THÈSE

présentée en vue de l'obtention du grade de

DOCTEUR DE L'INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE

Spécialité : Mécanique et Énergétique

par

Michel BERGMANN

OPTIMISATION AÉRODYNAMIQUE PAR RÉDUCTION DE MODÈLE POD ET CONTRÔLE OPTIMAL. APPLICATION AU SILLAGE LAMINAIRE D'UN CYLINDRE CIRCULAIRE.

Direction de Thèse : Jean-Pierre Brancher - Laurent Cordier

Soutenance prévue le 17 Décembre 2004 devant la Commission d'Examen

EXEMPLAIRE PROVISOIRE

— JURY —

JP. BONNET	Directeur de Recherches CNRS, LEA, Poitiers	Examinateur
A. BOTTARO	Professeur Université de Gènes, Environmental Engineering Department	Rapporteur
JP. BRANCHER	Professeur ENSEM - LEMTA, Nancy	Directeur de thèse
L. CORDIER	Maître de conférences EEIGM - LEMTA, Nancy	Co-directeur de thèse
P. LE QUÉRÉ	Directeur de Recherches CNRS, LIMSI, Orsay	Examinateur
JE. WESFREID	Directeur de Recherches CNRS, PMMH-ESPCI, Paris	Rapporteur

- INVITÉ-

C.-H. BRUNEAU Professeur Université Bordeaux 1, MAB Examinateur

"Without an inexpensive method for reducing the cost of flow computations, it is unlikely that the solution of optimization problems involving the three dimensional, unsteady Navier-Stokes system will become routine."

Max Gunzburger (2000).

Table des matières

Introduction

1	Des	criptio	on et validation de l'outil numérique	11
	1.1	Modè	le de Navier-Stokes	11
	1.2	Méthe	ode de résolution numérique	13
		1.2.1	Discrétisation temporelle	13
		1.2.2	Discrétisation spatiale	15
		1.2.3	Précision de résolution	17
	1.3	Condi	tions aux limites	19
		1.3.1	Conditions aux limites standards en écoulement ouvert	19
		1.3.2	Condition aux limites de type non-réflectif	19
		1.3.3	Validation des conditions aux limites de type non-réflectif	21
	1.4	Simul	ations de l'écoulement autour d'un cylindre circulaire	24
	1.5	Valida	ation du code de calcul	27
		1.5.1	Écoulement rampant : $Re < 4$	28
		1.5.2	Écoulements stationnaires: $4 \le Re < 49$	29
		1.5.3	Écoulements instationnaires stables: $49 < Re < 190$	31
		1.5.4	Écoulements instationnaires transitionnels: $190 < Re < 260$	32
		1.5.5	Écoulements instationnaires faiblement turbulents: $Re > 260$	34
		1.5.6	Écoulement de base stationnaire instable	35
		1.5.7	Récapitulation et comparaison	36
2	\mathbf{Esti}	imatio	n, contrôle optimal et contrôle robuste	41
	2.1	Intro	luction	41
	2.2	Contr	ôle d'écoulement et optimisation sous contraintes	43
		2.2.1	Formulation du problème	43
		2.2.2	Discussion sur la fonctionnelle objectif : régularisation du problème d'optimisation	44
	2.3	Contr	ôle linéaire par feedback dans l'espace des états	45
		2.3.1		
		-	Contexte de la théorie du contrôle linéaire	46
		2.3.2	Contexte de la théorie du contrôle linéaire \ldots \ldots \ldots \ldots \ldots Théorie du contrôle sur \mathcal{H}_2 \ldots	$46 \\ 47$
		2.3.2 2.3.3	Contexte de la théorie du contrôle linéaire \ldots \ldots \ldots \ldots \ldots \ldots \ldots Théorie du contrôle sur \mathcal{H}_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots Théorie du contrôle robuste sur \mathcal{H}_{∞} \ldots	$46 \\ 47 \\ 53$
		2.3.2 2.3.3 2.3.4	Contexte de la théorie du contrôle linéaire	46 47 53 55
	2.4	2.3.2 2.3.3 2.3.4 Optin	Contexte de la théorie du contrôle linéaire	46 47 53 55 57
	2.4	2.3.2 2.3.3 2.3.4 Optim 2.4.1	Contexte de la théorie du contrôle linéaire	46 47 53 55 57 58
	2.4	2.3.2 2.3.3 2.3.4 Optim 2.4.1 2.4.2	Contexte de la théorie du contrôle linéaire	$46 \\ 47 \\ 53 \\ 55 \\ 57 \\ 58 \\ 61$
	2.4	2.3.2 2.3.3 2.3.4 Optim 2.4.1 2.4.2 2.4.3	Contexte de la théorie du contrôle linéaire	$46 \\ 47 \\ 53 \\ 55 \\ 57 \\ 58 \\ 61 \\ 62$
	2.4	2.3.2 2.3.3 2.3.4 Optim 2.4.1 2.4.2 2.4.3 2.4.4	Contexte de la théorie du contrôle linéaire	$ \begin{array}{r} 46\\ 47\\ 53\\ 55\\ 57\\ 58\\ 61\\ 62\\ 63\\ \end{array} $
	2.4 2.5	2.3.2 2.3.3 2.3.4 Optim 2.4.1 2.4.2 2.4.3 2.4.4 Un pr	Contexte de la théorie du contrôle linéaire	$\begin{array}{c} 46 \\ 47 \\ 53 \\ 55 \\ 57 \\ 58 \\ 61 \\ 62 \\ 63 \\ 65 \end{array}$
	2.42.5	2.3.2 2.3.3 2.3.4 Optin 2.4.1 2.4.2 2.4.3 2.4.4 Un pr 2.5.1	Contexte de la théorie du contrôle linéaire	$ \begin{array}{r} 46\\ 47\\ 53\\ 55\\ 57\\ 58\\ 61\\ 62\\ 63\\ 65\\ 65\\ \end{array} $
	2.4 2.5	2.3.2 2.3.3 2.3.4 Optim 2.4.1 2.4.2 2.4.3 2.4.4 Un pr 2.5.1 2.5.2	Contexte de la théorie du contrôle linéaire	$\begin{array}{c} 46\\ 47\\ 53\\ 55\\ 57\\ 58\\ 61\\ 62\\ 63\\ 65\\ 65\\ 66\\ \end{array}$

