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The first lecture notes (see Cordier and Bergmann, 2002) were devoted
to an overview of the Proper Orthogonal Decomposition (POD). POD was
first introduced as an approximation method whose solutions are given by a
truncated Singular Value Decomposition (SVD). Therefore, the connections
between SVD and POD were particularly emphasized. Then, the two main
POD approaches: classical POD and snapshot POD were described in de-
tails and the relationships between POD modes and coherent structures (CS)
discussed. Finally, it was clearly demonstrated that the Proper Orthogonal
Decomposition generalized the classical Fourier analysis to inhomogeneous
directions.

In this companion paper, we consider two typical applications of POD:
coherent structures identification and model reduction aspects (see the intro-
duction of Cordier and Bergmann, 2002 for a general discussion). The Proper
Orthogonal Decomposition can first be viewed as a particular data process-
ing technique that extracts, from experimental data or detailed simulations
of high dimensional systems, “mode shapes” or basis functions assimilated
to CS. This viewpoint is illustrated in part I where the Proper Orthogonal
Decomposition is used to educe! CS in a three-dimensional plane turbulent
mixing layer simulated by Large Eddy Simulation (LES). However, up to
now, this approach of POD is too restrictive because it has a purely de-
scriptive nature. Clearly, our understanding of the role of CS in turbulence
generation could be improved, if we could derive models as simple as pos-
sible that mimic the dynamical behaviour of the flow. One of the methods
is to combine the POD basis functions previously determined and Galerkin
projections to yield low-dimensional dynamical models. This procedure, that
has already been employed, with success, to study either the near-wall evo-
lution of the flow within a turbulent boundary layer (see Aubry et al., 1988)
or the dynamical evolution of a plane mixing layer (see Ukeiley et al., 2001),
is applied in part II to the cylinder flow. In this part, we show that POD
reduced order models can be very efficient for low-cost numerical simulations
of the Navier-Stokes equations that can be used to solve optimization and
control problems in unsteady flows.

1Some of the material presented in part I is excerpted from two conference papers
written by one of the author (LC) and previous co-workers (see Cordieret al., 1997; Lardat
et al., 1997b and the acknowledgements in §5).



Part 1
Coherent structures eduction

1 Introduction

The objective of this part is to demonstrate for a basic free turbulent flow that
the Proper Orthogonal Decomposition (see Cordier and Bergmann, 2002) can
be used to identify the CS embedded inside the overall chaotic behaviour of
the turbulence field. These large-scale coherent structures, which contain
most of the turbulent kinetic energy, are mainly responsible for mixing, vi-
brations, radiated noise, etc... Therefore, our ability to describe correctly the
characteristics of these structures, and eventually to predict? precisely their
time evolution, can greatly contribute to our understanding of turbulent flows
and is a capital point for active flow control®. In the POD approach, the co-
herent structures are defined in terms of optimal signature of the turbulent
kinetic energy and they are simply associated to the POD eigenfunctions.

In the following, the POD is applied on the results of the Large Eddy
Simulation (LES) of a three-dimensional, plane mixing layer spatially devel-
oping downstream of a flat plate. The LES is performed on the same flow
configuration studied experimentally in details by Delville (1994, 1995). This
numerical approach complete earlier works dedicated to the study through
combined use of experimental data obtained by rakes of hot-wires and POD
of the spatial organization and temporal evolution of the CS present in the
flow (see Delville et al., 1999 and Ukeiley et al., 2001 respectively).

An outline of the contents of this part is now given. To begin, the nu-
merical approach used in the LES of the plane mixing layer is extensively
described in §2. Then, in order to reduce the data storage requirements, a
data compression procedure based on scalar PODs is applied to the three
components of the velocity (§3). The scalar POD is presented in §3.1 and
the applications to the data-base generated by the LES are done in §3.2.
Due to the energetic optimality of the POD basis functions, it is shown in

2The development of low-order dynamical systems based on POD is not adressed in
this part but is postponed in part II.

3The active control of fully developed turbulent flows are of particular interest for
many industrial configurations. For example, in aerodynamic applications, the control
and modification of turbulent flows could be used either in external flows, to reduce the
total drag of aerospace vehicules or in internal flows, to increase the mixing rate in a
scramjet for instance.
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§3.2.1 that only 10% of the POD modes obtained by the scalar-PODs are
necessary to rebuild accurately the flow realizations. The contribution of the
200 first spatial eigenfunctions to the two-point space correlations is then
estimated by comparison to the correlations experimentally determined by
Delville (1995). Very good agreements are achieved (see §3.2.4). Therefore
we conclude that the spatial eigenfunctions determined in §3.2.2 by use of
the scalar PODs mimic very well the coherent structures organization. Fi-
nally, using the filtered data, a three-dimensional snapshot POD described in
§4.1 is performed. The spatial organization of the eigenfunctions determined
by the snapshot POD are found in good agreement with the experimental
coherent structures (see §4.2.2).

2 Large Eddy Simulation of the plane mixing
layer

~Y

~

Figure 1: Coordinates and notations for the three-dimensional plane mixing
layer.

The velocity ratio is r = U,/U, = 0.59, where U, = 42.8 m/s and
U, = 25.2 m/s are the magnitudes of the external velocities of the bound-
ary layers at the trailing edge of the flat plate (see figure 1). The Reynolds
number, based on 4, and on AU = U, — Uy, is 35000 where 4, refers to the
experimental vorticity thickness at a prescribed location, d,, = 30 X 107 m.
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2.1 Numerical approach
2.1.1 Governing equations

The LES of the mixing layer is performed using the filtered Navier-Stokes
equations by means of the Reynolds decomposition. Using the velocity-
vorticity formulation, these equations are written as follows:

a—g—ﬁx(ﬁxg) = —Lﬁxﬁxg—kﬁx?
ot e
G = Vx#@ (1)
Vg =0
Udfs

where Re is the Reynolds number (Re = ), based on the external ve-

locity U, of the high speed boundary layer and its momentum thickness
f,. In these equations, ¥ is the resolved-part (filtered part) of the velocity
field, @ is its rotational field and 7 stands for the subgrid scale contribution:
T=UXW—1UXu.

2.1.2 Subgrid scale models

In order to take into account the participation of the small-scale structures
in the fluid motion, the subgrid scale vector 7 is modeled using the vorticity
transfer theory of Taylor (1932), by means of an eddy viscosity v, : 7 =
— Vx&. In many subgrid scale models, the eddy viscosity is often related
to the local vorticity. Hence, these models give subgrid contribution even
in laminar flows which does not correspond to the right behaviour. The
idea sought after in the mized-scale model (see Ta Phuoc, 1994; Sagaut,
1995) is to dump smoothly the eddy viscosity v; in the regions where all the
eddy structures are well captured. Using the mizred-scale model, v, is then
calculated using two different velocity scales.

2.1.3 Computational domain and grid

The computational domain starts at the trailing edge of the flat plate and
spreads over L, = 20 ¢, far downstream. The size of the mesh is 401 x71x55.
The grid uses N, = 401 points equally spacing in the streamwise direction
(z). In the inhomogeneous (vertical) direction (y), the domain lays over
L, = 6 d,,- The mesh is tightened around the centerline of the mixing
layer, following a cosine distribution using N, = 71 grid-points. The flow
is supposed to be periodic in the spanwise direction (z) ; the domain lays
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over L, =5 d,, using N, = 55 points equally spaced. Using this mesh, the
grid filter width (A = (Az x Ay x Az)"?) is close to the Taylor micro-scale
estimated following the experimental results (see Delville, 1995).

2.1.4 Boundary conditions

Since a staggered grid is used at the inflow surface defined as the trailing
edge of the splitting plate (z = 0), we need to prescribe the value of the
normal component of the mean velocity v, and the mean vorticity tangential
components (wy, w,). v, is initialized using two turbulent Whitfield profiles,
for the boundary layers from each side of the flat plate. The profiles of w,
and w, are then deduced from v, profiles. A white noise is superimposed
on wy, w,. The perturbation magnitude is equivalent to an amplitude of
10~ U, on the streamwise velocity component v,. At the outlet boundary
(x = 20 4,,), the tangential components of the vorticity are calculated by
extrapolation along the characteristic directions. The normal component of
the velocity v, is then deduced from the vorticity profiles, prescribing that
the mass conservation is satisfied. At the upper and lower surfaces of the

o0v,,
domain (y = £3 §,,), slip conditions are imposed: v, = 0 and 8—_ =0,
- Yy
Ovy _
oy

2.1.5 Method of resolution

The spatial discretization uses a MAC staggered grid where the velocity
components are defined at the center of the cell faces, the vorticity compo-
nents are prescribed at the middle of the vertices and the pressure as well
as the eddy viscosity are defined at the center of the cell. The system of
equations (1) is solved in two steps (see Lardat et al., 1997a). First we
solve the transport equation of the vorticity. The time discretization uses
a Crank-Nicholson scheme. The convective terms are estimated by means
of an Adams-Bashforth extrapolation which is 2" order accurate in time.
The space discretization uses a 2"¢ order finite difference method by means
of a QUICK scheme for the convective terms and a centered scheme for the
diffusive ones. The vectorial Helmholtz problem, arising from the vorticity
transport equations, is solved with a block Jacobi iterative algorithm. Sec-
ondly, we solve the Cauchy-Riemann problem. Knowing the new vorticity
field &1, the velocity field is solved using a projection (or fractional step)
method, following the work made by Bertagnolio and Daube (1996). In the
first step, an intermediate velocity field is obtained which satisfies the curl
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equation (V x ¥ = &). This intermediate velocity is then projected onto
the space of divergence free vector fields (see Bertagnolio and Daube , 1996;
Lardat et al., 1997a).

