Exercice 23 Soit $f \in C^1([0,1])$. Montrer qu'il existe une suite de polynômes (p_n) telle que

$$||f - p_n||_{\infty} \to 0$$
 and $||f' - p'_n||_{\infty} \to 0$

Exercice 24 Soit $\mathbb{C}_+ = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$. Soit $f : \overline{\mathbb{C}_+} \to \mathbb{C}$ une fonction continue satisfaisant $\lim_{|z| \to \infty} f(z) = 0$. Montrer qu'il existent une suite de fonctions rationnelles (r_n) en deux variables tel que $(r_n(z, \overline{z}))_{n \geq 1}$ tend vers f sur tout \mathbb{C}_+ .

Indication: se ramener d'abord au cas $\mathbb{D}=\{z\in\mathbb{C}:\ |z|<1\}$ en utilisant la transformation de Moebius $\varphi(z)=\frac{1-z}{1+z}$ (Il sera admis d'utiliser le DM en analyse complexe, et d'utiliser que $\varphi:\mathbb{D}\to\mathbb{C}_+$ est bijective et holomorphe).

Exercice 25 Démontrer le lemme de Dini (voir cours) en utilisant le compacité sequentielle de K.

Exercice 26 Soit $A = \{f \in C^1([0,1]) : \int_{(0,1)} |f'(t)|^2 dt \le 1\}$. Est-ce que A est relativement compact dans X = C([0,1])? Même question pour $A_0 = \{f \in A : f(0) = 0\}$.