i

1

3	Déc	composition Orthogonale aux valeurs Propres	75
	3.1	Introduction	75
		3.1.1 Un premier tour d'horizon	76
		3.1.2 Structure cohérente, POD et contrôle de la turbulence	76
	3.2	Méthode d'approximation	77
	3.3	La Décomposition aux Valeurs Singulières (SVD)	79
		3.3.1 Définition	79
		3.3.2 Interprétations géométriques de la SVD	79
		3.3.3 Liens entre SVD et problèmes aux valeurs propres	81
		3.3.4 Approximation de rang minimum de A	82
	2.4	3.3.5 Liens entre POD et SVD	82
	3.4	La Décomposition Orthogonale aux valeurs Propres (POD)	83
		3.4.1 L'équation de Fredholm	84
		3.4.2 Propriétés des fonctions de bases POD	86
		3.4.3 Optimalité de la base POD	87
	25	3.4.4 Discussion sur la reduction de modele	81
	3.5	Les differentes approches	89
		2.5.2. Choix du produit cooloire	09
		3.5.2 Choix du produit scalaire	90
		3.5.5 Methodes das granghots	91 02
		3.5.5 Propriétés communes des deux approches POD	92
		3.5.6 Méthode des snarshots ou POD classique?	94 94
			01
4	Mo	dèles d'Ordre Réduit basés sur la POD (POD ROM)	97
	4.1	Introduction	97
		4.1.1 Motivations	97
		4.1.2 Utilisation de modèles d'ordre réduit en optimisation	98
	4.2	Projection de Galerkin	100
		4.2.1 Généralités	100
		4.2.2 Modèles d'ordre faibles basés sur la POD	101
		4.2.3 Conditions aux limites	102
	4.3	Application au cylindre	103
		4.3.1 POD du cylindre stationnaire	104
		4.3.2 Incorporation du contrôle dans le modèle POD	108
	4.4	Intégration et stabilisation du modèle d'ordre faible	109
		4.4.1 Integration du système POD	109
		4.4.2 Amelloration du système d'ordre faible	114
	4 5	4.4.5 Conclusions	122
	4.0	4.5.1 Introduction	120
		4.5.2 Etude de stabilité de l'écoulement autour d'un cylindre circulaire en 2D	125
		4.5.2 Etude de la première bifurcation	126
		4.5.4 Etude de la seconde bifurcation	120
		4.5.5 Conclusions	131
5	Con	ntrôle optimal d'un modèle réduit du sillage d'un cylindre circulaire	133
	5.1	Introduction	133
	5.2	Modèle réduit du sillage d'un cylindre circulaire	135
	5.3	Approche contrôle optimal	136
		5.3.1 Système optimal réduit	136
	<u>ب</u> .	5.3.2 Résolution du système optimal réduit	137
	5.4	Loi de contrôle obtenue par le système réduit POD	139
		5.4.1 Influence du controle sur la base POD	139
		5.4.2 Fonctions de base rOD generalisées	1.59
		5.4.6 Réduction de traînée obtenue par les équations de Nevier Stelles	141 179
		0.4.4 Iterution de trainée obtenue par les équations de traviér-plokés	140

		5.4.5 Discussion	145
	5.5	Conclusions	147
6	Opt	timisation par méthode adaptative et modèles réduits POD	149
	6.1	Introduction	149
	6.2	Fonction objectif	150
	6.3	Reconstruction du champ de pression par POD	151
		6.3.1 Détermination d'une base POD pour la pression	151
		6.3.2 Reconstruction du champ de pression par POD	153
	64	Reconstruction de la fonction objectif par POD	156
	0.1	6 4 1 Fonctions de base en champs fluctuants	157
		6.4.2 Fonctions de base avec champs movens	158
		6.4.3 Fonctions de base avec modes de non équilibre	150
		6.4.4 Régultate des différentes approches	162
	65	Méthodo adaptativo DOD	166
	0.5	6.5.1 Dreassau de résolution	100
		6.5.2 Formulation contrôle entirel	167
		0.5.2 Formulation controle optimal	107
	0.0	0.5.3 Resolution du système optimal	169
	6.6	Résultats de la méthode adaptative POD	170
		6.6.1 Résultats du processus d'optimisation adaptatif POD	170
		6.6.2 Restriction du domaine de validité du contrôle d'un modèle réduit POD	171
	6.7	Conclusions	174
7	Opt	timisation par méthodes à région de confiance et modèles réduits POD	181
	7.1	Introduction	181
	7.2	Méthodes à région de confiance	182
		7.2.1 Introduction \ldots	182
		7.2.2 Optimisation de fonctions modèles quadratiques	182
		7.2.3 Optimisation de fonctions modèles générales	187
	7.3	Méthodes à région de confiance et modèles réduits POD	189
		7.3.1 Généralités	189
		7.3.2 Utilisation de fonctions approchées basées sur des modèles réduits POD	190
		7.3.3 Résultats de convergence	192
	7.4	Application : réduction de traînée d'un cylindre circulaire	193
		7.4.1 Définitions des fonctions objectif et modèle	193
		7.4.2 Résultats numériques	194
		7.4.3 Observations	194
	7.5	Conclusions	208
C	onclu	ision et perspectives	211
	JIICIU		
Α	Etu	de numérique du cylindre manipulé	215
	A.1	"Optimisation" par manipulation d'écoulement	215
	A.2	Synchronisation des fréquences de l'écoulement	219
	A.3	Existence d'une valeur optimale pour l'angle maximal de contrôle	221
	A.4	Cas test: A=3	222
В	Stal	bilité des systèmes dynamiques	225
	B.1	Stabilité d'un point fixe	225
	B.2	Stabilité des solutions périodiques	226
		B.2.1 La matrice de Monodromie	226
		B.2.2 La section de Poincaré	227
		B.2.3 Calcul pratique de stabilité	229

\mathbf{C}	Alg	orithmes d'optimisation non-linéaire sans contrainte	231
	C.1	Algorithmes à directions de descente	232
		C.1.1 La recherche linéaire	233
		C.1.2 Méthode du gradient	235
		C.1.3 Méthodes de gradient conjugué non linéaire	235
		C.1.4 Méthode de Newton	238
		C.1.5 Méthode de quasi-Newton	238
	C.2	Algorithmes sans calcul de gradient	241
		C.2.1 Méthodes du simplexe	241
		C.2.2 Méthodes de recherche multi-directionnelle	242
	C.3	Méthodes à régions de confiance	243
		C.3.1 Fonctions modèles quadratiques basées sur un gradient exact	243
		C.3.2 Fonctions modèles quadratiques basées sur un gradient inexact	245
		C.3.3 Fonctions modèles quelconques	245
	C.4	Algorithmes génétiques	245
D	Svs	tèmes optimaux basés sur le modèle de Navier-Stokes	249
-	D.1	Minimisation de la traînée	250
		D.1.1 Méthode des multiplicateurs de Lagrange	251
		D.1.2 Approche du gradient par les sensibilités	256
		D.1.3 Approche du gradient par l'équation adjointe	257
	D.2	Écoulement cible	258
Е	Cor	atrôle par rotation partielle du cylindre	261
L	E 1	Généralités	261
	E 2	Contrôle amont défini par $\theta_{i} = 0^{\circ}$ (écoulement non contrôlé)	265
	E.3	Contrôle amont défini par $\theta_c = 30^{\circ}$	267
	E.4	Contrôle amont défini par $\theta_c = 60^{\circ}$	269
	E 5	Contrôle amont défini par $\theta_c = 90^{\circ}$	271
	E 6	Contrôle amont défini par $\theta_c = 120^{\circ}$	273
	E 7	Contrôle amont défini par $\theta_c = 150^{\circ}$	275
	E.8	Contrôle amont défini par $\theta_c = 180^\circ$	277
	E.9	Récapitulatif	279
		•	

