Stirling formula
Question: estimate n!.)
similar question: estimate $\ln (n!)$: this leads to "Baby-Stirling":

Stirling formula
Question: estimate $n!$. similar question: estimate $\ln (n!)$: this leads to "Baby-Stirling":

Stirling formula 2

$$
\int_{1}^{n} \ln (t) d t \leq \ln (n!) \leq \int_{1}^{n} \frac{\ln (1+t) d t}{\frac{\mathrm{t}}{}}
$$

Stirling formula 2

$$
\begin{aligned}
n! & \approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{\eta} \\
\int_{1}^{n} \ln (t) d t \leq \ln (n!) & \leq \int_{1}^{n} \ln (1+t) d t
\end{aligned}
$$

Knowing the anti-derivative $t \ln (t)-t$ we get

$$
n \ln (n)-n \leq \ln (n!) \leq(n+1) \ln (n+1)-(n-1)-2 \ln (2)
$$

or, writing $1=\ln (e)$ to get only logarithms, example: $n=n$. 1

$$
\begin{aligned}
& \ln \binom{n}{n}-\ln _{n}\left(e^{n}\right) \\
& =\ln _{n}\left(\left(\frac{n}{e}\right)^{n}\right)
\end{aligned}
$$

$$
=n \ln (e)
$$

$$
=\ln \left(e^{n}\right)
$$

$$
(n!)
$$

Stirling formula 2

$$
\int_{1}^{n} \ln (t) d t \leq \ln (n!) \leq \int_{1}^{n} \ln (1+t) d t
$$

Knowing the anti-derivative $t \ln (t)-t$ we get

$$
n \ln (n)-n \quad \leq \ln (n!) \leq \quad(n+1) \ln (n+1)-(n-1)-2 \ln (2)
$$

or, writing $1=\ln (e)$ to get only logarithms,

$$
\ln \left(\frac{n}{e}\right)^{n} \quad \leq \ln (n!) \leq \ln \frac{1}{4}(n+1)^{2}\left(\frac{n+1}{e}\right)^{n-1}
$$

Stirling formula 2

$$
\int_{1}^{n} \ln (t) d t \leq \ln (n!) \leq \int_{1}^{n} \ln (1+t) d t
$$

Knowing the anti-derivative $t \ln (t)-t$ we get

$$
n \ln (n)-n \quad \leq \ln (n!) \leq(n+1) \ln (n+1)-(n-1)-2 \ln (2)
$$

or, writing $1=\ln (e)$ to get only logarithms,

$$
\left(\frac{n}{e}\right)^{n} \quad \leq n!\leq \frac{e}{4}(n+1)\left(\frac{n+1}{e}\right)^{n}
$$

Stirling formula 2

$$
\int_{1}^{n} \ln (t) d t \leq \ln (n!) \leq \int_{1}^{n} \ln (1+t) d t
$$

Knowing the anti-derivative $t \ln (t)-t$ we get

$$
n \ln (n)-n \quad \leq \ln (n!) \leq \quad(n+1) \ln (n+1)-(n-1)-2 \ln (2)
$$

or, writing $1=\ln (e)$ to get only logarithms,

$$
\left(\frac{n}{e}\right)^{n} \quad \leq n!\leq \frac{e}{4}(n+1)\left(\frac{n+1}{e}\right)^{n} \approx \frac{e^{2}}{4}(n+1)\left(\frac{n}{e}\right)^{n}
$$

Stirling formula 2

$$
\int_{1}^{n} \ln (t) d t \leq \ln (n!) \leq \int_{1}^{n} \ln (1+t) d t
$$

Knowing the anti-derivative $t \ln (t)-t$ we get

$$
n \ln (n)-n \quad \leq \ln (n!) \leq(n+1) \ln (n+1)-(n-1)-2 \ln (2)
$$

or, writing $1=\ln (e)$ to get only logarithms,

$$
\left(\frac{n}{e}\right)^{n} \quad \leq n!\leq \frac{e}{4}(n+1)\left(\frac{n+1}{e}\right)^{n} \approx \frac{e^{2}}{4}(n+1)\left(\frac{n}{e}\right)^{n}
$$ more precise is Stirling's formula (Student project!!) \rightarrow Clavo

