
Stirling formula

Question: estimate n!.
similar question: estimate ln(n!): this leads to “Baby-Stirling”:

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

Bernhard Haak (UBX) Infinitely small & large February 25, 2021 12 / 32



Stirling formula

Question: estimate n!.
similar question: estimate ln(n!): this leads to “Baby-Stirling”:

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

Bernhard Haak (UBX) Infinitely small & large February 25, 2021 12 / 32



Stirling formula 2

∫ n

1
ln(t)dt ≤ ln(n!) ≤

∫ n

1
ln(1 + t)dt

Knowing the anti-derivative t ln(t)− t we get

n ln(n)− n ≤ ln(n!) ≤ (n + 1) ln(n + 1)− (n − 1)− 2 ln(2)

or, writing 1 = ln(e) to get only logarithms, more precise is Stirling’s
formula (Student project!!)

n! ≈
√

2πn
(
n
e

)n
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Back to random walk

What can be said about this formula? Using Stirling,

P(S2n = 0) =
(

1
2

)2n
(

2n

n

)
=
(

1
2

)2n (2n)!

n!.n!
≈ 1√

πn

Theorem We have with probablity 1 that S2n = 0 infinitely often if, and
only if, ∑

n

P(S2n = 0) = +∞

We will prove this theorem below.
Corollary: random walks in Z and Z2 return infinitely often at the origin,
whereas in higher dimensions, this does not happen! (explaining this is a
small student project !! )
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Probablity theory in a nutshell 1

An event is a set of outcomes of an observation of a random
phenomenon. If you throw a die, A = {1} is an event. B = {1, 2} is
another one. If the die is fair, A occurs with probability 1/6, B with 2/6.
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Probablity theory in a nutshell 2

What counts is the observed result, not the probability space !

Ω

R

AX

A map X : Ω→ R is called a random variable. Now for an event A,

P(X ∈ A) := ν({ω ∈ Ω : X (ω) ∈ A})

The left is to be read “the probability that A is realised”. It is calculated
by the right, which is a probability measure of the pre-image of A under X .

Bernhard Haak (UBX) Infinitely small & large February 25, 2021 16 / 32



Probablity theory in a nutshell 3

A “probability measure” is a measure for the “size” of a subset of Ω. But
what does that mean? Formally, we have “measurable subsets” in Ω. The
collection of these sets is called M. For practical pruposes you can safely
assume that all sets you ever encounter are measurable (you will need to
play with the axion of choice to construct non-measurable sets).

ν : M→ [0, 1]

If An ∈M for all n and if An ∩ Ak = ∅ for n 6= k , then

ν(
⋃
n

An) =
∑
n

ν(An)

This is valid for finite or countable unions (indexed by natural numbers).
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Probablity theory in a nutshell 4

Example 1: Ω finite, M = { all subsets of Ω}. ν(A) = size of A
size of Ω

Example 2: In Ω = [0, 1], we let ν([a, b]) = b − a. This is the standard
“uniform” measure.

Observe that ν({a}) ≤ ν([a− ε, a + ε]) = 2ε for any ε > 0 so that
ν({a}) = 0. Probabilists will say, the “event” {a} happens with probability
0. Consequently,

ν([a, b]) = ν([a, b) ) = ν( (a, b]) = ν( (a, b) )

By the additivity property, ν([1/4, 1/2] ∪ [2/3, 3/4]) = 1
2 −

1
4 + 3

4 −
2
3 = 1

3 .

(back to general theory): Let A ⊂ B. Then B = A ∪ (B\A), and so we
have

ν(B) = ν(A) + ν(B\A) ≥ ν(A)

which means that measures are monotonic: “smaller set” implies “smaller
measure”.
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Probablity theory in a nutshell 3

Example 3: Observe that in the previous example

ν([a, b]) = b − a =

∫ b

a
1dx

therefore, is a special case of the situation where we let

ν([a, b]) =

∫ b

a
f dx

for a suitable positive function f , a “density”.
The most famous density is the Gaussian density on R. It is given by

γ(x) = 1√
2π

exp(−x2/2)

The Gaussian measure of an interval [a, b] ⊂ R is

νGauss([a, b]) :=

∫ b

a
γ(x) dx
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Random walk - next step

Consider the event S2k = 0. Its probability is ν(Ak), where
Ak = {ω ∈ Ω : S2k(ω) = 0}. Then the probability that S2k = 0 for at least
one k > n is

ν(
⋃
k>n

Ak)

and so, the probability that S2k = 0 “infinitely often” is cast by

ν(
∞⋂
n=1

⋃
k>n

Ak)
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Random walk - next step

S2k = 0 “infinitely often” is cast by

ν(
∞⋂
n=1

⋃
k>n

Ak) ≤ ν(
⋃
k>N

Ak)

for all N. This is just monoticity! Now assume
∑
n
ν(An) <∞. Then

ν(
⋃
k>N

Ak) ≤
∑
k>N

ν(Ak) → 0 (when N →∞)

So “infinitely often” occurs with probability zero if
∑
n
ν(An) <∞ !!

ν(S2n = 0) ∼ 1√
πn

That does not tell anything in dimension 1,2 but it tells us that for
dimesion > 2, random walks come back to the origin with probability 0.
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Probablity theory in a nutshell 4

Expectations. Let X : Ω→ {x1..xN} be a random variable and
pn = P(X = xn). We define the expectation as

E(X ) =
N∑

n=1

xn pn.

Think about coin flipping, dice throwing and similar experiments to
understand that this is, what you actually expect when repeating
independently the same random experiment.

If the random variable X : Ω→ N takes values in N we extend the above
definition by

E(X ) =
∞∑
n=1

xn pn
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