Bibliographie

280

Table des figures

$\begin{array}{c} 1 \\ 2 \end{array}$	Schéma de principe du contrôle actif en boucle fermée	2
0	contrôle.	5
$\frac{3}{4}$	Représentation schématique de l'optimisation par methode adaptative et région de confiance. Représentation schématique de notre configuration d'écoulement contrôlé modèle	6 7
1.1	Écoulement de sillage autour d'un cylindre circulaire. Représentation schématique de la confi- guration simulée numériquement.	12
1.2	Représentation en coordonnées logarithmiques des erreurs spatiale et temporelle pour le cas du tourbillon de Green-Taylor.	18
1.3	Domaine de calcul pour l'écoulement de couche de mélange	22
$\begin{array}{c} 1.4 \\ 1.5 \end{array}$	Maillage utilisé pour la simulation de l'écoulement de couche de mélange. \dots Evolution temporelle de la composante u de la vitesse en deux points caractéristiques P_1 et P_2	22
1.6	Evolution temporelle de la composante v de la vitesse en deux points caractéristiques P_1 et P_2 de la couche de mélange.	23 24
1.7	Evolution temporelle du coefficient de pression en deux points caractéristiques P_1 et P_2 de la couche de mélange.	24
1.8	Isovaleurs de la vorticité ω_z à $t = 100$ pour les simulations numériques A et B . Écoulement de couche de mélange.	25
1.9	Superposition du champ de vitesse et des isovaleurs de la vorticité ω_z à $t = 100$. Écoulement de couche de mélange.	25
1.10	Isobares à $t = 80$ pour les simulations numériques A et B. Écoulement de couche de mélange.	26
1.11	Gros plan sur la frontière de sortie du domaine des isobares obtenues à $t = 80$ pour les simulations numériques A et B . Écoulement de couche de mélange	26
$\begin{array}{c} 1.12\\ 1.13\end{array}$	Maillage en éléments finis de type Delaunay autour d'un cylindre circulaire Lignes de courant et isovaleurs de ω_z obtenus à $t = 1000$ pour $Re = 4$. Écoulement autour	28
	d'un cylindre circulaire.	29
1.14	Lignes de courant autour d'un cylindre circulaire pour $Re = 20. \ldots \ldots \ldots \ldots$	29
$1.15 \\ 1.16$	Lignes de courant autour d'un cylindre circulaire pour $Re = 40$ Répartition du coefficient de pression sur la frontière du cylindre pour $Re = 20$ et $Re = 40$.	29
1.17	L'angle θ est initialisé au point d'arrêt amont	30
1.18	Écoulement autour d'un cylindre circulaire. $\dots \dots \dots$	30
1.19	d'un cylindre circulaire. \ldots	30
	circulaire.	31
1.20	Evolution temporelle des coefficients de traînée \cdots et de portance – pour $Re = 100.$	32
1.21	Spectres de puissance de la traînée · · · et de la portance – pour $Re = 100$	32
1.22	Isobares et isovaleurs de ω_z a $t = 100$ pour $Re = 200$. Ecoulement autour d'un cylindre circulaire.	33
1.23	Evolution temporene des coefficients de trainée \cdots et de portance – pour $Re = 200$	- 33 - 22
$1.24 \\ 1.25$	Spectres de puissance de la trainée · · · et de la portance – pour $Re = 200$	<u>ა</u> კ
1 96	cyllitare circulaire	34 35
1.4U	-1	- 00

1.27	Spectres de puissance de la traînée \cdots et de la portance – pour $Re = 1000.$	35
1.28	Représentations en isovorticité et en lignes de courant pour l'écoulement de base stationnaire instable à $Re = 200.$	36
1.29	Evolution du coefficient de traînée moyen en fonction du nombre de Reynolds. Comparaison entre l'écoulement naturel et l'écoulement de base stationnaire instable	37
1.30	Evolution temporelle du coefficient de traînée en fonction du nombre de Reynolds	38
1.31	Evolution temporelle du coefficient de portance en fonction du nombre de Reynolds	38
1.32	Variation du nombre de Strouhal naturel St_n en fonction du nombre de Reynolds. Comparaison avec des résultats de référence issus de la littérature.	39
1.33	Variation du coefficient de traînée moyen C_D en fonction du nombre de Reynolds. Comparaison avec des résultats de référence issus de la littérature	39
2.1	Diagramme bloc illustrant le contexte général de la théorie du contrôle linéaire	46
2.2	Diagramme bloc illustrant la méthode de contrôle optimal LQR	49
2.3	Diagramme bloc illustrant le filtre de Kalman-Bucy.	52
2.4	Représentation en coordonnées espace-temps du profil de la consigne $\widehat{u}(x,t)$ à atteindre. Equa-	
	tion de la chaleur.	57
2.5	Représentation en coordonnées espace-temps du profil $u(x,t)$ obtenu pour $\Phi = 0$. Equation de la chaleur.	57
$2.6 \\ 2.7$	Représentation en coordonnées espace-temps du profil optimal $u_{opt}(x,t)$. Equation de la chaleur. Représentation en coordonnées espace-temps du contrôle distribué optimal $\Phi_{opt}(x,t)$. Equation	57
	de de la chaleur.	57
2.8	Représentation schématique des différentes approches de résolution du système optimal. Dis-	
	cussion de la commutativité des étapes de discrétisation et de différentiation.	64
2.9	Système optimal de l'équation de Burgers obtenu par l'approche différentiation discrétisation.	70
2.10	Résultats du contrôle distribué de l'équation de Burgers.	72
$2.11 \\ 2.12$	Evolution en fonction du nombre d'itérations de la fonctionnelle objectif \mathcal{J} . Equation de Burgers. Représentation en coordonnées espace-temps du profil de la consigne $u_0(x)$ à atteindre. Equa-	72
	tion de Burgers.	73
2.13	Représentation en coordonnées espace-temps du profil $u(x,t)$ obtenu pour $\Phi = 0$. Equation de Burgers	73
$2.14 \\ 2.15$	Représentation en coordonnées espace-temps du profil optimal $u_{opt}(x,t)$. Equation de Burgers. Représentation en coordonnées espace-temps du contrôle distribué optimal $\Phi_{opt}(x,t)$. Equation	73
	de Burgers.	73
3.1	Interprétation géométrique de la SVD d'une matrice A : image par A de la sphère unité	80
3.2	Interprétation géométrique de la SVD d'une matrice A: rotation de l'espace des phases	80
3.3	Représentation schématique de POD classique	91
3.4	Représentation schématique de la méthode des snapshots.	93
4.1	Algorithme d'optimisation basé sur des modèles réduits.	99
4.2	Représentation de la fonction spatiale $c(x)$ associée aux conditions aux limites instationnaires	
	contrôlées.	101
4.3	Valeurs propres de la matrice de corrélations temporelles dans le cas du cylindre non contrôlé $(\gamma = 0)$.	105
4.4	Isovaleurs de la norme des 6 premiers modes propres POD en écoulement non contrôlé ($\gamma = 0$).	106
4.5	Evolution temporelle des 6 premiers coefficients de projection en écoulement non contrôlé $(\gamma = 0)$ — a_1 et a_2 — a_2 et a_4 … a_5 et a_6	107
4.6	Isovaleurs de la norme des 6 premiers modes propres POD en écoulement contrôlé: $\gamma(t) = 4 \sin(2\pi St, t)$ avoc $A = 2$ of $St_{c} = 0.5$	110
17	\hat{F} nergie cinétique relative en fonction du nombre de modes POD retenus	$110 \\ 111$
4.1	Énergie cinétique relative en fonction du nombre de modes POD retenus.	111 111
<u>т.</u> 0 4 0	Evolution temporalle de l'erreur en norme f_{α} entre les coefficients de prédiction $a_{\alpha}(t)$ et les	111
ч.Ј	coefficients temporels "exacts" $a^*(t)$	119
4 10	Evolution de l'erreur totale en fonction du pas de temps d'intégration du système POD ROM	119
4 11	Evolution de l'erreur totale en fonction du temps nécessaire à l'intégration du système POD	- 1 4
****	ROM.	113