2.2 Validations of the numerical simulation

A portion of the computational domain has been selected to compare the
mean and Reynolds stress profiles obtained with the results of the numerical
simulation to the experimental data described in Delville (1995). This region
starts from 10 J,,, downstream of the trailing edge of the flat plate and lays
over 5 ¢,, to minimize the influence of the exit boundary condition. The
average has been calculated over a dimensionless time 7" = 206 (where T is
based on U, and d,,) and by integrating in the spanwise direction:

1
<.>—LZT/Z/T.dtdz

The self-similarity behaviour is recovered by the LES ; the vorticity thickness
., and its longitudinal evolution dd,/dx are correctly predicted by the com-
putation (LES: dé,/dx = 4.22 1072 ; Experiments: df,,/dz = 4.1 107%). Very
good agreements are achieved on the profiles of the Reynolds stress compo-
nents (see Lardat et al., 1997b). As regards the instantaneous organization of
the mixing layer, we plot on figure 2 the isobaric surface of the pressure field
at a threshold p — Py = —1072 for a dimensionless time ¢ = 250. The large
scale arrangement, strongly tridimensionnal, is clearly visible on this figure.
A streamwise length scale has been recorded close to A, ~ 3.25 d,. In the
spanwise direction (z), two large scale patterns have been recorded leading
to an estimation of the spanwise length-scale close to A, ~ 2/3A,, which is
in rather good agreement with the one generally admitted (see Bernal and
Roshko, 1986).

3 Data compression procedure: scalar-PODs
approach

3.1 DMotivations and description of the method

In order to reduce the data storage requirements?, a data compression proce-
dure is used. This compression is based on a scalar version of the “classical”

4Assume that the results obtained by the LES (three velocity components plus the
pressure field) are stored in double precision, then the total volume necessary to store
Ny = 1000 time steps is equal to N x Ny x N, x Ny x 4 x 8 bytes ~ 50 Gigabytes.
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Mixing Layer 3D, Incomp. Re = 2840 : P = -1.e-03

Figure 2: Isobaric surface of the instantaneous calculated pressure field at a
dimensionless time t = 250. (region clipped: 10 6, < = < 20 dy,)-

POD (see Cordier and Bergmann, 2002, §5.3). The principle is to retain only
“relevant” POD modes to rebuild the flow realizations that are used later in
the snapshot POD analysis of §4. In this approach, we express each compo-
nent of the fluctuating velocity v;(&£,t), ¢ = 1,2,3 in terms of spatial POD
basis functions ¢; depending only on the x and y directions:

Npop
5@ 1) =Y a”(z1) 6" (z,y) (2)
n=1
where:
Ui(fl—f, t) =< > (x,y) + {)vz(i_é,t) (3)
and .
<v; > (z,y) = // vi(x,y,2,t)dtdz . 4
> @) =g | [ we (4)

For this scalar-POD, the integral Fredholm equation which is solved,
writes®:

/ / Rjj(z,y,2',y") ¢ (2’ y') da’ dy' = A o8 () (5)
Ly J L,

5No implicit summation over the subscript j.
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where the velocity correlations Rj;(x,y,2',y') are calculated from the LES
results using the following relationship:

Rii(z,y,2',y") =<wv;-v; > (x,y,2',y")— < v; > (z,y)- <v; > («',y') (6)

The space-time coefficients agn)(z, t) are then evaluated by projection of

the flow realizations onto the spatial POD basis functions:
agn)(z,t) :/ / vi(z,y, z,t).(bz(-")(a:,y) dz dy (7)
Lo J Ly

where these expansion coefficients verified the orthogonality relationship:

1
LT /T /[’z a’(n)(z’ t)'az(m) (2,t) dz dt = )‘z('n)(snm (8)

Hereafter, among the Npop = N x N, modes resulting from each scalar-
PODs (5), only NX¥L' < Nppp modes are retained to rebuild the flow realiza-
tions v;. By definition (see Sirovich, 1987a), the Karhunen-Loéve dimension
NXL is the minimum number of POD modes necessary to represent the total
turbulent energy initially contained in the flow with an accuracy better then
99%. This dimension is closely® related to the relative information content
of the POD basis functions defined by equation (9) and used later in §8.4.1
to determine how many POD modes need to be kept in the low-dimensional
system.

By this way, instead of storing N, x Ny x Nz x N; x 3 floating point
numbers, we just need to store N, x N; x N¥L x 3 numbers to describe the
temporal history of the three-dimensional flow field.

3.2 Application of the scalar-PODs

The scalar-POD approaches are applied on the fluctuating velocity field
v;(€,t) provided by the numerical simulation. The POD analysis is per-
formed on N; = 1000 temporal events representing a dimensionless time
close to T" = 17. We apply the scalar-PODs on a box with a streamwise
extent of 104,,. In practice, knowing an initial state, we have first run the
calculation on 1000 time steps to calculate the spatial velocity correlations
R;j(z,y,2',y') from equation (6). Secondly, the integral eigenvalue problem
(5) has been solved for j = 1,2, 3. Finally, the numerical simulation has been
re-run from the same previous initial state to determine via equation (7) the

space-time coefficients a{™ (2, t).

6To be more precise, in the context of POD reduced order models, N¥% corresponds
to the smallest integer M such that the information content RIC (M) defined by (69) is
greater than § % with 6 = 99.
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3.2.1 Scalar-PODs convergence

In a similar way as what has been done for the Singular Value Decomposition
(see Cordier and Bergmann, 2002, §3.6), the convergence of the scalar-POD is
represented by the relative information content of the POD basis functions.
This quantity, represented in figure 3, is defined as the ratio between the
energy contained in the first n POD modes and the turbulent kinetic energy
in the flow:

RIC(n) = =—— (9)

0.8 |-

0.6 -

04

POD convergence

0.2 |

0 200 400 600 800 1000
POD mode: n

Figure 3: Relative information content for the scalar-PODs.

The convergence is relatively rapid since about 57% of the turbulent ki-
netic energy is contained within the 20 first modes and the first 520 modes
contain 99% of the turbulent kinetic energy. One can note that a large com-
pression ration (90%) is obtained: N,N,/N¥F ~ 10.

3.2.2 Spatial eigenfunctions

In figures 4, 5 and 6 are represented in the plane (z,y), iso-contours of the u,
v and w component respectively of d)Z(”) (x,y) for four selected modes (modes
1, 2, 20, 200). In these figures, the lines in bold correspond to positive values
while the thin ones correspond to negative values. Considering these eigen-
functions, one can notice a streamwise shift when comparing modes 1 and
2. Whatever the velocity components are, the mode 2 is shifted downstream
when compared to mode 1. This behaviour, explained by the convective na-
ture of the flow (see Rempfer and Fasel, 1994), is common to many POD
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applications. Therefore, the same pattern was encountered for the cylinder
flow studied in part II and further explanations can be found in §8.3.2. All
these POD eigenfunctions exhibit a preferred organization ; for low-order
modes, this organization follows the longitudinal expansion of the mixing
layer (see figures 4, 5 and 6). However, compared to these low-order modes,
the high-order modes are more tightened in the vicinity of the centerline of
the mixing layer and correspond, as expected, to smaller spatial length scales.

15 4 15k

05

-0.5

-0.5 <=

-15 = -1 -1.5 -

[ -l - - \

14

)
)

15

0.5

-0.5

-1.5

(c) ¢ (z,y) @) ¢7% (z,y)

Figure 4: Iso-contours of the spatial eigenfunctions ¢1(L") (z,y) obtained from
the scalar-POD applied to the velocity component v (n = 1,2,20 and 200).

3.2.3 Expansion coefficients

The time histories of the first four expansion coefficients agn)(z, t) obtained
via equation (7) for the scalar-PODs on u, v and w are plotted in figure 7,
on the middle z-plane z = z;. A time shift is visible between a(")(z, ) and
a®(z,t) and between a®(zg,t) and a™®(z,t) for all the velocity compo-
nents. This behaviour has to be related to the streamwise shift already no-
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15

0.5 0.5

-05 -

-1.5

15

0.5

-0.5

-1.5

() ¢7V (z,y) () ¢ (z,y)

Figure 5: Iso-contours of the spatial eigenfunctions ) (z,y) obtained from
the scalar-POD applied to the velocity component v (n = 1,2, 20 and 200).
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15 - — 15 -
1k . . |

() ¢5” (z,y) @) 65" (2, y)

Figure 6: Iso-contours of the spatial eigenfunctions o (z,y) obtained from
the scalar-POD applied to the velocity component w (n = 1,2,20 and 200).
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ticed for the spatial eigenfunctions (see §3.2.2). Since the same phenomenon
is observed for the temporal eigenfunctions of the snapshot POD applied to
the stationary cylinder flow (see figure 21), it was explained in §8.3.2.

az(‘"‘)

)
e
wW

(n)

aw

Figure 7: Temporal evolution of the expansion coefficients az(") (z,t) deduced
from the scalar-PODS of the u, v and w component of the velocity.

3.2.4 Scalar-PODs validations

The good agreement between the computations and the experiments (see
§2.2) can also be exhibited when the two-point space correlations Ry; (g, yo, 2, y')
are considered. By application of the Mercer’s theorem (see Cordier and
Bergmann, 2002, equation (26), §4.2), this correlation can be estimated from
the results of the scalar-PODs as:

200

Rii(z0, 90,2, y') = Z A<")¢§") (zo, yo)¢§n) (=',9") (10)
n=1

In order to cross-validate computations and experiments, the space-time
correlations experimentally determined by Delville (1995) through Taylor
hypothesis is compared in figure 8 to the contribution of the first 200 POD
modes estimated with equation (10). On this figure, the reference point
(x0,%0) is located at the center of the selected spatial domain. Very good
agreements are achieved. We must underline that the overall shape of the
measured correlations is also well described by considering only few first
POD modes. Note that the u component can be described by fluctuations of
opposite sign from part to part of the mixing layer, while the v component
can be described by fluctuations in phase all over the y direction, alternated
in sign in the z direction. Moreover, the shape of the w component indicates
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Scalar-PODs

T T R IO R B

Experiments

Figure 8: Comparison in a plane (7,y) or (—z,y) of the experimentally mea-
sured space time correlations Ry (7;y,y') (bottom) with the space correla-
tions obtained from the contribution of the first 200 modes of the scalar

PODs (top).

the presence of a strong organization for the streamwise vorticity component,
this organization being recovered from both experiments and LES.

