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An analysis of calibration for reduced-order models (ROMs) is presented in this work. 
The Galerkin and least-squares Petrov-Galerkin (LSPG) methods are tested on compressible 
flows involving a disparity of temporal scales. A novel calibration strategy is proposed for 
the LSPG method and two test cases are analyzed. The first consists of a subsonic airfoil 
flow where boundary layer instabilities are responsible for trailing-edge noise generation 
and the second comprises a supersonic airfoil flow with a transient period where a 
detached shock wave propagates upstream at the same time that shock-vortex interaction 
occurs at the trailing edge. Results show that calibration produces stable and long-time 
accurate Galerkin and LSPG ROMs for both cases investigated. The impact of hyper-
reduction is tested on LSPG models via an accelerated greedy missing point estimation 
(MPE) algorithm. For the first case investigated, LSPG solutions obtained with hyper-
reduction show good comparison with those obtained by the full order model. However, 
for the supersonic case the transient features of the flow need to be properly captured by 
the sampled points of the accelerated greedy MPE method. Otherwise, the dynamics of the 
moving shock wave are not fully recovered. The impact of different time-marching schemes 
is also assessed and, differently than reported in literature, Galerkin models are shown to 
be more accurate than those computed by LSPG when the non-conservative form of the 
Navier-Stokes equations is solved. For the supersonic case, the Galerkin and LSPG models 
(without hyper-reduction) capture the overall dynamics of the detached and oblique shock 
waves along the airfoil. However, when shock-vortex interaction occurs at the trailing-edge, 
the Galerkin ROM is able to capture the high-frequency fluctuations from vortex shedding 
while the LSPG presents a more dissipative solution, not being able to recover the flow 
dynamics.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The higher computational power achieved in the last fifty years allowed the application of time-accurate numerical sim-
ulations of complex engineering problems. However, despite the improvement in computer performance, accurate numerical 
solutions of unsteady flows are still costly. In such problems, high resolution numerical schemes are typically employed to 
resolve the broad range of spatial and temporal scales. On one hand, small time steps are required to capture the higher fre-
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quencies of the flow. On the other hand, simulations need to be carried out for long periods to obtain meaningful statistics 
related to the low frequencies.

Direct numerical simulation (DNS), large eddy simulation (LES) and detached eddy simulation (DES) are the typical high-
fidelity methodologies applied in the study of unsteady flows. While DNS resolves all spatial and temporal scales associated 
with the flow, LES is able to resolve the larger, more energetic scales, modeling the smaller, more isotropic and universal 
scales of turbulence. The computational cost is reduced in DES since it combines LES with a Reynolds-averaged Navier-
Stokes (RANS) approach to solve flows over more complex configurations. All these methodologies are associated with high 
computational costs, especially in applications of low Mach number flows involving propagation of acoustic waves [1,2] or 
supersonic flows with shock-turbulence interaction [3].

It is in this context that reduced-order models (ROMs) stand out when compared to conventional methods used for 
computational fluid dynamics. The application of ROMs allows the construction of simpler models by dimensionality reduc-
tion of the problem, which leads to lower cost simulations [4]. It should be clear that ROMs will not replace traditional 
CFD methods, but improve the arsenal of tools available for solving complex engineering problems. Reduced-order models 
must be stable and accurate for long-time integration and they should be able to recover the main physical features of 
the unsteady flows investigated. Models with quick turnaround solution find application in preliminary design, optimization 
and flow control, to name a few. In recent years, ROMs have attracted the attention from mathematicians, physicists and 
engineers interested in the solution of complex non-linear dynamical systems such as those found in fluid flows [5–8].

Projection of the flow governing equations into a low-dimensional subspace is probably the most widely found class of 
ROMs in the literature. Among these methods, we mention Galerkin [9] and least-squares Petrov-Galerkin (LSPG) projections 
[10]. Succinctly, order reduction is made possible by first extracting a low-dimensional basis from data previously collected 
using a full order model (FOM), for instance, DNS, LES or experiments. This step is important to feed the ROM and obtain 
physical insight of the problem. The low-dimensional subspace is usually obtained via proper orthogonal decomposition 
(POD) [11,12]. Finally, a system of non-linear ordinary differential equations with fewer degrees of freedom is obtained in 
the projection step while tying the problem to physical grounds.

Recently, data-driven ROMs based on regression have also been gaining attention [13–15] and unsteady flow problems 
have been successfully modeled with techniques based on sparse regression [16] and deep neural networks (DNNs) [17]. 
Most of these methods do not impose any constraints from the governing equations, differently from Galerkin-type methods. 
It is shown in [18] that projection-based ROMs overcome regression methods for unsteady flows involving chaotic patterns. 
In this reference, Galerkin and LSPG models are compared against solutions computed using sparse regression and DNNs. In 
such cases, the regression schemes suffer from overfitting and cannot accurately predict the solutions outside the training 
window. On the other hand, the projection-based ROMs are able to represent the physical features from chaotic flows due 
to their imposed constraints from the governing equations.

Stability and accuracy issues are common problems when designing reduced-order models, being well documented in 
literature [9,19,20]. Typically, POD-basis truncation is pointed out as the culprit since it acts as a filter that eliminates 
high-frequency modes responsible for energy dissipation. However, the wavenumber interactions appear due to the non-
linear convection operators which are responsible for the creation of high frequencies and the growth of instabilities. This 
phenomenon is also a problem in full order models such as LES, which require subgrid scale modeling to represent filtered 
small-scale flow structures. Similarly, ROMs also require closure modeling to compensate for the unresolved scales. As a 
consequence, a large number of methods have been proposed in the last 20 years to overcome such issues and render 
ROMs more robust to complex engineering problems.

Artificial viscosity models are probably the most popular methods to overcome unstable ROMs since they can be directly 
adapted from the CFD community. This class of closure models is based in adding the lacking dissipation effects of truncated 
POD modes using corrective terms in the dynamical system [21]. The simplest model considers a change in the viscosity 
coefficient that impacts equally on all POD modes. This idea can be easily adapted so the viscosity can impact differently 
on each individual mode; for example, Smagorinsky models introduce an artificial viscosity that is variable in both space 
and time [22]. Overall, little overhead is added to the ROM although the dissipation intensity is a free parameter to be not 
always easily determined.

Adopting different inner products may also be a solution. According to [23], the importance of the smaller scales 
can be strengthened adopting an H1 Sobolev norm. Nonetheless, this approach also has a free parameter to be defined. 
Studies comparing different physics-based closure models are not common, but can be found for the simulation of the 
one-dimensional Burgers equation [22] and the 3D flow past a cylinder at Re = 1000 [24].

In general, physics-based closure models can be employed to a wide range of flow problems. However, they may show 
inadequate performance, especially when modeling complex flows that require the application of several POD modes. In 
some cases, the higher POD modes may be poorly-resolved and there is no benefit in adding further modes to the ROM. 
In the previous case, the ROM can show an inferior performance if too many modes are used. Errors from the numerical 
schemes should also be taken into account: errors in derivatives and integration, discrete grid sampling, and non-satisfied 
boundary conditions are examples of common sources of error when developing ROMs. Unsurprisingly, these can be spe-
cially tragic when the flows involve a broad range of spatial and temporal scales. The importance of high-order schemes 
for numerical derivation was pointed out in a previous study of reduced-order modeling for convective heat transfer [18]. 
It was shown that the temporal evolution of the fluctuation field relative error is highly dependent on the resolution of the 
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numerical scheme employed for the spatial discretization. A comparison between second and tenth-order methods showed 
that the latter provides considerably lower errors for the fluctuation fields obtained by the ROMs.

A different way to tackle the problem would be to model ROM inconsistencies using a global black box approach instead 
of trying to account for error sources individually. The ROM should be capable of recovering the temporal modes in the 
training window, and hopefully beyond, but this can be a challenging task even for simple flow configurations. This can be 
imposed by minimizing the error between the POD and ROM temporal modes which leads to a non-linear minimization 
problem [25]. A cheaper linear approximation can be considered [26] and it is the method used in the present study. This 
methodology was previously used in reduced-order modeling of unsteady flows around airfoils at low Reynolds numbers 
[27,28]. This class of techniques is normally referred to as calibration (as opposed to closure) and further technical details 
will be discussed in section 2.4.1.

The performance of different calibration methods is studied in [29,30] for a cylinder wake flow at Re = 200 using six 
POD modes. For this case, linear least squares was shown to be 3000 times cheaper than non-linear optimization which 
was, however, slightly more accurate. In the same reference, a second problem was investigated consisting of a separated 
flow around an ONERA-D airfoil at Re = 105 where a 60-mode POD basis was obtained from PIV snapshots. The initially 
unstable ROM was stabilized using the linear least-squares methodology, but the model results were not accurate. Moreover, 
the iterative non-linear optimization could not provide a stable solution for this case.