4.12	Evolution du temps nécessaire à l'intégration du système POD ROM en fonction du pas de	
	temps	113
4.13	Comparaison de l'évolution temporelle des 6 premiers modes propres projetés () et prédits	
	()	113
4.14	Comparaison du contenu énergétique de chaque mode POD estimé respectivement avec les	
	coefficients de projection (POD) et les coefficients de prédiction (POD ROM)	114
4.15	Erreur en norme infinie du contenu énergétique de chaque mode POD	114
4.16	Spectre énergétique et échelle de coupure POD.	116
4.17	Evolution de la fonctionnelle coût au cours du processus d'optimisation.	119
4.18	Valeurs des viscosités tourbillonnaires à ajouter dans le cas $\alpha_i = Cste_i$,,	120
4 19	Evolution temporelle des viscosités tourbillonnaires optimales ajoutées sur les 6 premiers modes	
1.10	POD pour $\alpha_i = f_i(t)$	120
4 20	Evolution temporelle des 6 premiers modes propres projetés et prédits avec $\alpha_i = Cste_i$	120
4.20 A 91	Evolution temporelle des 6 premiers modes propres projetés et predits avec $\alpha_i = e_{i} e_{i} \cdots e_{i}$.	120
4.21	L'outon temporene des o premiers modes propres projetes et predits avec $a_i = f_i(t)$	120
4.22	Contenu energerique de chaque mode i OD. Estimation avec ajout et sans ajout $(\alpha_i = 0)$ de	191
4 99	Eman an norma infinia du contanu ánorgátique de cheque mode DOD. Estimation que et conq	121
4.23	Erreur en norme minne du contenu energetique de chaque mode POD. Estimation avec et sans	101
4.0.4	ajout de viscosites tourbillonnaires.	121
4.24	Evolution temporelle de l'erreur commise sur la reconstruction des champs de vitesse par	
	POD ROM pour différentes viscosités α_i en comparaison de ceux déterminés par le modèle de	
	Navier-Stokes.	122
4.25	Portraits de phase des 6 premiers coefficients temporels a_n sur 18 unités de temps pour $\alpha_i = 0$.	
	\diamond modes DNS; — modes POD. Cylindre stationnaire	123
4.26	Portraits de phase des 6 premiers coefficients temporels a_n sur 18 unités de temps pour $\alpha_i =$	
	$Cste_i$. \Diamond modes DNS; — modes POD. Cylindre stationnaire	124
4.27	Portraits de phase des 6 premiers coefficients temporels a_n sur 18 unités de temps pour $\alpha_i =$	
	$f_i(t)$. \diamond modes DNS; — modes POD. Cylindre stationnaire	124
4.28	Portraits de phase des 6 premiers coefficients temporels a_n sur 18 unités de temps. \Diamond modes	
	DNS; — modes POD. A gauche $\alpha_i = 0$, au centre $\alpha_i = Cste_i$ et à droite $\alpha_i = f_i(t)$. Cylindre	
	stationnaire.	125
4.29	Lieu géométrique des valeurs propres du Jacobien du système POD pour $Re = 40, Re = 45$ et	
	Re = 47	127
4.30	Evolution de la valeur propre du Jacobien de plus grande partie réelle en fonction du nombre	
	de Revnolds et détermination du nombre de Revnolds critique.	128
4.31	Evolution du nombre de Strouhal en fonction du taux d'amplification de la perturbation pour	
-	Re = 40, Re = 45 et $Re = 47$ et détermination du nombre de Strouhal de la solution périodique	.128
4 32	Lieu géométrique des valeurs propres de la matrice de Floquet du système POD pour $Be = 100$	
1.0-	(carrés blancs) $Re = 150$ (ronds gris) et $Re = 180$ (losanges noirs)	129
4 33	Zoom sur le lieu géométrique de la valeur propre de plus grand module de la matrice de Floquet	120
1.00	pour le système POD obtenue pour $Re = 100$ $Re = 150$ et $Re = 180$	130
4 34	Evolution de la valeur propre de la matrice de Floquet de plus grand module en fonction du	100
1.01	nombre de Reynolds et détermination du nombre de Reynolds critique	130
	nombre de recynolas et determination du nombre de recynolas entique	100
5.1	Représentation schématique de la méthode d'optimisation POD en boucle ouverte	134
5.2	Représentation schématique du processus d'optimisation	138
5.3	Excitation temporelle α imposée au cylindre	140
5.4	Densité spectrale de puissance de l'excitation temporelle γ	1/0
5.5	Densité spectrale de puissance de l'excitation temporene j_e pour contrôlé $(\alpha = 0)$ et pour	140
0.0	Comparation des spectres de valeurs propres pour recoulement non controle ($\gamma = 0$) et pour l'écoulement manipulé ($\alpha = \alpha$)	140
БG	Companying du contenu information al valatif neur l'équilement per contrâlé $(x_1, 0)$ et neur	140
0.0	Comparaison du contenu informationnel relatif pour l'éconement non contrôle ($\gamma = 0$) et pour l'éconement monimulé ($\alpha = \alpha$)	140
E 77	recontentent manipule ($\gamma = \gamma_e$)	140
0.1 E 0	isovaleurs de la norme euclidienne des 6 premiers modes POD obtenus pour $\gamma(t) = \gamma_e(t)$.	141
0.8	Evolution temporene des o premiers coefficients de prediction pour $\gamma(t) = \gamma_e(t)$: — a_1 et	1.40
F 0	$a_2, a_3 $ et $\cdots a_4, a_5$ et $a_6, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$	142
5.9	Evolution temporelle des 6 premiers coefficients de prédiction pour $\gamma(t) = \gamma_{opt}(t)$: — a_1 et	1.40
F 4 0	$a_2, a_3 $ et $\cdots a_4, a_5$ et $a_6, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots$	142
5.10	Evolution des valeurs de la fonction objectif \mathcal{J}	143

