DÉNOMBREMENTS

Exercice 1 (Préliminaire) Soit Ω un ensemble et $(F_n)_{n\geq 0}$ une suite de parties de Ω , *i.e.* $F_n \subset \Omega$ pour tout $n \geq 0$. Construire des parties $G_n \subset \Omega$ telles que

- a) $\bigcup_{n>0} F_n = \bigcup_{n>0} G_n$
- b) Pour tout entiers $n \neq k$, on a $G_n \cap G_k = \emptyset$.
- c) Pour tout entier $n \geq 0, G_n \subset F_n$.

Exercice 2 (Réunions dénombrables) Soit Ω un ensemble et soit $(F_n)_{n\geq 0}$ une suite de parties finies de Ω .

- a) Montrer que $\bigcup_{n>0} F_n$ est dénombrable (on pourra se servir de l'exercice précédent).
- b) Pour tout entier $n \ge 1$, on note $\mathbb{Q}_n := \{ \frac{p}{q} \in \mathbb{Q} : -n \le p \le n, \ 0 < q \le n \}$. Montrer que \mathbb{Q} est dénombrable.
- c) Soit $k \geq 1$. Montrer que \mathbb{N}^k est dénombrable. On pourra par exemple considérer $F_m = \{(n_1, \dots, n_k) \in \mathbb{N}^k : \sum_{1 \leq i \leq k} n_i \leq m\}.$
- d) Soit $(A_n)_{n\geq 1}$ une suite d'ensembles dénombrables, et pour tout entier $n\geq 1, F_n$ l'ensemble formé par les n premiers éléments de A_1,\ldots,A_n . Montrer que

$$\bigcup_{n\geq 1} A_n = \bigcup_{n\geq 1} F_n \quad \text{est dénombrable}.$$

Exercice 3 Soient E et F des ensembles.

- a) Montrer que si E n'est pas dénombrable, et si $f:E\to F$ est une injection, alors F n'est pas dénombrable.
- b) Montrer que si E est dénombrable, et si $f:E\to F$ est une surjection, alors F est dénombrable.

Exercice 4 Soit $f:(n,m) \mapsto 2^n(2m+1)-1$. Montrer que $f:\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ est bijective. En déduire une autre démonstration du fait qu'une union dénombrable d'ensembles dénombrables est dénombrable.

Exercice 5 (Théorème de Cantor) On veut montrer que [0,1] n'est pas dénombrable. Soit $(a_n)_{n\geq 1}$ une suite d'éléments de [0,1]. On va montrer qu'il existe au moins un élément $x\in [0,1]$ tel que pour tout entier $n\geq 1$, $a_n\neq x$.

a) Justifier que parmi les intervalles $[0, \frac{1}{3}]$, $[\frac{1}{3}, \frac{2}{3}]$, et $[\frac{2}{3}, 1]$ au moins un intervalle ne contient pas a_1 . Appelons le I_1 .

- b) On découpe I_1 à nouveau en trois intervalles de longueur 1/9. Justifier qu'au moins un de ces intervalles ne contient pas a_2 . Appelons-le I_2 .
- c) Construire par récurrence une suite de segments $(I_n)_{n\geq 1}$ telle que pour tout $n\geq 1$, $I_{n+1}\subset I_n, |I_n|=\frac{1}{3^n}$ et $a_n\not\in I_n$. Faire un dessin.
- d) Montrer que $\bigcap_{n>1} I_n$ est un singleton. Conclure.

Exercice 6 (Argument diagonal de Cantor) Soit $(a_n)_{n\geq 1}$ une suite d'éléments de [0,1[. Pour tout entier $n\geq 1$, on écrit $a_n=0,c_{n,1}c_{n,2}\ldots$ le développement décimal de a_n , avec la convention que $c_{n,k}=0$ à partir d'un certain rang si a_n a un développement décimal fini. Pour tout $n\geq 1$, on pose $b_n=c_{n,n}-1$ si $c_{n,n}\neq 0$ et $b_n=1$ si $c_{n,n}=0$. Que dire du réel $x=0,b_1b_2\ldots$? Conclure.

Exercice 7 (Un autre théorème de Cantor) Pour un ensemble E quelconque on définit $\mathcal{P}(E) := \{A : A \subset E\}$.