4 Coherent structures of the plane mixing layer

4.1 Description of the snapshot POD

In order to analyze the spatial organization present in the mixing layer, the
snapshot POD method (see Cordier and Bergmann, 2002, §5.4) is applied
on the numerical results obtained by LES. As it was explained in §5.6 of
Cordier and Bergmann (2002), since numerical simulations are highly re-
solved in space but suffer from rather limited temporal samples compared to
experiments, the snapshot POD is preferred to the classical POD.

To make these lecture notes self-contained, we sketch in the following the
main lines” of the snapshot POD method.

First, we decompose every spatio-temporal event v;(Z,t) as a mean and

"Except for the notations, this description of the snapshot POD is similar to the con-
tents of §8.3.1 where an algorithm describing the computation of POD basis functions for
the cylinder flow is presented.
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a fluctuating parts:
vi(@,t) = Ui (&) + vi(&, 1) (11)
where the mean part is expressed with an average in time:

1
(&) = T/Tvi(fa t)dt

The fluctuating quantities can be written using a discrete basis of the

flow:
Npop

ZA(” t) & (&) (12)

where Npop is the number of modes solved in the POD.
The temporal eigenfunctions A™(t) are then calculated by means of a
Fredholm integral equation:

/ Ct, ) AW (Y dt = A™ AW (5) (13)

where C(t,t') is the temporal velocity correlations:

Ol t) = 7 /Q (1)o@, 1) 0 = 1 Y AP(H) AV(E) (1)

and where A(™ are the (real, positive) eigenvalues of this tensor. Each eigen-
value is associated to the energy density contained in the corresponding mode
and the sum of A(™ is equal to the turbulent kinetic energy included in the
integral domain €.

The spatial eigenfunctions are then deduced from:

o) (&) = T; / o, 1) A™ (1) dt (15)

where they verified the orthogonality condition:

/ (&) 80 (&) dF = Sy - (16)
Q

4.2 Application of the snapshot POD

The snapshot POD method is applied on the filtered velocity field provided by
projecting the flow realizations obtained by the LES on the first N¥ modes
of the scalar-PODs (see §3). The temporal correlations C(¢,t') are then
estimated on 1000 time steps and over a limited portion of the computational
domain (z/6,, € [5;15]).
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4.2.1 Snapshot POD convergence

The relative information content of the snapshot POD is plotted on figure 9.
The convergence is also very rapid since 99 % of the turbulent kinetic energy
is contained within the 64 first modes. However, while the Karhunen-Loéve
dimension seems lower in the snapshot POD, the relative number of modes
required to contain 99% of energy (NXL/Npop=0.064) remains of the same
order of magnitude than in the scalar POD cases (N¥L/Npop=0.1).

08 |- -
99% of energy (n=64)

06~ -
Snapshot-POD ——
04 -

POD convergence

02 -

0 | | | | |
0 200 400 600 800 1000
POD mode: n

Figure 9: Relative information content for the snapshot POD.

If we represent the eigenvalue spectrum of the Fredholm equation (13),
it is notable that these eigenvalues occur in pair of almost equal values,
whereas there is a gap in magnitude between these pairs. The eigenvalue
problem is near degenerate. This characteristic is encountered in many POD
applications and it is further discussed in §8.3.2 where the snapshot POD is
applied to the cylinder flow.

4.2.2 Spatial eigenfunctions

The spatial eigenfunctions <I>Z(-") (&) are then deduced from the temporal eigen-
functions A™ (¢) by means of equation (15). In figure 10 are plotted positive
iso-surfaces of the spatial eigenfunctions for the two first POD modes. The
same features as already noticed in the scalar-PODs (see figures 4, 5 and 6)
are observed. Mainly, whatever the velocity components are, a streamwise
shift is noticed when comparing mode 1 and mode 2. This behaviour is also
found for the cylinder flow and the reader is referred to §8.3.2 for a com-
plete discussion of this phenomenon. Moreover, these eigenfunctions exhibit
a preferred organization in the spanwise direction. Particularly, ®{™ (&) is
clearly aligned in the spanwise direction and o (£) exhibits lambda-shape
like structures (see figure 10). These behaviours are similar to those observed
in the analysis of the experimental data by Delville (1995).
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Figure 10: Iso-surface of the spatial eigenfunctions of the snapshot POD for
the three components of velocity. Mode 1 (left), mode 2 (right).
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To sum up the results of this study, the spatial eigenfunctions ¢§") (z,y)
determined via the scalar-PODs mimic very well the coherent structures or-
ganization since a good agreement is achieved between their contribution
to the space correlations and the correlations experimentally obtained (see
§3.2.4). Using the compressed data, a three-dimensional snapshot POD has
been performed. The spatial organization of the eigenfunctions @g") (x,y, 2)
can be favorably compared to the experimental ones.

Finally, in Cordieret al. (1997), a low-order dynamical system has been
derived from the snapshot POD eigenfunctions to study the temporal evo-
lution of these large scale coherent structures. This point is not developed
here but a similar treatment can be found in §8.4 for the cylinder flow.
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Part 11

Reduced Order Modelling (ROM)
based on POD

6 Introduction

6.1 Motivations

The main objective of this part is to investigate computational methods based
on POD for the optimal control® of incompressible viscous flow. Flow control
has a long history since Prandtl’s early experiments for delaying boundary
layer separation (see Prandtl, 1925). However, the recent invention of Micro-
ElectroMechanical Systems (see Gad-el-Hak, 2002, for an introduction of
MEMS) has generated a renewal of interest in active control of fluid dynam-
ical systems (see Gunzburger, 1995; Gad-el-Hak, 2000, for a comprehensive
survey).

In a flow control or optimization setting, the large-scale systems obtained
by spatial discretization of the governing equations need to be solved re-
peatedly and this represents the dominant part of the computational costs.
Therefore, there is a demand to use reduced order models that serve as low-
dimensional approximation models to the large-scale discretized state equa-
tions. There are a number of choices (see Ito and Ravindran, 1998, for a
presentation) for reduced bases: Lagrange basis, Hermite basis, Taylor basis,
POD basis, ... Here, we decide to model the non-linear dynamics of the flow
via a reduced order model based on POD functions.

In Cordier and Bergmann (2002), it was shown that the POD eigen-
functions form a complete set of orthonormal functions i.e. each space-time
realization @(Z,t) can be expanded in eigenfunctions as:

i@t =Y ™8™ (@) (17)

8Recently, interest has increased to use POD methods for optimal flow control of vis-
cous fluids. The optimization problems of fluid flow are among the most challenging in
computational science and engineering, explaining the reason for the choice of this appli-
cation to illustrate POD. However, the reader must note that other typical applications
of POD, like low-cost simulations or study of the dynamics of turbulent flows (see Aubry
et al., 1988; Ukeiley et al., 2001), share the same key features. Therefore, the reader who
is not directly interested to flow control problem will find nevertheless in the following
sections important results necessary to derive a POD reduced order model.
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with
=(n) = (n)x

a(“)(t):<ﬂ(w,t),<1> (i)):/ﬂﬁ(w,t)@ (%) dZ, (18)

where &™) (Z) are the spatial POD eigenfunctions and Npop is the num-
ber of POD modes. Here, our objective is to use the energetic optimality
of convergence of the POD basis functions for deriving low-dimensional dy-
namical models for the expansion coefficients a(™(t) of equation (17). A
common procedure for obtaining such equations is the method of Galerkin
Projection described extensively in §7. Given an ensemble data obtained for
a specific flow configuration, e.g., for an uncontrolled flow, the Galerkin pro-
cedure leads to a reduced order model for the Navier-Stokes equations, such
that it is a suitable model for representing the corresponding flow dynamics.
However, if you are interested to apply the reduced order modelling idea to
flow control, there is no guarantee that the previously derived reduced order
model can provide useful approximations to flow dynamics altered by con-
trol. This fundamental question is discussed with more details in the next
section.