5.11	Evolution temporelle de l'instationnarité du sillage. Comparaison solution initiale ($\gamma = \gamma_e$) et solution conversée ($\gamma = \gamma_e$) du processus d'antimisation sur la medèle réduit	1/13
5 19	Solution convergee $(\gamma = \gamma_{opt})$ du processus d'optimisation sur le modèle reduit	140
0.1Z	Evolution temporelle de la loi de controle γ_{opt} .	143
0.13	Densite spectrale de puissance de la loi de controle γ_{opt} .	143
5.14	Comparaison de l'évolution temporelle des coefficients de trainée dans le cas non contrôlé (traits	1 4 4
- 1-	pleins) et dans le cas ou le controle optimal est applique (pointilles).	144
5.15	Comparaison de l'évolution temporelle des coefficients de portance dans le cas non contrôle	1 4 4
- 10	(traits pleins) et dans le cas où le contrôle optimal est appliqué (pointillés).	144
5.16	Courbes polaires : évolution du coefficient de trainée en fonction du coefficient de portance. Le	
	cycle haut correspond au cas non contrôle et le cycle du bas correspond au cas où le contrôle	1 4 4
	optimal est appliqué.	144
5.17	Spectres de puissance de la trainée ··· et de la portance – pour l'écoulement contrôlé	144
5.18	Iso-vorticités pour l'écoulement non contrôle (a) et contrôle (b) à $t = 150. \ldots \ldots$	146
6.1	Evolution temporelle des coefficients de traînée. Cylindre stationnaire.	152
6.2	Evolution temporelle des coefficients de traînée. Cylindre manipulé: $A = 2$ et $St = 0, 5, \ldots$	152
6.3	Isovaleurs des 6 premiers modes propres de pression en écoulement non contrôlé ($\gamma = 0$)	153
6.4	Isovaleurs des composantes u et p de la fonction de contrôle	154
6.5	Evolution temporelle de l'erreur entre les champs de vitesse POD et NS: projection et	
	prédiction. Cylindre stationnaire.	155
6.6	Evolution temporelle de l'erreur entre les champs de pression POD et NS: projection et	
	prédiction. Cylindre stationnaire	155
6.7	Evolution temporelle de l'erreur entre les champs de vitesse POD et NS: projection et	
	$$ prédiction. $A = 2$ et $St = 0, 5. \dots$	155
6.8	Evolution temporelle de l'erreur entre les champs de pression POD et NS : projection et	
	$$ prédiction. $A = 2$ et $St = 0, 5. \dots $	155
6.9	Représentation schématique d'une transition de dynamique par utilisation d'un mode moyen	
	de non-équilibre. Pour des raisons de clarté, l'espace physique est réduit à trois directions : une	
	direction pour l'écoulement moyen et deux directions pour les champs fluctuants	161
6.10	Représentation de modes de non-équilibre	162
6.11	Evolution temporelle des coefficients de traînée : \Box réel (NS), — projeté (POD) et $$	
	prédit (POD). Cylindre stationnaire.	164
6.12	Evolution temporelle de l'erreur absolue entre les coefficients de traînée POD et NS: —	104
0.10	projete et $ -$ predit. Cylindre stationnaire	164
6.13	Evolution temporelle des coefficients de trainee: \Box reel (NS), — projete (POD) et $$	164
C 1 4	Predit (POD). Cylindre controle.	104
0.14	Evolution temporelle de l'erreur absolue entre les coefficients de trainée POD et NS:	164
6 15	Projete et predit. Cymare controle	104
0.15	tivos de la movema du coefficient de troînée	165
6 16	Représentation schématique de la méthode d'optimisation adaptative POD en houcle fermée	167
6.17	Représentation schématique du processus de résolution du système entirel d'ordre réduit	171
6.18	Représentation de la fonction objectif réalle (gauche) et de la fonction objectif modèle (droite)	111
0.10	dans trois intervalles différents	173
6 1 9	Evolution des paramètres de contrôle dans le plan (A, St) Conditions initiales: $A = 1.0$ et	110
0.15	Evolution des parametres de controle dans le plan $(1, 5t)$. Conditions initiales. $T = 1,0$ et $St = 0.2$	174
6 20	$E_{\rm rel}$ Evolution de la fonction objectif en fonction du nombre d'itérations. Conditions initiales:	111
0.20	Evolution de la fonction objecti en fonction du nombre d'hérations. Conditions initiales: A = 1.0 et $St = 0.2$	174
6 21	Evolution de l'amplitude en fonction du nombre d'itérations. Conditions initiales: $A = 1.0$ et	111
0.21	Evolution de l'amplitude en fonction du nombre d'hérations: conditions initiales $T = 1,0$ et $St = 0.2$	175
6.22	Evolution du nombre de Strouhal en fonction du nombre d'itérations Conditions initiales	110
<i></i>	A = 1.0 et $St = 0.2$.	175
6.23	Evolution des paramètres de contrôle dans le plan (A, St) . Conditions initiales: $A = 1.0$ et	
0	St = 1.0.	176
6.24	Evolution de la fonction objectif en fonction du nombre d'itérations. Conditions initiales:	. 5
	A = 1,0 et $St = 1,0$.	176