- a) Montrer que si |E| = n, alors $|\mathcal{P}(E)| = 2^n$.
- b) Montrer, pour un ensemble E quelconque, que $\mathcal{P}(E)$ est "strictement plus grand" que E dans le sens qu'il n'y a pas de bijection entre E et $\mathcal{P}(E)$ (Indication : supposer par l'absurde l'existence d'une telle bijection ϕ et considérer $F = \{x \in E : x \notin \phi(x)\}$).
- c) Montrer que l'ensemble $\mathcal{P}_{fin}(\mathbb{N})$ des parties finies de \mathbb{N} est un ensemble dénombrable. En déduire une autre démonstration du fait que [0,1[n'est pas dénombrable (Indication : déterminer une bijection entre [0,1[et l'ensemble des parties infinies de \mathbb{N}).

Tribus

Exercice 8 Soit $\Omega = \{1, 2, 3, 4\}$. Déterminer toutes les tribus sur Ω .

Exercice 9 Soit Ω un ensemble. Si A et B sont deux parties de Ω , on définit leur différence symétrique par $A\Delta B := (A \setminus B) \cup (B \setminus A)$.

- a) Soit \mathcal{A} une tribu sur Ω . Montrer que \mathcal{A} est stable par différence symétrique.
- b) Montrer que $\mathcal{P}(\Omega)$, muni de l'opération Δ , forme un groupe.
- c) Montrer qu'une tribu sur Ω est un sous-groupe de $\mathcal{P}(\Omega)$. En déduire que, sur un ensemble fini, une tribu a toujours pour cardinal une puissance de 2.

Exercice 10 Soit Ω un ensemble et \mathcal{T} une tribu sur Ω . On pose

$$\mathcal{T}_x = \{ T \in \mathcal{T} : x \in T \} \text{ et } P(x) = \bigcap_{T \in \mathcal{T}_x} T$$

- a) Montrer que $x \in P(y)$ implique $P(x) \subset P(y)$.
- b) Soit $x \in P(y)$. Montrer par l'absurde que $y \in P(x)$. Déduire P(x) = P(y).
- c) Soit $\mathcal{P} = \{P(x) : x \in \Omega\}$. Montrer que \mathcal{P} est une partition de Ω .

Exercice 11 Montrer que les ensembles suivants sont des éléments de la tribu borélienne $\mathcal{B}(\mathbb{R})$ sur \mathbb{R} .

$$A = [0, 1], \quad B = \{1, 2\}, \quad C = \mathbb{Q}, \quad D = [0, 1],$$

 $E = \{x \in \mathbb{R} : x \text{ est (négatif et rationnel) ou (positif et irrationnel)}\}.$

Exercice 12 Soit $\mathcal{B}(\mathbb{R})$ la tribu borélienne sur \mathbb{R} . Que peut-on dire de $\mathcal{A} = \{B \cap \mathbb{Q} : B \in \mathcal{B}(\mathbb{R})\}$?

Exercice 13 On considère \mathcal{A} l'ensemble des parties $A \subset \mathbb{R}^d$ qui sont dénombrables ou dont le complémentaire $\mathbb{R}^d \setminus A$ est dénombrable.

- a) Montrer que \mathcal{A} est une tribu.
- b) Montrer que \mathcal{A} est la plus petite tribu qui contient tous les singletons $\{a\}$ avec $a \in \mathbb{R}^d$.

MESURES

Exercice 14 Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré.

- a) Montrer que si $A, B \in \mathcal{A}$ et $\mu(B) = 0$ alors $\mu(A \cup B) = \mu(A)$.
- b) L'application définie sur $\mathcal{P}(\mathbb{N})$ par $\nu(\{1\}) = 1$ et $\forall E \subset \mathbb{N}, \ \nu(E) = 0$ si $E \neq \{1\}$ est-elle une mesure ?

Exercice 15 (La mesure de Dirac) Sur la tribu borélienne $\mathcal{B}(\mathbb{R})$ de \mathbb{R} , on définit δ_a par :

$$\forall A \in \mathcal{B}(\mathbb{R}), \ \delta_a(A) = 1 \text{ si } a \in A \text{ et } \delta_a(A) = 0 \text{ si } a \notin A.$$

Montrer que δ_a est une mesure sur $\mathcal{B}(\mathbb{R})$.