An adaptation of the energy conserving sampling and weighting (ECSW) method [31] was recently presented for Galerkin 
and LSPG ROMs. The method imposes conservation by element weighting in order to compensate for missing energy con-
tributions and it was applied to solve convection-dominated problems [8,32]. In [32], instead of using the POD temporal 
modes, data calibration was accounted for by directly using a subset of the FOM snapshots also used in the POD-basis 
construction. Another alternative, grounded in differential geometry, is able to model the effects of truncated modes by 
a minimal rotation of the projection subspace [33]. This method avoids adding supplementary terms to the systems of 
differential equations. Although this approach was applied to a non-conservative compressible Navier-Stokes framework, 
showing both stable and accurate results, the optimal POD basis representation is lost. Furthermore, minimization of the 
error between the POD and ROM temporal modes is also enforced.

Imposing the error minimization of temporal modes as a constraint may be undesirable for a large number of applica-
tions, such as flow control and many-query problems, because in these applications one may desire to have the existing 
features of the POD spatial modes with a different temporal evolution. In general, ROMs are built from snapshots of a single 
parameter space realization. Therefore, physical structures of different parameters may (unsurprisingly) be ill-represented 
or absent. Fragility to parameter variation is well-documented [21,34] and possible solutions usually involve POD-basis in-
terpolation techniques [34]. This being said, calibration tailored for a specific spatial and temporal evolution would most 
probably be inadequate when applied in a different context and, for this reason, we focus on calibration for accurate long-
time prediction.

In this work, calibration of ROMs is assessed for projection-based methods and we present a new calibration approach 
for the LSPG scheme. The influence of hyper-reduction on LSPG is also assessed. Calibration of Galerkin and LSPG ROMs is 
tested for the compressible flow past an airfoil where boundary layer hydrodynamic instabilities lead to secondary tones in 
the acoustic radiation. Then, the methods are tested for a supersonic transient flow past an airfoil where the performance 
of calibrated ROMs is assessed. The comparison of calibrated Galerkin and LSPG ROMs for unsteady compressible flow 
problems involving a disparity of temporal scales is one of the contributions of this work together with new insights on the 
use of hyper-reduction for transient problems.

2. Reduced-order modeling

2.1. Proper orthogonal decomposition

In the ROMs studied in this work, proper orthogonal decomposition (POD) is applied to compute low-dimensional sub-
spaces of specific volume, velocity and pressure fields given by ζ , u, v and p, respectively. These variables are chosen 
because the flows of interest are compressible and more details are provided in Section 2.3. The unsteady flow fields can be 
decomposed as follows

q(x, t) = q̄(x) +
M∑

i=1

�i(x)ai(t) , (1)

where q = {ζ, u, v, p}� ∈ RN × [0, T ], q̄(x) ∈ RN is the mean flow, � ∈ RN × M with �i ∈ RN being the orthonormal spa-
tial eigenfunctions, a = [a1, . . . , aM ]� ∈ RM × [0, T ] represents the temporal modes and {·}� is the transpose of {·}. The 
parameter M represents the number of data sets extracted from the numerical simulation, N is the number of grid points 
multiplied by the number of flow variables, T represents the period of snapshot extraction and i represents the mode index.

The POD consists of looking for the deterministic functions {�i}M
i=1 that are most similar in an averaged sense to the 

realizations q(x, t). In this work, we employ the snapshot POD method introduced by Sirovich [11] and, hence, the resulting 
constrained optimization problem reduces to the following Fredholm integral eigenvalue problem
3
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Tˆ

0

Cij ai(t
′)dt′ = λi ai(t) , (2)

where the temporal covariance matrix C ∈RM × M is defined by

Cij = 1

T

ˆ

�

q(x, ti)q(x, t j)dx ≈ 1

T
〈q(x, ti),q(x, t j)〉� . (3)

In the previous equation, � ∈RN × N is a symmetric positive definite matrix defining the inner-product 〈q(x, ti), q(x, t j)〉� =
〈qi,qj〉� = qT

i �qj . Here, matrix � is diagonal with non-zero elements defined as �ii = Ai , where Ai is the area associated 
to the i-th vector element. This choice of inner-product [9,12] is equivalent to the quadrature rule 

´
�

u v dx ≈ ∑N
i=1 uiviAi . 

The covariance matrix C is symmetric positive semidefinite and, therefore, allows the use of singular value decomposition to 
compute the singular values and singular vectors which are, in turn, related to the eigenvalues λi and eigenvectors (modes) 
of the POD reconstruction. Such modes are calculated so that the reconstruction is optimal in the sense of truncated mean 
quadratic error. The idea of writing a temporal covariance matrix (snapshot POD) comes from the fact that solution cost 
grows rapidly for large computational grids. This is an issue especially in multidimensional problems.

In Eq. (2), ai are the i − th time-dependent POD eigenfunctions, also called POD temporal modes [12], that form an 
orthogonal set satisfying the condition

1

T

Tˆ

0

ai(t)a j(t)dt = λi δi j , (4)

where δi j represents the Kronecker delta. The associated eigenvectors �i , also called empirical eigenfuctions or POD spatial 
modes, form a complete orthogonal set and are normalized so that they can verify 〈�i,�j〉� = δi j . These eigenvectors will 
be used in the Galerkin and LSPG projections to reconstruct the system of ordinary differential equations that, in turn, will 
determine the evolution of temporal modes. The spatial basis functions �i can then be calculated from the realizations q
and the temporal modes a with

�i(x) = 1

T λi

Tˆ

0

q(x, t)ai(t)dt . (5)

Finally, reconstruction of the fluctuation fields of specific volume, velocity and pressure can be approximated by

q′(x, t) ≈
m∑

i=1

�i(x)ai(t) , (6)

where m is the number of modes used in the reconstruction of fluctuation fields. In practical ROM applications, one seeks 
m 	 M . The POD method is widely used in literature and we refer to the following references for further information and 
applications [4,9,11,12,20].

2.2. Projection methods

Let us consider the system of non-linear partial differential equations F(q) defined in a connected open region � ⊂RNg

whose boundary � is well defined⎧⎪⎨
⎪⎩

F(q) = dq
dt − G(q) = 0 in �

q(t = t0) = q0

q = g on � .

(7)

In the system above, q is a function of space and time, Ng is the number of grid points, and the non-linear operator G(q)

is given by the convective and diffusive terms appearing in the mass, momentum and energy equations, herein referred to 
as Navier-Stokes equations. Let � ∈RN ×m with {�i}m

i=1 defining an orthonormal basis obtained by POD. The state variable 
q is then approximated as the linear combination of this basis vector as

q ≈ q̂ = q̄ +
m∑

i=1

�i ai , (8)

where the explicit dependencies on space and time are omitted for simplicity.
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In general, after approximation, F(q) ≈ R(q̂) �= 0 for the physical problem being solved. Here, R(q̂) = R(ȧ,a) is the residual 
after order reduction and spatial discretization. A solution is sought by enforcing the residual R(q̂) orthogonality as

〈�i,R(q̂)〉� = 0 , i = 1, . . . ,m , (9)

where {�i}m
i=1 is the test basis. A projection method is generally called Galerkin (Petrov-Galerkin) when the test and solution 

bases are equal (different), i.e., � = � (� �= �) for the following projection

〈�i,R(q̄ +
m∑

j=1

�j a j)〉� = 0 , i = 1, . . . ,m . (10)

Boundary conditions must be implicitly satisfied by the POD solution basis, otherwise the problem may lead to an ill-
conditioned or ill-posed reduced-order model. Homogeneous Dirichlet or Neumann boundary conditions can be inherited 
by the spatial modes � from the snapshot collection [4].

2.2.1. Galerkin projection
Galerkin projection is the most popular alternative for reduced-order modeling of time dependent problems. This can 

be attributed to its implementation simplicity and solid mathematical foundation. Applying the Galerkin projection method 
(� = �) to Eq. (7) we obtain

〈�i,

m∑
j=1

�j ȧ j〉� = 〈�i,G(q̄ +
m∑

j=1

�j a j)〉� , i = 1, . . . ,m . (11)

This equation can be further simplified since the functions �i are orthonormal. Hence, a system of ordinary differential 
equations arises for the temporal modes as

ȧi = 〈�i,G(q̄ +
m∑

j=1

�ja j)〉� , i = 1, . . . ,m , (12)

with initial conditions obtained by projection of a single snapshot q0 in the vector basis

ai(t0) = 〈�i(x),q0〉� i = 1, . . . ,m . (13)

The previous system of ordinary differential equations represents the ROM associated to the FOM and can be solved 
using a time-marching method. The right-hand side of Eq. (12) should not scale with the full-order model so as to achieve 
reduced computational cost. Following the POD-Galerkin approach, the ROM obtained for the non-conservative form of the 
compressible Navier-Stokes equations (see details in Section 2.3) can be written as

ȧi = ei + Aij a j + Nijk a j ak , i, j, k = 1, . . . ,m , (14)

where the ODE coefficients e ∈Rm , A ∈Rm ×m and N ∈Rm ×m ×m can be found in Appendix A. It is worth mentioning that 
these coefficients are time-independent and, thus, need to be calculated only once, in a pre-processing step.

