Université de Bordeaux, L3 de Mathématiques, Automne 2021

4TMQ501U TD : Equations différentielles et calcul différentiel Feuille 1

Rappel du cours

Les exercices de cette section ont été vu en cours. Ils sont à savoir faire.

Exercice 1. Montrer que $(\mathbb{Q}, |\cdot|)$ n'est pas un espace complet.

Exercice 2. Soient E et F deux espaces vectoriel normés, et $L: E \longrightarrow F$ une application linéaire. Montrer l'équivalence des conditions suivantes:

- a) L est uniformément continue sur E
- b) L est continue sur E
- c) L est continue au point 0_E .
- d) L est bornée sur la boule unité de E
- e) L est bornée sur la sphère unité de E
- f) Il existe $C \ge 0$ telle que pour tout x appartenant à E, on ait:

$$||L(x)|| \le C||x||$$

g) L est Lipschitzienne sur E

Exercice 3. Montrer qu'une application linéaire entre deux espaces vectoriels normés, dont l'espace de départ est de dimension finie, est continue.

Exercice 4. Pour $f: \mathbb{R}^n \to \mathbb{R}$ une fonction de classe C^1 , $x_0 \in \mathbb{R}^n$, et $i \in [1; n]$, on a :

$$df(x_0)e_i = \partial_i f(x_0).$$

Un peu de topologie

Qu'est ce qui est jaune, normé et complet? $^{-1}$

Exercice 5. Soit E un e.v.n.. Rappelons la notation B(x,r) pour la boule ouverte autour de x de rayon r et $B_f(x,r)$ pour la boule fermée autour de x de rayon r. Montrer que l'adhérence de la boule ouverte est la boule fermée.

Exercice 6. Montrer que les concepts "ouvert", "fermé", "borné", "compact" pour un sous-ensemble $A \subset \mathbb{R}^n$ ne dépendent pas de la norme choisie.

Exercice 7. Soit $(x_n)_n$ la suite racine carrée définie par $x_n := \sqrt{n}$. Montrer que $x_{n+1} - x_n \longrightarrow 0$ lorsque $n \to \infty$. S'agit il d'une suite de Cauchy?

Exercice 8. Soit (x_n) une suite de Cauchy qui admet une sous-suite extraite convergente. Montrer que (x_n) converge vers la limite de cette sous-suite.

 $⁽j \text{ tilds younung } u_{\Omega})$

Exercice 9 (Charactérisation séquentielle de l'adhérence). Soit E un e.v.n. et A une partie non-vide de E. Soit L l'ensemble défini par

$$L := \{ \lim a_n; (a_n) \in A^{\mathbb{N}} \text{ et } \lim a_n \text{ existe dans } E \},$$

l'ensemble des limites de suites d'éléments de A dans E. Montrer que $L = \overline{A}$.

Exercice 10. Soit Ω un ensemble.

- a) Montrer que les fonctions bornées sur Ω , noté $\mathcal{B}(\Omega) := \{f : \Omega \to \mathbb{R} : f \text{ bornée}\}$, forment un espace vectoriel.
- b) Montrer que $||f||_{\infty} := \sup\{f(\omega) : \omega \in \Omega\}$ est une norme sur $\mathcal{B}(\Omega)$.
- c) A quoi sont égaux les ensembles $\mathcal{B}(\{1,\ldots,n\})$ et $\mathcal{B}(\mathbb{N})$.
- d) Montrer que $\mathcal{B}(\Omega)$ est complet pour la norme $\|.\|_{\infty}$.

Exercice 11. Soit E l'ensemble des fonctions continues sur [0,1] muni de la norme sup. Montrer que E est complet.

Exercice 12 (Un contre exemple de complétude). Soit E l'ensemble des fonctions continues sur [a, b] muni de la norme de la convergence en moyenne :

$$||f||_1 := \int_a^b |f|.$$

Montrer que E n'est pas complet. On peut p.ex. considérer sur [0,2] la suite (f_n) définie par $f_n(x) = x^n$ sur [0,1] et $f_n = 1$ sur [1,2]. Que dire de $||f_n - \mathbb{1}_{[1,2]}||_1$?