6.2 Use of approximation models for optimization

Until recently, it was commonly assumed that effective reduced order models
for predictive control can be constructed from the POD basis of an uncon-
trolled flow. The possible modifications of the POD basis functions under
the action of control were neglected. The general approach was to approx-
imate the equations of the fluid flow by POD reduced order models and
then to apply an exact optimization procedure for the reduced systems (see
Ravindran, 2000b, for example). The conceptual drawback is that there is
no mathematical assurance that the solution of the optimization algorithm
working with the approximation models will correspond to the solution of the
optimization problem for the original dynamical system. In a recent study,
Prabhu et al. (2001) address this question and demonstrate for wall-bounded
turbulent flows that a no-control basis used as a low-dimensional model will
not capture the key features of these controlled flows. Consequently, some
sort of iterative technique is required, in which the construction of reduced
order models is coupled with the progresssion of the optimization process.
Figure 11 from Alexandrov et al. (1997) describes how to use approxima-
tion models in the context of optimization. The basic idea is to use occa-
sionally information from the high-fidelity model to check design parameters
generated using a model of lower fidelity but of lower computational cost.
This simpler but cheaper approximation model is used to take a number of
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\ Initialization

Recourse to detailed model

| High—fidelity model[~
f(x), grad f(x) )

a(x), grad a(x)
Approximation model Optimization

AX
Optimization on simplified model

Figure 11: Optimization algorithm using approximation models.

optimization iterations. At the end of this optimization phase, one has re-
course to the high fidelity model to recalibrate the lower-fidelity model before
to continue the optimization process with the simplified model. Ravindran
(2000a) introduced such an adaptative procedure and improved the reduced
order model by successively updating the input collection. The snapshots
corresponding to a specified control input (not necessarily optimal) are first
computed. With these snapshots, a POD subspace is found and the corre-
sponding reduced order control system derived. The optimal control problem
is then solved and the resulting control is applied to the Navier-Stokes equa-
tions to generate a new input data. With this new ensemble, another POD
basis is determined, a new reduced order control system derived and a new
optimal control computed. Finally, this process is stopped when the con-
vergence is achieved i.e. when the variation in absolute value of the control
input between two successive iterations is less than a given small parameter.
Despite this fairly crude criterion, Ravindran presents numerical results that
seem to indicate that his adaptive procedure is quite effective for a recircula-
tion control problem. In order to make such an iterative scheme robust (i.e.
to be assured that the solution of the optimization problem for the reduced
order model is likely to yield at least to a local optimum for the original, high
fidelity problem), Alexandrov et al. (1997) proposed to use the general trust
region framework® (see Conn et al., 2000, for a comprehensive survey of the
trust region methods). The trust region mechanism gives a measure of how
well the approximation model is predicting improvement in the high-fidelity
model and thus suggests criteria for automatically changing or improving the

9This philosophy of combining trust-region methods with general modelling issues is
a well-known technique in multidisciplinary design optimization also known as surrogate
optimization (see Booker et al., 1998; Alexandrov et al., 1999).
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reduced model when poor or incorrect prediction of improvement is obtained.
For further informations, the reader is referred to Fahl (2000) who presents
an algorithm that implements the combination of POD based reduced order
modelling and trust region methods, the TRPOD (Trust Region Proper Or-
thogonal Decomposition).

In this part, an example of the development of a POD reduced order
model is presented in §8 for the incompressible unsteady wake flow behind a
circular cylinder. After a description of the flow numerical simulation in §8.2,
the snapshot POD is applied to data corresponding to the stationary cylinder
flow (see §8.3). Afterward, a reduced order model is derived for the stationary
flow in §8.4 by Galerkin Projection of the governing equations into the POD
subspace. In the same section, numerical evidence is presented that a six
mode model provides a satisfactory description of the long term dynamics of
the flow. Finally, in §8.5, we present a method introduced by Graham et al.
(1999a) and called control function method that can be used to incorporate
into the low-order dynamical system, the motion of the control surface. Since
this lecture series is dedicated to post-processing of data and not to active
flow control, no numerical results is presented for the controlled flow. Use
of the TRPOD method for controlling the cylinder flow is in progress and
results will be published elsewhere.

7 Galerkin Projection (GP)

7.1 General methodology

Before going into the details of the application of the Galerkin Projection for
the POD eigenfunctions (see §7.2), we first recall the basic ideas of GP.

Galerkin Projection is a special case of weighted residual methods (see
Fletcher, 1991). These methods are dedicated to solve functional equations,
like ordinary or partial differential equations, or integral equations. For ex-
ample, consider the equation

L(@) =0 (19)

defined in a domain 2 where L is some differential operator. The Galerkin
method is an approximation to the true solution of (19) sought by weighting
the residual of the differential equation. Assume U is an approximate solu-
tion to (19). Substitution of U for @ in (19) results in a non-zero residual

r=L(U) #0.
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The best approximation for U is that which reduces the residual r to
the least value at all points in the domain {2. The weighted residual method
enforces the condition

Rj:/wjrdQ:0 (20)
0

where R; are the weighted residual integrals and w; are the weighting func-
tions. In the Galerkin method, the weighting functions are chosen to be
the same as the basis functions used in the expansion of the approximate
solution. Hence, if U is approximated by the expansion

U(@) =) x:(#) (21)

where @;(Z) are the basis functions and yx; are the coefficients to be de-
termined, then the weighting functions are selected as w; = @;(&), j =
1,---,400. The fact that the unknown 4 solution of (19) is a member of an
infinite dimensional space is a practical difficulty. The discretization step of
the Galerkin procedure then consists ot truncating the sum in (21) at a finite
index %,,4,, thus rendering the problem a finite dimensional one. Therefore,
(20) becomes:

/ (ﬁy(ﬁ) ‘C’(l_j) d1=0 .7 = 17 e aimaz (22)
Q

If the definition (18) of the inner product is introduced, then equation
(22) further simplifies to

(‘C(Z Xz&z(i))a (A_ég) =0 .7 = 1a U :imam (23)
i=1

Finally, the Galerkin Projection is equivalent to impose the i,,,, scalar
products defined by equation (23) to vanish.

For such an approach to work (see Rempfer, 1996), the two following
requirements should be satisfied:

1. the function space {@;} of the basis functions @;(Z) must be complete
and for practical reasons to become clear in §7.2, an orthonormal basis
is especially desirable.

2. the basis functions @;(Z) must meet the boundary conditions of the
problem.
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7.2 POD based Reduced Order Models

From the properties of the POD eigenfunctions 'i;m(i‘) as described in §4.2
of Cordier and Bergmann (2002) one can immediately see that these eigen-
functions are particularly suited for Galerkin Projection.

The Navier-Stokes equations for incompressible flows can be written sym-
bolically as:

94 _ F(#) withd=d@(&t) #€Q and t>0 (24)

where F is a differential operator that contains only spatial derivatives and
where 2 is the spatial domain under study. The differential equation (24) is
mathematically well posed if the system is completed by initial conditions:

G(Z,t = 0) = 6o (&) (25)

and boundary conditions. Here, we decide to follow the viewpoint of Fahl
(2000) and to formulate the differential equation (24) in the general context
of boundary control problem for fluid flows. Hence, we assume that the
boundary of the domain I', can be split into two parts such that I'. denotes
that part of the boundary where the control is applied and I' \ T'; is the part
of the boundary that is not controlled. Then, we can complete the equations
(24) with the Dirichlet boundary conditions:

@(&,t) = h(Z,t;d(t)) with ZeT and ¢ >0 (26)
where d is the control input. More precisely, the boundary conditions can be
written as:

- ¢ r el >
R@ ta) = (W@ E€Te 120, (27)
§(§  BeT\T.,t>0,

where () can be interpreted as the temporal variation of a prescribed control
action defined by é(&), & € I'.. For example, this formulation corresponds
to flow control by blowing and suction along a portion of the boundary as
considered in Joslin et al. (1995).

The reduced order model is then derived by Galerkin Projection of the
partial differential equation (24) onto the POD subspace of dimension Npop.
The first step is to insert in (24) the development of 4 on the POD basis
=(m)

P

Npop

d(e,) =Y ™68 (@) (28)

m=1
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to obtain:
Npop Npop
da™ (t) =(m) -, = (m)
m§_1j = ® (&) =F( m§_1j ad™ ()@ (&)) (29)

The set of spatial eigenfunctions <f>(m)(:ﬁ) being a basis, the right-hand
side of (29) can be written as a linear combination of the ®:

Npop

(Y am »&™ @) = 3 F® (0,0, -.) 3" @ (30

m=1 n

Finally, the Galerkin Projection of (24) onto the POD eigenfunctions is
evaluated as:

—»(’n,) a’l_i “(n) =
(q, ’E) = (<I> ,F(u)) forn=1,---,Nyy (31)

where Ny is the number of Galerkin modes kept in the projection.

From the orthonormality!? of the eigenfunctions 3" (2), the Partial Dif-
ferential Equation (24) is replaced by a set of Ordinary Differential Equations
defined as:

da™ (t)
dt

= F™ (@), ™)) withn=1,--- , Ny (32)

where
Fm = ( ila“ﬂ 13" ))). (33)

The functions F™ are linear if F is a linear operator and, in our case,
due to the convective terms in the Navier-Stokes equations, F(™) are usually
quadratic functions of a(™. In Aubry et al. (1988) and Ukeiley et al. (2001),
the low-order dynamical system (32) have cubic terms because the velocity
field is decomposed into mean and fluctuating components (4 = (4) + o ),
where the mean is slowly varying in time. The mean may then be described

10The left-hand side of (32) is estimated as

Ngal Ngai
2(n) o da(m)()-.(m) - da g™ gm
(@ S ) (37,57

m=1 m=1

Hence, as previously noted in §7.1, an orthonormal basis is especially desirable because
we avoid inverting an Ny, x N,q; matrix to solve for a(™ (t).
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in terms of the fluctuations w’ , which give rise to Reynolds stresses and
then to cubic equations for (32). Another enhancement to the basic theory
described so far is the modeling of energy transfer to the higher modes!!
neglected in the Galerkin Projection procedure. In Aubry et al. (1988), the
influence of the missing scales is simply parameterized by a generalization of
the Heisenberg spectral model in homogeneous turbulence (see Hinze, 1975)
and in Ukeiley et al. (2001) the mean velocity is split into a steady and time-
dependent part by choosing cutoff wavenumbers.

To obtain a well-posed mathematical problem, one needs to add a set of
initial conditions to the reduced order model (32) and to make sure that the
problem (32) matches the original boundary conditions (26).

The initial conditions can be directly inferred from the conditions (25)
imposed to the original problem:

a™(t=0)=a" where o = (ﬂo(ci:'), <I;(n)) (34)

For the boundary conditions, the answer is not so direct because it de-
pends mainly of the type of boundary conditions applied, homogeneous or
nonhomogeneous boundary conditions. For this reason, this question is post-
poned to §7.3.