2.2.2. Least-squares Petrov-Galerkin
Test and trial bases are different when a Petrov-Galerkin approach is used (� �= �). In this work, we employ the least-

squares Petrov-Galerkin (LSPG) method that has shown promising results for reduced order modeling [10,35]. According 
to these references, the Petrov-Galerkin approach improves robustness compared to the Galerkin technique, despite the 
absence of a priori stability guarantees for general non-linear problems [6]. The LSPG ROM is obtained by solving the fully 
discrete residual (i.e., the residual after temporal and spatial discretization) minimization problem at each n-th time-step as

minimize
a

Fn(a) . (15)

The objective function Fn(a) is defined in the following special form

Fn(a) = 1

2
‖R̄n(a)‖2

� = 1

2
〈R̄n(a), R̄n(a)〉� , (16)

or equivalently

an = arg min
m

‖R̄n(â)‖2
� , (17)
â ∈R

5
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where R̄n(a) is the fully discrete residual and the initial conditions are also given by Eq. (13). In fact, after temporal dis-
cretization (explicit or implicit) and spatial discretization of the POD modes (here by a finite-difference scheme), the residual 
R̄n is a function of an .

Optimality conditions are derived from Taylor’s theorem and can be determined by examining the gradient ∇Fn(a) and 
Hessian �Fn(a) matrices [36]. The derivatives of Fn(a) can be expressed in terms of the Jacobian Jn(a) = ∂R̄n

∂a . Applying the 
first-order necessary condition ∇Fn(a) = 0 yields

∇Fn(a) = 〈Jn(a), R̄n(a)〉� =
〈

∂R̄n(a)

∂a
, R̄n(a)

〉
�

= 0 . (18)

Therefore, in the LSPG method, the discrete test basis �n ∈RN ×m is given by

�n = Jn = ∂R̄n(a)

∂a
. (19)

Proof of the equivalence of Eqs. (15) and (18), provided that the time marching scheme and initial guess chosen ensure 
convergence to the same local minimum, is available in [8]. Similarly to Galerkin, the LSPG ROM can be reduced to a 
problem no longer scaling with the FOM if the governing equations are linear or have polynomial non-linearities [37,38]. 
For example, the present non-conservative Navier-Stokes equations have a quadratic non-linearity that would lead to pre-
computation of fourth-order tensors in Eq. (18). The offline calculation of these tensors can be cumbersome if several POD 
modes are employed in the ROM together with an implicit time marching scheme and, hence, in this work, cost reduction 
of the LSPG method is achieved by application of hyper-reduction.

Algorithms that follow the line-search framework are commonly used for solving problems such as Eq. (15). The main 
idea in the line-search approach is to choose a direction (k)p leading to a decrease of the objective function Fn when 
moving from the current iterate (k)an to a new one (k+1)an . These algorithms halt when the accuracy criteria has been 
satisfied or when further progress is impossible. The steepest descent algorithm is a first-order line-search method where 
the steps taken are proportional to the negative gradient (k)p = −∇(k)Fn . The slow first-order convergence of this method is 
counterbalanced by requiring only gradients. A second-order alternative is Newton’s method which requires the calculation 
of second derivatives. When applied in the solution of Eq. (15), it results in the following iterations

�(k)Fn (k)p = −∇(k)Fn , (20a)
(k+1)an = (k)an + (k)α(k)p , (20b)

where k = 1, . . . , K with K satisfying the convergence criterion. The step length (k)α ∈ R∗+ can simply be set to unity, 
(k)α = 1, or computed using a line search in the direction (k)p satisfying, for example, Wolfe or Goldstein conditions [36]. 
The systematic choice of the step length is crucial, since it should be cheap and significantly reduce the objective function 
Fn . Also, it should be noted that problems can emerge when using second derivatives, especially when the Hessian is not a 
symmetric positive definite matrix.

The Gauss-Newton algorithm, an alternative to Newton’s method, is capable of avoiding some, but not all, of the issues 
potentially emerging when using the Hessian. In this method, second derivatives are neglected leading to an approximated 
Hessian using only the Jacobian �Fn ≈ 〈Jn, Jn〉� . LSPG reduced-order models combined with a Gauss-Newton solver have 
been widely and successfully used by [6,5,10,39]. Applying the modified Hessian to Eq. (20) results in the following iterations 
for the search direction (k)p

〈(k)Jn, (k)Jn〉�(k)p = −〈(k)Jn, (k)R̄n〉� . (21)

However, the Gauss-Newton method does not address one of the main problems of Newton’s method and iterations may 
fail when the Hessian is near, or exactly, rank-deficient. The Levenberg-Marquardt method is employed in this work and it 
considers �Fn ≈ 〈Jn, Jn〉� + λI to ensure full rank, where I is the identity matrix and λ ≥ 0 is a scalar. This algorithm can 
be seen as a combination of both Gauss-Newton and steepest descent: when 〈Jn, Jn〉� � λI the search direction is similar to 
the direction given by the Gauss-Newton algorithm and, when 〈Jn, Jn〉� 	 λI, the method is similar to the steepest descent.

A detailed theoretical and computational comparison of Galerkin and LSPG projection methods is provided by [6]. A 
number of interesting outcomes from this reference are outlined in the following. The LSPG solution may converge to that 
obtained from Galerkin projection in some situations, for example, as the time step converges to zero. Also, the optimization 
problem from Eq. (15) can be linear or non-linear depending on the time integration scheme employed (explicit or implicit) 
and the set of equations being solved. Non-linear least-squares increases the ROM cost considerably and may become an 
issue. Finally, finding that the error does not decrease as the time step approaches zero, but is optimal for an intermediate 
value, is at the same time a surprising and inconvenient finding. Despite these issues, the LSPG method has demonstrated 
in many situations to be a better alternative to the Galerkin method for general non-linear dynamical systems in spite of 
the higher level of complexity. As also shown in [6], the method is more robust (without hyper-reduction) than Galerkin 
projection and it has desirable stability properties if implemented together with implicit time-marching schemes.
6
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2.2.3. Hyper-reduction
Projection-based reduced-order modeling may fail to produce significant computational time gains despite the reduced-

order basis. Problems containing strong non-linearities (i.e. non-polynomial) or non-affine parameter dependence impede 
pre-computation of Galerkin coefficients. Consequently, full order scaling inner-products must be systematically and con-
sistently calculated during time integration. Hyper-reduction techniques are capable of providing the supplementary ap-
proximation needed to obtain reasonable computational savings in the so-called “reduce-then-project” approach. Succinctly, 
spatial modes are reduced using a non-random sampling algorithm before projection. In some cases, pre-computation of 
strong non-linearities can be made possible by the use of lifting transformations [40]. On one hand, the invasiveness of 
the additional layer of approximation introduced by hyper-reduction is avoided. On the other hand, a non-uniquely defined 
lifted system has to be derived and supplementary variables are introduced.

The gappy POD method [41], which was originally used in facial image reconstruction with incomplete data sets, provides 
the framework to the reduce-then-project procedure also used in other studies [42,10]. Within this approach, given a subset 
of indices J = { j1, . . . , js} ⊂ {1, . . . , N}, a solution vector q̂ is approximated by shrinking the spatial modes using a mask 
projection matrix P = [ej1 , . . . ,ejs ]T ∈RN×s to construct the estimated solution q̃ ≈ PT�a. Here, s is the number of indices 
retained from the original vector of size N and ejk denotes the vector with a 1 in the jk-th coordinate and 0’s elsewhere. 
Temporal modes a are then calculated by minimizing the error ε between the gapless solution q̂ and q̃. Hence, the error is 
defined as

ε = ‖PTq̂ − PT�a‖2
� , (22)

which is equivalent to the minimization problem

‖I − 〈�̃, �̃〉�‖2
2 , (23)

where �̃ = PT�. In this work, hyper-reduction is performed using the POD basis � for the reconstruction of the solution 
vector q̂. However, a basis built from the FOM residual or fully discrete residual vector R̄ could also be adopted.