Exercice 13. On définit l'application $\|\cdot\|_{H^1}$ sur $C^1([a,b],\mathbb{R})$ par :

$$||f||_{H^1} := \int_a^b |f|^2 + \int_a^b |f'|^2.$$

Montrer que $\|\cdot\|_{H^1}$ est une norme sur $C^1([a,b],\mathbb{R})$ et la comparer à $\|\cdot\|_{L^{\infty}}$.

Exercice 14 (Exponentielle matricielle). Pour une matrice $A \in M_n(\mathbb{R})$, on note

$$||A|| := \max_{i=1..n} \sum_{j=1}^{n} |a_{ij}|.$$

- a) Justifier que $||AB|| \le ||A|| ||B||$.
- b) En déduire que la série

$$\sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

est convergente, et que sa limite, notée $\exp(A)$, vérifie l'inégalité

$$\|\exp(A)\| \le \exp(\|A\|).$$

- c) Que se passe-t-il si on munit $M_n(\mathbb{R})$ d'une autre norme?
- d) Rappeler le lien entre $\left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}; (a,b) \in \mathbb{R}^2 \right\}$ et les nombres complexes. Calculer ensuite $\exp(\theta I)$ pour $\theta \in \mathbb{R}$ et $I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Dérivées partielles

Exercice 15. Déterminer si les limites suivantes existent et les calculer le cas échéant :

$$\lim_{(x,y)\to(0,0)} \frac{x}{x^2 + y^2}, \quad \lim_{(x,y)\to(0,0)} \frac{(x+2y)^3}{x^2 + y^2}, \quad \lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2 + y^2}},$$

$$\lim_{(x,y)\to(0,0)} \frac{x^4 + y^3 - xy}{x^4 + y^2}, \quad \lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4 + y^4}.$$

Exercice 16. Etudier l'éventuelle continuité des fonctions suivantes :

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases} \quad \text{et} \quad g(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Exercice 17. Soir $f: \mathbb{R}^2 \to \mathbb{R}$ définie par:

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- a) L'application f est-elle continue sur \mathbb{R}^2 ?
- b) Calculer les dérivées partielles de f. Sont-elles continues ?
- c) L'application f est-elle différentiable ?

Exercice 18. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Exprimer au moyen de f' les dérivées partielles de :

- a) la fonction $g:]0,+\infty[\times\mathbb{R}\to\mathbb{R}$ définie par g(x,y):=f(y/x).
- b) la fonction $h: \mathbb{R}^3 \to \mathbb{R}$ définie par $h(x, y, z) := f(z \sin(x))$.

Exercice 19. Soit K > 0 une constante réelle et soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction telle que

- a) Pour tout x, la fonction $y \mapsto f(x, y)$ est continue.
- b) Pour tout y, la fonction $x \mapsto f(x, y)$ est K-Lipschitzienne.

Montrer que f est continue.

Indication : Pour établir la continuité au point (x_0, y_0) , regarder f aux points (x_0, y_0) , (x_0, y) et (x, y).

Remarque : Dans l'exercice précédent, si on remplace Lipschitzienne par continue, on n'obtient pas le résultat voulu comme, le démontre la fonction f de l'exercice 16.

