (b) t=6.5

Figure 25: Vortices generated by a swimming jellyfish.
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(a) t=6 (b) t=6.5

Figure 26: Vorticity visualization in the plan z = 0. Black and white zones represent negative and positive
vorticity, respectively.

4 Conclusions

We have presented an immersed boundary approach called Image Point Correction method
(IPC). It is applied to the simulation of incompressible flow past complex moving bound-
aries captured by the level set function. This method is based on the Ghost-Cell approach
and the penalty method. The solver is second order accurate and allows us to use carte-
sian grids instead of body-fitted meshes. The main advantage of this method is that the
Navier-Stokes equations are solved on the entire domain without making difference be-
tween fluid nodes from the solid ones. Besides, the use of a classical penalty step enforces
the right pressure boundary conditions on the interface without any special treatment
and gives to the ”fresh cells” a physical velocity.

In order to validate the model, a series of numerical simulations is exposed, covering
a wide range of canonical tests. The computed results agreed with previous studies,
whether it is for one or several steady cylinders, or a cylinder in motion. These cases
demonstrate the ability of the solver to handle several, complex, moving objects. Also
a three-dimensional self propelled jellyfish is simulated highlighting the ability of the
method to simulate complex flows with non-trivial geometries.
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