Random sampling is used when no dynamical insight of the problem being solved is previously available. This approach 
usually leads to considerably bigger mask matrices and randomness makes reproduction of results impossible. Fortunately, 
this is not the case when using a POD basis. Hyper-reduction has been a very active research topic in the past two decades 
and, as a result, several methods have been developed and tested. The optimal solution of Eq. (23) for a set of given size is 
an intractable combinatorial optimization problem even for relatively small problems. However, the missing point estimation 
(MPE) method [43] eliminates points by evaluating the condition number

c
(
〈�̃, �̃〉

)
≡

λmax

(
〈�̃, �̃〉

)
λmin

(
〈�̃, �̃〉

) (24)

of the approximated identity matrix 〈�̃, �̃〉� ≈ I. This procedure is performed looping over all components until a user 
specified near-optimal set of points is left. Computational cost of the MPE method may quickly become prohibitive, although 
the method is cheaper than the optimal solution.

The discrete empirical interpolation method (DEIM) [44] is a popular substitute to MPE [45–48]. This method was de-
rived from the empirical interpolation method (EIM) [49] and it first appeared as a hyper-reduction approach for equations 
containing strong non-linear terms. However, even though it is simple and cost effective, the DEIM has an important 
shortcoming: the number of interpolation points has to be at most the same as the number of POD modes used in the 
reconstruction. This is an obvious limiting element, especially for non-trivial evolution equations or problems using few 
POD modes. Hence, one may require alternative sampling methods capable of circumventing this limitation in order to 
obtain stable and accurate ROMs.

The accelerated greedy MPE procedure [50] introduces a massive improvement to the classic MPE and, therefore, con-
siderable time complexity reductions are possible while still using the MPE principle. Briefly, the greedy point selection is 
equivalent to picking the spatial mode index responsible for the largest growth in the condition number of the modified 
eigenvalue problem. The costly modified symmetric eigenvalue problem is not actually solved, but the index selection occurs 
by analyzing properties of the candidate indices. In the present work, we adopt the accelerated greedy MPE technique for 
hyper-reduction.

2.3. Non-conservative compressible Navier-Stokes equations

Generally, the conservative form of the compressible Navier-Stokes equations is preferred in CFD applications, espe-
cially in applications involving discontinuities. However, the non-linear rational functions of the variables impede speed-ups 
when applying a Galerkin or LSPG projection framework because pre-computation of the ROM coefficients is impossible 
in the conservative form. This issue can be avoided either by applying hyper-reduction methods to cut down complexity 
or choosing a non-conservative formulation as shown by [23]. The conservative form of the compressible Navier-Stokes 
7
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equations was recently applied with hyper-reduction in the context of projection-based reduced-order models [8]. Hyper-
reduction is unattractive and to be avoided when possible since conservation properties are lost. However, methods aiming 
to preserve the underlying physical structure of the problem such as entropy stabilization [51] and empirical quadrature 
procedure (EQP) [52] show promising results when combined with hyper-reduction. Moreover, the second degree polyno-
mial non-linearity of the non-conservative equations allows for pre-computation of coefficients and cost reduction without 
any further approximations, thus being the approach used in this study.

In this work, the ROMs are constructed solving the 2D non-conservative compressible Navier-Stokes equations presented 
by [23]. They can be written as

ζt =ζ(ux + v y) − uζx − vζy , (25a)

ut = − uux − vu y − ζ px + Ma

Re
ζ

[(
4

3
ux − 2

3
v y

)
x
+ (vx + u y)y

]
, (25b)

vt = − uvx − v v y − ζ p y + Ma

Re
ζ

[(
4

3
v y − 2

3
ux

)
y
+ (vx + u y)x

]
, and (25c)

pt = − upx − vp y − γ p(ux + v y) + γ Ma

Re Pr
[(pζ )xx + (pζ )yy]

+ (γ − 1)Ma

Re

[
ux

(
4

3
ux − 2

3
v y

)
+ v y

(
4

3
v y − 2

3
ux

)
+ (vx + u y)

2
]

,
(25d)

where ζ = 1/ρ is the specific volume, u and v are the x and y velocity components, respectively, and p is the pressure. 
In the set of Eqs. (25), Pr, Re and Ma denote the reference Prandtl, Reynolds and Mach numbers, respectively. Subscripts 
denote partial derivatives and γ is the specific heat ratio.

2.4. Calibration of projection-based reduced-order models

Calibration methods are mostly developed and applied to Galerkin-type ROMs. They provide additional terms to the 
generally non-linear system of ordinary differential equations arising from projecting the POD modes in the governing 
equations

ȧ = f(a) , (26)

where f(a) is the right-hand side of Eq. (14). Calibration could be, in principle, applied to any ROM originating from an initial 
value problem. For example, calibration of data-driven ROMs [16,17] is a work in progress. Calibration could be particularly 
beneficial to systematically accounting for the additional errors introduced by hyper-reduction. Moreover, smaller mask 
matrices (i.e., a more aggressive hyper-reduction) could be envisioned when combined with calibration, what would reduce 
both the computational costs and model errors.

Usually, only linear terms are adopted in the calibration process, but non-linear terms can also be considered and have 
been used to some extent [53]. Here, constant ec ∈Rm and linear Ac ∈Rm ×m calibration terms will be added as

ȧ = f(a) + ec + Aca , (27)

and details of the numerical procedure are provided in the following sections.

2.4.1. Linear least-squares calibration
In a linear least-squares calibration, the goal may be to minimize the error E1 between temporal modes obtained by 

solving the system of non-linear equations of the reduced-order model ROMa and the original POD temporal modes PODa in 
a user specified training window 0 ≤ t ≤ T as

E1 =
m∑

i=1

Tˆ

0

(
P O Dai(t) − R O Mai(t)

)2
dt . (28)

In the above equation, PODa refers to the temporal modes obtained directly by the POD snapshot method in Eq. (2), while 
the term ROMa represents the temporal modes obtained by the solutions of Eqs. (12) and (17) for the Galerkin and LSPG 
models, respectively. Similarly, temporal modes should also satisfy ȧ = f(a) and, hence, a second error norm E2 can be 
defined by the ODE system and this is the preferred method used in this work

E2 =
m∑

i=1

Tˆ (
P O Dȧi(t) − f i(

ROMa)
)2

dt . (29)
0

8
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The non-linear optimization problem in the error norm E2 from Eq. (29) can be transformed to a linear one enforcing 
f(ROMa) = f(PODa), as discussed in [26]. Here, PODȧ(t) is computed using a high-order finite difference scheme. Suppression 
of the non-linear constraint to obtain an affine operator may seem extreme at first, but this can be understood as a mea-
sure of how the non-calibrated ROM alters the solution in each time step. If successful, calibration should systematically 
compensate for any deviations from the POD temporal modes

E2 =
m∑

i=1

Tˆ

0

(
P O Dȧi(t) − f i(

PODa)
)2

dt . (30)

Here, E2 will be used to indicate the non-calibrated affine approximation error while Ec
2 will indicate the same error with 

constant ec and linear Ac calibration terms included

Ec
2(ec,Ac) =

m∑
i=1

Tˆ

0

(
P O Dȧi(t) − f i(ec,Ac, PODa)

)2
dt . (31)

Calibrating the ODE system by directly minimizing the error Ec
2 inside the training window could fail to generalize 

the knowledge to longer time periods. Overfitting can be overcome by controlling the relation between the calibrated and 
original ROM terms. In this case, a functional L(ec,Ac,θ) can be defined as

L(ec,Ac,θ) = θ
Ec

2(ec,Ac)

E2
+ (1 − θ)

‖ec‖2 + ‖Ac‖2

‖e‖2 + ‖A‖2 , (32)

where the first term on the right hand side corresponds to the normalized prediction error and the second one provides the 
relative weight of the calibration coefficients compared to the coefficients of the original ROM. The parameter θ ∈ [0, 1], and 
values of θ close to 0 add more importance to the original ROM while θ close to 1 add a higher weight to the prediction 
quality of the calibrated model along the training window. Other functional choices, favoring for example constant terms, 
could be explored. In this work, we use the following functional form

L̃(ec,Ac, θ) = Ec
2(ec,Ac) + θ̃ (‖ec‖2 + ‖Ac‖2) (33)

with

θ̃ = 1 − θ

θ

E2

‖e‖2 + ‖A‖2 . (34)

Minimizing the functional L̃ gives rise to a linear system. For clarity, the different calibration coefficients are grouped 
such that Kc = [ec Ac] ∈ Rm × (m+1) and the enriched temporal mode vector a∗ = [1 P O Da1 . . . P O Dam] = [1 a], so that the 
functional to be minimized is written as

L̃(Kc, θ) =
m∑

i=1

Tˆ

0

⎛
⎝P O Dȧi(t) − f i(

PODa) −
m+1∑
j=1

K c
i ja

∗
j (t)

⎞
⎠

2

dt + θ̃‖Kc‖2 , (35)

where f i is the general non-linear system of ordinary differential equations defining the reduced-order model being cali-
brated.