To sum up, combining the Galerkin Projection (§7.1) and the optimality
of convergence of POD eigenfunctions (see Cordier and Bergmann, 2002,
§4.3), we demonstrate that high-dimensional models represented by Partial
Differential Equations (PDE) can be replaced by low-dimensional dynamical
models of non linear Ordinary Differential Equations (ODE).

7.3 The problem of boundary conditions
In §5.5.2 of Cordier and Bergmann (2002), it was demonstrated that the

POD eigenfunctions é(n) can be represented as linear combinations of in-
stantaneous velocity fields:

2o 1 [ (n)«
") = =0 /T (e, H)a™*(t) dt (35)

where A\(™) are the POD eigenvalues and T the period of time during which
the input data are collected.

' These higher modes correspond to the dissipative scales of the flow.
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According to (35), when the Navier-Stokes Equations (NSE) are subjected
to homogeneous Dirichlet boundary conditions (for example h(Z, ¢; c(t)) =
6), the POD basis functions inherit these boundary conditions. Therefore,
the reduced order models developed by Galerkin Projection of the NSE on
the POD subspace are equivalent'? to the original NSE. The expansion co-
efficients a(ggw(t), n=1,--+, Ngg solutions of the dynamical system (32) can
then be used to compute the reduced order solution

Ngal

ips(e,t) = 3 ol (1)3™ (&) (36)

where the subscript DS denotes the dynamical system approximation to the
original solution @(x,t) of the NSE.

Now we consider the NSE with non homogeneous Dirichlet boundary
conditions defined by (27). Assume that the snapshots data 4(&,t;), i =
1,---, Ny of the input ensemble U verify the required (non homogeneous)
boundary conditions. Due to (35), the POD basis functions are no longer
suitable to use in a Galerkin Projection. The solution of this problem is
to transform the actual problem to a problem with homogeneous boundary
conditions.

When h(&,t; d(t)) does not depend on time ¢, for example h(&, t; d(t)) =
g(Z) for all € € I' and t > 0, Sirovich (1987a) suggests to overcome this
difficulty by computing the POD basis functions for the fluctuations around
the mean flow field. Given NV, time snapshots, the mean velocity (4 (&,t)) =
N% SN 4i(%,1;) is first computed as an ensemble average. The POD eigen-
functions are then estimated using the modified input data U’ = {u(&,t;) —
(d(Z,t)),---,u(®,ty,) — (W(Z,t))} (see §8.3 for an example). Due to its
construction, the mean flow (@ (&,t)) is a solenoidal field and satisfies the
prescribed non homogeneous boundary conditions. Furthermore, each mod-
ified snapshot @(&,t;) — (d@(%&,t)) is also divergence free, but satisfies ho-
mogeneous Dirichlet boundary conditions. In the case of time-independent

12More precisely, we can only argue that the system of ODEs (32) are mathematically
equivalent to the original problem (24). We are sure that there exists a solution of the
reduced order model (32) that lies on the manifold that is defined by the boundary condi-
tions of the original problem. However, the fundamental question to know if a flow can be
represented exactly by a finite-dimensional basis of POD eigenfunctions and the question
of stability of that manifold are still not fully answered. Issues concerning the stability
and the accuracy of a Galerkin Projection are discussed in Iollo (1997) and Iollo et al.
(1998). The possible connections between the stability properties of the manifold and the
stability properties of the physical phenomenon are addressed in Rempfer (1996).
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non homogeneous boundary conditions, the reduced order solution can be
computed as:

Ngal
dps(x,t) = (G(&,1) + Y ape ()@ (2) (37)
m=1
where the coefficients agg(t), n = 1,--+, Ny are the solutions of the dy-

namical system (32).

For boundary control problems, the more interesting case is the one where
the Dirichlet boundary conditions h(&,t;d(t)) defined by (27) depend on
time ¢. In order to match these boundary conditions, Graham et al. (1999a),
Ravindran (2000a,b) and Fahl (2000) propose to search the reduced order
solution of the low-order dynamical system (32) as:

gal

Ups(z;t) = (4(Z,1)) + (1) +Zaps (2) (38)

where 4 (&), 2 € Q is a reference flow field, describing how the control
action y(t)é(&), & € T, t > 0 influences the flow and satisfying the following
boundary conditions:

0 #eT \T,,t>0. (39)

Similar to the procedure presented for the time-independent case, a mean
velocity (u(&,t)) is first computed as the ensemble average of the modified in-
put data defined as U’ = {w(&, t1)—v(t1)U(Z), - -, u(&, tn,) —Y(tn, )b (Z)}-
Afterward, the POD basis functions are estimated with the input collec-
tion U" = {ﬂ(;_c" tl) - ’Y(tl)a’c(i) - <ﬂ(a_f7 t)>’ e ’ﬁ(@" tNt) - ’Y(tNt)ﬂC(:ﬁ) -
(4(Z,1))}-

Since (4(Z,t:) — v(t:)Uc(E)) |, = 0 and (@(Z,t)) matches all other non
homogeneous boundary conditions, the POD basis functions satisfy homo-
geneous boundary conditions on the whole domain. This approach is the
one used in §8.5 to incorporate into the POD-based reduced order model the
boundary control for the cylinder wake.

Y(t)d(E) = {’V(t)é(-’ﬁ)a Eel,,t>0,

7.4 Application of POD /Galerkin to incompressible flows:
Pressure Velocity formulation

In this section, we outline the procedure for deriving a POD based reduced
order model in the case of incompressible flows. The motion of the fluid sat-
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isfies the Navier-Stokes equations, written in a pressure-velocity formulation
o Di 1

— = -VP+—Ad 40

Dt Re (40)
where D/Dt = § /0t + @ - V is the material derivative. In equation (40),
the velocities have been normalized by some velocity scale U, lengths by a
length scale D, time by U/D, pressure by pU? where p is the density, and
Re is defined as usual, Re = pUD/u where p is the fluid’s dynamic viscosity.
The equations (40) may be written as

%= N(d)— VP (41)

where N (@) = (u V) U+ é&ﬁ.

For incompressible flows, each of the POD eigenfunctions satisfies the
continuity equation (see Cordier and Bergmann, 2002, §5.5.2). It follows
that equation (40) is the only one needed to prescribe the dynamics of the
flow.

If we now introduce the development (28) into the Navier-Stokes equa-
= (n)

tions (41), and take the inner products with @ °, n = 1,--- , Ny, we obtain:
™ () = (cf)‘") N(@)) - (é‘")ﬁp) (42)
The non linear terms on the right-hand side are equal to:
( ) Ngai Ngai Ngai
=(n
(87 @) =32 Bund™(0)+ 223 Comsa ™ 00) (43
m=1 k=1
where
1 2n = =2{Mm 2n 2{m — =
Bum = o (<1>( X3 )) . Crme = — («1>( ), (@‘ )-V) <1>('“)) (44)
e

The coefficients B, and Cy,,x, are constants (independent of time). There-
fore, they can be determined once and for all before integrating the ODEs
(42).

Exploiting the fact that the 3™ are solenoidal fields (V- 3™ = 0), and
using the divergence theorem, the pressure term on the right-hand side of
(42) is easilly rewritten as:

(cﬁ‘")ﬁp) :/Q@(") VPda:_/Qﬁ-(Pé(")) :/mpcp( ™ idS (45)
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where 7 is the external normal to 0.

Hence the contribution of the pressure term can be evaluated easily as
soon as the pressure is known on the domain boundary. However a number
of flow configurations exists where the term (45) vanishes exactly. If the
velocity is zero along the boundary (for instance at a wall, or in the far field
of an open flow) or if the normal velocity component is zero, then the pressure
term vanishes completely. The same result is obtained when the boundary
conditions are periodic because in this case the contributions of the periodic
parts of the boundary 02 cancel each other (see Zhou and Sirovich, 1992,
for example). If we consider only a limited portion on the whole flow (like
the near wall region of a turbulent boundary layer considered in the study of
Aubry et al., 1988) then the pressure term represents the influence of the rest
of the flow on the domain under study, and must be specified as a boundary
condition. Aubry et al. (1988) cope with this problem by adding a model for
the unknown pressure fluctuations at their upper boundary. However, there
is case where the situation is much worse, in that the boundary condition
that have to be applied are not even known. A possible solution is to use
a vorticity-transport form of the Navier-Stokes equations for deriving the
reduced order model. This approach is used by Rempfer (1996) to study the
transition over a flat plate and is fully described in Cordier (1996).

8 An example: cylinder flow

8.1 Introduction

This section illustrates the potential gain that can be offered by the use of
the Proper Orthogonal Decomposition for optimal control of fluid flows. Due
to the nonlinearity of the Navier-Stokes equations, the minimization of a de-
fined objective functionnal is necessarily an iterative procedure and therefore
is computationaly intensive. For cutting down the cost of the flow solutions
necessary at each iteration of the optimizer, a basic idea'® is to replace the
Navier-Stokes equations by a POD reduced order model.

13To reduce the CPU costs necessary to solve one iteration of the optimization prob-
lem, Gunzburger (2000) proposed two complementary approaches. The first is simply to
improve the optimization algorithms. For example, Gunzburger suggested to use trust
region/quasi-Newton methods and discussed in further details how the regularization of
the functional to minimize can be used to reduce the number of optimization iterations.
Homescu et al. (2002) and Li et al. (2002) followed this method and included a regulariza-
tion term in their objective functionals to circumvent ill-posedness. The second approach
is to cut down the cost of the flow solves. Gunzburger claimed that following nonfeasible
paths to optimality can effect a substantial cost reduction when convergence is obtained.
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For our presentation, we have chosen as configuration the incompress-
ible unsteady wake flow behind a circular cylinder at Re = 200. This test
problem, representative of general bluff body wakes, has the advantage of
combining a simple geometry with a rich flow dynamics. Furthermore, the
validation of the flow simulator presented in §8.2 will be greatly facilitated
by the numerous results, both experimental and numerical, existing for the
Karman vortex shedding. Here the objective of the optimization is to sup-
press the Karman vortex shedding in the wake of the cylinder by rotating
the cylinder at a constant or time dependent angular velocity. This inves-
tigation of drag optimization was motivated in part by the experience of
Tokumaru and Dimotakis (1991) where 80% of drag reduction was found for
the controlled flow (see figure 12).

