Exercice 1 Soit $G = \{1, 2\}$ avec multiplication mod 3. Est-ce un groupe? Même question pour $G = \{1, 2, 3\}$ avec avec multiplication mod 4 et $G = \{1, 2, 3, 4\}$ avec avec multiplication mod 5.

Exercice 2 Soit $G = \{5, 15, 25, 35\}$ avec multiplication mod 40. Est-ce un groupe? Même question avec $\{1, 3, 5, 7\}$ mod 8.

Exercice 3 Soit $G = \{1, 9, 16, 22, 53, 74, 79, 81, x\}$ avec multiplication mod 91. Trouver x pour que G devienne un groupe.

Exercice 4 Soit G un groupe traduire les notations "multiplicatives" de la loi en notation additive et vice-versa: a^2b^3 , $a^{-2}(b^{-1}c)^2$, $(ab^2)^{-3}c^2$. Puis 5a-3b+c, 2(a-b)+c.

Exercice 5 Soit G Abélien, et $x, y \in G$. Donner une inverse de $(xy)^n$.

Exercice 6 Soit G un groupe et $x, y \in G$ avec $xy \neq yx$. Montrer que $xyx \neq e$.

Exercice 7 Montrer que G est Abélien si et seulement si $(ab)^{-1} = a^{-1}b^{-1}$

Exercice 8 Soit G un groupe et $a \neq b$. Montrer que $a^2 \neq b^2$ ou $a^3 \neq b^3$.

Exercice 9 Soit $G = \{3^m 6^n : m, n \in \mathbb{Z}\}$. Montrer que G est un groupe multiplicatif.

Exercice 10 Soit $H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$. Montrer que H est un groupe pour la multiplication de matrices.

Exercice 11 Soit $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a,b,c,d \in \mathbb{Z} \right\}$. Montrer que (G,+) est un groupe. Soit $H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G : a+b+c+d=x \right\}$. Pour quels $x \in \mathbb{R}$ s'agit il d'un sous-groupe? (preuve!)

Exercice 12 Soit $H = \{x \in \mathbb{R}^* : x^2 \in \mathbb{Q}\}$. S'agit il d'un sous-groupe de \mathbb{R}^* ?

Exercice 13 Soit G un groupe, H un sous-groupe et $g \in G$. Montrer que $H_g =$

 $\{g^{-1}hg: h \in H\}$ est un sous-groupe.

Exercice 14 Soit $H = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} : a, b \in \mathbb{Z}^* \right\}$. S'agit-il d'un sous-groupe de la $GL_2(\mathbb{R})$?

Exercice 15 Quel est le sous-groupe engendré par $\frac{1}{2}$ dans $(\mathbb{Q}, +)$ et dans (\mathbb{Q}^*, \times) ?

Exercice 16 Montrer que (\mathbb{Q}^*, \times) n'est pas monogène. S'inspirer de la preuve que $\sqrt{2} \notin \mathbb{Q}$.

Exercice 17 Soit $a \in G$ un élément d'ordre 7. Montrer que $a = g^3$ pour un $g \in G$.

Exercice 18 Soit $a, b, c \in G$, avec ord(a) = 6, ord(b) = 7. Simplifier $(a^4c^{-2}b^4)^{-1}$.

Exercice 19 Soit $a, b \in G$ avec ord(a) = 4, ord(b) = 2. Quel est l'ordre de ab?

Exercice 20 Soit G un groupe et $a, b \in G$. Montrer que si ab est d'ordre fini, alors ba aussi, et ord $(ab) = \operatorname{ord}(ba)$.

Exercice 21 Soit G un groupe Abélien. Montrer que les éléments d'ordre fini forment un sous-groupe de G.

Exercice 22 Soit $a \in G$ d'ordre n et d un diviseur de n. Quel est l'ordre de a^d ?

Exercice 23 Soit G un groupe ayant 8 éléments d'ordre 3. Combien de sous-groupes d'ordre 3 a G?

Exercice 24 Soit $G = (\mathbb{Z}/_{14\mathbb{Z}}, +)$ et $H = G^{\times}$ le groupe des éléments multiplicativement inversibles (mod 14). Expliciter H. Lesquelles des classes $\bar{3}, \bar{5}, \bar{11}$ engendrent H? Soit $G = (\mathbb{Z}/_{20\mathbb{Z}}, +)$ et $H = G^{\times}$. Est-ce que H est cyclique?

Exercice 25 Soit G Abélien, et $H = \{g \in G : \operatorname{ord}(g) | k\}$ pour $k \ge 2$. Est-ce que H est un sous-groupe?

Exercice 26 Soient p, q premiers. Donner les sous-groupes de $\mathbb{Z}/p^2q\mathbb{Z}$, les organiser

dans un graphe par inclusion. Même question pour $\mathbb{Z}/p^n\mathbb{Z}$, $n \geq 1$.