Exercice 16 (La mesure de comptage) Soit Ω un ensemble muni de la tribu $\mathcal{P}(\Omega)$. Si $E \subset \Omega$ on pose $\mu(E) = +\infty$ si E est infini et $\mu(E) = \operatorname{card}(E)$ si E est fini. Montrer que μ est une mesure sur $(\Omega, \mathcal{P}(\Omega))$.

Exercice 17 Soit (Ω, \mathcal{A}) un espace mesurable.

a) Que peut-on dire d'une mesure constante sur \mathcal{A} ?

- b) Montrer que si μ et ν sont des mesures sur (Ω, \mathcal{A}) , et si $a \in \mathbb{R}^+$, $\mu + \nu$ et $a\mu$ sont des mesures sur (Ω, \mathcal{A}) .
- c) Si $(\mu_n)_{n\in\mathbb{N}}$ est une suite de mesures sur (Ω, \mathcal{A}) , montrer qu'on peut définir une mesure sur (Ω, \mathcal{A}) par $\mu = \sum_{n>0} \mu_n$.

Exercice 18 Soit μ une fonction sur $\mathcal{P}(\mathbb{N}^*)$, définie par $\mu(A) = \infty$ si A est infini et $\mu(A) = \sum_{k \in A} k^{-2}$ si A est fini. Montrer que μ est (finiment) additive, mais n'est pas une mesure. Même question avec μ définie par $\mu(A) = \infty$ si A est infini et $\mu(A) = \sum_{k \in A} k^{-1}$ si A est fini.

Exercice 19 Soit μ une mesure sur \mathbb{R}^n muni de la tribu borélienne qui est invariante par translation (i.e. $\mu(x+A) = \mu(A)$, pour tout x) et telle que le cube standard $I = [0,1[^n \text{ a pour volume } \mu(I) = 1. \text{ Soit } a_1,\ldots,a_n,b_1,\ldots,b_n \in \mathbb{R}$ tels que $a_1 < b_1,\ldots,a_n < b_n$ et soit

$$Q := [a_1, b_1[\times \ldots \times [a_n, b_n[\subset \mathbb{R}^n \text{ et } V := \prod_{i=1}^n (b_i - a_i).$$

- a) Supposons que pour $1 \le i \le n, a_i, b_i \in \mathbb{Z}$. Montrer que $\mu(Q) = V$.
- b) Supposons que pour $1 \leq i \leq n, a_i, b_i \in \mathbb{Q}$. Pour $1 \leq i \leq n$, on écrit $a_i = \frac{p_i}{q_i}$ et $b_i = \frac{r_i}{q_i}$. Montrer que $\mu(Q) = V$.
- c) En déduire par un argument d'approximation rationnelle que $\mu(Q) = V$ quels que soient $a_1, \ldots, a_n, b_1, \ldots, b_n$.
- d) Supposons que $a_i = b_i$ pour au moins un i (et on conviendra que le facteur $[a_i, b_i]$ est $\{a_i\}$ dans la définition de Q). Utiliser la monotonie par rapport à l'inclusion pour montrer que $\mu(Q) = 0$.
- e) En déduire que $\mu(Q) = V$ si le pavé Q est un produit d'intervalles ouverts, semiouverts ou fermés.
- f) Soit Ω un ouvert non vide de \mathbb{R}^n . Montrer que $\mu(\Omega) > 0$.
- g) Soit $A \subset \mathbb{R}^n$ une partie mesurable, contenue dans un hyperplan affine H de \mathbb{R}^n . Montrer que $\mu(A) = 0$. Indications:
 - i) Commencer avec le cas que $H = \{a\} \times \mathbb{R}^{n-1}$ et que A est bornée : Montrer que pour $\varepsilon > 0$ il existe un pavé P contenant A de volume $\mu(P) \leq \varepsilon$.
 - ii) Enlever l'hypothèse de bornitude de A.
 - iii) Généraliser à un hyperplan ${\cal H}$ quelconque.
- h) On considère le cas $n{=}2$: soit $f:\mathbb{R}\to\mathbb{R}$ continue et

$$graphe(f) = \{(x, f(x)) : x \in \mathbb{R}\}.$$

Montrer que $\mu(\text{graphe}(f)) = 0$.