(b) Forced flow (80% drag reduction).

Figure 12: Flow visualizations from Tokumaru and Dimotakis (1991) (Re =
15000).

Recently, different approaches for the control of a flow around a cylinder
have been succesfully employed. These approaches differ from the techniques
used to control the flow, from the methods developed for deriving the adjoint
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models necessary to estimate the cost function gradient and from the mini-
mization algorithm. For example, He et al. (2000) and Homescu et al. (2002)
achieved the control action, through cylinder rotation while Li et al. (2002)
employed suction and blowing on the cylinder surface. In the following, to
illustrate these lecture notes, we decide to resume the study of Graham et al.
(1999a) where the reduced basis approach based on POD was used to control
the wake flow at a Reynolds number of 100.

8.2 Numerical simulation of the cylinder flow

Here, we consider the channel flow past a circular cylinder of diameter D
(see figure 13). Let Q be a two-dimensional domain (2 C R?) filled with

I

r

Figure 13: Simulation domain for circular cylinder flow problem.

a Newtonian incompressible viscous fluid of density p and viscosity p. The
boundaries 0f2 of €2 are denoted by ' =Ty U, UT's U’y UT', where I';, 7 =
1,2, 3,4 correspond to the exterior domain and I'. to the cylinder boundary.
The fluid is moving with velocity U in the z direction and the cylinder
rotates counterclockwise with angular velocity . The continuity and Navier-
Stokes equations are made dimensionless by introducing L.y = D, Upey =
U, trey = DJU, Poey = pU? as reference quantities for length, velocity, time
and pressure. The governing equations can then be cast in the following
non-dimensional form:

V-d=0 (46)
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ou
at "
where 4 = (u, v) are the two-dimensional velocity fields and Re = pUD/u
is the Reynolds number.
To complete equations (46) and (47), boundary conditions are now pre-
scribed. At the left boundary, an inflow boundary condition is applied:

(aﬁ)&:-ﬁzu%&a (47)

(u,v) =(1,0) on I} (48)
At the channel side-walls, zero shear stress conditions are imposed:

ou

a—y = 0, v=0 on FQ, F4 (49)

Provided the boundary I's is placed at a sufficient distance downstream
of the cylinder, the condition

P=0 on Ty (50)
is found!* to be an acceptable approximation for conditions at the outflow.

Finally, on the surface of the cylinder the velocity is equal to the speed
of rotation = (Q, Qy):

(u,0) = (Q, ) = (=vy,72) on T, (51)

where v = 0 for the uncontrolled flow.

8.2.1 Discretization of the equations

Equations (46) and (47) are now discretized'® in time via a three step pro-
jection method (see Chorin, 1968; Jin and Braza, 1993) and in space using a
Galerkin finite element approximation (see Zienkiewicz and Taylor, 2000).

4When this boundary condition is used, no spurious reflections from the downstream
boundary appear, justifying a posteriori the choice of this outlet boundary condition (see
§8.2.2 for numerical evidence).

15The method of time discretization used in this paper is somewhat different from the
projection method employed by Graham et al. (1999a,b) and Morgan and Peraire (1998).
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Time discretization A semi-implicit second-order accurate scheme in time
is used (see Jin and Braza, 1993). An approximated velocity field 4* is first
determined at time step (n + 1) by using a guessed pressure field P* = P™

— % —=n
— —

u —u - 1
- = - (a". i+ —Au — VP" 2
A7 (u V)u +Re u -V (52)
where 4" and P" denote respectively 4(Z,t") and P(Z,t") with "™ =
" + At.

The true velocity field at the (n + 1) time step is then given by

"t =d* - Vo (53)
where ¢ is an auxiliary potential function estimated by the Poisson equation
Ap=V @' (54)

obtained by claiming V - @"*! = 0.
The pressure at the (n + 1) time step is finally calculated by the simpli-
fied'® equation:
¢

Pl =pry = 56

Spatial discretization Equations (52), (53) and (54) are then discretized
in space using the Galerkin finite element method (see Zienkiewicz and Tay-
lor, 2000). The two-dimensional domain € is discretized into a mesh of
triangular elements, and linear shape functions'” N;(&) where & = (z, y) are

defined for each vertex I. These shape functions may be used to approximate
the problem variables 4 and P at each time step in a piecewise linear fashion:

inode inode

(&) =Y by Ny(&) or wzy) =Y wyNs(zy) i=12 (57
J=1 J=1
inode inode

P@) =Y PyN;&) or Plx,y)=Y» P;Ns(z,y) (58)
J=1 J=1

16The true expression for the pressure field at the (n + 1) time step is:
vt =Y (e £) 9 (Voo a) - AT (55)
At Re

where ® denotes the dyadic product. In Braza et al. (1990), it is shown that the expressions
(55) and (56) give practically the same results for a moderate Reynolds number.

17The requirements that Ny(&) be one at the node I, zero at all the other nodes, and
be piecewise linear in z and y coordinates over each triangular element are sufficient to
specify it uniquely (see Zienkiewicz and Morgan, 1983).
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where inode is the total number of vertices and 4y and P; denote the
values of the velocity and pressure at the mesh node J. Figure 14 shows the
finite element mesh, consisting of 25042 triangles and 12686 vertices, used in
this paper.

Figure 14: Finite element mesh (diameter of cylinder = 1 ; upstream and
downstream boundaries from center of cylinder = 10, 20 ; Width = 20).

Then the time discretization equations (52), (53) and (54) are transformed
via a Galerkin projection onto the linear shape functions N;(&). Thus, for
every node I in the mesh, equation (52) leads to

(Nn @ = ") = = At (N, (@ V) &)
+ % [Nzﬁﬁ*] _ % (6 Nbe’l—i*) (59)

— At (N,, 613")

where

(&,6) :/a-BdQ : (a,c’i)z/ac‘idQ : [&]:/ G-t dT
Q Q Ul UlsUTr g UT

The reader can note that the order of the derivatives in the viscous term
have been reduced by use of the Green’s formula'®. Finally, after some ma-

18We remind the reader that for f and g two scalar functions of &, the Green’s formula,
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nipulations, equation (59) is equivalent to:

S M@y —a3) = Fi (61)

J=1

where M;; = (N, Ny) is the finite element consistent mass matrix and
-1
where f; are defined by equation (85) in appendix A.

The Green’s formula is also used to reduce the order of the derivatives
appearing in the Galerkin projection of equation (54). It follows that the
Galerkin form of the Poisson equation writes

(N1, 9) = [NV 9] = (YN, V) = (N, V- ") (62)

or, in an algebraic form, as the set of linear equations

inode

Z Kiids = fi (63)

J=1

where K;; = (VN;, VN,) is the stiffness matrix. The left-hand side are
defined by equation (86) in appendix A.

Finally, the Galerkin form of equation (53) is:

inode

—n — % rid
3 M@t - ) = f (64)
J=1

where f? are defined by equation (87) in appendix A.

The algebraic equations sets (61), (63) and (64) are now solved with the
Partial Differential Equations Toolbox of Matlab.

is given by:

/gz(ngjLef-ﬁg) dQ:/FfZ—idF (60)

where g—fl = 6g -7 is the normal derivative and 7 the external normal of T
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8.2.2 Simulation results

The goal of these computational experiments'® is to simulate the development
of the Karman vortex shedding in the laminar wake of a stationary cylinder
for a Reynolds number of 200. For this value of Reynolds number, a lot of
results are available from previous investigations for comparison.

Figure 15: Iso-contours of the v velocity component for the stationary cylin-
der (Re = 200).

Figures 15 and 16 represent respectively a typical solution of the v veloc-
ity component and of the spanwise vorticity field obtained by our numerical
simulation after all the transients have died out. These figures display well
developed Karman vortex street and no spurious reflections from the down-
stream boundary are visible?C.

In a viscous flow the total forces acting on a body are contributed by the
pressure and skin friction due to the viscous effects. Let K, be the pressure
coefficient defined by

_ P-P,
" 1/200U%
where the subscript oo denotes quantities evaluated on the input boundary.
The aerodynamic coefficients can then be calculated in a dimensionless form
as:

2 (% 0 (e5)
Re Jr, On

19 Although these simulations are only two-dimensional and then lack of the three-
dimensional effects of instabilities and turbulence, we claim that they can be represen-
tative of a great part of the physical phenomea responsible for drag reduction described
in Tokumaru and Dimotakis (1991).

20This behavior is confirmed by contours of pressure field not represented here.

é:dp+df=(0D,cL):—/ K, dT" +
Te
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Y @‘@@

Figure 16: Iso-contours of the spanwise vorticity for the stationary cylinder
(Re = 200).

where the subscripts P and f represent the contribution from pressure and
friction, respectively. The two integrals over ', appearing in (65) are straight-
forward to estimate given the nodal values of P and u.

Figure 17 shows plots of the time histories of the lift and drag coefficient
Cp and Cp for the stationary cylinder when the non linear saturation is
observed. The mean value of Cp is 1.3543 (see table 2) and the unsteady
amplitude of C;, and Cp are 1.376 and 0.097 respectively. The periodic
regime which is reached asymptotically is characterized by the frequency at
which vortices are shed. However for comparison purposes, it was found
convenient to introduce a non dimensional representation of the shedding
frequency, the Strouhal number?! defined as

_fD

t
S U

(66)
where f is the fundamental frequency obtained by a spectral analysis of the
lift coefficient.