Exercice 27 Lesquelles des applications ϕ_k sont des homomorphisme?

$$\phi_{1}: \mathbb{R}^{*} \to \mathbb{R}^{*}, \qquad \phi_{1}(x) = |x|
\phi_{2}: GL_{n}(\mathbb{R}) \to \mathbb{R}^{*} \qquad \phi_{2}(A) = \det(A)
\phi_{3}: \mathbb{R}[X] \to \mathbb{R}[X] \text{ (additif)} \qquad \phi_{3}(f) = f'
\phi_{4}: \mathbb{R}[X] \to \mathbb{R}[X] \text{ (additif)} \qquad \phi_{4}(f)(x) = \int_{0}^{x} f(t)dt
\phi_{5}: \mathbb{Z}/_{12\mathbb{Z}} \to \mathbb{Z}/_{10\mathbb{Z}} \qquad \phi_{5}(x) = 3x
\phi_{6}: \mathbb{C} \to \mathbb{C}, \qquad \phi_{6}(x+iy) = x$$

Exercice 28 Soit G un sous-groupe d'un groupe dihédral D_n (générateurs r, s avec $sr = r^{-1}s$). Pour $x \in G$ soit $\phi(x) = 1$ si $x = r^k$ pour un k et $\phi(x) = -1$ sinon. Est-ce que ϕ est un homomorphisme de G dans $(\{+1, -1\}, \times)$?

Exercice 29 Donner un isomorphisme de groupes entre $(\mathbb{Z}, +)$ et $(2\mathbb{Z}, +)$.

Exercice 30 Montrer que $\phi(x) = \sqrt{x}$ est un automorphisme de (\mathbb{R}_+^*) .

Exercice 31 Soit $\phi: G \to H$ un isomorphisme. Montrer que G cyclique implique H cyclique. Montrer que $G = (\mathbb{Z}/8\mathbb{Z}, +)^{\times}$ et $H = (\mathbb{Z}/10\mathbb{Z}, +)^{\times}$ ne sont pas isomorphes, alors que G est $K = (\mathbb{Z}/12\mathbb{Z}, +)^{\times}$ le sont.

Exercice 32 Est-ce que $(\mathbb{Z}, +)$ et $(\mathbb{Q}, +)$ sont isomorphes?

Exercice 33 Soit G un groupe, et $\phi(x) = x^{-1}$. Montrer que ϕ est un automorphisme ssi G est Abélien.

Exercice 34 Montrer que $(\mathbb{Z}, +)$ admet un nombre infini de sous-groupes isomorphes à \mathbb{Z} .

Exercice 35 Soit G un groupe Abélien fini et sans éléments d'ordre 2. Montrer que $\phi(g) = g^2$ est un automorphisme de G.

Exercice 36 Soit \mathcal{G} l'ensemble des groupes finies. Montrer que $G \sim H$ ssi G isomorphe à H est une relation d'équivalence sur \mathcal{G} .

Exercice 37 Soit $H = \{e, (12)(34), (13)(24), (14)(23)\} \subset A_4$. Expliciter les classes à gauche H, (123)H, (132)H. Combien de classes à gauche de H y a t il dans la S_4 (ne pas les expliciter).

Exercice 38 Soit G un groupe, H un sous-groupe. Montrer aH = bH ssi $a^{-1}b \in H$.

Reformuler en notation additive.

Exercice 39 Soit $H = 3\mathbb{Z}$. Expliciter les classes à gauche de H dans $(\mathbb{Z}, +)$. Comparer 11 + H, 17 + H, -1 + H et 23 + H.

Exercice 40 Soit $a \in G$ un élément d'ordre 15. Quelles sont les classes à gauche de $K = \langle a^5 \rangle$ dans $H = \langle a \rangle$?

Exercice 41 Soit $G = \mathbb{C}^*$ et $H = \{a + ib : a^2 + b^2 = 1\}$. Décrire la classe à gauche (3+4i)H.

Exercice 42 Soit G un groupe d'ordre 60. Quels ordres de sous-groupes sont possibles?

Exercice 43 Soit G un groupe d'ordre 420, H un sous-groupe de G et K un sous-groupe d'ordre 42 de H. Quelles ordres de H sont possibles?

Exercice 44 Soit G un groupe d'ordre pq avec p,q premier. Montrer que les sous-groupes non-triviaux de G sont cycliques.

Exercice 45 Montrer pour tout $n \ge 2$ que $\phi(n) = \operatorname{card}\left((\mathbb{Z}/_{n\mathbb{Z}}, +)^{\times}\right)$ est un nombre pair (indic: considérer n-1).

Exercice 46 Soit G d'ordre n. Soit $n \wedge m = 1$ et $g \in G$ avec $g^m = e$. Montrer que g = e.

Exercice 47 Soit G un groupe ayant au moins deux éléments. Supposons que G n'a pas de sous-groupes propres non-triviaux. Montrer que G est fini, et premier. Indic: montrer d'abord que G infini est absurde dans les deux cas "monogène" et "non monogène".

Exercice 48 Soit G un groupe d'ordre 15. Supposons que G ait un seul sous-groupe $\langle a \rangle$ d'ordre 3 et un seul sous-groupe $\langle b \rangle$ d'ordre 5. Montrer que G est cyclique. (indic: que dire de l'ordre de $g \notin \langle a \rangle \cup \langle b \rangle$?). Généraliser au cas |G| = pq avec p, q premiers.

Exercice 49 Soit |G| = 8. Montrer que G possède un élément d'ordre 2.

Exercice 50 Soit G un groupe, avec $|G| \le 100$, avec des sous-groupes d'ordre 10 et 25. De quel ordre est G?