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Back to random walk

nous of
What can be said about this formula? Using Stirling,

$$
\begin{aligned}
& \mathbb{P}(\underbrace{}_{2 n}=0)=\left(\frac{1}{2}\right)^{2 n}\binom{2 n}{n}=\underbrace{\left(\frac{1}{2}\right)^{2 n}}\left(\frac{(2 n)!}{n!n!}\right)=\frac{1}{\sqrt{\pi n}} \\
& (+1,-1,+1,+1,+1,-1,-1,-1) \\
& (2 n) \quad \text { places, } \quad \begin{array}{l}
n \text { times }+1 \\
\mathbb{n}\left(S_{2 n}=0\right) \approx \frac{1}{\sqrt{\pi \cdot n}}
\end{array}
\end{aligned}
$$

Back to random walk

Back to random walk

What can be said about this formula? Using Stirling,

$$
\mathbb{P}\left(S_{2 n}=0\right)=\left(\frac{1}{2}\right)^{2 n}\binom{2 n}{n}=\left(\frac{1}{2}\right)^{2 n} \frac{(2 n)!}{n!\cdot n!} \approx \frac{1}{\sqrt{\pi n}}
$$

Theorem We have with probablity 1 that $S_{2 n}=0$ infinitely often if, and only if,

$$
\sum_{n} \mathbb{P}\left(S_{2 n}=0\right)=+\infty
$$

We will prove this theorem below.
Corollary: random walks in \mathbb{Z} and \mathbb{Z}^{2} return infinitely often at the origin, whereas in higher dimensions, this does not happen! (explaining this is a small student project !!)

Probablity theory in a nutshell 1

An event is a set of outcomes of an observation of a random phenomenon. If you throw a(die, $A=\{1\}$ is an event. $B=\{1,2\}$ is another one. If the die is fair, A occurs with probability $1 / 6, B$ with $2 / 6$.

Probablity theory in a nutshell 2

What counts is the observed result, not the probability space!

A map $X: \Omega \rightarrow \mathbb{R}$ is called a random variable. Now for an event A,

$$
\mathbb{P}(X \in A):=\nu(\underbrace{\nu \quad\{1(a)}
$$

The left is to be read "the probability that A is realised". It is calculated by the right, which is a probability measure of the pre-image of A under X.

Probablity theory in a nutshell 3

A "probability measure" is a measure for the "size" of a subset of Ω. But what does that mean? Formally, we have "measurable subsets" in Ω. The collection of these sets is called \mathcal{M}. For practical pruposes you can safely assume that all sets you ever encounter are measurable (you will need to play with the axion of choice to construct non-measurable sets).

- $\nu: \mathcal{M} \rightarrow[0,1]$
- If $A_{n} \in \mathcal{M}$ for all n and if $A_{n} \cap A_{k}=\emptyset$ for $n \neq k$, then $\operatorname{sim} u l$ taneouly

$$
\nu\left(\bigcup_{n} A_{n}\right)=\sum_{n} \nu\left(A_{n}\right)
$$

This is valid for finite or countabte unions (indexed by natural numbers).

Probability theory in a nutshell 4

Example 1: Ω finite, $\mathcal{M}=\{$ all subsets of $\Omega\} . \nu(A)=\frac{\operatorname{size} \text { of } A}{\text { size of } \Omega}$
Example 2: In $\Omega=[0,1]$, we let $\nu([a, b])=b-a$. This is the standard "uniform" measure.

