Exercice 1 Une association de consommateurs a effectué une enquête sur le prix d'une bouteille de 13 kg de boutane en supermarché. Les prix relevés sont:

$$24e \quad 20,45e \quad 20,95e \quad 29,70e \quad 24,90e \quad 23,15e$$

En supposant que le prix se comporte comme une variable aléatoire normale, calculer une estimation \bar{x} de l'espérance $\mathbb{E}(X)$ et une estimation s de l'écart-type.

Exercice 2 On considère un échellon $x_1
ldots x_{2n}$ de taille 2n et les variables $X_1
ldots X_{2n}$ identiquement distribués avec espérance μ . On considère plusieurs estimateurs de l'espérance:

$$T_1(x_1 \dots x_{2n}) = x_1$$

$$T_2(x_1 \dots x_{2n}) = x_n$$

$$T_3(x_1 \dots x_{2n}) = \frac{1}{2}(x_1 + x_n + x_{2n})$$

$$T_4(x_1 \dots x_{2n}) = x_1 - x_n + x_{2n}$$

$$T_5(x_1 \dots x_{2n}) = \frac{1}{3}(2x_1 - x_n + 2x_{2n})$$

$$T_6(x_1 \dots x_{2n}) = \frac{1}{2n}(x_1 + \dots x_{2n})$$

- 1. Indiquer les estimateurs de la liste c-dessus qui sont non-biaisés pour μ (c'est à dire les T_i pour lesquelles $\mathbb{E}(T_i(X_1 \dots X_{2n})) = \mu$).
- 2. Indiquer les estimateurs convergentes dans la liste ci-dessus.

Exercice 3 On considère un échantillon de 2 valeurs x_1 et x_2 . Exprimer en fonction de x_1 et x_2 l'estimation non-biaisé de l'écart-type.