In table 1, a comparison is made between the Strouhal numbers from our
numerical simulation and those obtained experimentally and computationally
by various authors for the stationary cylinder at Re = 200. The agreement
with all the previous experimental and computational data is very good.
Similarly, in table 2, the time-averaged drag coeflicient is seen to be in very
good agreement with the results obtained previously. Therefore, as long
as the value of the Reynolds number is low, our two-dimensional numerical
simulation can be viewed to represent correctly the dynamics of the cylinder

21Tn this paper, the length and velocity reference quantities are L,e; = D and u,ep = U
(see §8.2). It follows that the Strouhal number is confused with the fundamental frequency.
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15

Lift Coefficient
Drag Coefficient

Clift, Cdrag

100

80 85
time units

Figure 17: The variations of the lift and drag coefficients versus time for the

stationary cylinder (Re = 200).

Re | Present work He et al. (2000) Henderson (1997) Braza et al. (1986)
200 ‘ 0.1918 0.1978 0.1971 0.20

Table 1: Comparison of Strouhal numbers for the stationary cylinder (Re

200).

Re | Present work He et al. (2000) Henderson (1997) Braza et al. (1986)
200 | 1.3543 1.3560 1.3412 1.39

Table 2: Comparison of the mean drag coefficients for the stationary cylinder

(Re = 200).
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flow. However, we have to keep in mind that for higher values of the Reynolds
number, the three-dimensional phenomena become predominant. This char-
acteristic explains the well-known overprediction of the drag coefficient for
two-dimensional simulations (see He et al., 2000).

8.3 POD of the stationary cylinder flow

Here we use the snapshot variant of Proper Orthogonal Decomposition (see
Cordier and Bergmann, 2002, §5.4) to extract dominant energy-containing
structures from flow field data. In §8.4, these energetic modes will be used to
generate low-dimensional approximation of the Navier-Stokes equations by
Galerkin Projection of the POD basis functions onto the governing?? equa-
tions (46) and (47).

8.3.1 Algorithm for the computation of POD basis functions

Let 4(Z,t) be a given flow field and 4 (&, ), k = 1,--- N; denote an ensem-
ble of snapshots of the flow corresponding to N, different time instances .

The computation of the POD basis functions takes the following algorith-
mic form:

1. We decompose (&, t) as follows
where:

is the flow mean value obtained as the arithmetic average of the snap-
shots.

2. We build the N; x N; correlation matrix C'. The matrix elements of C'
are given by:

1 — 7 = — = 1 — = — = —
Cuu= 5y (3(81), 8(@,1)) = [ 5(@.0)-5(3,1) da
tJQ

22Gince the POD eigenfunctions are divergence free by construction, it will be useless in
§8.4 to restrict the weak form of the continuity equation to the POD subspace. Here, the
continuity equation is included to talk of generalities.
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The inner products defining this correlation matrix are easily computed
with the aid of the finite element mass matrix M as:

inode inode

1 5 _.
Cu = N, Z Z Uy(ty) - O (t) Mk

J=1 K=1

3. We solve the eigenvalue problem:

CA=)A . (67)
We recall that since C' is a non-negative, hermitian matrix, it has a
complete set of orthogonal eigenvectors A (1), “e- ,A(Nt):
Agn AgQ) AgNt)
A0 _ A.él) A0 Ag) LA™ Aé'N”
A A AQY

with the corresponding eigenvalues arranged in ascending order as A(1) >
A2 > o> ) > )

4. We obtain the POD basis vectors \17(n)(:i3'), n=1,---,N; using:

=(n), 1 n) -/ -
(&) = > AV, ) - (68)

As it was presented in Cordier and Bergmann (2002), the method of

snapshot consists of expressing the spatial basis function \fl(n)(:f:') as
a linear combination of the snapshots ¥(&,t;). Furthermore, if the
coefficients of the linear combination are properly scaled then they are
confused with the eigenvectors of the temporal correlation matrix C.

5. We can numerically check that the eigenfunctions A,(c") are mutually

—

orthogonal and that the spatial eigenfunctions \17(n) (Z) are pairwise
orthonormal:

N
1 n m Z\n), 2\M) L\
=D APAM =25, /\IJ( (@) - 8™ (&) dZ = 6,
b =1 Q
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Figure 18: Eigenvalue spectrum for the stationary cylinder (Re = 200).

8.3.2 Eigenvalue spectrum and POD basis functions

Figure 18 shows the eigenvalue spectrum from the correlation matrix C'
formed from a set of 60 snapshots?® of the cylinder flow, obtained at reg-
ular intervals over two vortex shedding periods. This eigenvalue spectrum
plotted on a semi-log scale falls off rapidly. Hence as discussed in §3.4 of
Cordier and Bergmann (2002), it seems possible to approximate with small
error the correlation matrix C with a low-rank matrix. Moreover, the opti-
mality of the POD basis functions (see Cordier and Bergmann, 2002, §4.3)
suggest that the first?* POD modes capture the most fluctuation kinetic en-
ergy possible in the average sense. Thus the claim that the decomposition of
the flow in the POD basis functions is efficient for modelling the snapshots
U(Z, ty).

It is notable that these eigenvalues occur in pairs of almost equal values,

231t is well known (see Sirovich, 1987b) that the ensemble of snapshots can be augmented
by exploiting the geometric symmetries of the problem, like the symmetry around the
centerline of the cylinder flow; this would result in more accurate eigenfunction evaluation.
The POD basis functions we computed here (see figures 19 and 20) very closely respected
those symmetry properties without resorting to such a procedure. The role of symmetries
in the POD methodology have been investigated in further details by Aubry et al. (1993).

24The number of POD modes to keep in the expansion will be clarified in §8.4 with the
help of the relative information content (see figure 22).
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whereas there is a large gap in magnitude between them. This pattern is
in particular®® identical to the one found in Graham et al. (1999a) for the
cylinder flow and in Rempfer (1996) for the transitional boundary layer.
The reason for this behaviour can be understood when we look at figures
19 and 21, where contours of velocity of the first two POD basis functions,

\17(1)(58) and \17(2)(5:'), and the time behaviour of the corresponding expansion
coefficients, A,(cl) and A,(f) are shown. It can be seen that, essentially, the
eigenfunctions of this pair are representing the same spatial structure, one of
them just being shifted with respect to the other in the streamwise direction.
Figure 21 shows that the corresponding expansion coefficients are analogously
phase-shifted in time. Thus, if we multiply each of the eigenfunctions of such
a pair by its corresponding expansion coefficient, we get a structure that
is moving in the streamwise direction?®. According to Rempfer and Fasel
(1994), we can conclude that for our convective dominated flow, the coherent
structure of order j is represented at the time step ¢; by the following sum:
Ag)\f’(j) (&) + Al(cj+1)‘i"(j+1)(£)
where pairs?’ of eigenfunctions appear. In Aubry et al. (1992), the near de-
generacy of the eigenvalue problem (67) was further studied. It was shown
that this behaviour is a direct consequence of the presence of travelling waves
in our flow. For the case of a parallel flow where structures of constant shape
are travelling downstream at a constant speed, the eigenvalue problem would
be degenerate, yielding pairs of identical eigenvalues.

The velocity contours of the third and fourth most energetic eigenmodes of
the stationary cylinder flow are represented in figure 20. The same behaviour
as already described for the first and second POD mode is still observed. The
two POD basis functions form a pair of similar patterns, one shifted spatially
with respect to the other.

The amplitudes of the first six temporal eigenfunctions A,(C”) are now plot-
ted in figure 21. From this figure, it is clear that the basis functions corre-

25For the reasons explained in the following, this characteristic is common to many POD
applications. Therefore, we choose randomly two bibliographic references.

26The same result can be easily obtained with the Fourier modes (see Cazemier et al.,
1998, p. 1691). It is sufficient to note that sin(z) and cos(z) form a pair of functions
which differ by a shift over one quarter of their period and that the expression a cos(z) +
bsin(z) = (a® + b*)'/? cos(x + &) with tan(d) = Fa/b provides the construction for a
complete description of the evolution of a cosine wave.

27 An immediate consequence is that it seems preferable to keep in the POD reduced
order model developed in §8.4 an even number of POD modes.
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(a) First velocity mode g™

(@).

(2)

(b) Second velocity mode ¥

(@).

Figure 19: Contours of velocity magnitude for the first two POD modes.



8 AN EXAMPLE: CYLINDER FLOW 47

(3)

(a) Third velocity mode ¥~ (&).

(4)

(b) Fourth velocity mode ¥

(@).

Figure 20: Contours of velocity magnitude for the third and fourth POD
modes.
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spond very closely to the coefficients of a temporal Fourier series expansion
for a periodic flow. For our flow configuration (convective dominated flow
and low value of the Reynolds number), it is remarkably close to being so,
even for the higher basis functions coefficients. As a direct consequence, the
mean flow (the zero’th Fourier coefficient) would be (very nearly) found as
the first POD mode if the correlation matrix C' was formed without first
subtracting it from the snapshots. For example, this result is observed in
Rempfer and Fasel (1994) and Cordier (1996) where the first POD mode is
virtually indistinguishable from the mean temporal flow when POD is not
applied to the fluctuations ¥(&, t) around the mean flow @,, (&) but directly
to the flow realizations @(Z,t).

2

basis function amplitudes

time units

Figure 21: Mode amplitude for the first six modes.

Finally, the eigenvalue spectrum is in good agreement with those found
previously by Deane et al. (1991), Gillies (1988) and Graham et al. (1999a)
for an identical configuration. The associated spatial temporal POD basis
functions also correspond satisfactorily.

8.4 POD Reduced Order Model for the stationary cylin-
der flow

In this section, we consider the construction of the POD reduced order model
for the stationary flow (see §7.2). This model is based on a Galerkin projec-
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tion of the Navier-Stokes equations (47) onto a space DY°” spanned by the
M first POD basis functions.