6.25	Evolution de l'amplitude en fonction du nombre d'itérations. Conditions initiales : $A = 1,0$ et $St = 1,0$	176
6.26	Evolution du nombre de Strouhal en fonction du nombre d'itérations. Conditions initiales: A = 1.0 ot St = 1.0	176
6.27	Evolution des paramètres de contrôle dans le plan (A, St) . Conditions initiales: $A = 6,0$ et $St = 0.2$	177
6.28	Evolution de la fonction objectif en fonction du nombre d'itérations. Conditions initiales: A = 6.0 et $St = 0.2$.	177
6.29	Evolution de l'amplitude en fonction du nombre d'itérations. Conditions initiales : $A = 6,0$ et $St = 0.2, \dots$	178
6.30	Evolution du nombre de Strouhal en fonction du nombre d'itérations. Conditions initiales: A = 6.0 et $St = 0.2$.	178
6.31	Evolution des paramètres de contrôle dans le plan (A, St) . Conditions initiales: $A = 6,0$ et $St = 1,0, \ldots, \ldots$	179
6.32	Evolution de la fonction objectif en fonction du nombre d'itérations. Conditions initiales: A = 6,0 et $St = 1,0$	179
6.33	Evolution de l'amplitude en fonction du nombre d'itérations. Conditions initiales : $A = 6,0$ et $St = 1,0, \ldots, \ldots$	179
6.34	Evolution du nombre de Strouhal en fonction du nombre d'itérations. Conditions initiales: A = 6,0 et $St = 1,0$	179
7.1	Evolution des paramètres de contrôle dans le plan (A, St) . Conditions initiales: $A = 1,0$ et $St = 0.2$	195
7.2	Evolution de la fonction objectif en fonction du nombre d'itérations. Conditions initiales: A = 1.0 et $St = 0.2$.	195
7.3	Evolution de l'amplitude en fonction du nombre d'itérations. Conditions initiales : $A = 1,0$ et $St = 0.2, \dots$	196
7.4	Evolution du nombre de Strouhal en fonction du nombre d'itérations. Conditions initiales: A = 1.0 et $St = 0.2$.	196
7.5	Evolution des paramètres de contrôle dans le plan (A, St) . Conditions initiales: $A = 1,0$ et $St = 1,0, \ldots, \ldots$	197
7.6	Evolution de la fonction objectif en fonction du nombre d'itérations. Conditions initiales: A = 1,0 et $St = 1,0$	197
7.7	Evolution de l'amplitude en fonction du nombre d'itérations. Conditions initiales : $A = 1,0$ et $St = 1,0$	197
7.8	Evolution du nombre de Strouhal en fonction du nombre d'itérations. Conditions initiales: A = 1,0 et $St = 1,0$	197
7.9	Evolution des paramètres de contrôle dans le plan (A, St) . Conditions initiales: $A = 6,0$ et $St = 0,2$	198
7.10	Evolution de la fonction objectif en fonction du nombre d'itérations. Conditions initiales: A = 6,0 et $St = 0,2$	198
7.11	Evolution de l'amplitude en fonction du nombre d'itérations. Conditions initiales : $A = 6,0$ et $St = 0,2$	199
7.12	Evolution du nombre de Strouhal en fonction du nombre d'itérations. Conditions initiales: A = 6,0 et $St = 0,2$	199
7.13	Evolution des paramètres de contrôle dans le plan (A, St) . Conditions initiales: $A = 6,0$ et $St = 1,0,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots$	200
7.14	Evolution de la fonction objectif en fonction du nombre d'itérations. Conditions initiales: A = 6,0 et $St = 1,0$	200
7.15	Evolution de l'amplitude en fonction du nombre d'itérations. Conditions initiales: $A = 6,0$ et $St = 1,0,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots,\ldots$	200
7.16	Evolution du nombre de Strouhal en fonction du nombre d'itérations. Conditions initiales: A = 6,0 et $St = 1,0$	200
7.17	Comparaison de l'évolution temporelle des coefficients de traînée dans le cas non contrôlé, dans le cas où le contrôle optimal est appliqué, et pour l'écoulement de base stationnaire instable	201
7.18	Comparaison de l'évolution temporelle des coefficients de portance dans le cas non contrôlé, dans le cas où le contrôle optimal est appliqué, et pour l'écoulement de base stationnaire instable	.201

7.19	9 Courbes polaires : évolution du coefficient de traînée en fonction du coefficient de portance. Le cycle haut correspond au cas non contrôlé et le cycle du bas correspond au cas où le contrôle optimal est appliqué	201
7.20	D Spectres de puissance du coefficient de traînée ··· et du coefficient de portance – pour l'écou- lement contrôlé.	201
7.2	1 Représentation des iso-contours de vorticité pour un écoulement non contrôlé, pour un écou- lement contrôlé avec les paramètres de contrôle optimaux $A = 4,25$ et $St = 0,738$ et pour l'écoulement de base stationnaire instable.	202
7.22	2 Comparaison des valeurs de la composante u de vitesse à différentes abscisses situées dans le sillage du cylindre. Écoulement naturel $()$, écoulement forcée par les paramètres de contrôle optimaux $()$ et écoulement de base stationnaire instable (\diamondsuit) .	204
7.23	3 Représentation des valeurs de la composante de vitesse u à différentes abscisses x pour un écoulement non contrôlé, pour un écoulement contrôlé avec les paramètres de contrôle optimaux $A = 4.25$ et $St = 0.738$ et pour l'écoulement de base stationnaire instable.	205
7.24	4 Représentation des lignes de courant et évolution temporelle des coefficients de portance (C_L) , de traînée (C_D) et de la loi de contrôle (γ) pendant une période de l'écoulement contrôlé $(\gamma(t) - A\sin(2\pi St t))$ avec $A - A$ 25 et $St = 0.738$)	206
7.25	5 Représentation des iso-contours de vorticité $(-20; 20)$ et évolution temporelle des coefficients de portance (C_L) , de traînée (C_D) et de la loi de contrôle (γ) pendant une période de l'écou-	200
7.20	fement controle $(\gamma(t) = A \sin(2\pi Stt))$ avec $A = 4,25$ et $St = 0,788$)	207
	$A\sin(2\pi Stt)$ avec $A = 4,25$ et $St = 0,738$)	208
A.1 A.2	Isovaleurs du coefficient de traînée moyen en fonction de l'amplitude et de la fréquence de forçage Isovaleurs de la contribution de pression du coefficient de traînée moyen en fonction de l'am-	e.216
A.3	plitude et de la fréquence de forçage	217
A.4	tude et de la fréquence de forçage	218
A.5	Strouhal St_f de forçage	$219 \\ 220$
A.6	Evolution des spectres de puissance du coefficient de portance pour $A = 3$ et trois valeurs croissantes du nombre de Strouhal de forçage comprises en dehors de la zone de "lock-on"	220
A.1	l'angle maximal de rotation.	221
A.9	Evolution du coefficient de traînée moyen en fonction du nombre de Strouhal	$\frac{221}{222}$
A.1	la fréquence de forçage avec les courbes de dépendance optimale des paramètres de contrôle	000
A.1	(light folge) et la forme infeatre predite (light folge). $\ldots \ldots \ldots$	222
B.1	Base de la théorie de Floquet. Cycle limite et trajectoire perturbée	228
В.2 В 3	Differents croisements du cercle unite par les valeurs propres de la matrice de Floquet Bifurcation de Hopf super-critique	228
ы.э В 4	Bifurcation de Hopf sous-critique.	229
B.5	Section de Poincaré d'une solution périodique. Cycle limite.	229
B.6	Section de Poincaré d'une solution non périodique.	229
C.1	Isovaleurs de la fonction de Rosenbrock banana. Le point de départ des algorithmes détermi- nistes est $(x; y) = (-1; 1)$ et le minimum est localisé au point $(x; y) = (1; 1)$.	232
C.2 C.3	Algorithme du gradient à pas optimal appliqué à la fonction Rosenbrock	$235 \\ 235$
C.4	Algorithme du gradient conjugué de Fletcher-Reeves à pas optimal appliqué à la fonction	_
	Rosenbrock.	-236