For a given parameter θ , the optimality condition ∂L̃/∂ K c
i j = 0 leads to solving m linear systems of size m + 1 or, for 

i = 1, . . . , m

DTKc
i = bi , (36)

where Kc
i is the ith row of Kc ,

Dij =
Tˆ

0

a∗
i (t)a∗

j (t)dt + θ̃ δi j (37)

and

b j
i =

Tˆ

0

(
P O Dȧ j(t) − f j(t)

)
a∗

i (t)dt . (38)

Matrix D is calculated only once while vector bi must be evaluated for each mode during the calibration phase. Further 
details and explanations can be found in [54].
9
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2.4.2. Calibration of least-squares Petrov-Galerkin
The LSPG method should provide better stability properties compared to Galerkin projection. However, the method still 

lacks a priori stability and accuracy guarantees, especially when combined with hyper-reduction. The calibration method 
presented in Section 2.4.1 can be used (if a proper adaptation is provided) to improve LSPG prediction capability. To the 
best of the authors’ knowledge, calibration by linear least-squares error minimization of the temporal modes has never been 
applied to LSPG.

According to Section 2.4.1, this particular calibration method is performed before a time marching method (i.e. temporal 
discretization) is applied. Thus, some adaptation is required if the given problem is to fit the error norm given by Eq. (31)
being the LSPG method fully discrete. This inconvenience can be surpassed by minimizing the spatially discrete residual 
R(ȧ, ROMa) for ȧ after enforcing ROMa = PODa. In other words, instead of solving the fully discrete residual minimization 
problem, the idea is to solve the spatially discrete residual minimization version of the problem for the time derivative of 
the temporal mode ȧ = f(a) at each n-th time-step using the POD trial basis projection

ȧn = arg min
α̇ ∈Rm

‖Rn(α̇, PODa)‖2
� . (39)

In the previous equation, the term ȧn is used to replace f i(
PODa) in Eq. (34) and α̇ is a dummy variable that represents 

the derivative of the temporal modes.
After all values of ȧn are determined, calibration operators ec and Ac can be easily calculated according to Section 2.4.1. 

Finally, constant ec and linear Ac calibration terms are integrated systematically afterwards to the model at each time-step 
in a predictor-corrector fashion as

ãn = arg min
â∈Rm

‖R̄n(â)‖2
� , (40a)

an = ãn +
ˆ

�t

(ec + Acan−1)dt . (40b)

Equation (40a) is equivalent to the solution of the standard LSPG method given by Eq. (17), while Eq. (40b) is computed 
after the ec and Ac terms are obtained through the solution of Eq. (31), in a similar fashion to the Galerkin schemes.

3. Results and discussion

In this section, we analyze the performance of Galerkin and LSPG methods with and without calibration for generat-
ing reduced-order models of compressible flows. Both ROM approaches were previously tested in [18] for the solution of 
incompressible flows involving convective heat transfer. In this previous reference, the LSPG method was able to present 
accurate solutions with an aggressive hyper-reduction that used only 0.05% of the grid nodes. In this work, ROM calibration 
is tested on compressible flows involving wave propagation. Firstly, we study the flow past a NACA0012 airfoil at freestream 
Mach number Ma = 0.3 and Reynolds number Re = 100,000. In this case, boundary layer hydrodynamic instabilities lead to 
trailing-edge noise generation that, in turn, excites a feedback loop mechanism. Then, an assessment of ROM calibration is 
presented for a supersonic flow over a NACA0012 airfoil at Ma = 1.2 and Re = 80,000. This test case involves the transient 
motion of a bow shock formed at the airfoil leading edge and a shock-vortex interaction occurring at the trailing edge.

The full order models considered in this work are obtained by numerical simulation of the two-dimensional compressible 
Navier-Stokes equations written in the conservative form. Length scales and flow quantities are non-dimensionalized by 
the airfoil chord, freestream density and velocity. Numerical results are obtained by a sixth-order accurate compact finite 
difference scheme [55] for spatial discretization. The method employs a staggered grid formulation and is able to capture 
shock waves for low Mach number supersonic flows (Ma < 1.3) without the explicit addition of a shock capturing scheme. 
A hybrid implicit-explicit framework is employed for time marching of the equations through a combination of a third-
order Runge Kutta scheme with a modified Beam-Warming implementation [56]. All flow simulations are conducted with 
O-type grids with Nx × N y grid points in the streamwise and wall-normal directions, respectively. The present grids have (
Nx × N y

) = (800 × 600) and (768 × 400) points for the present subsonic and supersonic airfoil flows, respectively.

3.1. Subsonic flow past NACA0012 airfoil

In the present analysis, a NACA0012 airfoil with a rounded trailing edge is immersed in a Ma = 0.3 flow at 3 deg angle of 
incidence with Re = 100,000. At this moderate Reynolds number, flow instabilities develop along the suction side boundary 
layer as can be observed in the sketch shown in Fig. 1(a). These instabilities are advected past the trailing edge, generating 
acoustic waves that propagate upstream forming a feedback loop mechanism [57,58]. For the present flow, Ricciardi et al. 
[59] show that a thin recirculation bubble forms on the airfoil suction side. This bubble has a low frequency flapping that 
induces a frequency modulation of flow structures that are transported along the boundary layer until reaching the trailing 
edge. This modulation causes lead and lag of flow instabilities that, in turn, affect the acoustic scattering mechanism, 
leading to multiple equidistant secondary tones in the acoustic spectrum as shown Fig. 1(b). Therefore, despite the simple 
10



V. Zucatti, W. Wolf and M. Bergmann Journal of Computational Physics 433 (2021) 110196
Fig. 1. Sketch of 2D compressible flow at moderate Reynolds number over NACA0012 airfoil (left). Flow instabilities developing over suction side boundary 
layer are advected along the trailing edge leading to acoustic scattering. These flow instabilities are modulated by a low-frequency motion of the separation 
bubble, what induces the appearance of equidistant secondary tones in the noise radiation as shown in [59]. Pressure spectrum computed one chord above 
the trailing edge showing a main tone plus secondary tones (right).

Fig. 2. Relative information content (left). Spectrum of singular values (right).

geometrical configuration, this airfoil flow at moderate Reynolds number is a suitable candidate to evaluate the performance 
of ROMs since it offers rich dynamics. More details about this flow can be found in [59].

Results obtained from the full order model are recorded for 10,000 snapshots with a constant non-dimensional time 
step �tsnapshot = 3 × 10−3. Half of the snapshots are used to construct a reduced-order basis by the snapshot-POD method 
introduced in section 2.1. This is equivalent to 15 non-dimensional time units. The length of the training window and the 
number of sampling snapshots need to be chosen wisely to avoid an ill-resolved POD basis. In this case, the low-frequency 
motion of the separation bubble requires a wide training window. On the other hand, high sampling frequency rates are 
essential for resolving the finer flow scales appearing along the boundary layer. This combination of features is crucial for 
stability and accuracy of the present non-linear ROM.

The optimality property of the POD method is expected to produce a basis where only a small number of modes should 
be necessary to reconstruct the input data and, thus, the benefit of including additional modes is expected to rapidly decay. 
Usually, the number of POD modes used in the ROM is chosen according to the relative information content RIC(m) =∑m

i=1 λi/ 
∑M

i=1 λi and should satisfy a predefined threshold. The evolution of the RIC for this case is presented in Fig. 2(a) 
for a basis composed of the first 100 modes (out of 5,000). This basis represents 99.75% of the model RIC and, therefore, 
should be sufficient to lead to an accurate flow representation. Additionally, the corresponding spectrum of singular values 
11
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Fig. 3. Contours of POD eigenfunctions for modes 1, 5, 9, 13 and 17 (top to bottom) for u-velocity (left), v-velocity (center) and pressure (right).

is presented in Fig. 2(b), where it is possible to see the fast magnitude decay of the first modes. As can be also seen in this 
figure, the magnitudes are similar for mode pairs, what indicates that such modes contain similar frequency information, 
differing only with respect to phase.

It is expected that the first mode pairs represent the most energetic coherent structures responsible for the flow dy-
namics. In order to have a better understanding of the present flow, the POD spatial eigenfunctions are shown in Fig. 3 for 
modes 1, 5, 9, 13 and 17. These modes are presented for u and v velocity components, and pressure fluctuations (ζ ′ has 
the same spatial distribution as p′). They are chosen according to their dynamical content, depicted in Fig. 4. For all modes, 
it is possible to notice that the flow structures appear along the suction side boundary layer and wake regions. Analyzing 
both figures together, it is clear that mode 1 contains the most energetic large-scale structures on the boundary layer, which 
are associated with the main tone of the spectrum shown in Fig. 1(b). Mode 5 is associated with finer scales and displays a 
modulated higher frequency content. Modes 9, 13 and 17 share similarities in terms of flow structures as can be observed 
from Fig. 3. The temporal dynamics of the former two modes are similar and include multiple frequencies strongly modu-
lated. However, the main frequency of mode 9 is lower than that of mode 13. On the other hand, the temporal dynamics of 
mode 17 appears to have a more clear pattern composed of sinusoids with weaker modulation.

