Exercise 1 Soit $X = \{a, b, c, d, e, f\}$ et $\mathcal{F} = \{\{a\}, \{b, c, d\}\}$.

- a) Déterminer $\mathscr{A} = \sigma(\mathcal{F})$.
- b) Soit μ la mesure de Dirac au point c et soient μ^* et μ_* les mesures extérieures et intérieures associées à μ sur $\mathscr{P}(X)$, i.e.

$$\mu^*(A) := \inf \{ \mu(S) : A \in \mathscr{A} \text{ et } A \subseteq S \} \text{ et } \mu_*(A) := \sup \{ \mu(S) : A \in \mathscr{A} \text{ et } S \subseteq A \}.$$

Calculer $\mu^*(\{b,d\})$ et $\mu^*(\{e\})$ puis $\mu_*(\{b,d\})$ et $\mu_*(\{e\})$

- c) Déterminer $\{A \in \mathscr{P}(X) : \mu^*(A) > \mu_*(A)\}.$
- d) Quelle est la complétion de \mathscr{A} par rapport à μ ?

Exercice 2 Soit $f:(X,\mathscr{A})\to(\mathbb{R},\text{Borel})$ une fonction mesurable et

$$g(x) = \begin{cases} \frac{1}{f(x)} & \text{si} \quad f(x) \neq 0\\ 0 & \text{si} \quad f(x) = 0 \end{cases}$$

Montrer que q est mesurable. Indication: étudier d'abord le cas f(x) = x sur \mathbb{R} .

Exercice 3 Soit (E, d) un espace métrique muni de la tribu de Lebesgue et $f : E \to \mathbb{R}$ continue λ -presque partout. Montrer que f est mesurable.

Indication: Soit $D \subseteq E$ l'ensemble de discontinuités de f. Considérer des ensembles de la forme $F_a = \{x \in E \setminus D: f(x) < a\}$? Utiliser la continuité de f pour montrer que F_a est Lebesgue-mesurable. Conclure.

Exercice 4 Soit $f:(\Omega,\mathscr{A})\to(\overline{\mathbb{R}_+},\mathrm{Borel})$ une application mesurable. Pour $n\in\mathbb{N},$ on pose

$$E_k^n := f^{-1}\left(\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)\right) \quad k = 0 \dots n \, 2^n \quad \text{et} \quad F_n := f^{-1}([n, +\infty]),$$

puis

$$f_n := n \, \mathbb{1}_{F_n} + \sum_{k \le n \, 2^n} \frac{k}{2^n} \, \mathbb{1}_{E_k^n}.$$

- a) Pour f(x) = |x|, expliciter f_1, f_2 et f_3 .
- b) Montrer dans le cas général que $0 \le f_1 \le f_2 \le f_3 \le \ldots \le f$.
- c) Montrer que $\lim_n f_n(x) = f(x)$ pour tout $x \in \Omega$.
- d) Montrer que la convergence est même uniforme si f est supposée bornée.

Exercice 5 Soit $X = \mathbb{Z}$ et A_1 la partie des nombres pairs non nuls de X et A_2 la partie de X des nombres impairs.

- a) Déterminer $\mathscr{A} = \sigma(\{A_1, A_2\}).$
- b) Discuter la mésurabilité des fonctions

$$f_1(x) = x^2$$
, $f_2(x) = x + 1$, $f_3(x) = 4$, $f_4(x) = 2x$, et $f_5(x) = |x|$,

vues comme fonctions sur (X, \mathscr{A}) et vues comme fonctions $(X, \mathscr{A}) \to (\mathbb{R}, \text{Borel})$.

c) Décrire l'ensemble des fonctions étagées, respectivement des fonctions mesurables de $(X, \mathscr{A}) \to (\mathbb{R}, \text{Borel})$?