C.5	Algorithme du gradient conjugué de Fletcher-Reeves à pas d'Armijo appliqué à la fonction Resembrack	<u> </u>
C.6	Algorithme du gradient conjugué de Polack-Ribière à pas optimal appliqué à la fonction Ro-	200
	senbrock.	237
C.7	Algorithme du gradient conjugué de Polack-Ribière à pas d'Armijo appliqué à la fonction	
	Rosenbrock.	23'
C.8	Algorithme du gradient conjugué de Hestenes-Stiefel à pas optimal appliqué à la fonction	
	Rosenbrock	23
C.9	Algorithme du gradient conjugué de Hestenes-Stiefel à pas d'Armijo appliqué à la fonction	
~	Rosenbrock.	23
C.10	Algorithme de Newton à pas optimal appliqué à la fonction Rosenbrock.	23
C.II	Algorithme de Newton à pas d'Armijo appliqué à la fonction Rosenbrock.	23
C.12	Algorithme de quasi-Newton BFGS à pas optimal appliqué à la fonction Rosenbrock	23
C.13	Algorithme de quasi-Newton BFGS à pas d'Armijo appliqué à la fonction Rosenbrock.	23
C.14	Algorithme de quasi-Newton DFP à pas optimal applique à la fonction Rosenbrock.	24
C.15	Algorithme de quasi-Newton DFP a pas d'Armijo applique à la fonction Rosenbrock.	24
C.10 C.17	Algorithme de quasi-Newton SR1 à pas d'Armijo appliqué à la fonction Rosenbrock	24
C_{18}	Algorithme de quasi-Newton Siti a pas d'Aringo appliqué à la fonction Rosenbrock.	24
C_{10}	Algorithme du simplexe de Neider et Mead appliqué à la fonction Rosenbrock.	24
C_{20}	Algorithme à régions de confignce basé sur un gradient et un bessien eyact appliqué à la fonction	24
0.20	de Rosenbrock	24
C 21	Algorithme à régions de confiance basé sur un gradient exact et un hessien BEGS appliqué à	21
0.21	la fonction de Rosenbrock.	24
C.22	Evolution d'un algorithme génétique appliqué à la fonction de Rosenbrock.	$\overline{24}$
C.23	Influence du nombre d'individus présents dans la population initiale d'un algorithme génétique.	. 24
E.1	Représentation de l'abscisse curviligne du cylindre définie par l'angle θ	26
E.2	Répartition du coefficient de traînée moyen sur le cylindre pour $Re = 200 C_D, \cdots C_D^{\nu}$	
	$et C_D^p. \dots \dots \dots \dots \dots \dots \dots \dots \dots $	26
E.3	Répartition de la différence des coefficients de traînée moyen sur le cylindre entre le cas non	
	contrôlé ($\gamma = 0$) et le cas où le contrôle optimal est appliqué ($\gamma = \gamma_{opt}$)	26
E.4	Configuration de contrôle: partie amont contrôlée ($\gamma = \gamma_{opt}$) et partie avale non-contrôlée	
	$(\gamma = 0)$	26
E.5	Répartition du coefficient de trainée moyen sur le cylindre pour $\theta_c = 0^\circ$ (écoulement non	
	contrôlé). — $C_D, \cdots C_D^{\nu}$ et $ C_D^{\nu}$	26
E.6	Evolution temporelle du coefficient de traînée pour un écoulement non contrôlé	26
E.7	Evolution temporelle du coefficient de portance pour un écoulement non contrôlé	26
E.8	Spectres de puissance des coefficients aérodynamiques dans le cas contrôlé avec $\theta_c = 0^\circ$. Traits	0.0
	pleins: trainée, traits discontinus: portance.	26
E.9	Courbe polaire : coefficient de trainée en fonction du coefficient de portance dans le cas controle $0 = 0^{\circ}$	96
E 10	$\theta_c = 0^{-1}$	20
E.10	Iso-contours de vorticités ω_z et isobares pour l'écomennent contrôle avec $\theta_c = 0^\circ$ a $t = 150$	20
Ľ.11	Repartition du coefficient de trainée moyen sur le cyfindre pour $b_c = 50$. $$ C_D , \cdots C_D et	0.0
E 10	$C_D^* \cdots \cdots$	26
E.12	Comparaison de l'evolution temporelle de la trainée dans le cas non contrôlé (traits discontinus) et dans le cas contrôlé $(1 - 20)^2$ (traits glaine)	0.0
F 19	et dans le cas controle $\theta_c = 50^\circ$ (traits piens)	20
с.13	Comparaison de l'evolution temporene de la portance dans le cas non controle (traits discon- tinus) et dans le cas contrôlé $\theta = 20^{\circ}$ (traits pleine)	26
E 14	sinus) et dans le cas contrôlé $v_c = 50^{\circ}$ (trans piellis)	20
12.14	species de puissance des controles acrodynamiques dans le cas controle avec $v_c = 30$. Halts pleins traînée traits discontinus portance	26
E 15	Courbe polaire : coefficient de traînée en fonction du coefficient de portance dans le cas contrôlé	20
U	$\theta_c = 30^\circ$	26
E.16	Iso-contours de vorticités ω_z et isobares pour l'écoulement contrôlé avec $\theta_z = 30^\circ$ à $t = 150$	26
E.17	Répartition du coefficient de traînée moyen sur le cylindre pour $\theta_c = 60^\circ$. — \widetilde{C}_{D} \widetilde{C}_{D}^{ν} et	_0
	$\widetilde{C_p^p}$	26
	\sim_D	20

