Exercice 1 Soit f une fonction de classe C^1 sur \mathbb{R} et $u(t,x) := f(t+t^2x^2)$. Justifier que u satisfait l'équation différentielle

$$x \frac{\partial u}{\partial t}(t, x) - t \frac{\partial u}{\partial x}(t, x) = -x$$
 et $u(0, x) = f(x^2)$

Exercice 2 Donner toutes les solutions des problèmes de Cauchy suivants

$$y'(t) = \frac{-4t^3}{1+t^4}y(t) + \frac{1}{1+t^4}$$
 $y(0) = 0.$
 $z'(x) = x e^{x^2 - 2z(x)}$ $z(0) = 0$

On justifiera soigneusement d'avoir trouvé toutes les solutions.

Exercice 3 Montrer qu'il existe une fonction f_n sur un voisinage de 0 qui satisfait l'équation

$$\begin{cases} (1-x^2)f_n''(x) - 2x f_n'(x) + n(n+1)f_n(x) = 0, \\ f_n(0) = 1, f_n'(0) = 0. \end{cases}$$

- a) Supposer que $f_n(x) = \sum_{k=0}^{\infty} a_k^{(n)} x^k$ existe sous forme de série, puis établir une relation de récurrence entre les coefficients $(a_k^{(n)})_{k \in \mathbb{N}}$.
- b) Que pouvez vous dire du rayon de convergence de la série obtenue?
- c) Expliciter la fonction f_2 , puis montrer que f_{2n} est une fonction polynomiale pour tout $n \geq 1$.

Exercice 4 On considère l'équation non-linéaire

$$y''(t) + |y(t)| = 0$$
 $y(0) = 0, y(2\pi) = -\sinh(\pi)$ (E)

Le but de l'exercice consiste à montrer qu'elle admet exactement 2 solutions. On procède par une distiction de cas selon le signe de y'(0) (remarque: les 3 questions sont indépendantes).

a) Dans le cas où y'(0) < 0, écrire

$$y(t) = \int_0^t \left(y'(0) + \int_0^r y''(r) \, dr \right) ds \tag{1}$$

pour déterminer le signe de y(t) sur $(0, 2\pi]$. L'injecter dans (E) pour calculer la solution (justifier unicité).

- b) Montrer que toute solution de (E) satisfait $y'(0) \neq 0$: a ce fin considérer y'' + |y| = 0 avec valeur initiale y(0) = y'(0) = 0 (raisonnement par l'absurde). Utiliser (1) pour montrer que y(t) = 0 sur $[0, 2\pi]$ et conclure.
- c) Dans le cas où y'(0) > 0, utiliser (1) pour justifier que y(t) > 0 sur $(0, \varepsilon)$ pour un certain $\varepsilon > 0$. Calculer cette solution y_0 en injectant le signe de y(t) dans (E). Avec cette solution, justifier qu'on peut choisir $\varepsilon = \pi$. Calculer $y_0(\pi)$ et $y'_0(\pi)$. S'inspirer des arguments du point (a) pour déterminer la solution y_{π} sur $[\pi, 2\pi]$ avec valeurs initiales fournies par $y_0(\pi)$ et $y'_0(\pi)$.
- d) Justifier que le racollage de y_0 et y_π est de classe C^2 et satisfait (E).