Observe that $\nu(\{a\}) \leq \nu([a-\varepsilon, a+\varepsilon])=2 \varepsilon$ for any $\varepsilon>0$ so that $\nu(\{a\})=0$. Probabilists will say, the "event" $\{a\}$ happens with probability 0 . Consequently, $\llcorner x \approx \zeta$

$$
\begin{aligned}
\nu([a, b])= & \nu([a, b))=\nu((a, b])=\nu((a, b)) \\
& a \leqslant x<b
\end{aligned}
$$

By the additivity property, $\nu([1 / 4,1 / 2] \cup[2 / 3,3 / 4])=\frac{1}{2}-\frac{1}{4}+\frac{3}{4}-\frac{2}{3}=\frac{1}{3}$. (back to general theory): Let $A \subset B$. Then $B=A \cup(B \backslash A)$, and so we have

$$
\nu(B)=\nu(A)+\nu(B \backslash A) \geq \nu(A)
$$

which means that measures are monotonic: "smaller set" implies "smaller measure".

Probablity theory in a nutshell 3

Example 3: Observe that in the previous example

$$
\nu([a, b])=b-a=\int_{a}^{b} 1 d x
$$

therefore, is a special case of the situation where we let

$$
\nu([a, b])=\int_{a}^{b} f f^{c} d x
$$

for a suitable positive function f, a "density".
 The most famous density is the Gaussian density on \mathbb{R}. It is given by

$$
\gamma(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right)
$$

The Gaussian measure of an interval $[a, b] \subset \mathbb{R}$ is

Random walk - next step

Consider the event $S_{2 k}=0$. Its probability is $\stackrel{\downarrow}{\nu}\left(A_{k}\right)$, where $A_{k}=\left\{\omega \in \Omega: S_{2 k}(\omega)=0\right\}$. Then the probability that $S_{2 k}=0$ for at least one $k>n$ is

$$
\nu\left(\bigcup_{k>n} A_{k}\right) \quad \text { UA union of the }
$$

and so, the probability that $S_{2 k}=0$ "infinitely often" is cast by

Random walk - next step

$S_{2 k}=0$ "infinitely often" is cast by

$$
\nu\left(\bigcap_{n=1}^{\infty} \bigcup_{k>n} A_{k}\right) \leq \nu\left(\bigcup_{k>N} A_{k}\right)
$$

for all N. This is just monoticity! Now assume $\sum_{n} \nu\left(A_{n}\right)<\infty$. Then

So "infinitely often" occurs with probability zero if $\sum_{n} \nu\left(A_{n}\right)<\infty$).

$$
\nu\left(S_{2 n}=0\right) \quad \sim \frac{1}{\sqrt{\pi n}}
$$

That does not tell anything in dimension 1,2 but it tells us that for dimesion >2, random walks come back to the origin with probability 0 .

Probablity theory in a nutshell 4
Expectations. Let $X(\Omega) \rightarrow\left\{x_{1} . . x_{N}\right\}$ be a random variable and $p_{n}=\mathbb{P}\left(X=x_{n}\right)$. We define the expectation as head: $\sin 2 E$
tail: $\operatorname{los} 1 \in$

$$
\begin{aligned}
& \text { head: } \operatorname{win} 2 \epsilon \\
& \text { tail: } \operatorname{lov} 1^{\epsilon} \\
& \mathbb{E}(X)=+2 \in \frac{1}{2}+(-1) \cdot \frac{1}{L}
\end{aligned} \mathbb{E}(X)=\underbrace{\sum_{n=1}^{N} x_{n} p_{n} .} \begin{gathered}
\text { outcome } \\
\times x_{i}
\end{gathered} \begin{gathered}
\text { prob. of } \\
\text { outcas }
\end{gathered}
$$

Think about coin flipping, dice throwing and similar experiments to understand that this is, what you actually expect when repeating independently the same random experiment.
If the random variable $X: \Omega-\mathbb{N}$ takes values in \mathbb{N} vie extend the above definition by

$$
\mathbb{E}(X)=\sum_{n=1}^{\infty} x_{n} p_{n} \quad \text { suns }
$$