For this case, the ROMs are constructed using the first 100 POD modes. For the Galerkin scheme, the constant, linear and 
non-linear coefficients are computed and stored in a pre-processing stage following the equations shown in Appendix A. 
The spatial derivatives of the POD modes are computed using a 10th-order accuracy compact finite difference scheme for 
both Galerkin and LSPG techniques. Zucatti et al. [18] show that the error evolution of projection-based ROMs is sensitive 
to the computation of spatial derivatives, being considerably reduced when high-resolution schemes are applied.

The present Galerkin model is computed using a maximum calibration parameter (θ = 1) chosen after an assessment of 
different values. For this particular flow, the solution error is not very sensitive with respect to the calibration parameter, as 
can be observed in Fig. 5. This figure shows that, for θ = 1, the sum of the Frobenius norms ‖ · ‖F of the constant and linear 
calibrated terms is an order of magnitude smaller than that computed for the original Galerkin operators. Thus, relatively 
low-intrusive terms are obtained in the calibration procedure even though the prediction quality along the training window 
is favored during calibration. However, this is not always the case and, for other flows, it is important to choose θ aiming 
to improve the model quality and, at the same time, avoid overfitting. The calibrated LSPG models do not depend explicitly 
on θ since they are computed using Eq. (40).
12
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Fig. 4. Temporal dynamics of POD modes 1, 5, 9, 13 and 17.

As previously discussed, the LSPG method should provide better stability properties than the Galerkin projection. Al-
though hyper-reduction is not required for order reduction when the non-conservative Navier-Stokes equations are solved, 
its impact on calibrated LSPG models is demonstrated. Before a particular number of grid points is employed in the hyper-
13
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Fig. 5. Ratio of Frobenius norms computed for calibrated and Galerkin coefficients as a function of approximation error for different values of θ (see Eq. (33)
for details).

Fig. 6. Condition number of approximation mode matrix 〈�̃i, �̃j〉� obtained from hyper-reduction.

reduction, it is important to assess the condition number behavior of the system. This is a good way to have an a priori
estimate of the number of points to be used in the ROM. On one hand, we desire to use as few as possible grid points 
in the model reconstruction to reduce its computational cost. On the other hand, the condition number should be kept as 
small as possible to reduce the errors associated with the procedure and to be able to represent the relevant flow dynamics. 
Fig. 6 shows the condition number as a function of the number of grid points used in the hyper-reduction.

One can see that the condition number does not fall monotonically, which is expected since the present hyper-reduction 
algorithm is locally optimal but not globally optimal, as previously discussed. Eventually, as the number of grid points is 
increased, the condition number will become unity once the approximation mode matrix recovers the original full POD 
spatial mode matrix. As can be observed from the figure, there is a first considerable drop in the condition number when 
approximately 50 grid points are used in the mask matrix. However, the LSPG ROMs built for this range of condition number 
were either unstable or inaccurate. Increasing the number of grid points resulted in a second drop in the condition number 
which provided stable models. For the present problem, hyper-reduction is then applied using 29,000 grid points (6.04%
of the total) which resulted in a condition number c(〈�̃i, �̃j〉�) = 47.65. Fig. 7 shows the sample points computed by the 
accelerated greedy-MPE algorithm. In Fig. 7(a), one can see that the hyper-reduction approach picks the grid points along 
14
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Fig. 7. Sample points (in blue) chosen by the accelerated greedy-MPE hyper-reduction algorithm. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

the wake and suction-side boundary layer since these regions contain the most relevant flow dynamics. A detail view of the 
trailing-edge region is presented in Fig. 7(b) and it is possible to notice that some grid points are also selected in the near 
acoustic field region, where cylindrical sound waves radiate from the trailing edge.

Reduced-order models obtained either by Galerkin or LSPG schemes consist in a set of coupled non-linear ordinary 
differential equations. In order to describe the dynamics of the system at hand, these equations need to be temporally 
integrated using a time-marching scheme. A suit of explicit and implicit techniques is available and, here, some are tested 
to assess the accuracy and stability properties of the ROMs. All non-linear least squares problems emerging from implicit 
time integration are solved using the Levenberg–Marquardt algorithm previously described. The model time step is selected 
the same as that between snapshots �tR O M = 3 × 10−3 and this value is 16 times larger compared to the time step 
used in the FOM simulation. For this time step the highest frequencies observed in the POD temporal modes are still 
resolved with at least 20 points per wavelength. Carlberg et al. present a detailed theoretical assessment of time integrators 
for Galerkin and LSPG schemes in [6]. Here, we analyze the performance of implicit and explicit methods together with 
calibration techniques. Results are computed for a probe located on the boundary layer at (x, y) = (0.6919, 0.0083). At this 
location, flow instabilities are advected towards the trailing edge while acoustic waves are propagated upstream through 
the boundary layer.

Figs. 8–10 show the time histories of u-velocity fluctuations computed by the FOM and the Galerkin and LSPG models. 
Solutions are presented for the training region (0 ≤ t ≤ 15) and for an extrapolation period for which FOM solutions are 
available (15 < t ≤ 30). The impact of model calibration is analyzed for different time marching schemes and, in Fig. 8, the 
implicit Euler method is evaluated. This 1st-order scheme is tested due to its stability properties. As can be observed in the 
figure, both Galerkin and LSPG models are stable along the training and extrapolation periods even without calibration, but 
they show a large amplitude error. Calibration leads to an excessive damping for the Galerkin method. On the other hand, 
the LSPG solution shows a reasonable agreement with the FOM, displaying a small error in amplitude and phase.

In Fig. 9, the ROMs are integrated using the trapezoidal method. One should expect an improvement in terms of am-
plitude and phase errors for this 2nd-order implicit scheme, while retaining stability. For this case, the Galerkin scheme 
becomes unstable without calibration while the LSPG maintains stability, but presents an inaccurate solution. When cal-
ibration is employed, both ROMs become stable and relatively accurate, with small discrepancies in the capture of high-
frequency oscillations. It is also worth mentioning that calibration renders implicit models much cheaper because of the 
faster convergence rate towards the solution despite imposing additional terms.

Solutions obtained for the explicit fourth-order Runge Kutta (RK4) scheme are presented in Fig. 10. Both Galerkin and 
LSPG solutions become unstable when this explicit time integration scheme is applied without calibration. However, cal-
ibration provides stable Galerkin and LSPG models, with the Galerkin scheme being visually more accurate in terms of 
amplitude.

Table 1 shows the computed absolute and root mean-squared errors for the different time integration schemes. The 
mean-squared error is computed for the fluctuation field which is integrated along the entire mesh from 0 ≤ t ≤ 30 as
15
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Fig. 8. Time histories of u-velocity fluctuations computed by implicit Euler time marching scheme at (x, y) = (0.6919,0.0083).

Table 1
Mean-square and absolute errors for the different time integration schemes.

Root mean-squared error Absolute error

Time integrator Calibrated Non-calibrated Calibrated Non-calibrated

Galerkin LSPG Galerkin LSPG Galerkin LSPG Galerkin LSPG

IE 0.6948 0.8547 0.6135 0.8569 1.0144 1.4716 1.4120 1.8011

Trapezoidal 0.1679 0.1846 5.6267 1.1706 0.4132 0.4127 22.060 1.8693

DIRK2 0.1704 0.3788 5.3730 388.21 0.4215 1.1302 15.070 4138.8

DIRK3 0.1735 0.3672 4.3519 4.3538 0.4303 1.1074 14.334 18.721

RK4 0.1733 0.3703 5.1665 NaN 0.4299 1.0844 17.550 NaN

Error = ‖u′
FOM(x, t) − u′

ROM(x, t)‖L2

‖u′
FOM(x, t)‖L2

(41)

and, therefore, is prone to any small phase and amplitude differences with respect to the FOM solution. Results obtained for 
diagonally-implicit second and third-order Runge Kutta schemes (DIRK2 and DIRK3) are also included in the table. As can 
be noticed, calibration not only stabilizes the solutions but leads to a considerable error reduction. Except for the implicit 
Euler scheme employed with the Galerkin model, the mean-squared error is always reduced when calibration is applied. 
However, LSPG combined with implicit Euler performed reasonably well and would be the preferred method if calibration 
16



Fig. 9. Time histories of u-velocity fluctuations computed by trapezoidal time marching scheme at (x, y) = (0.6919,0.0083).

was not to be used. The trapezoidal method obtains the most accurate solutions for both the calibrated Galerkin and LSPG 
models. For the present period of integration, even without calibration, this scheme also obtained stable solutions for the 
integration period tested, but with large errors. The explicit Runge-Kutta scheme also presents accurate solutions and is a 
viable option due to its reduced computational cost compared to the implicit methods.