8.4.1 Algorithm for the POD Reduced Order Model

Let DPOD _ span{\I_}(l), \i’l(2), L ,\fl(Nt)

mined in §8.3.

} denote the POD subspace deter-

The development of the POD reduced order model takes the following
algorithmic form:

1. In order to obtain a low-dimensional basis for the Galerkin projection,
POD modes corresponding to small eigenvalues are neglected. To make
this idea more precise, we define the relative information content?® of
the basis by:

RIC(M) = *=1 (69)

If the basis is required that contains % of the total energy initially
contained in the flow, the dimension M < Nj of the subspace DYV
of projection of the governing equations is the smallest integer M such
that the information content is greater than §.

2. We define DPOP = span{‘i}(l), \I_:'(z), e ,\I_;(M)} and expand each ve-

locity 4 in terms of the POD modes as:

g1

(8,1) = (@) + 3™ (1) 8" (&) (70)

where 4, (&) is the mean velocity.

3. After plugging in the development of each velocity field 4 into the
Navier-Stokes equations (47), we restrict the weak form of the Navier-
Stokes equations to DYOP and then solve for a™(t), n =1,---, M.

28 The reader should remind that we already used in §3.2.1 and §4.2.1 the relative infor-
mation content to study for the plane mixing layer the convergence of the scalar-PODs and
the snapshot POD respectively. Moreover, this notion was introduced in §3.6 of Cordier
and Bergmann (2002) to determine how many Singular Value Decomposition modes are
necessary to get a good low-rank approximation of the original images.
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Since the POD basis functions \f’(n) are divergence free by construc-
tion, the continuity equation (46) is automatically verified by the POD
eigenfunctions. It follows that it is useless to restrict the weak form of
the continuity equation to DFOPD.

8.4.2 Dynamical prediction via the Reduced Order Model

In figure 22, the relative information content defined by equation (69) is
shown for the stationary flow cylinder. We obtain a confirmation of the fast
convergence of the POD basis functions in terms of energy representation
as early reported in §8.3.2 describing the eigenvalue spectrum (figure 18).
We find out that the first six POD modes contain more that 99.9% of the
flow kinetic energy (RIC(6) = 99.94%). It follows that the dimension of the
projection subspace is fixed to M = 6 as it was done previously in Deane et
al. (1991) and Graham et al. (1999a).

1.05

1.025

975

infor®ation

0.95

| | | |
0 5 10 15
number of modes

Figure 22: Relative information content for the stationary flow (Re = 200).
RIC(1) = 0.5148.

The weak form of the Navier-Stokes equations (47) is then restricted to
DYPP 1t yields:

(@‘"), % (a9) u) = (&, 9P) 4 (8, Kd) n=1- M
(1)
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At this point it is important to note that the POD basis functions \17(n)

are divergence free as flow is incompressible and satisfy \f'(n) -1 = 0 on the

surfaces I'y, I's, I'y and I'.. Combining these properties and the boundary
condition P = 0 on I's, we find that the pressure term vanishes exactly.
Finally, the Galerkin approximation (71) to the Navier-Stokes equations is
reduced to:

2n a_‘ = ]_ - =2(n — 1 =(n) =
(xp( L2+ (@ V) a) = (R&™ Ka)+ - [8" Ka] (72)
wheren=1,---, M.
Equation (70) is then substituted into (72). After algebraic manipula-

tions, we found the following set of evolution equations for the mode ampli-
tudes a™(t):

da™(t) S (m) -\ () ()., (#)
= At > Buna™ (@) + ) > Comr a™ ()a® (2) (73)

m=1 m=1 k:l

where the coefficients A,, Bym, Chmi are given by:

Ay =~ (8, (- V) i) — o (8 Vi) + - [8" Vi,

(75)

Crmis = — (\17("), (ti’r(m) V) \f/"“)) (76)

The system (73) is the reduced order model of the uncontrolled flow. The
inhomogeneous terms A,, n = 1,--- , M result from the contribution of the
mean velocity (&) in equation (70).

The striking feature of this procedure is the significant decrease of com-
plexity achieved in comparison to the original system. We transform a high-
order dimensional PDE model (12686 vertices in the finite element formula-
tion) to a low-order dimensional ODE model (6 POD modes kept in (73)).



8 AN EXAMPLE: CYLINDER FLOW 92

The coefficients A,,, Bnm, Cnmi are determined once for all using the POD
basis functions. The inner products appearing in the coefficients are easily
computed, with the aid of the finite element consistent mass matrix M.

The system of equations (73) is then integrated with a fourth order Runge-
Kutta scheme from a given set of initial conditions

a®(t = 0) = ((@(&t = 0) - im(#)), \f/‘"’) (77)

yielding a set of predicted time histories for the mode amplitudes a(™ (¢)
which can be compared with the temporal eigenfunctions® of the POD.

basis function amplitudes

time units

Figure 23: Predicted and projected mode amplitudes. Stationary cylinder
flow. Solid line: predictions, dotted line: projections.

As shown in figure 23, excellent qualitative and quantitative agreement
are found between the integrated time histories for the first two modes and
the results obtained by the numerical simulation. For the higher POD modes,
the amplitudes are only slightly less accurately predicted. We conclude that

29Due to the introduction of scaling factors in the linear combinations (68) defining the
spatial eigenfunctions for the snapshot POD, there is no difference between the temporal

eigenfunctions A;c") and the projection of the snapshots onto the spatial eigenfunctions

(@@ 1)~ iim (@), 87 k=1, N,
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a 6 mode model provides an entirely satisfactory description of the long
term dynamics of the uncontrolled flow. The same results were obtained
previously by Deane et al. (1991) and Graham et al. (1999a) with a similar
configuration.

8.5 POD Reduced Order Model for the controlled flow

Here, we present a logical extension of the approach described in §8.4 to sit-
uations where the flow is controlled via cylinder rotation. Since the cylinder
is now rotating, the boundary conditions on I'. become inhomogeneous and
time-dependent. Therefore, the velocity expansion (70) is no longer valid for
4 and the procedure described at the end of §7.3 need to be applied. In
this method?®® called control function method by Graham et al. (1999a), the
velocity expansion is now defined as

W(E, 1) = m(E) +7(1)b(E) + Y o™ ()

n=1

™ (@) (78)

where 4.(&£) is an arbitrary control function satisfying homogeneous bound-
ary conditions. A convenient way to generate it is to take the solution for
the steady cylinder rotation with v = 1. Then the modified snapshots are
defined as

and the algorithm described in §8.3.1 is used to determine the POD ba-

sis functions. By construction, these eigenfunctions A (Z) have now zero
boundary conditions on the Dirichlet boundaries.

Inserting the expansion (78) into the Galerkin projection (72) of the
Navier-Stokes equations, we obtain the reduced order control model:

d a(n) (t) Ngal Ngal Ngal
o = At > Bum a™(t) + )Y Cri ™ ()0 (1)
m=1 N lm:l k=1 (80)
dy 2
D, =1L E, Foal™(t t) + G2 (t
+ Dy + +mZ_:1 a™(t) | (1) + Gur(2)

30 Another method called the “penalty method” is presented in Graham et al. (1999a). In
this approach, the uncontrolled POD basis functions are retained and the inhomogeneous
boundary conditions are imposed in a weak sense when performing the Galerkin Projection.
This method is not used in this paper.
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where A, Bnm, Cnmi are defined respectively by equations (74), (75),
(76) and with:

D, = — (\i("),ac) (81)

(82)

P, =— (\f:("), AR 6) ﬂc) — (\1: (i, - 6) \f/(m)) (83)

G == (8", (- V) i) (84)

Given initial conditions and a prescribed time history for v, the system

of equations (80) can be integrated forwards to yield predicted flow fields.

Here, the cylinder is driven at an angular velocity (¢) = A sin (27.S; t) where

A =3 and S; = 0.75. The results of twelve mode integrations (99% of the

total energy) of the low order system (80), and the projections of the simu-

lation onto the basis functions, are plotted in figure 24. The predictions of

the controlled reduced order model are comparable to the stationary cylinder
results (see section 8.4.2).

In conclusion, this approach is extremely attractive for optimal control
problems governed by PDEs since it leads in general to high-fidelity reduced
order control models more tractable to numerical approaches. POD reduced
order models are particularly suited to gain CPU time in an optimization
problem where in general a large-scale system has to be solved repeatedly.
Recently, we applied this approach to control the cylinder wake flow (see
Bergmann et al., 2003). Our objective was to minimize the wake unsteadiness
by sinusoidal rotation of the cylinder around ist principal axis. A reduced-
order model based on POD was first built for the controlled flow. Then,
following the method introduced by Ravindran (2000a), this reduced-order
model was used as the state equations in the optimality system derived to
estimate the flow control parameters.

A Discretized forms of equations (52), (53) and
(54)

Since the projection method used in §8.2 is different than the one employed
in Graham et al. (1999a,b) and Morgan and Peraire (1998), the left-hand
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basis function amplitudes

time units

Figure 24: Predicted and projected mode amplitudes. Controlled flow (A =
3; Sy = 0.75). Solid line: predictions, dotted line: projections.

-1
sides f;, f? and f3 of equations (52), (53) and (54) respectively are not
equal to those found in §9.2 of Morgan and Peraire (1998). Here, these terms
are given by the following equations:

3 inode inode

:—Atz >N [/ N,NjaNK dQ}

j=1 J=1 K=1

At inode dN
+ E [/ Ny dP KU] (85)

inode
—At (/N[VNJdQ) Py

inode 3 inode
dN. ON.
f;:X/FNI danF §:§:</NI—JdQ> (86)
J=1

j=1 J=1

mode
ON. J g .
= _ N =1,2
zI ( / I 63:, > ? ) (87)
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