E.18	Comparaison de l'évolution temporelle de la traînée dans le cas non contrôlé (traits discontinus) et dans le cas contrôlé $\theta_c = 60^\circ$ (traits pleins).	269
E.19	Comparaison de l'évolution temporelle de la portance dans le cas non contrôlé (traits discon- tinus) et dans le cas contrôlé $\theta_c = 60^\circ$ (traits pleins).	269
E.20	Spectres de puissance des coefficients aérodynamiques dans le cas contrôle avec $\theta_c = 60^\circ$. Traits pleins: traînée, traits discontinus: portance	270
E.21	Courbe polaire : coefficient de traînée en fonction du coefficient de portance dans le cas contrôlé $\theta_c = 60^{\circ}$	270
E.22 E.23	Iso-contours de vorticités ω_z et isobares pour l'écoulement contrôlé avec $\theta_c = 60^{\circ}$ à $t = 150$ Répartition du coefficient de traînée moyen sur le cylindre pour $\theta_c = 90^{\circ}$. — $\widetilde{C_D}, \cdots \widetilde{C_D}^{\nu}$ et	270
E.24	\widetilde{C}_D^p Comparaison de l'évolution temporelle de la traînée dans le cas non contrôlé (traits discontinus)	271
E.25	et dans le cas contrôlé $\theta_c = 90^\circ$ (traits pleins)	271
E.26	tinus) et dans le cas contrôlé $\theta_c = 90^\circ$ (traits pleins)	271
E.27	Courbe polaire : coefficient de traînée en fonction du coefficient de portance dans le cas contrôlé $A = 90^{\circ}$	272
E.28 E.29	Iso-contours de vorticités ω_z et isobares pour l'écoulement contrôlé avec $\theta_c = 90^\circ$ à $t = 150$. Répartition du coefficient de traînée moyen sur le cylindre pour $\theta_c = 120^\circ$. — $\widetilde{C_D}, \cdots \widetilde{C_D^\nu}$	272
E.30	et \widetilde{C}_D^p	273
D 01	et dans le cas contrôlé $\theta_c = 120^{\circ}$ (traits pleins)	273
E.31	Comparaison de l'évolution temporelle de la portance dans le cas non contrôle (traits discon- tinus) et dans le cas contrôlé $\theta_c = 120^{\circ}$ (traits pleins).	273
E.32	Spectres de puissance des coefficients aérodynamiques dans le cas contrôlé avec $\theta_c = 120^{\circ}$. Traits pleins: traînée, traits discontinus: portance.	274
E.33	Courbe polaire : coefficient de trainée en fonction du coefficient de portance dans le cas contrôle $\theta_c = 120^\circ$.	274
E.34 E.35	Iso-contours de vorticités ω_z et isobares pour l'écoulement controle avec $\theta_c = 120^\circ$ a $t = 150$. Répartition du coefficient de traînée moyen sur le cylindre pour $\theta_c = 150^\circ$. — $\widetilde{C}_D, \cdots \widetilde{C}_D^{\nu}$	274
E.36	et C_D^p	275
E.37	et dans le cas contrôlé $\theta_c = 150^\circ$ (traits pleins)	275
E.38	tinus) et dans le cas contrôle $\theta_c = 150^\circ$ (traits pleins)	270
E.39	Courbe polaire : coefficient de traînée en fonction du coefficient de portance dans le cas contrôlé $\theta_{-} = 150^{\circ}$	270
E.40 E.41	$b_c = 150$	276 276
E 42	et $\widetilde{C}_D^{\widetilde{p}}$	277
	et dans le cas contrôlé $\theta_c = 180^{\circ}$ (traits pleins)	277
E.43	Comparaison de l'évolution temporelle de la portance dans le cas non contrôlé (traits discon- tinus) et dans le cas contrôlé $\theta_c = 180^{\circ}$ (traits pleins).	277
E.44	Spectres de puissance des coefficients aérodynamiques dans le cas contrôlé avec $\theta_c = 180^{\circ}$. Traits pleins: traînée, traits discontinus: portance.	278
E.45	Courbe polaire : coefficient de traînée en fonction du coefficient de portance dans le cas contrôlé $\theta_c = 180^{\circ}$	278
E.46 E.47	Iso-contours de vorticités ω_z et isobares pour l'écoulement contrôlé avec $\theta_c = 180^\circ$ à $t = 150$. Evolution du coefficient de traînée total —, du coefficient de traînée de pression — — et du coefficient de traînée visqueux · · · en fonction de l'angle θ_c définissant le contrôle.	278 279

Liste des tableaux

1.1	Valeurs en fonction du pas d'espace Δx de l'erreur maximale et de l'erreur absolue moyenne commise dans la résolution numérique. Cas du tourbillon de Green Taylor	17
1.2	Valeurs en fonction du pas de temps Δt de l'erreur maximale et de l'erreur absolue moyenne commise dans la résolution numérique. Cas du tourbillon de Green Taylor	18
1.3	Paramètres numériques utilisés pour tester les conditions aux limites de type non-réflectif dans le cas d'un écoulement de couche de mélange.	22
1.4	Comparaison de quelques valeurs caractéristiques de l'écoulement autour d'un cylindre circu-	
1.5	laire en régime stationnaire pour $Re = 20$ et $Re = 40$	31
1.6	cylindre circulaire à $Re = 100.$	32
1.0	autour d'un cylindre circulaire à $Re = 200.$	34
1.7	Comparaison du nombre de Strouhal et du coefficient de traînée moyen pour l'écoulement autour d'un cylindre circulaire à $Re = 1000$	35
3.1	Classification des méthodes de réduction de modèles d'après Antoulas et Sorensen (2001)	89
4.1	Comparaison de l'efficacité des méthodes de résolution numérique pour le système POD ROM.	111
4.2	Paramètres critiques associés à la première bifurcation de Hopf pour l'écoulement autour d'un cylindre stationnaire.	128
4.3	Paramètres critiques associés à la seconde bifurcation de Hopf pour l'écoulement autour d'un cylindre stationnaire.	130
6.1	Descriptif des aspects physiques et dynamiques des modes présents dans la décomposition sur	
6.2	la base POD, augmentée des modes de non-équilibre	160
<u> </u>	adaptatif POD.	171
6.3	Processus d'optimisation par methode adaptative contrainte. Evolution en fonction des iteres des valeurs des paramètres de contrôle, des fonctionnelles objectif \mathcal{J} et modèle $\tilde{\mathcal{J}}$. Paramètres	
64	de contrôle initiaux : $A = 1,0$ et $St = 0,2$	172
0.1	des valeurs des paramètres de contrôle, des fonctionnelles objectif \mathcal{J} et modèle $\tilde{\mathcal{J}}$. Paramètres	
6.5	de contrôle initiaux : $A = 1,0$ et $St = 1,0$	175
	des valeurs des paramètres de contrôle, des fonctionnelles objectif \mathcal{J} et modèle $\widetilde{\mathcal{J}}$. Paramètres de contrôle initiane $A = 6.0$ et $St = 0.2$	177
6.6	Processus d'optimisation par méthode adaptative contrainte. Evolution en fonction des itérés	111
	des valeurs des paramètres de contrôle, des fonctionnelles objectif \mathcal{J} et modèle \mathcal{J} . Paramètres de contrôle initiaux : $A = 6,0$ et $St = 1,0$.	178
7.1	Processus d'optimisation par régions de confiance et modèles réduits POD. Evolution en fonc-	
	tion des itérés des valeurs des paramètres de contrôle, des fonctionnelles objectif f_k et modèle m_k , de ρ_k et du rayon Δ_k de la région. Paramètres de contrôle initiaux : $A = 1.0$ et $St = 0.2$	195
7.2	Evolution en fonction des itérés des valeurs des paramètres de contrôle, des fonctionnelles	100
	objectif J_k et modele m_k , de ρ_k et du rayon Δ_k de la région. Paramétres de contrôle initiaux : A = 1.0 et $St = 1.0$	196

7.3	Evolution en fonction des itérés des valeurs des paramètres de contrôle, des fonctionnelles objectif f_k et modèle m_k , de ρ_k et du rayon Δ_k de la région. Paramètres de contrôle initiaux :	
	A = 6,0 et $St = 0,2$.	198
7.4	Evolution en fonction des itérés des valeurs des paramètres de contrôle, des fonctionnelles	
	objectif f_k et modèle m_k , de ρ_k et du rayon Δ_k de la région. Paramètres de contrôle initiaux :	
	A = 6,0 et $St = 1,0.$	199
F 1	Enclution du coefficient de terênée tetel de coefficient de terênée de monsion et du coefficient	
E.1	Evolution du coemcient de trainée total, du coemcient de trainée de pression et du coemcient	070
	de trainée visqueux en fonction de l'angle θ_c definissant le controle	279