Models obtained by the LSPG display larger errors than those computed by the Galerkin in all calibrated cases with the 
exception of the trapezoidal method absolute error. Additionally, in order to evaluate hyper-reduction effects, a calibrated 
LSPG model using the RK4 without hyper-reduction was built. Although better than its lower-cost counterpart, the gapless 
model was not only incapable of outperforming the Galerkin results but it was also very expensive due to the large number 
of degrees of freedom in the optimization problem. The root mean-squared and absolute errors for the gapless LSPG-RK4 
model are 0.2087 and 0.5175, respectively.

Snapshots of u-velocity and pressure fluctuations obtained at t = 24 are presented in Figs. 11 and 12, respectively. 
These figures allow a comparison of results between the FOM and calibrated ROMs using the trapezoidal method for time 
integration. Although small discrepancies between the ROM and FOM solutions can be observed, especially for small-scale 
flow structures, the main features of the flow are recovered. In the FOM, vortex merging taking place at the mid-chord 
location leads to flow instabilities that develop along the boundary layer. Fig. 11 shows the velocity fluctuations resulting 
from these instabilities along the trailing-edge region. As one can see, both the Galerkin and LSPG models are able to capture 
the relevant flow features. Acoustic scattering occurs due to the advection of the flow instabilities along the trailing edge, 
what leads to sound waves that propagate upstream closing a feedback loop mechanism [59]. Fig. 12 shows that the ROMs 
accurately capture the acoustic waves generated at the trailing edge. In this figure, one can also observe a hydrodynamic 
wavepacket that is generated at the airfoil mid-chord being transported along the boundary layer towards the trailing edge.
V. Zucatti, W. Wolf and M. Bergmann Journal of Computational Physics 433 (2021) 110196
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Fig. 10. Time histories of u-velocity fluctuations computed by RK4 time marching scheme at (x, y) = (0.6919,0.0083).

Fig. 11. Contours of u-velocity fluctuations computed at t = 24 using calibrated models with trapezoidal integration.
18
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Fig. 12. Pressure fluctuation contours computed at t = 24 using calibrated models with trapezoidal integration.

Fig. 13. Contours of POD eigenfunctions for u-velocity.

3.2. Supersonic flow past NACA0012 airfoil

The second test case investigated is a supersonic flow over a NACA0012 airfoil. The freestream Mach number is set as 
Ma = 1.2, the Reynolds number is Re = 80,000 and the airfoil is at 6 deg angle of attack. The FOM includes a transient 
solution where a detached bow shock wave forms at the airfoil leading edge while a fish-tail shock forms on the trailing 
edge. The bow shock propagates upstream until it settles in front of the airfoil while the oblique tail shock remains almost 
stationary. A large-scale starting vortex appears at the early stages of the flow and, later, a separation bubble forms along 
the airfoil suction side leading to vortex shedding which interacts with the oblique shock at the trailing edge.

Some of the flow features described above can be observed in the POD spatial modes computed for the u-velocity 
component in Fig. 13. The first mode shown in this figure is solely related to the shock waves and is similar to a mean flow 
where the detached shock appears stationary upstream the airfoil. Modes 5 and 10 exhibit an oscillatory behavior upstream 
the airfoil to represent the motion of the bow shock. In these modes, oblique shock waves are observed on the trailing 
edge and they also have an oscillatory pattern to model the initial transient of the fish-tail shock. Downstream the airfoil, 
19



V. Zucatti, W. Wolf and M. Bergmann Journal of Computational Physics 433 (2021) 110196
Fig. 14. Ratio of Frobenius norms computed for calibrated and Galerkin coefficients as a function of approximation error for different values of θ (see 
Eq. (33) for details).

Fig. 15. Sample points (in blue) chosen by the accelerated greedy-MPE hyper-reduction algorithm.

one can also see some oscillations along the wake that represent the advection of the starting vortex. Mode 15 shows the 
oscillatory pattern of vortex shedding which is formed at the trailing edge after the initial transient.

Results obtained by the FOM are sampled for 10,000 snapshots with a constant non-dimensional time step �tsnapshot =
0.01. The first 7,000 snapshots, which represent 70 non-dimensional time units, are used to construct a reduced-order 
basis by the snapshot-POD method. This period is sufficient to capture the transient motion of the detached shock wave. 
The ROMs are built using the first 30 POD modes which contain 99.91% of the model RIC. The Galerkin models are built 
using the maximum calibration parameter (θ = 1) and this choice is made after an analysis of Fig. 14 that shows the low 
intrusiveness of the calibration terms relatively to the original Galerkin operators. For θ = 1, the error Ec

2 is minimized and 
the ratio of the Frobenius norms from the calibrated and Galerkin terms is still lower than unity.

The application of hyper-reduction for the present transient flow is a challenge since the entire pathway of motion of 
the detached shock wave has to be captured by the sampled points. Moreover, the initial transient also includes the starting 
vortex that is advected along the airfoil wake. Fig. 15 shows the sampled points chosen by different levels of the accelerated 
greedy-MPE hyper-reduction. As shown in Fig. 15(a), only the initial pathway of the bow shock appears in first 20,000 
points selected by the hyper-reduction. At the same time, the stronger oblique shock on the airfoil suction side is better 
represented by the sampled points. Fig. 15(b) shows that a less aggressive hyper-reduction with 50,000 points captures a 
wider pathway of the detached shock and adds sample points to both oblique shocks at the trailing edge. Finally, when 
100,000 points (out of ≈300,000) are employed in the hyper-reduction, the entire pathway of the bow shock is captured 
besides the tail shocks and near wake. Moreover, some sample points are chosen along the wake to include the motion of 
the starting vortex. For the present transient flow, the application of hyper-reduction is not as effective as for the previous 
subsonic flow since the detached shock wave moves upstream. Hence, in order to capture the entire motion of the shock, 
the hyper-reduction needs to include its entire pathway ahead of the airfoil.

In Fig. 16, results are presented for calibrated ROMs computed with the explicit fourth-order Runge-Kutta (RK4) time 
integrator for the LSPG method with and without hyper-reduction and for the Galerkin method. Without calibration, all 
ROMs obtained by the RK4 became unstable. The LSPG method is presented for a hyper-reduction including 100,000 sample 
points. For more aggressive applications of the accelerated greedy-MPE algorithm, the LSPG method could not provide stable 
ROMs. In the figure, temporal modes 1, 5, 10 and 15 are shown and, as observed before, the first three modes are associated 
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Fig. 16. Temporal dynamics of POD modes 1, 5, 10 and 15. The LSPG is tested with (105 sample points) and without hyper-reduction.

with the shock motion, being well recovered by both Galerkin and LSPG methods without hyper-reduction. When the LSPG 
method is tested with hyper-reduction, a small phase and amplitude distortion is observed for modes 5 and 10.

Mode 1 appears as a moving average since the present flow is transient and a true mean flow is not obtained for the 
entire period of simulation. Modes 5 and 10 are composed of low frequencies which have some modulation while mode 
15 is governed by the vortex shedding dynamics. This latter mode is composed of much higher frequencies (compared to 
modes 5 and 10) with an initial growth and modulation. For the initial time period (0 < t < 10), both the Galerkin and 
LSPG ROMs are not able to capture the initial growth of the vortex shedding oscillations but they capture the low-frequency 
dynamics of the modulation similarly to a low-pass filter. Beyond t > 10, the calibrated Galerkin model is able to recover
the periodical dynamics of this mode while the LSPG model has a more dissipative behavior and cannot reproduce the 
high-frequency oscillations. In the Galerkin model, the delay in the vortex shedding development may occur because the 
initial flow period coincides with the motion of the shock waves which are associated with more important singular values 
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Fig. 17. Time histories of u-velocity fluctuations for probes placed at the shock wave locations.

of the POD decomposition. Once the shocks are reaching their steady-state, the calibrated model is able to capture the less 
energetic fluctuations associated with vortex shedding.

The RK4, implicit Euler and trapezoidal time-marching methods are tested for the present case. We observed that all 
non-calibrated Galerkin and LSPG ROMs were unstable except one, the LSPG ROM computed with the implicit Euler method, 
which was stable but inaccurate.