La différentielle

Exercice 20. Considérons les fonctions suivantes de \mathbb{R}^2 dans \mathbb{R} . Sont-elles partiellement différentiables ? différentiables ? ou bien même de classes C^1 sur \mathbb{R}^2 ?

$$f_1(x,y) = \begin{cases} \frac{\sin(x^3 + y^3)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$
$$f_2(x,y) = \begin{cases} \frac{x^3 y + 2xy^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

$$f_3(x,y) = \begin{cases} \frac{x\sin(y)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

$$f_4(x,y) = \begin{cases} (x^2 + xy + y^2)\sin\left(\frac{1}{x^2 + y^2}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

$$f_5(x,y) = \begin{cases} \frac{\sin^2(x)(e^y - 1)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{autrement.} \end{cases}$$

$$f_6(x,y) = \begin{cases} \frac{x^3y^2 + x^2y^3}{x^4 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

Exercice 21. Soit $\alpha > 0$. Etudier la différentiabilité en (0,0) de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ suivante.

$$f(x,y) = \frac{|xy|^{\alpha}}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Exercice 22. On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
, si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

- a) Montrer que f admet des dérivées partielles en (0,0) par rapport à x,y.
- b) On considère un chemin dérivable $\gamma: \mathbb{R} \to \mathbb{R}^2$ vérifiant $\gamma(0) = (0,0)$ et $\gamma(t) \neq (0,0)$ pour tout $t \neq 0$. Montrer que $t \mapsto f(\gamma(t))$ est dérivable pour tout t.
- c) Montrer que f n'est pas différentiable en (0,0).

Exercice 23 (A savoir absolument). Dans cet exercice, I est un intervalle de \mathbb{R} et E, F, G sont des espaces vectoriels de dimension finie.

- a) Montrer qu'une fonction $f: I \to E$ est différentiable si et seulement si elle est dérivable. Déterminer sa différentielle en $d_x f$ quelque soit x dans I.
- b) Soit T une application linéaire de E dans F. Montrer que T est différentiable et déterminer sa différentielle d_xT .
- c) Soit T_2 une application bilinéaire de $E \times F$ dans G. Montrer que T_2 est différentiable et déterminer sa différentiable $d_{(x,y)}T_2$.
- d) Soient E_1, \ldots, E_n des espaces vectoriels de dimension finie. Soit T_n une application n-linéaire de $E_1 \times \cdots \times E_n$ dans F. Montrer que T_n est différentiable et déterminer sa différentielle en tout point.

Exercice 24. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application de classe C^1 vérifiant f(tx) = tf(x) pour tout $x \in \mathbb{R}^n$ et tout $t \in \mathbb{R}$. Montrer qu'il existe une matrice $A \in M_n(\mathbb{R})$ telle que pour tout $x \in \mathbb{R}^n$, on ait $f(x) = A \cdot x$. Et si f n'est pas de classe C^1 ?

Exercice 25. Soit E=C([0,1]) muni de la norme sup et $\Phi:E\to E$ défini par $\Phi(f)=f^2$. Déterminer la différentielle de Φ en f en développant $\Phi(f+h)=\Phi(f)+\ldots$

Exercice 26. Soit E=C([0,1]) muni de la norme sup et $\varphi:E\to\mathbb{R}$ défini par $\varphi(f)=\int_0^1\sin(f(t))\,dt$. Déterminer la différentielle de φ en f en développant

$$\varphi(f+h) = \varphi(f) + \int_0^1 \cos(f(t)) h(t) dt + \dots$$

Exercice 27 (Applications matricielles). En dévloppant f(A + H) = F(A) + L(H) + reste(H), déterminer les différentielles en tout point des applications suivantes définies de $M_n(\mathbb{R})$ dans lui même (attention à la non-commutativité du produit matriciel).

$$f_1: A \mapsto A^T, \quad f_2: A \mapsto A^T A, \quad f_3: A \mapsto A^k$$

Déterminer les différentielles des applications suivantes, définies de $M_n(\mathbb{R}) \times M_n(\mathbb{R})$ dans $M_n(\mathbb{R})$.

$$g_1(A, B) = AB, \quad g_2(A, B) = AB^T, \quad g_3(A, B) = AB^2$$

Calculer la différentielle de la fonction $f: A \in M_n(\mathbb{R}) \mapsto tr(A^k) \in \mathbb{R}$.

