Année universitaire 2018/2019 Licence 2, S4, mathématiques Structures algébriques 1 – Feuille 4

On note S_n le groupe des permutations de l'ensemble $\{1,\ldots,n\}$, et A_n le sous-groupe des permutations paires.

Exercice 1

- (1) Soient $c = (c_1 c_2 \dots c_l) \in \mathcal{S}_n$ un cycle de longueur l et $\sigma \in \mathcal{S}_n$. Que vaut $\sigma c \sigma^{-1}$?
- (2) On suppose de plus que l=n. Montrer que $\sigma c=c\sigma$ si et seulement s'il existe $k\in\mathbb{Z}$ tel que $\sigma = c^k$.
- (3) On suppose à partir de maintenant que $n \geq 4$. Montrer que la transposition (12) est produit de cycles de longueur 4. (On pourra commencer par calculer $(12) \circ (1234)$, et (12)(1243.) p.ex.)
- (4) En déduire que les cycles de longueur 4 engendrent S_n .
- (5) Les cycles de longueur 3 engendrent-ils S_n ?

Exercice 2

- (1) Soient m > n, construire des morphismes de groupes injectifs de \mathcal{S}_n vers \mathcal{S}_m .
- (2) Construire un morphisme de groupes injectif de \mathcal{S}_n vers \mathcal{A}_{n+2} .
- (3) Montrer qu'il n'existe pas de morphisme de groupes injectif de S_4 vers A_5 .
- (4) Montrer qu'il n'existe pas de morphisme de groupes injectif de S_5 vers A_6 . (On pourra considérer les éléments d'ordre 6.)

Exercice 3 Soit $n \geq 2$ un entier. On note S_n le groupe symétrique sur n lettres et A_n le groupe alterné sur n lettres. On rappelle que A_n est défini comme étant l'ensemble des $\sigma \in S_n$ de signature 1.

- (1) Rappeler pourquoi A_n est un sous-groupe de S_n . Quel est son indice? Justifier.
- (2) Montrer que A_n n'est pas abélien si $n \geq 4$.
- (3) Quelles sont les valeurs de $n \geq 2$ pour lesquelles A_n est cyclique? Justifier.
- (4) On suppose $n \geq 3$ et on se donne $a, b, c, d \in \{1, ..., n\}$ avec $a \neq b$ et $c \neq d$. Montrer que la permutation $\gamma = (ab)(cd)$ peut s' écrire comme un produit de 3-cycles. (On pourra expliquer qu'il suffit de considérer deux cas : soit sont a, b, c, d deux à deux distincts, soit a, b, c deux à deux distincts et a = d.)
- (5) Déduire que A_n est engendré par les 3-cycles de S_n .

Exercice 4. Dans A_5 , on considère le 3-cycle $\sigma = (123)$ et le sous-ensemble $H = \{ \tau \in A_5 :$ $\tau\sigma = \sigma\tau$ \.

- (1) Montrer que H est un sous-groupe de A_5 .
- (2) Donner un élément de H distinct de Id.
- (3) Montrer que si $\tau \in H$ alors $\tau(\{1,2,3\}) \subseteq \{1,2,3\}$ et $\tau(\{4,5\}) \subseteq \{4,5\}$.

- (4) Montrer que, dans S_5 , la permutation σ ne commute à aucune transposition de support inclus dans $\{1, 2, 3\}$ et conclure que $H = \sigma$.
- (5) Soit $H = \{ \tau \in S_5 : \tau \sigma = \sigma \tau \}$. A-t-on $H = \sigma$? Justifier.

Exercice 5 On fait agir S_3 sur $E = (\mathbb{Z}/2\mathbb{Z})^3$ par :

$$\sigma * (x_1, x_2, x_3) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}).$$

- (1) Montrer que cela définit bien une action du groupe S_3 sur l'ensemble E.
- (2) Calculer l'orbite et le stabilisateur de chaque élément de E.
- (3) Vérifier la formule des classes.

Exercice 6 On fait agir un groupe G à 15 éléments sur un ensemble fini E à n éléments.

- (1) Quels sont les cardinaux possibles pour les orbites?
- (2) On note n_i le nombre d'orbites à i éléments. Trouver une relation entre les n_i et n.
- (3) On suppose que n=7. Montrer que l'action admet au moins un point fixe, c'est-à-dire qu'il existe $x \in E$ tel que pour tout $g \in G$, $g \cdot x = x$.
- (4) On suppose que n = 14 et qu'il n'y a pas de point fixe. Déterminer le nombre d'orbites et leurs cardinaux.
- (5) Donner un exemple pour $G = \mathbb{Z}/15\mathbb{Z}$.

Exercice 7 Soient E un ensemble de cardinal n, et p un nombre premier. On note σ le cycle $(1\,2\,3\ldots p)\in\mathcal{S}_p$.

(1) Soient $\bar{k} \in \mathbb{Z}/p\mathbb{Z}$ et $(x_1, \ldots, x_p) \in E^p$, on définit une action * par

$$\bar{k} * (x_1, \dots, x_p) = (x_{\sigma^k(1)}, \dots, x_{\sigma^k(p)}).$$

Montrer que * est une action de groupe.

- (2) On note k le nombre d'orbites pour cette action. Démontrer que $n^p = n + (k n)p$.
- (3) En déduire que $n^p \equiv n \mod p$ pour tout entier n et tout nombre premier p.

Exercice 8 Soient p un nombre premier et G un groupe fini dont l'ordre est une puissance de p différente de 1. On rappelle que $Z(G) = \{z \in G \mid \forall g \in G, zg = gz\}$, le centre de G, est un sous-groupe de G et que l'on peut faire agir G sur lui-même par conjugaison en posant

$$g * h = ghg^{-1}.$$

- (1) Soit $z \in G$. Montrer que $z \in Z(G)$ si et seulement si $Orb(z) = \{z\}$.
- (2) En déduire que p divise Card Z(G).
- (3) Conclure que Z(G) n'est pas réduit à $\{e_G\}$.

Exercice 9 (Formule de Burnside) Soit G un groupe fini opérant sur un ensemble fini E. On note r le nombre d'orbites et, pour $g \in G$, on pose $Fix(g) = \{x \in E \mid g \cdot x = x\}$. Montrer que l'on a la relation :

$$r = \frac{1}{\operatorname{Card} G} \sum_{g \in G} \operatorname{Card} \operatorname{Fix}(g).$$

(On pourra évaluer le cardinal de $X = \{(g, x) \in G \times E \mid g \cdot x = x\}$ de deux façons différentes.)