Fig. 17 presents the temporal histories of two probes that capture the u-velocity fluctuations of the detached and trailing-
edge shock waves. Results are provided for the FOM and the Galerkin and LSPG models computed with the RK4 scheme. 
Solutions obtained by the LSPG with different levels of hyper-reduction are also provided for the trapezoidal scheme. All 
results are presented for the training region (0 ≤ t ≤ 70) and an extrapolation period for which the FOM solutions are 
available (70 < t < 100). Probe locations are indicated in Fig. 19(a) by purple and green symbols. From these figures, one 
can observe that both RK4 Galerkin and LSPG calibrated ROMs are able to nicely represent the shock motions, despite the 
strong sharp fluctuations. The LSPG results computed by the trapezoidal scheme show a good comparison with the FOM for 
the trailing-edge shock. However, the detached shock solution is considerably affected by the hyper-reduction. When 20,000 
points are used in the hyper-reduction, the probe misses the detached shock because the points sampled by the accelerated 
greedy MPE algorithm do not contain the entire pathway of the shock wave. The solution obtained without hyper-reduction 
is considerably improved but is still less accurate than that computed by the RK4 LSPG.

The u-velocity time histories of vortex shedding are exhibited in Fig. 18 for the probe location indicated by the yellow 
symbol in Fig. 19. This probe captures both the motion of the separation bubble on the suction side of the airfoil and the 
trailing-edge shock motion induced by vortex shedding. In this case, solutions are presented in detail views for the first 15 
and last 5 time units. Here, both the Galerkin and LSPG ROMs are not able to reproduce the initial dynamics of the FOM, as 
can be seen in Fig. 18(a). However, such dynamics is captured by the Galerkin model for t > 10 leading to vortex shedding 
with a small phase and amplitude error as shown in Fig. 18(b). In contrast, the LSPG ROM is not able to reproduce the 
higher frequency vortex shedding dynamics. As discussed in the literature [6], the accuracy of LSPG models is time step 
dependent and this could have an impact in the solutions. Further investigations on this topic can be seen in [60].

Fig. 19 presents contours of divergence of velocity, in gray scale, and vorticity, in color, at t = 100. At this time, the flow 
reached a “steady-state” and fluctuations appear only due to vortex shedding and its induced shock motion at the trailing 
edge. Divergence of velocity allows a better visualization of the shock waves which are well captured by both RK4 calibrated 
ROMs. Small fluctuations at the trailing-edge shock and vortex shedding are dissipated by the LSPG model but are captured 
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Fig. 18. Time histories of u-velocity fluctuations computed for the probe indicated by the yellow symbol in Fig. 19.

by the Galerkin ROM as can be seen in the figure. The LSPG ROM obtained by the trapezoidal time-marching scheme is 
also shown and, for this case, hyper-reduction with 20,000 points is employed in the model reconstruction. Although the 
oblique shocks are well captured by the model, the detached shock wave is positioned downstream compared to the FOM 
solution. This occurs because the hyper-reduction sampled points do not contain the entire pathway of the shock wave as 
shown in Fig. 15 and, hence, the model is not able to recover upstream information of the shock motion.

4. Conclusions

Galerkin and least-squares Petrov-Galerkin reduced-order models are applied to compressible flows involving a disparity 
in temporal scales. The first case investigated comprises a subsonic flow past a NACA0012 airfoil for which boundary layer 
hydrodynamic instabilities lead to trailing-edge noise generation. For this case, a separation bubble induces a low-frequency 
modulation of the higher-frequency boundary layer instabilities that, in turn, leads to the appearance of multiple secondary 
tones in the acoustic radiation. The second case consists of a supersonic flow over a NACA0012 for which shock-vortex 
shedding interaction appears at the trailing edge. The dataset employed in the model construction includes a transient 
period of the flow where a detached shock wave propagates upstream the airfoil leading edge. The initial transient also 
includes the formation and advection of a starting vortex.

Calibration is employed to construct stable and accurate models and, here, we propose a new form of calibration for 
the LSPG method. Moreover, differently from other references, we employ the Levenberg-Marquardt method to solve the 
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Fig. 19. Contours of dilatation in gray scale and vorticity in color. The purple, green and yellow symbols represent the probe locations from Figs. 17 and 18.

minimization problem appearing in the LSPG models since it solves the problem of Newton’s method when the Hessian is 
rank-deficient. For both the Galerkin and LSPG methods, calibration is applied only on constant and linear terms appear-
ing in the set of non-linear ODEs resulting from the ROMs. While the present LSPG calibration does not depend on input 
parameters, the calibration of Galerkin ROMs has a free parameter that balances the model error and the intrusiveness of 
the calibration terms. For both cases analyzed, an assessment of this free parameter shows that even with maximum intru-
siveness the weight of the calibrated coefficients, measured in terms of the Frobenius norm, is still one order of magnitude 
smaller than that of the original Galerkin coefficients.

Different time-marching schemes are employed with the Galerkin and LSPG ROMs and, for the subsonic airfoil flow, the 
non-calibrated LSPG method was able to build stable methods using the implicit Euler and trapezoidal schemes. For the 
supersonic flow, a stable method was also obtained by the non-calibrated LSPG method using the implicit Euler scheme. 
However, for all these cases, the models were not accurate in comparison with the FOM solutions. Except for the implicit 
Euler applied to the subsonic flow, the non-calibrated Galerkin models were unstable independently of the time-marching 
scheme. When calibration was applied to the Galerkin and LSPG methods, solutions became stable and accurate. For the first 
case investigated, different implicit and explicit time-marching schemes provided accurate solutions while, for the second 
case, the fourth-order Runge Kutta presented the most accurate results.

The non-conservative compressible Navier-Stokes equations are solved in this work. Therefore, the second degree poly-
nomial nonlinearities of the formulation allow pre-computation and storage of constant, linear and non-linear Galerkin 
coefficients and, hence, model cost reduction. An accelerated greedy missing point estimation hyper-reduction technique 
is applied to select the most dynamically relevant regions in the flow for model reconstruction and the influence of 
hyper-reduction on the LSPG models is evaluated. In the first problem analyzed, the combination of hyper-reduction and 
calibration allows accurate and stable LSPG models to be reconstructed using only 6% of the total flow information. How-
ever, for the second problem, hyper-reduction is not as efficient due to the transient nature of the flow. In this latter case, 
the sampled points need to capture the entire pathway of the detached bow shock wave in order to provide an accurate 
model. Otherwise, its motion is compromised as shown in the results. In order to capture all transient aspects of the flow, 
at least 30% of the flow information had to be used in the hyper-reduction procedure. For the supersonic flow, calibration 
was able to account for some of the damage inflicted by hyper-reduction.

This work shows that calibration is important to construct long-time stable and accurate Galerkin and LSPG methods. 
In the present studies, the calibrated Galerkin ROMs provide more accurate solutions than the LSPG models. The influence 
of hyper-reduction is analyzed despite both methods not requiring further reduction when implemented with the non-
conservative form of the Navier-Stokes equations. Both the Galerkin and LSPG models could recover the small hydrodynamic 
scales and acoustic waves generated in the subsonic airfoil flow. A comparison between ROM and FOM shows that results 
remain accurate during and beyond the training window. Without hyper-reduction, both models also accurately capture the 
shock waves present in the airfoil supersonic flow. However, the LSPG models present a more dissipative behavior and could 
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not capture the vortex shedding mechanism along the airfoil wake. On the other hand, the Galerkin models could reproduce 
the dynamics of the shedding after an initial transient.
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Appendix A. Galerkin coefficients

Consider the Galerkin coefficients given by the following tensors e, A and N from Eq. (14) and computational domain �. 
These coefficients are functions of the spatial basis � = [�ζ �u �v �p]� obtained by POD, mean flow field q̄ = [ζ̄ ū v̄ p̄]� , 
initial conditions [ζ0 u0 v0 p0]� , specific heat ratio γ , and reference Prandtl (Pr), Reynolds (Re) and Mach (Ma) numbers. 
It is convenient to decompose e = ei = eζ

i + eu
i + ev
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i , which leads to the following terms
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∂ū

∂ y
− ζ̄

∂p̄

∂x
+ Ma

Re

(
4

3
ζ̄

∂2ū
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∂ū

∂ y
+ ∂ū
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The term A is also conveniently decomposed as A = Aij = Aζ

i j + Au
ij + Av
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∂ y

∂�vj

∂x
+ ∂ū
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and, finally, the third order tensor is written as N = Nijk = Nζ
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(A.12)

The initial condition a0 of Eq. (14) is obtained by projection of the first snapshot on the basis vector as

a0
i =

¨

�

(
(ζ0 − ζ̄ )�ζi + (u0 − ū)�ui + (v0 − v̄)�vi + (p0 − p̄)�pi

)
dx dy . (A.13)
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