Exercice 28 (Différentielle de la fonction inverse). Soit n un entier strictement positif. On note $\Omega := \mathrm{GL}_n(\mathbb{R}) \subset M_n(\mathbb{R})$. On munit l'espace $M_n(\mathbb{R})$ de la norme

$$||A|| := \max_{i=1..n} \sum_{j=1}^{n} |a_{ij}|.$$

rencontré en exercice 14.

a) Soit H une matrice telle que $\|H\| < 1$. Montrer que I-H est inversible, inversée par la $s\'{e}rie$ de Neumann

$$(I-H)^{-1} = \sum_{n=0}^{\infty} H^k.$$

On pourra, par exemple, montrer d'abord que cette série converge absolument. Ensuite, tronquer la série et multiplier la somme finie par (I - H).

- b) En déduire que $\Omega = GL_n(\mathbb{R})$ est un ouvert de $M_n(\mathbb{R})$.
- c) Soit $f: \Omega \to M_n(\mathbb{R})$ l'application donnée par $M \mapsto M^{-1}$. En utilsant la série de Neumann, déterminer $D_f(I)$.
- d) En déduire que f est différentiable sur Ω et que

$$D_f(M)H = -M^{-1}HM^{-1}$$

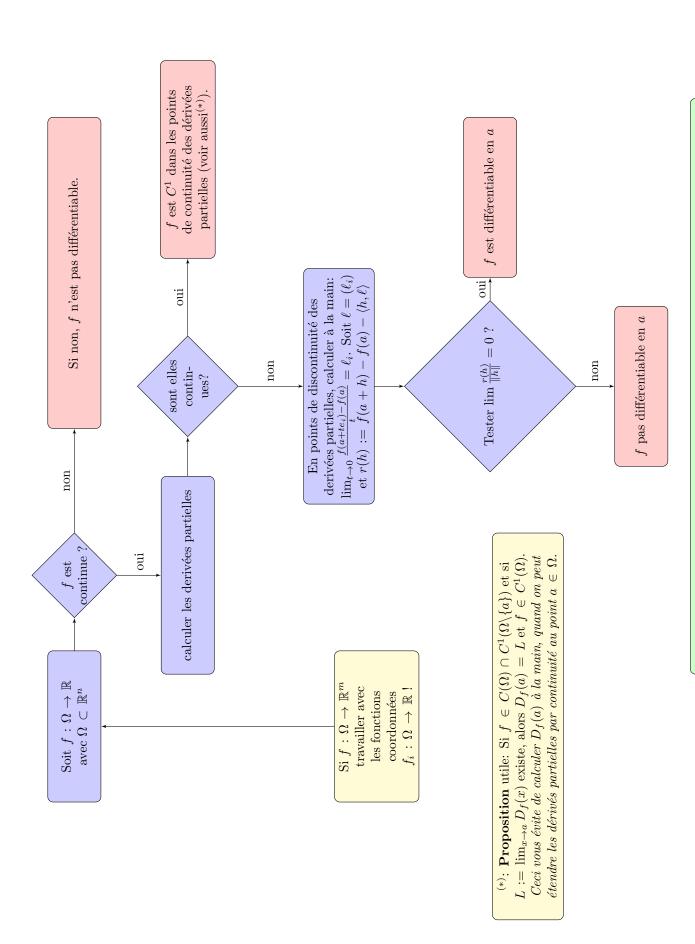
e) Que peut on dire dans le cas n = 1?

Exercice 29 (Différentielle du déterminant). Soit det: $M_n(\mathbb{R}) \to \mathbb{R}$ l'application déterminant.

- a) Justifier que det est différentiable. On pourra, par exemple, étudier la dépendence de $\det(A)$ des coefficients de A.
- b) Calculer la dérivée directionnelle de det au point I_n en direction d'une matrice T. En déduire que pour toute matrice H, on a :

$$d \det(I_n) H = \operatorname{Tr}(H).$$

- c) (\star) En déduire la différentielle de det en toute matrice inversible M.
- d) (\star) Par densité, en déduire la différentielle de det en toute matrice.



Flowchart d'analyse de differentabilité d'une fonction de plusieurs variables.